/* -------------------------------------------------------------------------- * * OpenMMAmoeba * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2008-2016 Stanford University and the Authors. * * Authors: Mark Friedrichs * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ /** * This tests the CUDA implementation of CudaAmoebaAngleForce. */ #ifdef WIN32 #define _USE_MATH_DEFINES // Needed to get M_PI #endif #include "openmm/internal/AssertionUtilities.h" #include "openmm/Context.h" #include "openmm/CustomAngleForce.h" #include "OpenMMAmoeba.h" #include "openmm/System.h" #include "openmm/LangevinIntegrator.h" #include #include using namespace OpenMM; extern "C" void registerAmoebaCudaKernelFactories(); const double TOL = 1e-5; #define PI_M 3.141592653589 #define RADIAN 57.29577951308 #define RADIAN_TO_DEGREE 57.29577951308 #define DEGREE_TO_RADIAN 0.01745329252 #define RADIAN_INVERSE 0.01745329252 /* --------------------------------------------------------------------------------------- Compute cross product of two 3-vectors and place in 3rd vector vectorZ = vectorX x vectorY @param vectorX x-vector @param vectorY y-vector @param vectorZ z-vector @return vector is vectorZ --------------------------------------------------------------------------------------- */ static void crossProductVector3(double* vectorX, double* vectorY, double* vectorZ) { vectorZ[0] = vectorX[1]*vectorY[2] - vectorX[2]*vectorY[1]; vectorZ[1] = vectorX[2]*vectorY[0] - vectorX[0]*vectorY[2]; vectorZ[2] = vectorX[0]*vectorY[1] - vectorX[1]*vectorY[0]; return; } static void getPrefactorsGivenAngleCosine(double cosine, double idealAngle, double quadraticK, double cubicK, double quarticK, double penticK, double sexticK, double* dEdR, double* energyTerm) { double angle; if (cosine >= 1.0) { angle = 0.0f; } else if (cosine <= -1.0) { angle = RADIAN*PI_M; } else { angle = RADIAN*acos(cosine); } double deltaIdeal = angle - idealAngle; double deltaIdeal2 = deltaIdeal*deltaIdeal; double deltaIdeal3 = deltaIdeal*deltaIdeal2; double deltaIdeal4 = deltaIdeal2*deltaIdeal2; // deltaIdeal = r - r_0 *dEdR = (2.0 + 3.0*cubicK* deltaIdeal + 4.0*quarticK*deltaIdeal2 + 5.0*penticK* deltaIdeal3 + 6.0*sexticK* deltaIdeal4 ); *dEdR *= RADIAN*quadraticK*deltaIdeal; *energyTerm = 1.0f + cubicK* deltaIdeal + quarticK*deltaIdeal2 + penticK* deltaIdeal3 + sexticK* deltaIdeal4; *energyTerm *= quadraticK*deltaIdeal2; return; } static void computeAmoebaAngleForce(int bondIndex, std::vector& positions, AmoebaAngleForce& amoebaAngleForce, std::vector& forces, double* energy) { int particle1, particle2, particle3; double idealAngle; double quadraticK; amoebaAngleForce.getAngleParameters(bondIndex, particle1, particle2, particle3, idealAngle, quadraticK); double cubicK = amoebaAngleForce.getAmoebaGlobalAngleCubic(); double quarticK = amoebaAngleForce.getAmoebaGlobalAngleQuartic(); double penticK = amoebaAngleForce.getAmoebaGlobalAnglePentic(); double sexticK = amoebaAngleForce.getAmoebaGlobalAngleSextic(); double deltaR[2][3]; double r2_0 = 0.0; double r2_1 = 0.0; for (int ii = 0; ii < 3; ii++) { deltaR[0][ii] = positions[particle1][ii] - positions[particle2][ii]; r2_0 += deltaR[0][ii]*deltaR[0][ii]; deltaR[1][ii] = positions[particle3][ii] - positions[particle2][ii]; r2_1 += deltaR[1][ii]*deltaR[1][ii]; } double