/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2011-2016 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ /** * This tests the CUDA implementation of sorting. */ #include "openmm/internal/AssertionUtilities.h" #include "CudaArray.h" #include "CudaContext.h" #include "CudaFFT3D.h" #include "CudaSort.h" #include "fftpack.h" #include "sfmt/SFMT.h" #include "openmm/System.h" #include #include #include using namespace OpenMM; using namespace std; static CudaPlatform platform; template void testTransform(bool realToComplex, int xsize, int ysize, int zsize) { System system; system.addParticle(0.0); CudaPlatform::PlatformData platformData(NULL, system, "", "true", platform.getPropertyDefaultValue("CudaPrecision"), "false", platform.getPropertyDefaultValue(CudaPlatform::CudaCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaTempDirectory()), platform.getPropertyDefaultValue(CudaPlatform::CudaHostCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaDisablePmeStream()), "false", 1, NULL); CudaContext& context = *platformData.contexts[0]; context.initialize(); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector original(xsize*ysize*zsize); vector reference(original.size()); for (int i = 0; i < (int) original.size(); i++) { Real2 value; value.x = (float) genrand_real2(sfmt); value.y = (float) genrand_real2(sfmt); original[i] = value; reference[i] = t_complex(value.x, value.y); } for (int i = 0; i < (int) reference.size(); i++) { if (realToComplex) reference[i] = t_complex(i%2 == 0 ? original[i/2].x : original[i/2].y, 0); else reference[i] = t_complex(original[i].x, original[i].y); } CudaArray grid1(context, original.size(), sizeof(Real2), "grid1"); CudaArray grid2(context, original.size(), sizeof(Real2), "grid2"); grid1.upload(original); CudaFFT3D fft(context, xsize, ysize, zsize, realToComplex); // Perform a forward FFT, then verify the result is correct. fft.execFFT(grid1, grid2, true); vector result; grid2.download(result); fftpack_t plan; fftpack_init_3d(&plan, xsize, ysize, zsize); fftpack_exec_3d(plan, FFTPACK_FORWARD, &reference[0], &reference[0]); int outputZSize = (realToComplex ? zsize/2+1 : zsize); for (int x = 0; x < xsize; x++) for (int y = 0; y < ysize; y++) for (int z = 0; z < outputZSize; z++) { int index1 = x*ysize*zsize + y*zsize + z; int index2 = x*ysize*outputZSize + y*outputZSize + z; ASSERT_EQUAL_TOL(reference[index1].re, result[index2].x, 1e-3); ASSERT_EQUAL_TOL(reference[index1].im, result[index2].y, 1e-3); } fftpack_destroy(plan); // Perform a backward transform and see if we get the original values. fft.execFFT(grid2, grid1, false); grid1.download(result); double scale = 1.0/(xsize*ysize*zsize); int valuesToCheck = (realToComplex ? original.size()/2 : original.size()); for (int i = 0; i < valuesToCheck; ++i) { ASSERT_EQUAL_TOL(original[i].x, scale*result[i].x, 1e-4); ASSERT_EQUAL_TOL(original[i].y, scale*result[i].y, 1e-4); } } int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); if (platform.getPropertyDefaultValue("CudaPrecision") == "double") { testTransform(false, 28, 25, 30); testTransform(true, 28, 25, 25); testTransform(true, 25, 28, 25); testTransform(true, 25, 25, 28); testTransform(true, 21, 25, 27); } else { testTransform(false, 28, 25, 30); testTransform(true, 28, 25, 25); testTransform(true, 25, 28, 25); testTransform(true, 25, 25, 28); testTransform(true, 21, 25, 27); } } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }