*> \brief \b ZHPMV
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
* 
*       .. Scalar Arguments ..
*       COMPLEX*16 ALPHA,BETA
*       INTEGER INCX,INCY,N
*       CHARACTER UPLO
*       ..
*       .. Array Arguments ..
*       COMPLEX*16 AP(*),X(*),Y(*)
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZHPMV  performs the matrix-vector operation
*>
*>    y := alpha*A*x + beta*y,
*>
*> where alpha and beta are scalars, x and y are n element vectors and
*> A is an n by n hermitian matrix, supplied in packed form.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>           On entry, UPLO specifies whether the upper or lower
*>           triangular part of the matrix A is supplied in the packed
*>           array AP as follows:
*>
*>              UPLO = 'U' or 'u'   The upper triangular part of A is
*>                                  supplied in AP.
*>
*>              UPLO = 'L' or 'l'   The lower triangular part of A is
*>                                  supplied in AP.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry, N specifies the order of the matrix A.
*>           N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX*16
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is COMPLEX*16 array of DIMENSION at least
*>           ( ( n*( n + 1 ) )/2 ).
*>           Before entry with UPLO = 'U' or 'u', the array AP must
*>           contain the upper triangular part of the hermitian matrix
*>           packed sequentially, column by column, so that AP( 1 )
*>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*>           and a( 2, 2 ) respectively, and so on.
*>           Before entry with UPLO = 'L' or 'l', the array AP must
*>           contain the lower triangular part of the hermitian matrix
*>           packed sequentially, column by column, so that AP( 1 )
*>           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*>           and a( 3, 1 ) respectively, and so on.
*>           Note that the imaginary parts of the diagonal elements need
*>           not be set and are assumed to be zero.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX*16 array of dimension at least
*>           ( 1 + ( n - 1 )*abs( INCX ) ).
*>           Before entry, the incremented array X must contain the n
*>           element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>           On entry, INCX specifies the increment for the elements of
*>           X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is COMPLEX*16
*>           On entry, BETA specifies the scalar beta. When BETA is
*>           supplied as zero then Y need not be set on input.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*>          Y is COMPLEX*16 array of dimension at least
*>           ( 1 + ( n - 1 )*abs( INCY ) ).
*>           Before entry, the incremented array Y must contain the n
*>           element vector y. On exit, Y is overwritten by the updated
*>           vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*>          INCY is INTEGER
*>           On entry, INCY specifies the increment for the elements of
*>           Y. INCY must not be zero.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_blas_level2
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 2 Blas routine.
*>  The vector and matrix arguments are not referenced when N = 0, or M = 0
*>
*>  -- Written on 22-October-1986.
*>     Jack Dongarra, Argonne National Lab.
*>     Jeremy Du Croz, Nag Central Office.
*>     Sven Hammarling, Nag Central Office.
*>     Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
*
*  -- Reference BLAS level2 routine (version 3.4.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      COMPLEX*16 ALPHA,BETA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
*     ..
*     .. Array Arguments ..
      COMPLEX*16 AP(*),X(*),Y(*)
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16 ONE
      PARAMETER (ONE= (1.0D+0,0.0D+0))
      COMPLEX*16 ZERO
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
*     ..
*     .. Local Scalars ..
      COMPLEX*16 TEMP1,TEMP2
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC DBLE,DCONJG
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
          INFO = 1
      ELSE IF (N.LT.0) THEN
          INFO = 2
      ELSE IF (INCX.EQ.0) THEN
          INFO = 6
      ELSE IF (INCY.EQ.0) THEN
          INFO = 9
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('ZHPMV ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
*     Set up the start points in  X  and  Y.
*
      IF (INCX.GT.0) THEN
          KX = 1
      ELSE
          KX = 1 - (N-1)*INCX
      END IF
      IF (INCY.GT.0) THEN
          KY = 1
      ELSE
          KY = 1 - (N-1)*INCY
      END IF
*
*     Start the operations. In this version the elements of the array AP
*     are accessed sequentially with one pass through AP.
*
*     First form  y := beta*y.
*
      IF (BETA.NE.ONE) THEN
          IF (INCY.EQ.1) THEN
              IF (BETA.EQ.ZERO) THEN
                  DO 10 I = 1,N
                      Y(I) = ZERO
   10             CONTINUE
              ELSE
                  DO 20 I = 1,N
                      Y(I) = BETA*Y(I)
   20             CONTINUE
              END IF
          ELSE
              IY = KY
              IF (BETA.EQ.ZERO) THEN
                  DO 30 I = 1,N
                      Y(IY) = ZERO
                      IY = IY + INCY
   30             CONTINUE
              ELSE
                  DO 40 I = 1,N
                      Y(IY) = BETA*Y(IY)
                      IY = IY + INCY
   40             CONTINUE
              END IF
          END IF
      END IF
      IF (ALPHA.EQ.ZERO) RETURN
      KK = 1
      IF (LSAME(UPLO,'U')) THEN
*
*        Form  y  when AP contains the upper triangle.
*
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
              DO 60 J = 1,N
                  TEMP1 = ALPHA*X(J)
                  TEMP2 = ZERO
                  K = KK
                  DO 50 I = 1,J - 1
                      Y(I) = Y(I) + TEMP1*AP(K)
                      TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
                      K = K + 1
   50             CONTINUE
                  Y(J) = Y(J) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
                  KK = KK + J
   60         CONTINUE
          ELSE
              JX = KX
              JY = KY
              DO 80 J = 1,N
                  TEMP1 = ALPHA*X(JX)
                  TEMP2 = ZERO
                  IX = KX
                  IY = KY
                  DO 70 K = KK,KK + J - 2
                      Y(IY) = Y(IY) + TEMP1*AP(K)
                      TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
                      IX = IX + INCX
                      IY = IY + INCY
   70             CONTINUE
                  Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
                  JX = JX + INCX
                  JY = JY + INCY
                  KK = KK + J
   80         CONTINUE
          END IF
      ELSE
*
*        Form  y  when AP contains the lower triangle.
*
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
              DO 100 J = 1,N
                  TEMP1 = ALPHA*X(J)
                  TEMP2 = ZERO
                  Y(J) = Y(J) + TEMP1*DBLE(AP(KK))
                  K = KK + 1
                  DO 90 I = J + 1,N
                      Y(I) = Y(I) + TEMP1*AP(K)
                      TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
                      K = K + 1
   90             CONTINUE
                  Y(J) = Y(J) + ALPHA*TEMP2
                  KK = KK + (N-J+1)
  100         CONTINUE
          ELSE
              JX = KX
              JY = KY
              DO 120 J = 1,N
                  TEMP1 = ALPHA*X(JX)
                  TEMP2 = ZERO
                  Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK))
                  IX = JX
                  IY = JY
                  DO 110 K = KK + 1,KK + N - J
                      IX = IX + INCX
                      IY = IY + INCY
                      Y(IY) = Y(IY) + TEMP1*AP(K)
                      TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
  110             CONTINUE
                  Y(JY) = Y(JY) + ALPHA*TEMP2
                  JX = JX + INCX
                  JY = JY + INCY
                  KK = KK + (N-J+1)
  120         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of ZHPMV .
*
      END