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Introduction 
One of the remarkable features of OpenCL™ 2.0 is shared virtual memory (SVM). This feature enables 
OpenCL developers to write code with extensive use of pointer-linked data structures like linked lists 
or trees that are shared between the host and a device side of an OpenCL application. In OpenCL 1.2, 
the specification doesn’t provide any guarantees that a pointer assigned on the host side can be used 
to access data in the kernel on the device side or vice versa. Thus, data with pointers in OpenCL 1.2 
cannot be shared between the sides, and the application should be designed accordingly, for example, 
with indices used instead of pointers. This is an artifact of a separation of address spaces of the host 
and the device that is addressed by OpenCL 2.0 SVM. 

OpenCL 2.0 SVM enables the host and device portions of an OpenCL application to seamlessly share 
pointers and complex pointer-containing data-structures. Moreover, as described in this article, SVM is 
more than just about shared address space. It also defines memory model consistency guarantees for 
SVM allocations. This enables the host and the kernel sides to interact with each other using atomics 
for synchronization, like two distinct cores in a CPU. This is an important addition to OpenCL 2.0’s 
shared address space support and is targeted to fulfill the needs of developers who need tighter 
synchronization between the host and the device beyond enqueuing commands onto an OpenCL 
queue and synchronizing through events. 

Note that efficient implementation of all OpenCL 2.0 SVM features requires dedicated hardware 
coherency support such as enabled in the new Intel® CoreTM M processor family and future 
generations of Intel Core Processors with Intel® Graphics Gen8 compute architecture. See the 
Compute Architecture of Intel Processor Graphics Gen8 [PDF] article for more information. Not all 
OpenCL platforms support all SVM features defined by the OpenCL 2.0 specification, so the SVM 
features are organized in different feature classes of SVM support. The OpenCL 2.0 specification 
defines a minimum level of SVM support that is required for all OpenCL 2.0 implementations while 
other features are marked as optional. The host application should query the OpenCL implementation 
to determine which level of SVM is supported and route to the specific application code path that uses 
that level. 

This article describes all required and optional features provided by the Khronos specification without 
focusing on any particular OpenCL platform.  

SVM Features and Types 
In its purest form, SVM enables CPU and GPU code to share a pointer rich data-structure by simply 
passing a single root pointer. However, OpenCL 2.0 shared virtual memory includes a number of 
features to enable varying degrees of hardware support and application control. The following list 
contains SVM features that can be considered separately. Each of them may have a self-contained 
goodness while being used in an application, though the features are not completely independent. 
Each feature will be described in more detail in later sections of this article. 

• Shared virtual address space between the host and a kernel on a device allows sharing 
pointer-based data structures between the host and the device. 
 

• Identifying an SVM buffer using a regular pointer without having to create a separate 
cl_mem object via the clCreateBuffer function. This helps to integrate OpenCL into a legacy 
C/C++ program and to easily manage OpenCL memory resources on the host. 
 

• “Map-free” access to SVM allocations on the host side simplifies OpenCL host programming 
by eliminating the necessity to use map/unmap commands. 
 

• Fine-grained coherent access to an SVM allocation from the host during accessing the 
same SVM allocation from the kernel on the device side in the same time. This allows the host 
and the device kernel to concurrently make modifications to adjacent bytes of a single SVM 
allocation. 

https://software.intel.com/sites/default/files/managed/71/a2/Compute%20Architecture%20of%20Intel%20Processor%20Graphics%20Gen8.pdf
http://www.lingvo-online.ru/en/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%b0%d0%bc%d0%be%d1%81%d1%82%d0%be%d1%8f%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d1%8b%d0%b9&translation=self-contained&srcLang=ru&destLang=en
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• Fine-grained synchronization: Concurrent modification of the same bytes from the host 

and from the kernel on the device using atomics enables light-weight synchronization and 
memory consistency between the host and the device without enqueueing new commands in 
an OpenCL command queue. 
 

• Implicit use of any SVM allocation: Pointers in one SVM allocation can point to other SVM 
allocations. Minimum level of SVM support requires that such indirectly referenced allocations 
should be bound to a kernel’s execution context or need to be explicitly passed as kernel 
parameters. One of the advanced SVM features allows not passing all such indirectly used SVM 
allocations to kernels and using any number of them implicitly. 
 

• Sharing the entire host address space provided by an operating system seamlessly, 
without creating an SVM buffer for it. 

 

The OpenCL 2.0 specification classifies these features into three levels of SVM support that are called 
SVM types. Each SVM type provides a sub-set of the features listed above. The levels are 
differentiated by two important characteristics: 

• Buffer allocation vs. System allocation. How SVM allocation is done: allocation by an 
operating system function (like the malloc function, operator new, or another function), or 
explicit creation of an SVM buffer with an OpenCL API function (clSVMAlloc). 
 

• Coarse-grained vs. Fine-grained. What granularity of access is supported for sharing: as 
individual memory locations or as whole regions of memory buffers. 
 

Characteristics above are combined into three types of SVM: 

1. Coarse-Grained buffer SVM: Sharing occurs at the granularity of regions of OpenCL buffer 
memory objects. Cross-device atomics are not supported. 
 

2. Fine-Grained buffer SVM: Sharing occurs at the granularity of individual loads and stores 
within OpenCL buffer memory objects. Cross-device atomics are optional. 
 

3. Fine-Grained system SVM: Sharing occurs at the granularity of individual loads/stores 
occurring anywhere within the host memory. Cross-device atomics are optional. 

 

 
Coarse-grained Fine-grained 

Buffer 
allocation 

1. Coarse-grained 
buffer SVM 

(no SVM atomics) 

2. Fine-grained 
buffer SVM 

(optional SVM atomics) 

System 
allocation 

Not applicable 
3. Fine-grained 

system SVM 
(optional SVM atomics) 

 

The higher the level of SVM is, the more features it provides, and it may also require dedicated 
support from hardware, operating system, or device driver. So developers shouldn’t expect that the 
highest level of SVM is supported on all devices and all OpenCL platforms. In fact, while coarse-
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grained buffer SVM is required to be implemented on all OpenCL 2.0 platforms, the other levels are 
optional. 

Cross-device atomics or SVM atomics are atomic functions and fence operations that can be applied to 
coordinate concurrent access to memory locations in SVM allocations by the host and kernels. Support 
for atomics is optional for both fine-grained types. SVM atomics are not supported in coarse-grained 
type of SVM. 

To more clearly describe which SVM type has support for a specific SVM feature, the following table 
maps the SVM features to SVM types. 

SVM Feature 

SVM Type 

Coarse-
grained buffer 

Fine-grained buffer Fine-grained system 

w/o atomics with atomics w/o atomics with atomics 

Shared virtual 
address space      
Identifying an SVM 
buffer using a regular 
pointer 

     

“Map-free” access      

Fine-grained coherent 
access 

     

Fine-grained 
synchronization 

     

Implicit use of any 
SVM allocation 

     

Sharing the entire host 
address space 

     
 

Detecting the Supported SVM Type 
SVM availability and its highest supported type for a given device ID is queried with the 
clGetDeviceInfo OpenCL 2.0 API function passing CL_DEVICE_SVM_CAPABILITIES constant. The level 
of SVM support is returned through a pointer to a variable of type cl_device_svm_capabilities. 

 
 
  cl_device_svm_capabilities caps; 
 
  cl_int err = clGetDeviceInfo( 
      deviceID, 
      CL_DEVICE_SVM_CAPABILITIES, 
      sizeof(cl_device_svm_capabilities), 
      &caps, 
      0 
  ); 
 

http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clGetDeviceInfo.html
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If the OpenCL device identified by deviceID doesn’t support OpenCL 2.0, the returned err value is 
CL_INVALID_VALUE. Such return value indicates that SVM is not supported at all. Otherwise err is 
CL_SUCCESS and value returned in caps variable is a bit-field that describes a combination of the 
following values: 

• CL_DEVICE_SVM_COARSE_GRAIN for coarse-grained buffer SVM 
• CL_DEVICE_SVM_FINE_GRAIN_BUFFER for fine-grained buffer SVM 
• CL_DEVICE_SVM_FINE_GRAIN_SYSTEM for fine-grained system SVM 
• CL_DEVICE_SVM_ATOMICS for atomics support 

 

To detect a specific SVM type together with the cross-device atomics availability, the following 
expressions can be used. If a specific expression is true, the corresponding SVM type is supported by 
the device. 

SVM Type Expression 

No SVM support err == CL_INVALID_VALUE 

Coarse-grained 
buffer 

err == CL_SUCCESS && (caps & CL_DEVICE_SVM_COARSE_GRAIN) 

Fine-grained buffer err == CL_SUCCESS && (caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER) 

Fine-grained buffer 
with atomics 

err == CL_SUCCESS && (caps & (CL_DEVICE_SVM_FINE_GRAIN_BUFFER | 
CL_DEVICE_SVM_ATOMICS)) 

Fine-grained system err == CL_SUCCESS && (caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM) 

Fine-grained system 
with atomics 

err == CL_SUCCESS && (caps & (CL_DEVICE_SVM_FINE_GRAIN_SYSTEM | 
CL_DEVICE_SVM_ATOMICS)) 

 

Alternatively, if the application has already queried for OpenCL 2.0 support and found that it is 
available, SVM coarse-grained buffer is also supported by default. In that case, it isn’t necessary to 
detect it by calling clGetDeviceInfo if only this type of SVM is required by the application. 

Overview of SVM Features 
The following sections describe each of the SVM features. For each feature, a tag in a green box 
specifies the minimum SVM level required to use the feature. 

 

Identifying an SVM Buffer Using a Regular Pointer 
Coarse-grained buffer 

 

OpenCL 1.2 requires identifying and managing memory resources such as buffers or images through 
an explicit host interface. This interface requires using an identifier of type cl_mem in all operations 
with an OpenCL buffer, such as passing it to kernels and mapping it for access on the host side. If the 
application needs the host to access an OpenCL buffer, it must specify this cl_mem handle to each 
operation. This complicates application code and makes it harder to use legacy code that accesses 
memory using conventional pointers. 

http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clGetDeviceInfo.html
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OpenCL 2.0 SVM simplifies OpenCL programming by enabling access to memory resources using 
regular pointers rather than these cl_mem objects. 

SVM buffers are created with the clSVMAlloc function. Much like the malloc function or the new 
operator, clSVMAlloc returns a conventional C/C++ pointer: 

  void* p = clSVMAlloc ( 
 
    context,            // an OpenCL context where this buffer is available 
 
    CL_MEM_READ_ONLY,   // access mode for the kernel and other options; here 
        // only read-only access is required 
 
    size,               // amount of memory to allocate (in bytes) 
 
    0                   // alignment in bytes (0 means default) 
  ); 
 

The clSVMAlloc function creates an SVM allocation in a given OpenCL context. Though the function 
returns a conventional pointer, it can only be used in the specified context. 

The allocation flags passed as the second argument to clSVMAlloc may be ORed together, and are 
divided to two categories: 

• The access mode required for kernel execution on the device, similar to ones for 
clCreateBuffer, it can be 

o CL_MEM_READ_ONLY – read-only memory when used inside a kernel 
o CL_MEM_WRITE_ONLY – memory is written but not read by a kernel 
o CL_MEM_READ_WRITE – memory is read and written by a kernel 

 
• Parameters that allow specific operations on the memory available in advanced types of SVM: 

o CL_MEM_SVM_FINE_GRAIN_BUFFER – creates an SVM allocation that works correctly with 
fine-grained memory accesses (see sections Map-free access and Fine-grained 
simultaneous access in this document). 

o CL_MEM_SVM_ATOMICS – enables using SVM atomic operations to control visibility of 
updates in this SVM allocation (see section Fine-grained synchronization in this 
document). 

 

Choosing the right value for the last argument of the clSVMAlloc function – alignment – is important 
for efficient operation on allocated SVM memory. The default value that is chosen by passing zero 
value, will work well if the application doesn’t need stricter alignment requirements. However, a 
specific alignment value should be given if the allocated memory will be used for some data structure 
that requires alignment on a particular boundary. 

Once allocated, OpenCL 2.0 platforms with fine-grained SVM support may just start using the returned 
pointer p directly like any conventional C/C++ pointer. However, platforms with coarse-grained 
support require special steps to use allocated SVM memory on the host: the host must map the 
memory object before accessing it and then unmap it afterwards. Refer to the Map-free access section 
of this document to understand the difference in more details. 

The SVM pointer p is passed to an OpenCL kernel by calling the clSetKernelArgSVMPointer function 
that is similar to clSetKernelArg function used to pass regular cl_mem objects to the kernel: 

 
  clSetKernelArgSVMPointer(kernel, 0, p); 
 
 

http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSVMAlloc.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSVMAlloc.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSVMAlloc.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSetKernelArgSVMPointer.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSetKernelArg.html
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On the kernel side, there is no difference between a regular OpenCL 1.2 buffer passed as an argument 
and an SVM allocation. Both are represented as a pointer to the global address space: 

  kernel void mykernel (global float* p) 
  { 
      . . . 
  } 
 

To release SVM memory, the clSVMFree function is used: 

  clSVMFree ( 
 
    context,   // an OpenCL context used in corresponding clSVMAlloc call 
 
    p          // a pointer to allocated with clSVMAlloc memory 
  ); 
 

If there is a need to synchronize the deallocation operation with OpenCL commands enqueued to 
command queue, there is another function that may serve better: clEnqueueSVMFree. It implements 
the same SVM memory deallocation as clSVMFree, with the addition that it is enqueued as a regular 
OpenCL command, for example, right after the kernel that uses that SVM memory. 

In some cases using a regular pointer may be more troublesome than a conventional OpenCL 1.2 
cl_mem object, for example in legacy OpenCL 1.2 code. In this case, for compatibility reasons, OpenCL 
2.0 allows creating a cl_mem object on top of the memory previously allocated with clSVMAlloc. This 
is achieved by calling clCreateBuffer with CL_MEM_USE_HOST_PTR and passing the pointer that was 
returned from the clSVMAlloc function: 

  cl_mem buffer = clCreateBuffer ( 
 
    context,            // an OpenCL context where this buffer is available 
 
    CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,   // access mode for the device and 
                                              // other options 
 
    size,               // amount of memory to allocate (in bytes) 
 
    p,                  // pointer returned by clSVMAlloc 
 
    &err                // resulting error code 
  ); 
 

By doing that, both buffer and p can be used to access the underlying SVM allocation. 

 

Shared Virtual Address Space 
Coarse-grained buffer 

 

OpenCL 2.0 shared virtual memory, by its name, implies a shared address space. It means that the 
pointers assigned on the host can be seamlessly dereferenced in the kernel on the device side and 
vice versa. The pointers address the same data in this case. However, this is only true for pointers 
addressing data in SVM allocations and may not be true for OpenCL 2.0 regular buffer objects which 
aren’t created as SVM allocations. From the kernel side, SVM allocations are represented as data in 
the global address space; hence only global pointers can be used for data sharing. 

http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSVMFree.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clEnqueueSVMFree.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSVMFree.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSVMAlloc.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clCreateBuffer.html
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clSVMAlloc.html
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As OpenCL 1.2 doesn’t support SVM allocations, so there is no guaranteed way to share pointers 
between the host and the devices. In OpenCL version 1.2 and lower, if an application needs to share a 
linked data structure (like a linked list or a tree) between the host and the device, indices rather than 
pointers should be used. This complicates managing dynamically growing data structures that spread 
across several separately allocated buffers because indices imply the need to use base addresses for 
relative access. And if the application needs linked data structures spread across several OpenCL 
buffers, an index is not enough to address the data. 

 

Figure 1: Schematic representation of the address spaces in OpenCL 1.2 and 
regular buffers with their mapped content. 

 

An important observation is that a global address space pointer on an OpenCL 1.2 device may be 
represented in a way that is unlike a regular pointer on the host. The two pointers may have even 
different size. For example, a pointer on the device may be represented by a pair of a buffer index and 
an offset into that buffer. However, with OpenCL 2.0 SVM allocations, it is guaranteed that a global 
address space pointer on the device matches the pointer representation on the host. 

Shared virtual memory shouldn’t be confused with shared physical memory – they are different terms. 
The shared physical memory term is used when the host and a device use the same physical memory 
even if the virtual addresses they use don’t match. This feature may be available on versions of 
OpenCL prior to OpenCL 2.0 depending on the vendor of OpenCL platform – it is not defined by the 
OpenCL specification. Shared physical memory enables efficient transfers of data between the host 
and the device, and may require following specific buffer allocation rules depending on the vendor.  

Refer to Getting the Most from OpenCL™ 1.2: How to Increase Performance by Minimizing Buffer 
Copies on Intel® Processor Graphics for guidelines on how to exploit the benefits of shared physical 
memory on Intel® Processor Graphics. 

OpenCL Device 

Host 

Device global 
address space 

Host 
address space 

Regular 
buffer 

Mapped 
regular buffer 

All other host 
data (heap, 

stacks, static) 

Another regular 
buffer 

Mapped 
Regular buffer 

https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
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One of the important things to remember is that without SVM, even if data in a buffer is physically 
shared between the host and the device, the virtual addresses they use are not required to match. In 
fact, these two concepts – shared physical memory and shared virtual memory – are independent, 
and can be available separately or together depending on the vendor of OpenCL platform. 

 

 

Figure 2: Schematic representation of the address spaces in OpenCL 2.0 and their overlap in areas 
where SVM buffers are allocated. A regular buffer and its mapped content are shown for comparison. 

 

 

“Map-free” Access 
Fine-grained buffer 

 

Mapping/unmapping regions of an OpenCL buffer – SVM or not – is an important mechanism for host 
and device interaction. It is required when underlying hardware cannot resolve fine-grained accesses 
to a single OpenCL buffer from both sides. As an explicit mechanism, mapping/unmapping becomes 
too verbose when true fine-grained data exchange is needed between the host and the device. 

Thanks to modern hardware, the OpenCL platform may free the application from doing explicit 
map/unmap commands. In this case the OpenCL platform enables doing accesses with any granularity 
to SVM allocation from both sides (the host and the device) leaving the burden of keeping coherent 
memory content to underlying hardware. 

 
Map/unmap is required 

(coarse-grained SVM buffer) 

 
“Map-free” 

(fine-grained SVM buffer) 

OpenCL Device 

Host 

Device global 
address space 

Host 
address space 

SVM buffer Another SVM 
buffer 

Regular 
buffer 

Mapped 
regular buffer 

All other host 
data (heap, 

stacks, static) 
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float* p = (float*)clSVMAlloc(…); 
 
clEnqueueSVMMap(…, 
    CL_TRUE,  // block until map is done 
    p, …); 
 
// Initialize SVM buffer 
p[i] = …; 
 
clEnqueueSVMUnmap(…, p, …); 
 
clEnqueueNDRange(…); 
 
clEnqueueSVMMap(…, 
    CL_TRUE,  // block until map is done 
    p, …); 
 
// Read the data produced by the kernel 
… = p[i]; 
 
clEnqueueSVMUnmap(…, p, …); 
 

 
float* p = (float*)clSVMAlloc(…); 
 
 
 
 
 
// Initialize SVM buffer 
p[i] = …; 
 
 
 
clEnqueueNDRange(…); 
 
clFinish(…); 
 
 
 
// Read the data produced by the kernel 
… = p[i]; 
 

 

When map/unmap is required – for coarse-grained SVM buffers and regular non-SVM buffers – a 
buffer is bound to the device side from the moment of creation. Each time the host reads or writes 
data in the buffer, it should explicitly enclose the access operators in map/unmap brackets. 
clEnqueueSVMMap is a request to give ownership over a specific region of SVM allocation to the host. 

When map-free access available – in the fine-grained buffer SVM – there is no specific side that owns 
the content of the memory – any side can access it like two threads working on distinct cores on the 
CPU can access a piece of memory in the virtual address space of the process. Hence there is no need 
to map. This has a positive effect on application design, because now it doesn’t require explicit the 
numerous and verbose map/unmap calls. 

To create a SVM allocation that can operate with map-free fine-grained accesses, the clSVMAlloc 
function should be called with the CL_MEM_SVM_FINE_GRAIN_BUFFER memory flag, as in the following 
example: 

  void* p = clSVMAlloc ( 
    context,            // an OpenCL context where this buffer is available 
    CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER, 
    size,               // amount of memory to allocate (in bytes) 
    0                   // alignment in bytes (0 means default) 
  ); 
 

Fine-Grained Coherent Access 
Fine-grained buffer 

 

Closely connected with map-free access, fine-grained simultaneous access provides the ability for the 
host and the device to modify the same region of memory simultaneously. It means that the host side 
can enqueue a kernel with the clEnqueueNDRangeKernel command and, without waiting until the 
kernel has finished execution, modify data in the same SVM allocation as the kernel side does: 

 
Host side 

 
Kernel side 
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float* p = (float*)clSVMAlloc(…); 
 
clEnqueueNDRange(…, mykernel, …); 
clFlush(…); 
 
// Do not wait and modify some data 
  p[0] = 0; 
  p[2] = 2; 
  p[4] = 4; 
 
clFinish(…); 
 
 

 
 
 
kernel void mykernel (global float* p) 
{ 
 
  p[1] = 1; 
  p[3] = 3; 
  p[5] = 5; 
 
} 
 

 
// At this point (after clFinish) the host and the device have the same view of 
// the memory at p, the first values of which are {0.f, 1.f, 2.f, 3.f, 4.f, 5.f} 
 
 

Memory consistency is guaranteed at OpenCL synchronization points until the host and the device 
read and modify different bytes in the SVM allocation. If there is a need to modify the same bytes, or 
one side needs to read data written by another side, additional synchronization is required, like 
atomics and memory fences. This synchronization is needed to guarantee that the host and kernel will 
access consistent memory content. 

After the kernel’s execution completed, the SVM allocation’s final memory content will be a 
combination of the modifications made by the kernel and the device even if those modifications are 
made in neighbor bytes when one byte is modified by the host, and another one is modified by the 
device. 

 

Fine-Grained Synchronization 
Fine-grained buffer + Atomics 

 

One amazing feature of SVM is fine-grained synchronization between the host and SVM devices. With 
this feature, data written by one executable agent (host or device) can be made available to another 
agent without enqueuing any data transfer API commands like buffer read or map/unmap. Moreover, 
the agents may collaborate by executing concurrent atomic operations on the same variables placed in 
SVM allocations. The host and devices may also use memory fences to provide needed memory 
consistency. OpenCL 2.0 atomics are compatible with C++11 atomics. 

Atomics applied on SVM allocation have the following properties that make them a powerful 
mechanism for host and the device synchronization: 

• Access atomicity: transactional access to a particular variable of scalar type, like int. For 
example, with atomics the application can safely update the same integer variable from both 
the host and devices. 
 

• Memory consistency: ensuring that reads or writes made to memory locations by one agent 
are visible to other agents and in the correct order. For example, if a circular queue is 
implemented in an SVM allocation, then insertion of a new queue item and the update of the 
queue’s next_item pointer variable made by, say, the host, must be seen by a device in the 
right order. To provide this support, OpenCL 2.0 has several ordering rules that user may 
explicitly specify when using atomics. 
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To use atomics and fences, applications should specify memory_scope_all_svm_devices memory 
scope when calling atomic operations in the kernel. Also, it is required to allocate SVM memory with 
CL_DEVICE_SVM_ATOMICS: 

  void* p = clSVMAlloc ( 
    context,            // an OpenCL context where this buffer is available 
    CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER | CL_MEM_SVM_ATOMICS, 
    size,               // amount of memory to allocate (in bytes) 
    0                   // alignment in bytes (0 means default) 
  ); 
 

Once allocated this way, the resulting SVM memory can hold variables that can be used in atomic 
operations. Furthermore, the OpenCL 2.0 rules only guarantee memory consistency in that SVM 
memory. Data accesses where one executable agent (the host or the kernel on the device) writes data 
and another agent concurrently reads that data should only happen within such allocated SVM regions. 

The following example illustrates concurrent initialization of an array with floating point numbers. The 
items are initialized concurrently by the host and the device. The index of an item is an atomically 
incremented counter shared between the host and the device in SVM area. Thanks to atomics, each 
element is initialized only once. 

The host code: 

 
  // This variable will be used as shared atomically incremented counter 
  auto index = (std::atomic<cl_int>*)clSVMAlloc(…, 
    CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER | CL_MEM_SVM_ATOMICS, 
    sizeof(cl_int), 0 
  ); 
 
  // Allocate area that will be concurrently written from both the host and 
  // the device side by index. This area will not be used for actual data 
  // exchange between the host and the device, hence it is not needed to be 
  // created with CL_MEM_SVM_ATOMICS flag. 
  auto p = (float*)clSVMAlloc (…, 
    CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER, 
    size*sizeof(float), 0 
  ); 
 
  clSetKernelArgSVMPointer(kernel, 0, index); 
  clSetKernelArgSVMPointer(kernel, 1, p); 
 
  clEnqueueNDRangeKernel(…, 
    kernel, … 
    &size, …);    // global size matches with the number of elements in p 
   
  clFlush(…); 
 
  int localIndex; 
  while((localIndex = 
       std::atomic_fetch_add_explicit( 
         index, 1, 
         std::memory_order_relaxed) 
       ) < size) 
  { 
    p[localIndex] = localIndex; 
  } 
 
  clFinish(…); 
 
  // At this point p is initialized in arbitrary order by the host and the device 
  // concurrently. Each element is initialized once. 
 



OpenCL 2.0 SVM Overview  

14 

 

The kernel code: 

   
  kernel void mykernel (global atomic_int* index, global float* p) 
  { 
    int localIndex = atomic_fetch_add_explicit( 
      index, 1, 
      memory_order_relaxed, 
      memory_scope_all_svm_devices 
    ); 
 
    if(localIndex < get_global_size(0)) 
      p[localIndex] = localIndex; 
  } 
 
 

For more information on atomic operations, refer to Using OpenCL™ 2.0 Atomics. 

Sharing the Entire Host Address Space 
Fine-grained system 

 

OpenCL platforms that support system SVM allow a kernel on a device to use any data in the host 
address space. There is no need to call clSVMAlloc to allocate SVM memory as is required in the 
buffer flavors of SVM. Any memory available to the host – for example, obtained with the malloc 
function or the new operator – is also available for the kernel on the device. 

This property of system SVM is important for applications that don’t have control over memory 
allocation, such as ones that use libraries that allocate memory internally. Another good example is 
porting of existing C/C++ applications to OpenCL to enable them to run on a GPU. If the application is 
large and complex with many places where memory is allocated, it may be difficult to port it to use 
OpenCL 2.0 buffer SVM because each memory allocation used by the kernel should be rewritten to use 
the clSVMAlloc function. System SVM doesn’t require this. 

Although any data in the host address space may be used, data should be properly aligned as required 
by the OpenCL specification. Furthermore, stronger alignment rules may be required to make data 
accesses efficient depending on the OpenCL platform used. 

The following code illustrates creating an SVM allocation and passing it to a kernel. The code from the 
left and from the right are different depending on availability of system SVM support. The code from 
the left side is required when there is no system SVM support available on the OpenCL platform. The 
code from the right is correct when the system SVM support is available. As system SVM allows to 
share any host data, there is no need to allocate memory with the clSVMAlloc function. 

 
Buffer SVM allocation 

 
System SVM allocation 

 
 
 
 
 
float* p = (float*)clSVMAlloc( 
  context, 
  CL_MEM_READ_WRITE | 
    CL_MEM_SVM_FINE_GRAIN_BUFFER, 
  size, 

 
// _aligned_malloc is one of the 
// methods to allocate aligned 
// memory to ensure efficient data 
// processing in the kernel 
float* p = (float*)_aligned_malloc( 
  size, 
  sizeof(cl_float16) 
); 
 

https://software.intel.com/en-us/articles/using-opencl-20-atomics
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  0 
); 
 
clSetKernelArgSVMPointer( 
  mykernel, p, …); 
 
clEnqueueNDRange(…, mykernel, …); 
 

 
 
   
clSetKernelArgSVMPointer( 
  mykernel, p, …); 
 
clEnqueueNDRange(…, mykernel, …); 
 

 

 

Figure 3: Schematic representation of the address spaces in OpenCL 2.0 with support of the system SVM. 
 

 

Implicit Use of Any SVM Allocation 
Fine-grained system 

 

Any buffer that is used by a kernel on a device should be passed to the kernel with clSetKernelArg in 
OpenCL 1.2 and higher. A similar requirement is also true for OpenCL 2.0 SVM allocations if fine-
grained system SVM is not available on the platform. For platforms with only buffer SVM support – no 
matter whether this is coarse-grained or fine-grained SVM – the host application should call one of the 
two following functions to explicitly pass SVM allocations to a specific kernel: 

• clSetKernelArgSVMPointer: to pass a pointer to an SVM allocation as a kernel argument; 

• clSetKernelExecInfo: to pass pointers to all SVM allocations that can be reached and 
accessed by a specific kernel, but are not passed as kernel arguments. For example, this may 
happen when a pointer to one SVM allocation is stored in another SVM allocation. The call 
must be made for each kernel separately. Refer to the SVMBasic tutorial for more information 
OpenCL 2.0 Shared Virtual Memory Code Sample. 

 

OpenCL Device 

Host 

Device global 
address space 

Host 
address space 

SVM buffer Another SVM 
buffer 

All other host 
data (heap, 

stacks, static) 

https://software.intel.com/en-us/articles/opencl-20-shared-virtual-memory-code-sample
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Accessing SVM pointers that are not passed one of these ways is prohibited with buffer SVM. In the 
cases when many SVM pieces each allocated with a separate clSVMAlloc function should be used in 
the application, the requirement to notify each kernel about all allocations may turn to be too 
restrictive. Also, an OpenCL platform may limit the number of SVM allocations used per kernel. 

One advantage of fine-grained system SVM is that the host is not required to make these notification 
calls to enable kernels to access SVM allocations not passed as kernel arguments. With system SVM, 
each kernel can access any pointer: ones explicitly allocated with clSVMAlloc and ones pointing to 
system-allocated memory anywhere in the host address space. If a kernel accesses many host 
memory locations by traversing pointers, then using system SVM is especially convenient because 
there is no need to specify each memory allocation with clSetKernelExecInfo for each kernel. 

The following code illustrates the difference between buffer SVM and system SVM while passing two-
element linked-list data structure to the kernel: 

 
Explicit indirect use 

(buffer SVM allocation) 
 

 
Implicit indirect use 

(system SVM allocation) 

 
struct Node { 
  float value; 
  Node* next; 
}; 
 
Node* node1 = (Node*)clSVMAlloc( 
  context, 
  CL_MEM_READ_WRITE | 
    CL_MEM_SVM_FINE_GRAIN_BUFFER, 
  sizeof(Node), 
  0 
); 
 
node1->value = 1.f; 
 
Node* node2 = (Node*)clSVMAlloc( 
  context, 
  CL_MEM_READ_WRITE | 
    CL_MEM_SVM_FINE_GRAIN_BUFFER, 
  sizeof(Node), 
  0 
); 
 
node2->value = 2.f; 
 
// Link node1 to node2 
node1->next = node2; 
node2->next = 0; 
 
// Pass node1 as a kernel argument 
clSetKernelArgSVMPointer( 
  mykernel, node1, …); 
 
// Pass node2; it will be indirectly 
// used by a kernel through node1->next 
clSetKernelExecInfo( 
  mykernel, 
  CL_KERNEL_EXEC_INFO_SVM_PTRS, 
  sizeof(node2), 
  &node2 
); 
 
clEnqueueNDRange(…, mykernel, …); 

 
struct Node { 
  float value; 
  Node* next; 
}; 
 
Node* node1 = new Node; 
 
 
 
 
 
 
 
node1->value = 1.f; 
 
Node* node2 = new Node; 
 
 
 
 
 
 
 
node2->value = 2.f; 
 
// Link node1 to node2 
node1->next = node2; 
node2->next = 0; 
 
// Pass node1 as a kernel argument 
clSetKernelArgSVMPointer( 
  mykernel, node1, …); 
 
// node2 is not passed explicitly, 
// however kernel can still access it 
// through node1->next 
 
 
 
 
 
 
clEnqueueNDRange(…, mykernel, …); 
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If the kernel doesn’t use any system-allocated SVM memory and all used buffer SVM allocations are 
passed to the kernel by one of the clSetKernelArgSVMPointer or clSetKernelExecInfo functions 
as described above, the application can optionally notify the runtime about this. This is achieved by 
calling clSetKernelExecInfo with CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM = CL_FALSE: 

cl_bool flag = CL_FALSE; 
 
clSetKernelExecInfo( 
    mykernel,  
    CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM, 
    sizeof(flag), 
    &flag 
); 
 

Conclusion and Key Takeaways 
With OpenCL 2.0, the support for Shared Virtual Memory (SVM) introduces one of the most significant 
improvements for the programming model. Previously memory spaces of the host and OpenCL devices 
were distinct which added a lot of complexity to OpenCL host logic. Now the SVM bridges the gap, so 
that memory is accessible to both the host and OpenCL devices using a single pointer. 

SVM is foremost a productivity feature that makes porting existing C/C++ code to the OpenCL 
simpler, especially for the pointer-linked data structures. But SVM is not only about eliminating the 
excess host OpenCL code, it also allows for tighter synchronization between host and OpenCL devices 
via using fine-grained coherent accesses to SVM memory with atomics.  

There are different levels of SVM support depending on OpenCL platform hardware capabilities. It is 
highly important for developers to be aware of the differences between SVM types and design the host 
logic accordingly. 

The higher level of SVM support – moving from coarse-grained buffer SVM to fine-grained system SVM 
– the more productive ways of host logic organization it provides. In the same time, using advanced 
levels of the SVM support makes host OpenCL code less portable, because not all the SVM features 
available on all OpenCL 2.0 platforms. Hence, selection of target SVM type for an OpenCL application 
is a tradeoff between productivity and portability. 

Find out more on the SVM and associated topics using the resources in the section below. 
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Get started with OpenCL 2.0 API 

OpenCL 2.0 Shared Virtual Memory Code Sample 

Using OpenCL™ 2.0 Atomics 
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Using OpenCL™ 2.0 sRGB Image Format 

 

https://software.intel.com/sites/default/files/managed/71/a2/Compute%20Architecture%20of%20Intel%20Processor%20Graphics%20Gen8.pdf
https://software.intel.com/en-us/intel-opencl-support#start
https://software.intel.com/en-us/articles/opencl-20-shared-virtual-memory-code-sample
https://software.intel.com/en-us/articles/using-opencl-20-atomics
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
https://software.intel.com/en-us/articles/using-opencl-20-srgb-image-format

	OpenCL™ 2.0 Shared Virtual Memory Overview
	Contents
	Introduction
	SVM Features and Types
	Detecting the Supported SVM Type
	Overview of SVM Features
	Identifying an SVM Buffer Using a Regular Pointer
	Shared Virtual Address Space
	“Map-free” Access
	Fine-Grained Coherent Access
	Fine-Grained Synchronization
	Sharing the Entire Host Address Space
	Implicit Use of Any SVM Allocation
	Conclusion and Key Takeaways
	References

