/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2015-2016 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "openmm/internal/AssertionUtilities.h" #include "openmm/Context.h" #include "openmm/CustomCentroidBondForce.h" #include "openmm/CustomCompoundBondForce.h" #include "openmm/System.h" #include "openmm/TabulatedFunction.h" #include "openmm/VerletIntegrator.h" #include "sfmt/SFMT.h" #include #include using namespace OpenMM; using namespace std; const double TOL = 1e-5; void testHarmonicBond() { System system; system.addParticle(1.0); system.addParticle(2.0); system.addParticle(3.0); system.addParticle(4.0); system.addParticle(5.0); CustomCentroidBondForce* force = new CustomCentroidBondForce(2, "k*distance(g1,g2)^2"); force->addPerBondParameter("k"); vector particles1; particles1.push_back(0); particles1.push_back(1); vector particles2; particles2.push_back(2); particles2.push_back(3); particles2.push_back(4); force->addGroup(particles1); force->addGroup(particles2); vector groups; groups.push_back(0); groups.push_back(1); vector parameters; parameters.push_back(1.0); force->addBond(groups, parameters); system.addForce(force); ASSERT(!system.usesPeriodicBoundaryConditions()); // The center of mass of group 0 is (1.5, 0, 0). vector positions(5); positions[0] = Vec3(2.5, 0, 0); positions[1] = Vec3(1, 0, 0); // The center of mass of group 1 is (-1, 0, 0). positions[2] = Vec3(-6, 0, 0); positions[3] = Vec3(-1, 0, 0); positions[4] = Vec3(2, 0, 0); // Check the forces and energy. VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(2.5*2.5, state.getPotentialEnergy(), TOL); ASSERT_EQUAL_VEC(Vec3(-2*2.5*(1.0/3.0), 0, 0), state.getForces()[0], TOL); ASSERT_EQUAL_VEC(Vec3(-2*2.5*(2.0/3.0), 0, 0), state.getForces()[1], TOL); ASSERT_EQUAL_VEC(Vec3(2*2.5*(3.0/12.0), 0, 0), state.getForces()[2], TOL); ASSERT_EQUAL_VEC(Vec3(2*2.5*(4.0/12.0), 0, 0), state.getForces()[3], TOL); ASSERT_EQUAL_VEC(Vec3(2*2.5*(5.0/12.0), 0, 0), state.getForces()[4], TOL); // Update the per-bond parameter and see if the results change. parameters[0] = 2.0; force->setBondParameters(0, groups, parameters); force->updateParametersInContext(context); state = context.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(2*2.5*2.5, state.getPotentialEnergy(), TOL); ASSERT_EQUAL_VEC(Vec3(-4*2.5*(1.0/3.0), 0, 0), state.getForces()[0], TOL); ASSERT_EQUAL_VEC(Vec3(-4*2.5*(2.0/3.0), 0, 0), state.getForces()[1], TOL); ASSERT_EQUAL_VEC(Vec3(4*2.5*(3.0/12.0), 0, 0), state.getForces()[2], TOL); ASSERT_EQUAL_VEC(Vec3(4*2.5*(4.0/12.0), 0, 0), state.getForces()[3], TOL); ASSERT_EQUAL_VEC(Vec3(4*2.5*(5.0/12.0), 0, 0), state.getForces()[4], TOL); // All the particles should be treated as a single molecule. vector > molecules = context.getMolecules(); ASSERT_EQUAL(1, molecules.size()); ASSERT_EQUAL(5, molecules[0].size()); } void testComplexFunction() { int numParticles = 5; System system; for (int i = 0; i < numParticles; i++) system.addParticle(2.0); vector table(20); for (int i = 0; i < 20; i++) table[i] = sin(0.11*i); // When every group contains only one particle, a CustomCentroidBondForce is identical to a // CustomCompoundBondForce. Use that to test a complicated energy function with lots of terms. CustomCompoundBondForce* compound = new CustomCompoundBondForce(4, "x1+y2+z4+fn(distance(p1,p2))*angle(p3,p2,p4)+scale*dihedral(p2,p1,p4,p3)"); CustomCentroidBondForce* centroid = new CustomCentroidBondForce(4, "x1+y2+z4+fn(distance(g1,g2))*angle(g3,g2,g4)+scale*dihedral(g2,g1,g4,g3)"); compound->addGlobalParameter("scale", 0.5); centroid->addGlobalParameter("scale", 0.5); compound->addTabulatedFunction("fn", new Continuous1DFunction(table, -1, 10)); centroid->addTabulatedFunction("fn", new Continuous1DFunction(table, -1, 10)); // Add two bonds to the CustomCompoundBondForce. vector particles(4); vector parameters; particles[0] = 0; particles[1] = 1; particles[2] = 2; particles[3] = 3; compound->addBond(particles, parameters); particles[0] = 2; particles[1] = 4; particles[2] = 3; particles[3] = 1; compound->addBond(particles, parameters); // Add identical bonds to the CustomCentroidBondForce. As a stronger test, make sure that // group number is different from particle number. vector groupMembers(1); groupMembers[0] = 3; centroid->addGroup(groupMembers); groupMembers[0] = 0; centroid->addGroup(groupMembers); groupMembers[0] = 1; centroid->addGroup(groupMembers); groupMembers[0] = 2; centroid->addGroup(groupMembers); groupMembers[0] = 