/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log Inspired by Intel Approximate Math library, and based on the corresponding algorithms of the cephes math library The default is to use the SSE1 version. If you define USE_SSE2 the the SSE2 intrinsics will be used in place of the MMX intrinsics. Do not expect any significant performance improvement with SSE2. */ /* Copyright (C) 2007 Julien Pommier This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. (this is the zlib license) */ #include #include "openmm/internal/windowsExport.h" /* yes I know, the top of this file is quite ugly */ #ifdef _MSC_VER /* visual c++ */ # define ALIGN16_BEG __declspec(align(16)) # define ALIGN16_END #else /* gcc or icc */ # define ALIGN16_BEG # define ALIGN16_END __attribute__((aligned(16))) #endif /* __m128 is ugly to write */ typedef __m128 v4sf; // vector of 4 float (sse1) #ifdef USE_SSE2 # include typedef __m128i v4si; // vector of 4 int (sse2) #else typedef __m64 v2si; // vector of 2 int (mmx) #endif /* declare some SSE constants -- why can't I figure a better way to do that? */ #define _PS_CONST(Name, Val) \ static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val } #define _PI32_CONST(Name, Val) \ static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val } #define _PS_CONST_TYPE(Name, Type, Val) \ static const ALIGN16_BEG Type _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val } _PS_CONST(1 , 1.0f); _PS_CONST(0p5, 0.5f); /* the smallest non denormalized float number */ _PS_CONST_TYPE(min_norm_pos, int, 0x00800000); _PS_CONST_TYPE(mant_mask, int, 0x7f800000); _PS_CONST_TYPE(inv_mant_mask, int, ~0x7f800000); _PS_CONST_TYPE(sign_mask, int, (int)0x80000000); _PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000); _PI32_CONST(1, 1); _PI32_CONST(inv1, ~1); _PI32_CONST(2, 2); _PI32_CONST(4, 4); _PI32_CONST(0x7f, 0x7f); _PS_CONST(cephes_SQRTHF, 0.707106781186547524); _PS_CONST(cephes_log_p0, 7.0376836292E-2); _PS_CONST(cephes_log_p1, - 1.1514610310E-1); _PS_CONST(cephes_log_p2, 1.1676998740E-1); _PS_CONST(cephes_log_p3, - 1.2420140846E-1); _PS_CONST(cephes_log_p4, + 1.4249322787E-1); _PS_CONST(cephes_log_p5, - 1.6668057665E-1); _PS_CONST(cephes_log_p6, + 2.0000714765E-1); _PS_CONST(cephes_log_p7, - 2.4999993993E-1); _PS_CONST(cephes_log_p8, + 3.3333331174E-1); _PS_CONST(cephes_log_q1, -2.12194440e-4); _PS_CONST(cephes_log_q2, 0.693359375); #ifndef USE_SSE2 typedef union xmm_mm_union { __m128 xmm; __m64 mm[2]; } xmm_mm_union; #define COPY_XMM_TO_MM(xmm_, mm0_, mm1_) { \ xmm_mm_union u; u.xmm = xmm_; \ mm0_ = u.mm[0]; \ mm1_ = u.mm[1]; \ } #define COPY_MM_TO_XMM(mm0_, mm1_, xmm_) { \ xmm_mm_union u; u.mm[0]=mm0_; u.mm[1]=mm1_; xmm_ = u.xmm; \ } #endif // USE_SSE2 /* natural logarithm computed for 4 simultaneous float return NaN for x <= 0 */ OPENMM_EXPORT v4sf log_ps(v4sf x) { #ifdef USE_SSE2 v4si emm0; #else v2si mm0, mm1; #endif v4sf one = *(v4sf*)_ps_1; v4sf invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps()); x = _mm_max_ps(x, *(v4sf*)_ps_min_norm_pos); /* cut off denormalized stuff */ #ifndef USE_SSE2 /* part 1: x = frexpf(x, &e); */ COPY_XMM_TO_MM(x, mm0, mm1); mm0 = _mm_srli_pi32(mm0, 23); mm1 = _mm_srli_pi32(mm1, 23); #else emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23); #endif /* keep only the fractional part */ x = _mm_and_ps(x, *(v4sf*)_ps_inv_mant_mask); x = _mm_or_ps(x, *(v4sf*)_ps_0p5); #ifndef USE_SSE2 /* now e=mm0:mm1 contain the really base-2 exponent */ mm0 = _mm_sub_pi32(mm0, *(v2si*)_pi32_0x7f); mm1 = _mm_sub_pi32(mm1, *(v2si*)_pi32_0x7f); v4sf e = _mm_cvtpi32x2_ps(mm0, mm1); _mm_empty(); /* bye bye mmx */ #else emm0 = _mm_sub_epi32(emm0, *(v4si*)_pi32_0x7f); v4sf e = _mm_cvtepi32_ps(emm0); #endif e = _mm_add_ps(e, one); /* part2: if( x < SQRTHF ) { e -= 1; x = x + x - 1.0; } else { x = x - 1.0; } */ v4sf mask = _mm_cmplt_ps(x, *(v4sf*)_ps_cephes_SQRTHF); v4sf tmp = _mm_and_ps(x, mask); x = _mm_sub_ps(x, one); e = _mm_sub_ps(e, _mm_and_ps(one, mask)); x = _mm_add_ps(x, tmp); v4sf z = _mm_mul_ps(x,x); v4sf y = *(v4sf*)_ps_cephes_log_p0; y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p1); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p2); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p3); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p4); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p5); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p6); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p7); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p8); y = _mm_mul_ps(y, x); y = _mm_mul_ps(y, z); tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q1); y = _mm_add_ps(y, tmp); tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5); y = _mm_sub_ps(y, tmp); tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q2); x = _mm_add_ps(x, y); x = _mm_add_ps(x, tmp); x = _mm_or_ps(x, invalid_mask); // negative arg will be NAN return