/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2010-2016 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "openmm/internal/AssertionUtilities.h" #include "openmm/Context.h" #include "openmm/CMAPTorsionForce.h" #include "openmm/PeriodicTorsionForce.h" #include "openmm/System.h" #include "openmm/VerletIntegrator.h" #include "SimTKOpenMMRealType.h" #include "sfmt/SFMT.h" #include #include using namespace OpenMM; using namespace std; const double TOL = 1e-5; void testCMAPTorsions() { const int mapSize = 36; // Create two systems: one with a pair of periodic torsions, and one with a CMAP torsion // that approximates the same force. System system1; for (int i = 0; i < 5; i++) system1.addParticle(1.0); PeriodicTorsionForce* periodic = new PeriodicTorsionForce(); periodic->addTorsion(0, 1, 2, 3, 2, M_PI/4, 1.5); periodic->addTorsion(1, 2, 3, 4, 3, M_PI/3, 2.0); system1.addForce(periodic); ASSERT(!periodic->usesPeriodicBoundaryConditions()); ASSERT(!system1.usesPeriodicBoundaryConditions()); System system2; for (int i = 0; i < 5; i++) system2.addParticle(1.0); CMAPTorsionForce* cmap = new CMAPTorsionForce(); vector mapEnergy(mapSize*mapSize); for (int i = 0; i < mapSize; i++) { double angle1 = i*2*M_PI/mapSize; double energy1 = 1.5*(1+cos(2*angle1-M_PI/4)); for (int j = 0; j < mapSize; j++) { double angle2 = j*2*M_PI/mapSize; double energy2 = 2.0*(1+cos(3*angle2-M_PI/3)); mapEnergy[i+j*mapSize] = energy1+energy2; } } cmap->addMap(mapSize, mapEnergy); cmap->addTorsion(0, 0, 1, 2, 3, 1, 2, 3, 4); system2.addForce(cmap); ASSERT(!cmap->usesPeriodicBoundaryConditions()); ASSERT(!system2.usesPeriodicBoundaryConditions()); // Set the atoms in various positions, and verify that both systems give equal forces and energy. OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector positions(5); VerletIntegrator integrator1(0.01); VerletIntegrator integrator2(0.01); Context c1(system1, integrator1, platform); Context c2(system2, integrator2, platform); for (int i = 0; i < 50; i++) { for (int j = 0; j < (int) positions.size(); j++) positions[j] = Vec3(5.0*genrand_real2(sfmt), 5.0*genrand_real2(sfmt), 5.0*genrand_real2(sfmt)); c1.setPositions(positions); c2.setPositions(positions); State s1 = c1.getState(State::Forces | State::Energy); State s2 = c2.getState(State::Forces | State::Energy); for (int i = 0; i < system1.getNumParticles(); i++) ASSERT_EQUAL_VEC(s1.getForces()[i], s2.getForces()[i], 0.05); ASSERT_EQUAL_TOL(s1.getPotentialEnergy(), s2.getPotentialEnergy(), 1e-3); } } void testChangingParameters() { // Create a system with two maps and one torsion. const int mapSize = 8; System system; for (int i = 0; i < 5; i++) system.addParticle(1.0); CMAPTorsionForce* cmap = new CMAPTorsionForce(); vector mapEnergy1(mapSize*mapSize); vector mapEnergy2(mapSize*mapSize); for (int i = 0; i < mapSize; i++) { double angle1 = i*2*M_PI/mapSize; double energy1 = cos(angle1); for (int j = 0; j < mapSize; j++) { double angle2 = j*2*M_PI/mapSize; double energy2 = 10*sin(angle2); mapEnergy1[i+j*mapSize] = energy1+energy2; mapEnergy2[i+j*mapSize] = energy1-energy2; } } cmap->addMap(mapSize, mapEnergy1); cmap->addMap(mapSize, mapEnergy2); cmap->addTorsion(0, 0, 1, 2, 3, 1, 2, 3, 4); system.addForce(cmap); // Set particle positions so angle1=0 and angle2=PI/4. vector positions(5); positions[0] = Vec3(0, 0, 1); positions[1] = Vec3(0, 0, 0); positions[2] = Vec3(1, 0, 0); positions[3] = Vec3(1, 0, 1); positions[4] = Vec3(0.5, -0.5, 1); VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); // Check that the energy is correct. double energy = context.getState(State::Energy).getPotentialEnergy(); ASSERT_EQUAL_TOL(1+10*sin(M_PI/4), energy, 1e-5); // Modify the parameters. cmap->setTorsionParameters(0, 1, 0, 1, 2, 3, 1, 2, 3, 4); for (int i = 0; i < mapSize*mapSize; i++) mapEnergy2[i] *= 2.0; cmap->setMapParameters(1, mapSize, mapEnergy2); cmap->updateParametersInContext(context); // See if the results are correct. energy = context.getState(State::Energy).getPotentialEnergy(); ASSERT_EQUAL_TOL(2-20*sin(M_PI/4), energy, 1e-5); } void testPeriodic() { const int mapSize = 36; // Create two systems that use periodic boundary conditions: one with a pair // of periodic torsions, and one with a CMAP torsion that approximates the same force. System system1; for (int i = 0; i < 5; i++) system1.addParticle(1.0); PeriodicTorsionForce* periodic = new PeriodicTorsionForce(); periodic->addTorsion(0, 1, 2, 3, 2, M_PI/4, 1.5); periodic->addTorsion(1, 2, 3, 4, 3, M_PI/3, 2.0); periodic->setUsesPeriodicBoundaryConditions(true); system1.addForce(periodic); System system2; for (int i = 0; i < 5; i++) system2.addParticle(1.0); CMAPTorsionForce* cmap = new CMAPTorsionForce(); vector mapEnergy(mapSize*mapSize); for (int i = 0; i < mapSize; i++) { double angle1 = i*2*M_PI/mapSize; double energy1 = 1.5*(1+cos(2*angle1-M_PI/4)); for (int j = 0; j < mapSize; j++) { double angle2 = j*2*M_PI/mapSize; double energy2 = 2.0*(1+cos(3*angle2-M_PI/3)); mapEnergy[i+j*mapSize] = energy1+energy2; } } cmap->addMap(mapSize, mapEnergy); cmap->addTorsion(0, 0, 1, 2, 3, 1, 2, 3, 4); cmap->setUsesPeriodicBoundaryConditions(true); system2.addForce(cmap); // Set the atoms in various positions, and verify that both systems give equal forces and energy. OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector positions(5); VerletIntegrator integrator1(0.01); VerletIntegrator integrator2(0.01); Context c1(system1, integrator1, platform); Context c2(system2, integrator2, platform); for (int i = 0; i < 50; i++) { for (int j = 0; j < (int) positions.size(); j++) positions[j] = Vec3(5.0*genrand_real2(sfmt), 5.0*genrand_real2(sfmt), 5.0*genrand_real2(sfmt)); c1.setPositions(positions); c2.setPositions(positions); State s1 = c1.getState(State::Forces | State::Energy); State s2 = c2.getState(State::Forces | State::Energy); for (int i = 0; i < system1.getNumParticles(); i++) ASSERT_EQUAL_VEC(s1.getForces()[i], s2.getForces()[i], 0.05); ASSERT_EQUAL_TOL(s1.getPotentialEnergy(), s2.getPotentialEnergy(), 1e-3); } } void runPlatformTests(); int main(int argc, char* argv[]) { try { initializeTests(argc, argv); testCMAPTorsions(); testChangingParameters(); testPeriodic(); runPlatformTests(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }