/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2008-2016 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ /** * This tests the CUDA implementation of random number generation. */ #include "openmm/internal/AssertionUtilities.h" #include "CudaArray.h" #include "CudaContext.h" #include "CudaIntegrationUtilities.h" #include "openmm/System.h" #include "openmm/Context.h" #include "CudaPlatform.h" #include "openmm/VerletIntegrator.h" #include "SimTKOpenMMRealType.h" #include using namespace OpenMM; using namespace std; CudaPlatform platform; void testGaussian() { int numAtoms = 5000; System system; for (int i = 0; i < numAtoms; i++) system.addParticle(1.0); CudaPlatform::PlatformData platformData(NULL, system, "", "true", platform.getPropertyDefaultValue("CudaPrecision"), "false", platform.getPropertyDefaultValue(CudaPlatform::CudaCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaTempDirectory()), platform.getPropertyDefaultValue(CudaPlatform::CudaHostCompiler()), platform.getPropertyDefaultValue(CudaPlatform::CudaDisablePmeStream()), "false", 1, NULL); CudaContext& context = *platformData.contexts[0]; context.initialize(); context.getIntegrationUtilities().initRandomNumberGenerator(0); CudaArray& random = context.getIntegrationUtilities().getRandom(); context.getIntegrationUtilities().prepareRandomNumbers(random.getSize()); const int numValues = random.getSize()*4; vector values(numValues); random.download(values); float* data = reinterpret_cast(&values[0]); double mean = 0.0; double var = 0.0; double skew = 0.0; double kurtosis = 0.0; for (int i = 0; i < numValues; i++) { double value = data[i]; mean += value; var += value*value; skew += value*value*value; kurtosis += value*value*value*value; } mean /= numValues; var /= numValues; skew /= numValues; kurtosis /= numValues; double c2 = var-mean*mean; double c3 = skew-3*var*mean+2*mean*mean*mean; double c4 = kurtosis-4*skew*mean-3*var*var+12*var*mean*mean-6*mean*mean*mean*mean; ASSERT_EQUAL_TOL(0.0, mean, 3.0/sqrt((double)numValues)); ASSERT_EQUAL_TOL(1.0, c2, 3.0/pow(numValues, 1.0/3.0)); ASSERT_EQUAL_TOL(0.0, c3, 3.0/pow(numValues, 1.0/4.0)); ASSERT_EQUAL_TOL(0.0, c4, 3.0/pow(numValues, 1.0/4.0)); } void testRandomVelocities() { // Create a system. const int numParticles = 10000; const double temperture = 100.0; System system; VerletIntegrator integrator(0.01); for (int i = 0; i < numParticles; ++i) system.addParticle(10.0+sin(0.1*i)); for (int i = 0; i < numParticles-1; ++i) system.addConstraint(i, i+1, 1.0); Context context(system, integrator, platform); vector positions(numParticles); for (int i = 0; i < numParticles; ++i) positions[i] = Vec3(i/2, (i+1)/2, 0); context.setPositions(positions); // Ask the context to generate random velocities. context.setVelocitiesToTemperature(temperture); State state = context.getState(State::Velocities); // See if they respect constraints. for (int i = 1; i < numParticles; i++) { Vec3 v1 = state.getVelocities()[i-1]; Vec3 v2 = state.getVelocities()[i]; double vel = (v1-v2).dot(positions[i-1]-positions[i]); ASSERT_EQUAL_TOL(0.0, vel, 2e-5); } // See if the temperature is correct. double ke = 0; for (int i = 0; i < numParticles; i++) { Vec3 v = state.getVelocities()[i]; ke += 0.5*system.getParticleMass(i)*v.dot(v); } double expected = 0.5*(numParticles*3-system.getNumConstraints())*BOLTZ*temperture; ASSERT_USUALLY_EQUAL_TOL(expected, ke, 4/sqrt((double) numParticles)); } int main(int argc, char* argv[]) { try { if (argc > 1) platform.setPropertyDefaultValue("CudaPrecision", string(argv[1])); testGaussian(); testRandomVelocities(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }