/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include "common.h" #ifndef USE_SIMPLE_THREADED_LEVEL3 //The array of job_t may overflow the stack. //Instead, use malloc to alloc job_t. #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD #define USE_ALLOC_HEAP #endif static FLOAT dm1 = -1.; #ifndef KERNEL_FUNC #ifndef LOWER #define KERNEL_FUNC SYRK_KERNEL_U #else #define KERNEL_FUNC SYRK_KERNEL_L #endif #endif #ifndef LOWER #ifndef COMPLEX #define TRSM_KERNEL TRSM_KERNEL_LT #else #define TRSM_KERNEL TRSM_KERNEL_LC #endif #else #ifndef COMPLEX #define TRSM_KERNEL TRSM_KERNEL_RN #else #define TRSM_KERNEL TRSM_KERNEL_RR #endif #endif #ifndef CACHE_LINE_SIZE #define CACHE_LINE_SIZE 8 #endif #ifndef DIVIDE_RATE #define DIVIDE_RATE 2 #endif #ifndef SWITCH_RATIO #define SWITCH_RATIO 2 #endif #ifndef LOWER #define TRANS #endif #ifndef SYRK_LOCAL #if !defined(LOWER) && !defined(TRANS) #define SYRK_LOCAL SYRK_UN #elif !defined(LOWER) && defined(TRANS) #define SYRK_LOCAL SYRK_UT #elif defined(LOWER) && !defined(TRANS) #define SYRK_LOCAL SYRK_LN #else #define SYRK_LOCAL SYRK_LT #endif #endif typedef struct { volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE]; } job_t; #ifndef KERNEL_OPERATION #ifndef COMPLEX #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y)) #else #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y)) #endif #endif #ifndef ICOPY_OPERATION #ifndef TRANS #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); #else #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); #endif #endif #ifndef OCOPY_OPERATION #ifdef TRANS #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); #else #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); #endif #endif #ifndef S #define S args -> a #endif #ifndef A #define A args -> b #endif #ifndef C #define C args -> c #endif #ifndef LDA #define LDA args -> lda #endif #ifndef N #define N args -> m #endif #ifndef K #define K args -> k #endif static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ FLOAT *buffer[DIVIDE_RATE]; BLASLONG k, lda; BLASLONG m_from, m_to; FLOAT *alpha; FLOAT *a, *c; job_t *job = (job_t *)args -> common; BLASLONG xxx, bufferside; BLASLONG jjs, min_jj; BLASLONG is, min_i, div_n; BLASLONG i, current; k = K; a = (FLOAT *)A; c = (FLOAT *)C; lda = LDA; alpha = (FLOAT *)args -> alpha; m_from = range_n[mypos + 0]; m_to = range_n[mypos + 1]; #if 0 fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld\n", mypos, m_from, m_to); #endif div_n = ((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); buffer[0] = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B); for (i = 1; i < DIVIDE_RATE; i++) { buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE; } #ifndef LOWER TRSM_IUNCOPY(k, k, (FLOAT *)S, lda, 0, sb); #else TRSM_OLTCOPY(k, k, (FLOAT *)S, lda, 0, sb); #endif for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) { for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){ min_jj = MIN(m_to, xxx + div_n) - jjs; #ifndef LOWER if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN; #else if (min_jj > GEMM_P) min_jj = GEMM_P; #endif #ifndef LOWER OCOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE); TRSM_KERNEL (k, min_jj, k, dm1, #ifdef COMPLEX ZERO, #endif sb, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE, a + jjs * lda * COMPSIZE, lda, 0); #else ICOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE); TRSM_KERNEL (min_jj, k, k, dm1, #ifdef COMPLEX ZERO, #endif buffer[bufferside] + k * (jjs - xxx) * COMPSIZE, sb, a + jjs * COMPSIZE, lda, 0); #endif } #ifndef LOWER for (i = 0; i <= mypos; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; #else for (i = mypos; i < args -> nthreads; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; #endif WMB; } min_i = m_to - m_from; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else if (min_i > GEMM_P) { min_i = ((min_i + 1) / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); } #ifndef LOWER ICOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa); #else OCOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa); #endif current = mypos; #ifndef LOWER while (current < args -> nthreads) #else while (current >= 0) #endif { div_n = ((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { /* thread has to wait */ if (current != mypos) while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;}; KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, lda, m_from, xxx); if (m_from + min_i >= m_to) { job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; WMB; } } #ifndef LOWER current ++; #else current --; #endif } for(is = m_from + min_i; is < m_to; is += min_i){ min_i = m_to - is; if (min_i >= GEMM_P * 2) { min_i = GEMM_P; } else if (min_i > GEMM_P) { min_i = ((min_i + 1) / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); } #ifndef LOWER ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa); #else OCOPY_OPERATION(k, min_i, a, lda, 0, is, sa); #endif current = mypos; #ifndef LOWER while (current < args -> nthreads) #else while (current >= 0) #endif { div_n = ((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1); for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha, sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], c, lda, is, xxx); if (is + min_i >= m_to) { job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; WMB; } } #ifndef LOWER current ++; #else current --; #endif } } for (i = 0; i < args -> nthreads; i++) { if (i != mypos) { for (xxx = 0; xxx < DIVIDE_RATE; xxx++) { while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;}; } } } return 0; } static int thread_driver(blas_arg_t *args, FLOAT *sa, FLOAT *sb){ blas_arg_t newarg; #ifndef USE_ALLOC_HEAP job_t job[MAX_CPU_NUMBER]; #else job_t * job = NULL; #endif blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range[MAX_CPU_NUMBER + 100]; BLASLONG num_cpu; BLASLONG nthreads = args -> nthreads; BLASLONG width, i, j, k; BLASLONG n, n_from, n_to; int mode, mask; double dnum; #ifndef COMPLEX #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_REAL; mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_REAL; mask = MAX(DGEMM_UNROLL_M, DGEMM_UNROLL_N) - 1; #else mode = BLAS_SINGLE | BLAS_REAL; mask = MAX(SGEMM_UNROLL_M, SGEMM_UNROLL_N) - 1; #endif #else #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_COMPLEX; mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_COMPLEX; mask = MAX(ZGEMM_UNROLL_M, ZGEMM_UNROLL_N) - 1; #else mode = BLAS_SINGLE | BLAS_COMPLEX; mask = MAX(CGEMM_UNROLL_M, CGEMM_UNROLL_N) - 1; #endif #endif newarg.m = args -> m; newarg.k = args -> k; newarg.a = args -> a; newarg.b = args -> b; newarg.c = args -> c; newarg.lda = args -> lda; newarg.alpha = args -> alpha; #ifdef USE_ALLOC_HEAP job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t)); if(job==NULL){ fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__); exit(1); } #endif newarg.common = (void *)job; n_from = 0; n_to = args -> m; #ifndef LOWER range[MAX_CPU_NUMBER] = n_to - n_from; range[0] = 0; num_cpu = 0; i = 0; n = n_to - n_from; dnum = (double)n * (double)n /(double)nthreads; while (i < n){ if (nthreads - num_cpu > 1) { double di = (double)i; width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask); if (num_cpu == 0) width = n - ((n - width) & ~mask); if ((width > n - i) || (width < mask)) width = n - i; } else { width = n - i; } range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width; queue[num_cpu].mode = mode; queue[num_cpu].routine = inner_thread; queue[num_cpu].args = &newarg; queue[num_cpu].range_m = NULL; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu]; #else range[0] = 0; num_cpu = 0; i = 0; n = n_to - n_from; dnum = (double)n * (double)n /(double)nthreads; while (i < n){ if (nthreads - num_cpu > 1) { double di = (double)i; width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask); if ((width > n - i) || (width < mask)) width = n - i; } else { width = n - i; } range[num_cpu + 1] = range[num_cpu] + width; queue[num_cpu].mode = mode; queue[num_cpu].routine = inner_thread; queue[num_cpu].args = &newarg; queue[num_cpu].range_m = NULL; queue[num_cpu].range_n = range; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } #endif newarg.nthreads = num_cpu; if (num_cpu) { for (j = 0; j < num_cpu; j++) { for (i = 0; i < num_cpu; i++) { for (k = 0; k < DIVIDE_RATE; k++) { job[j].working[i][CACHE_LINE_SIZE * k] = 0; } } } queue[0].sa = sa; queue[0].sb = sb; queue[num_cpu - 1].next = NULL; exec_blas(num_cpu, queue); } #ifdef USE_ALLOC_HEAP free(job); #endif return 0; } #endif blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) { BLASLONG n, bk, i, blocking, lda; BLASLONG info; int mode; blas_arg_t newarg; FLOAT *a; FLOAT alpha[2] = { -ONE, ZERO}; #ifndef COMPLEX #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_REAL; #else mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) mode = BLAS_DOUBLE | BLAS_COMPLEX; #else mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif if (args -> nthreads == 1) { #ifndef LOWER info = POTRF_U_SINGLE(args, NULL, NULL, sa, sb, 0); #else info = POTRF_L_SINGLE(args, NULL, NULL, sa, sb, 0); #endif return info; } n = args -> n; a = (FLOAT *)args -> a; lda = args -> lda; if (range_n) n = range_n[1] - range_n[0]; if (n <= GEMM_UNROLL_N * 2) { #ifndef LOWER info = POTRF_U_SINGLE(args, NULL, range_n, sa, sb, 0); #else info = POTRF_L_SINGLE(args, NULL, range_n, sa, sb, 0); #endif return info; } newarg.lda = lda; newarg.ldb = lda; newarg.ldc = lda; newarg.alpha = alpha; newarg.beta = NULL; newarg.nthreads = args -> nthreads; blocking = (n / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1); if (blocking > GEMM_Q) blocking = GEMM_Q; for (i = 0; i < n; i += blocking) { bk = n - i; if (bk > blocking) bk = blocking; newarg.m = bk; newarg.n = bk; newarg.a = a + (i + i * lda) * COMPSIZE; info = CNAME(&newarg, NULL, NULL, sa, sb, 0); if (info) return info + i; if (n - i - bk > 0) { #ifndef USE_SIMPLE_THREADED_LEVEL3 newarg.m = n - i - bk; newarg.k = bk; #ifndef LOWER newarg.b = a + ( i + (i + bk) * lda) * COMPSIZE; #else newarg.b = a + ((i + bk) + i * lda) * COMPSIZE; #endif newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE; thread_driver(&newarg, sa, sb); #else #ifndef LOWER newarg.m = bk; newarg.n = n - i - bk; newarg.a = a + (i + i * lda) * COMPSIZE; newarg.b = a + (i + (i + bk) * lda) * COMPSIZE; gemm_thread_n(mode | BLAS_TRANSA_T, &newarg, NULL, NULL, (void *)TRSM_LCUN, sa, sb, args -> nthreads); newarg.n = n - i - bk; newarg.k = bk; newarg.a = a + ( i + (i + bk) * lda) * COMPSIZE; newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE; #if 0 HERK_THREAD_UC(&newarg, NULL, NULL, sa, sb, 0); #else syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T, &newarg, NULL, NULL, (void *)HERK_UC, sa, sb, args -> nthreads); #endif #else newarg.m = n - i - bk; newarg.n = bk; newarg.a = a + (i + i * lda) * COMPSIZE; newarg.b = a + (i + bk + i * lda) * COMPSIZE; gemm_thread_m(mode | BLAS_RSIDE | BLAS_TRANSA_T | BLAS_UPLO, &newarg, NULL, NULL, (void *)TRSM_RCLN, sa, sb, args -> nthreads); newarg.n = n - i - bk; newarg.k = bk; newarg.a = a + (i + bk + i * lda) * COMPSIZE; newarg.c = a + (i + bk + (i + bk) * lda) * COMPSIZE; #if 0 HERK_THREAD_LN(&newarg, NULL, NULL, sa, sb, 0); #else syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T | BLAS_UPLO, &newarg, NULL, NULL, (void *)HERK_LN, sa, sb, args -> nthreads); #endif #endif #endif } } return 0; }