x; } _PS_CONST(exp_hi, 88.3762626647949f); _PS_CONST(exp_lo, -88.3762626647949f); _PS_CONST(cephes_LOG2EF, 1.44269504088896341); _PS_CONST(cephes_exp_C1, 0.693359375); _PS_CONST(cephes_exp_C2, -2.12194440e-4); _PS_CONST(cephes_exp_p0, 1.9875691500E-4); _PS_CONST(cephes_exp_p1, 1.3981999507E-3); _PS_CONST(cephes_exp_p2, 8.3334519073E-3); _PS_CONST(cephes_exp_p3, 4.1665795894E-2); _PS_CONST(cephes_exp_p4, 1.6666665459E-1); _PS_CONST(cephes_exp_p5, 5.0000001201E-1); OPENMM_EXPORT v4sf exp_ps(v4sf x) { v4sf tmp = _mm_setzero_ps(), fx; #ifdef USE_SSE2 v4si emm0; #else v2si mm0, mm1; #endif v4sf one = *(v4sf*)_ps_1; x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi); x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo); /* express exp(x) as exp(g + n*log(2)) */ fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF); fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5); /* how to perform a floorf with SSE: just below */ #ifndef USE_SSE2 /* step 1 : cast to int */ tmp = _mm_movehl_ps(tmp, fx); mm0 = _mm_cvttps_pi32(fx); mm1 = _mm_cvttps_pi32(tmp); /* step 2 : cast back to float */ tmp = _mm_cvtpi32x2_ps(mm0, mm1); #else emm0 = _mm_cvttps_epi32(fx); tmp = _mm_cvtepi32_ps(emm0); #endif /* if greater, substract 1 */ v4sf mask = _mm_cmpgt_ps(tmp, fx); mask = _mm_and_ps(mask, one); fx = _mm_sub_ps(tmp, mask); tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1); v4sf z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2); x = _mm_sub_ps(x, tmp); x = _mm_sub_ps(x, z); z = _mm_mul_ps(x,x); v4sf y = *(v4sf*)_ps_cephes_exp_p0; y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4); y = _mm_mul_ps(y, x); y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5); y = _mm_mul_ps(y, z); y = _mm_add_ps(y, x); y = _mm_add_ps(y, one); /* build 2^n */ #ifndef USE_SSE2 z = _mm_movehl_ps(z, fx); mm0 = _mm_cvttps_pi32(fx); mm1 = _mm_cvttps_pi32(z); mm0 = _mm_add_pi32(mm0, *(v2si*)_pi32_0x7f); mm1 = _mm_add_pi32(mm1, *(v2si*)_pi32_0x7f); mm0 = _mm_slli_pi32(mm0, 23); mm1 = _mm_slli_pi32(mm1, 23); v4sf pow2n; COPY_MM_TO_XMM(mm0, mm1, pow2n); _mm_empty(); #else emm0 = _mm_cvttps_epi32(fx); emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f); emm0 = _mm_slli_epi32(emm0, 23); v4sf pow2n = _mm_castsi128_ps(emm0); #endif y = _mm_mul_ps(y, pow2n); return y; } _PS_CONST(minus_cephes_DP1, -0.78515625); _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4); _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8); _PS_CONST(sincof_p0, -1.9515295891E-4); _PS_CONST(sincof_p1, 8.3321608736E-3); _PS_CONST(sincof_p2, -1.6666654611E-1); _PS_CONST(coscof_p0, 2.443315711809948E-005); _PS_CONST(coscof_p1, -1.388731625493765E-003); _PS_CONST(coscof_p2, 4.166664568298827E-002); _PS_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI /* evaluation of 4 sines at onces, using only SSE1+MMX intrinsics so it runs also on old athlons XPs and the pentium III of your grand mother. The code is the exact rewriting of the cephes sinf function. Precision is excellent as long as x < 8192 (I did not bother to take into account the special handling they have for greater values -- it does not return garbage for arguments over 8192, though, but the extra precision is missing). Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the surprising but correct result. Performance is also surprisingly good, 1.33 times faster than the macos vsinf SSE2 function, and 1.5 times faster than the __vrs4_sinf of amd's ACML (which is only available in 64 bits). Not too bad for an SSE1 function (with no special tuning) ! However the latter libraries probably have a much better handling of NaN, Inf, denormalized and other special arguments.. On my core 1 duo, the execution of this function takes approximately 95 cycles. From what I have observed on the experiments with Intel AMath lib, switching to an SSE2 version would improve the perf by only 10%. Since it is based on SSE intrinsics, it has to be compiled at -O2 to deliver full speed. */ OPENMM_EXPORT v4sf sin_ps(v4sf x) { // any x v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y; #ifdef USE_SSE2 v4si emm0, emm2; #else v2si mm0, mm1, mm2, mm3; #endif sign_bit = x; /* take the absolute value */ x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask); /* extract the sign bit (upper one) */ sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask); /* scale by 4/Pi */ y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI); #ifdef USE_SSE2 /* store the integer part of y in mm0 */ emm2 = _mm_cvttps_epi32(y); /* j=(j+1) & (~1) (see the cephes sources) */ emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1); emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1); y = _mm_cvtepi32_ps(emm2); /* get the swap sign flag */ emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4); emm0 = _mm_slli_epi32(emm0, 29); /* get the polynom selection mask there is one polynom for 0 <= x <= Pi/4 and another one for Pi/4