pVector[3]; crossProductVector3(deltaR[0], deltaR[1], pVector); double rp = sqrt(pVector[0]*pVector[0] + pVector[1]*pVector[1] + pVector[2]*pVector[2]); if (rp < 1.0e-06) { rp = 1.0e-06; } double dot = deltaR[0][0]*deltaR[1][0] + deltaR[0][1]*deltaR[1][1] + deltaR[0][2]*deltaR[1][2]; double cosine = dot/sqrt(r2_0*r2_1); double dEdR; double energyTerm; getPrefactorsGivenAngleCosine(cosine, idealAngle, quadraticK, cubicK, quarticK, penticK, sexticK, &dEdR, &energyTerm); double termA = -dEdR/(r2_0*rp); double termC = dEdR/(r2_1*rp); double deltaCrossP[3][3]; crossProductVector3(deltaR[0], pVector, deltaCrossP[0]); crossProductVector3(deltaR[1], pVector, deltaCrossP[2]); for (int ii = 0; ii < 3; ii++) { deltaCrossP[0][ii] *= termA; deltaCrossP[2][ii] *= termC; deltaCrossP[1][ii] = -1.0*(deltaCrossP[0][ii] + deltaCrossP[2][ii]); } forces[particle1][0] += deltaCrossP[0][0]; forces[particle1][1] += deltaCrossP[0][1]; forces[particle1][2] += deltaCrossP[0][2]; forces[particle2][0] += deltaCrossP[1][0]; forces[particle2][1] += deltaCrossP[1][1]; forces[particle2][2] += deltaCrossP[1][2]; forces[particle3][0] += deltaCrossP[2][0]; forces[particle3][1] += deltaCrossP[2][1]; forces[particle3][2] += deltaCrossP[2][2]; *energy += energyTerm; } static void computeAmoebaAngleForces(Context& context, AmoebaAngleForce& amoebaAngleForce, std::vector& expectedForces, double* expectedEnergy) { // get positions and zero forces State state = context.getState(State::Positions); std::vector positions = state.getPositions(); expectedForces.resize(positions.size()); for (unsigned int ii = 0; ii < expectedForces.size(); ii++) { expectedForces[ii][0] = expectedForces[ii][1] = expectedForces[ii][2] = 0.0; } // calculates forces/energy *expectedEnergy = 0.0; for (int ii = 0; ii < amoebaAngleForce.getNumAngles(); ii++) { computeAmoebaAngleForce(ii, positions, amoebaAngleForce, expectedForces, expectedEnergy); } return; } void compareWithExpectedForceAndEnergy(Context& context, AmoebaAngleForce& amoebaAngleForce, double tolerance, const std::string& idString) { std::vector expectedForces; double expectedEnergy; computeAmoebaAngleForces(context, amoebaAngleForce, expectedForces, &expectedEnergy); State state = context.getState(State::Forces | State::Energy); const std::vector forces = state.getForces(); for (unsigned int ii = 0; ii < forces.size(); ii++) { ASSERT_EQUAL_VEC(expectedForces[ii], forces[ii], tolerance); } ASSERT_EQUAL_TOL(expectedEnergy, state.getPotentialEnergy(), tolerance); } void testOneAngle() { System system; int numberOfParticles = 3; for (int ii = 0; ii < numberOfParticles; ii++) { system.addParticle(1.0); } LangevinIntegrator integrator(0.0, 0.1, 0.01); AmoebaAngleForce* amoebaAngleForce = new AmoebaAngleForce(); double angle = 100.0; double quadraticK = 1.0; double cubicK = 1.0e-01; double quarticK = 1.0e-02; double penticK = 1.0e-03; double sexticK = 1.0e-04; amoebaAngleForce->addAngle(0, 1, 2, angle, quadraticK); amoebaAngleForce->setAmoebaGlobalAngleCubic(cubicK); amoebaAngleForce->setAmoebaGlobalAngleQuartic(quarticK); amoebaAngleForce->setAmoebaGlobalAnglePentic(penticK); amoebaAngleForce->setAmoebaGlobalAngleSextic(sexticK); system.addForce(amoebaAngleForce); Context context(system, integrator, Platform::getPlatformByName("CUDA")); std::vector positions(numberOfParticles); positions[0] = Vec3(0, 1, 0); positions[1] = Vec3(0, 0, 0); positions[2] = Vec3(0, 0, 1); context.setPositions(positions); compareWithExpectedForceAndEnergy(context, *amoebaAngleForce, TOL, "testOneAngle"); // Try changing the angle parameters and make sure it's still correct. amoebaAngleForce->setAngleParameters(0, 0, 1, 2, 1.1*angle, 1.4*quadraticK); bool exceptionThrown = false; try { // This should throw an exception. compareWithExpectedForceAndEnergy(context, *amoebaAngleForce, TOL, "testOneAngle"); } catch (std::exception ex) { exceptionThrown = true; } ASSERT(exceptionThrown); amoebaAngleForce->updateParametersInContext(context); compareWithExpectedForceAndEnergy(context, *amoebaAngleForce, TOL, "testOneAngle"); } void testPeriodic() { // Create a force that uses periodic boundary conditions, then compare to an identical custom force. System system; system.setDefaultPeriodicBoxVectors(Vec3(3, 0, 0), Vec3(0, 3, 0), Vec3(0, 0, 3)); int numParticles = 3; for (int ii = 0; ii < numParticles; ii++) system.addParticle(1.0); LangevinIntegrator integrator(0.0, 0.1, 0.01); AmoebaAngleForce* amoebaAngleForce = new AmoebaAngleForce(); double angle = 100.0; double quadraticK = 1.0; double cubicK = 1.0e-01; double quarticK = 1.0e-02; double penticK = 1.0e-03; double sexticK = 1.0e-04; amoebaAngleForce->addAngle(0, 1, 2, angle, quadraticK); amoebaAngleForce->setAmoebaGlobalAngleCubic(cubicK); amoebaAngleForce->setAmoebaGlobalAngleQuartic(quarticK); amoebaAngleForce->setAmoebaGlobalAnglePentic(penticK); amoebaAngleForce->setAmoebaGlobalAngleSextic(sexticK); amoebaAngleForce->setUsesPeriodicBoundaryConditions(true); system.addForce(amoebaAngleForce); CustomAngleForce* customForce = new CustomAngleForce("k2*delta^2 + k3*delta^3 + k4*delta^4 + k5*delta^5 + k6*delta^6; delta=theta-theta0"); customForce->addGlobalParameter("theta0", angle*M_PI/180); customForce->addGlobalParameter("k2", quadraticK*pow(180/M_PI, 2.0)); customForce->addGlobalParameter("k3", cubicK*pow(180/M_PI, 3.0)); customForce->addGlobalParameter("k4", quarticK*pow(180/M_PI, 4.0)); customForce->addGlobalParameter("k5", penticK*pow(180/M_PI, 5.0)); customForce->addGlobalParameter("k6", sexticK*pow(180/M_PI, 6.0)); customForce->addAngle(0, 1, 2); customForce->setUsesPeriodicBoundaryConditions(true); customForce->setForceGroup(1); system.addForce(customForce); Context context(system, integrator, Platform::getPlatformByName("CUDA")); std::vector positions(numParticles); positions[0] = Vec3(0, 1, 0); positions[1] = Vec3(0, 0, 0); positions[2] = Vec3(0, 0, 2); context.setPositions(positions); State s1 = context.getState(State::Forces | State::Energy, true, 1); State s2 = context.getState(State::Forces | State::Energy, true, 2); ASSERT_EQUAL_TOL(s2.getPotentialEnergy(), s1.getPotentialEnergy(), 1e-5); for (int i = 0; i < numParticles; i++) ASSERT_EQUAL_VEC(s2.getForces()[i], s1.getForces()[i], 1e-5); } int main(int argc, char* argv[]) { try { std::cout << "TestCudaAmoebaAngleForce running test..." << std::endl; registerAmoebaCudaKernelFactories(); if (argc > 1) Platform::getPlatformByName("CUDA").setPropertyDefaultValue("Precision", std::string(argv[1])); testOneAngle(); testPeriodic(); } catch(const std::exception& e) { std::cout << "exception: " << e.what() << std::endl; std::cout << "FAIL - ERROR. Test failed." << std::endl; return 1; } std::cout << "Done" << std::endl; return 0; }