/* Portions copyright (c) 2006-2016 Stanford University and Simbios. * Contributors: Pande Group * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject * to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "SimTKOpenMMUtilities.h" #include "ReferenceProperDihedralBond.h" #include "ReferenceForce.h" using std::vector; using namespace OpenMM; /**--------------------------------------------------------------------------------------- ReferenceProperDihedralBond constructor --------------------------------------------------------------------------------------- */ ReferenceProperDihedralBond::ReferenceProperDihedralBond() : usePeriodic(false) { } /**--------------------------------------------------------------------------------------- ReferenceProperDihedralBond destructor --------------------------------------------------------------------------------------- */ ReferenceProperDihedralBond::~ReferenceProperDihedralBond() { } void ReferenceProperDihedralBond::setPeriodic(OpenMM::Vec3* vectors) { usePeriodic = true; boxVectors[0] = vectors[0]; boxVectors[1] = vectors[1]; boxVectors[2] = vectors[2]; } /**--------------------------------------------------------------------------------------- Calculate proper dihedral bond ixn @param atomIndices atom indices of 4 atoms in bond @param atomCoordinates atom coordinates @param parameters 3 parameters: parameters[0] = k parameters[1] = ideal bond angle in radians parameters[2] = multiplicity @param forces force array (forces added to current values) @param totalEnergy if not null, the energy will be added to this --------------------------------------------------------------------------------------- */ void ReferenceProperDihedralBond::calculateBondIxn(vector& atomIndices, vector& atomCoordinates, vector& parameters, vector& forces, double* totalEnergy, double* energyParamDerivs) { double deltaR[3][ReferenceForce::LastDeltaRIndex]; double crossProductMemory[6]; // --------------------------------------------------------------------------------------- // get deltaR, R2, and R between three pairs of atoms: [j,i], [j,k], [l,k] int atomAIndex = atomIndices[0]; int atomBIndex = atomIndices[1]; int atomCIndex = atomIndices[2]; int atomDIndex = atomIndices[3]; if (usePeriodic) { ReferenceForce::getDeltaRPeriodic(atomCoordinates[atomBIndex], atomCoordinates[atomAIndex], boxVectors, deltaR[0]); ReferenceForce::getDeltaRPeriodic(atomCoordinates[atomBIndex], atomCoordinates[atomCIndex], boxVectors, deltaR[1]); ReferenceForce::getDeltaRPeriodic(atomCoordinates[atomDIndex], atomCoordinates[atomCIndex], boxVectors, deltaR[2]); } else { ReferenceForce::getDeltaR(atomCoordinates[atomBIndex], atomCoordinates[atomAIndex], deltaR[0]); ReferenceForce::getDeltaR(atomCoordinates[atomBIndex], atomCoordinates[atomCIndex], deltaR[1]); ReferenceForce::getDeltaR(atomCoordinates[atomDIndex], atomCoordinates[atomCIndex], deltaR[2]); } double dotDihedral; double signOfAngle; int hasREntry = 1; // Visual Studio complains if crossProduct declared as 'crossProduct[2][3]' double* crossProduct[2]; crossProduct[0] = crossProductMemory; crossProduct[1] = crossProductMemory + 3; // get dihedral angle double dihedralAngle = getDihedralAngleBetweenThreeVectors(deltaR[0], deltaR[1], deltaR[2], crossProduct, &dotDihedral, deltaR[0], &signOfAngle, hasREntry); // evaluate delta angle, dE/d(angle) double deltaAngle = parameters[2]*dihedralAngle - parameters[1]; double sinDeltaAngle = SIN(deltaAngle); double dEdAngle = -parameters[0]*parameters[2]*sinDeltaAngle; double energy = parameters[0]*(1.0 + cos(deltaAngle)); // compute force double internalF[4][3]; double forceFactors[4]; double normCross1 = DOT3(crossProduct[0], crossProduct[0]); double normBC = deltaR[1][ReferenceForce::RIndex]; forceFactors[0] = (-dEdAngle*normBC)/normCross1; double normCross2 = DOT3(crossProduct[1], crossProduct[1]); forceFactors[3] = (dEdAngle*normBC)/normCross2; forceFactors[1] = DOT3(deltaR[0], deltaR[1]); forceFactors[1] /= deltaR[1][ReferenceForce::R2Index]; forceFactors[2] = DOT3(deltaR[2], deltaR[1]); forceFactors[2] /= deltaR[1][ReferenceForce::R2Index]; for (int ii = 0; ii < 3; ii++) { internalF[0][ii] = forceFactors[0]*crossProduct[0][ii]; internalF[3][ii] = forceFactors[3]*crossProduct[1][ii]; double s = forceFactors[1]*internalF[0][ii] - forceFactors[2]*internalF[3][ii]; internalF[1][ii] = internalF[0][ii] - s; internalF[2][ii] = internalF[3][ii] + s; } // accumulate forces for (int ii = 0; ii < 3; ii++) { forces[atomAIndex][ii] += internalF[0][ii]; forces[atomBIndex][ii] -= internalF[1][ii]; forces[atomCIndex][ii] -= internalF[2][ii]; forces[atomDIndex][ii] += internalF[3][ii]; } // accumulate energies if (totalEnergy != NULL) *totalEnergy += energy; }