*> \brief \b SPFTRS
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SPFTRS + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spftrs.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spftrs.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spftrs.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          TRANSR, UPLO
*       INTEGER            INFO, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       REAL               A( 0: * ), B( LDB, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SPFTRS solves a system of linear equations A*X = B with a symmetric
*> positive definite matrix A using the Cholesky factorization
*> A = U**T*U or A = L*L**T computed by SPFTRF.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANSR
*> \verbatim
*>          TRANSR is CHARACTER*1
*>          = 'N':  The Normal TRANSR of RFP A is stored;
*>          = 'T':  The Transpose TRANSR of RFP A is stored.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of RFP A is stored;
*>          = 'L':  Lower triangle of RFP A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension ( N*(N+1)/2 )
*>          The triangular factor U or L from the Cholesky factorization
*>          of RFP A = U**H*U or RFP A = L*L**T, as computed by SPFTRF.
*>          See note below for more details about RFP A.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB,NRHS)
*>          On entry, the right hand side matrix B.
*>          On exit, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup realOTHERcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  We first consider Rectangular Full Packed (RFP) Format when N is
*>  even. We give an example where N = 6.
*>
*>      AP is Upper             AP is Lower
*>
*>   00 01 02 03 04 05       00
*>      11 12 13 14 15       10 11
*>         22 23 24 25       20 21 22
*>            33 34 35       30 31 32 33
*>               44 45       40 41 42 43 44
*>                  55       50 51 52 53 54 55
*>
*>
*>  Let TRANSR = 'N'. RFP holds AP as follows:
*>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
*>  the transpose of the first three columns of AP upper.
*>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
*>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
*>  the transpose of the last three columns of AP lower.
*>  This covers the case N even and TRANSR = 'N'.
*>
*>         RFP A                   RFP A
*>
*>        03 04 05                33 43 53
*>        13 14 15                00 44 54
*>        23 24 25                10 11 55
*>        33 34 35                20 21 22
*>        00 44 45                30 31 32
*>        01 11 55                40 41 42
*>        02 12 22                50 51 52
*>
*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
*>  transpose of RFP A above. One therefore gets:
*>
*>
*>           RFP A                   RFP A
*>
*>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
*>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
*>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
*>
*>
*>  We then consider Rectangular Full Packed (RFP) Format when N is
*>  odd. We give an example where N = 5.
*>
*>     AP is Upper                 AP is Lower
*>
*>   00 01 02 03 04              00
*>      11 12 13 14              10 11
*>         22 23 24              20 21 22
*>            33 34              30 31 32 33
*>               44              40 41 42 43 44
*>
*>
*>  Let TRANSR = 'N'. RFP holds AP as follows:
*>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
*>  the transpose of the first two columns of AP upper.
*>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
*>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
*>  the transpose of the last two columns of AP lower.
*>  This covers the case N odd and TRANSR = 'N'.
*>
*>         RFP A                   RFP A
*>
*>        02 03 04                00 33 43
*>        12 13 14                10 11 44
*>        22 23 24                20 21 22
*>        00 33 34                30 31 32
*>        01 11 44                40 41 42
*>
*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
*>  transpose of RFP A above. One therefore gets:
*>
*>           RFP A                   RFP A
*>
*>     02 12 22 00 01             00 10 20 30 40 50
*>     03 13 23 33 11             33 11 21 31 41 51
*>     04 14 24 34 44             43 44 22 32 42 52
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          TRANSR, UPLO
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               A( 0: * ), B( LDB, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER, NORMALTRANSR
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, STFSM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      NORMALTRANSR = LSAME( TRANSR, 'N' )
      LOWER = LSAME( UPLO, 'L' )
      IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SPFTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
*     start execution: there are two triangular solves
*
      IF( LOWER ) THEN
         CALL STFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
     $               LDB )
         CALL STFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
     $               LDB )
      ELSE
         CALL STFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B,
     $               LDB )
         CALL STFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B,
     $               LDB )
      END IF
*
      RETURN
*
*     End of SPFTRS
*
      END