4; centroid->addGroup(groupMembers); vector groups(4); groups[0] = 1; groups[1] = 2; groups[2] = 3; groups[3] = 0; centroid->addBond(groups, parameters); groups[0] = 3; groups[1] = 4; groups[2] = 0; groups[3] = 2; centroid->addBond(groups, parameters); // Add both forces as different force groups, and create a context. centroid->setForceGroup(1); system.addForce(compound); system.addForce(centroid); VerletIntegrator integrator(0.01); Context context(system, integrator, platform); // Evaluate the force and energy for various positions and see if they match. OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector positions(numParticles); for (int i = 0; i < 10; i++) { for (int j = 0; j < numParticles; j++) positions[j] = Vec3(5.0*genrand_real2(sfmt), 5.0*genrand_real2(sfmt), 5.0*genrand_real2(sfmt)); context.setPositions(positions); State state1 = context.getState(State::Forces | State::Energy, false, 1<<0); State state2 = context.getState(State::Forces | State::Energy, false, 1<<1); ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), TOL); for (int i = 0; i < numParticles; i++) ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], TOL); } } void testCustomWeights() { System system; system.addParticle(1.0); system.addParticle(2.0); system.addParticle(3.0); system.addParticle(4.0); CustomCentroidBondForce* force = new CustomCentroidBondForce(2, "distance(g1,g2)^2"); vector particles(2); vector weights(2); particles[0] = 0; particles[1] = 1; weights[0] = 0.5; weights[1] = 1.5; force->addGroup(particles, weights); particles[0] = 2; particles[1] = 3; weights[0] = 2.0; weights[1] = 1.0; force->addGroup(particles, weights); vector groups; groups.push_back(0); groups.push_back(1); vector parameters; force->addBond(groups, parameters); system.addForce(force); // The center of mass of group 0 is (0, 1, 0). vector positions(4); positions[0] = Vec3(0, 4, 0); positions[1] = Vec3(0, 0, 0); // The center of mass of group 1 is (0, 10, 0). positions[2] = Vec3(0, 9, 0); positions[3] = Vec3(0, 12, 0); // Check the forces and energy. VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(9.0*9.0, state.getPotentialEnergy(), TOL); ASSERT_EQUAL_VEC(Vec3(0, 2*9*(0.5/2.0), 0), state.getForces()[0], TOL); ASSERT_EQUAL_VEC(Vec3(0, 2*9*(1.5/2.0), 0), state.getForces()[1], TOL); ASSERT_EQUAL_VEC(Vec3(0, -2*9*(2.0/3.0), 0), state.getForces()[2], TOL); ASSERT_EQUAL_VEC(Vec3(0, -2*9*(1.0/3.0), 0), state.getForces()[3], TOL); } void testIllegalVariable() { System system; system.addParticle(1.0); system.addParticle(1.0); CustomCentroidBondForce* force = new CustomCentroidBondForce(2, "1+none"); vector particles; particles.push_back(0); force->addGroup(particles); force->addGroup(particles); vector groups; groups.push_back(0); groups.push_back(1); force->addBond(groups); system.addForce(force); VerletIntegrator integrator(0.001); bool threwException = false; try { Context(system, integrator, platform); } catch (const exception& e) { threwException = true; } ASSERT(threwException); } void testPeriodic() { // Create a force that uses periodic boundary conditions. System system; system.addParticle(1.0); system.addParticle(2.0); system.addParticle(3.0); system.addParticle(4.0); system.addParticle(5.0); system.setDefaultPeriodicBoxVectors(Vec3(2, 0, 0), Vec3(0, 3, 0), Vec3(0, 0, 3)); CustomCentroidBondForce* force = new CustomCentroidBondForce(2, "k*distance(g1,g2)^2"); force->addPerBondParameter("k"); vector particles1; particles1.push_back(0); particles1.push_back(1); vector particles2; particles2.push_back(2); particles2.push_back(3); particles2.push_back(4); force->addGroup(particles1); force->addGroup(particles2); vector groups; groups.push_back(0); groups.push_back(1); vector parameters; parameters.push_back(1.0); force->addBond(groups, parameters); force->setUsesPeriodicBoundaryConditions(true); system.addForce(force); // The center of mass of group 0 is (1.5, 0, 0). vector positions(5); positions[0] = Vec3(2.5, 0, 0); positions[1] = Vec3(1, 0, 0); // The center of mass of group 1 is (-1, 0, 0). positions[2] = Vec3(-6, 0, 0); positions[3] = Vec3(-1, 0, 0); positions[4] = Vec3(2, 0, 0); // Check the forces and energy. VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(0.5*0.5, state.getPotentialEnergy(), TOL); ASSERT_EQUAL_VEC(Vec3(-2*0.5*(1.0/3.0), 0, 0), state.getForces()[0], TOL); ASSERT_EQUAL_VEC(Vec3(-2*0.5*(2.0/3.0), 0, 0), state.getForces()[1], TOL); ASSERT_EQUAL_VEC(Vec3(2*0.5*(3.0/12.0), 0, 0), state.getForces()[2], TOL); ASSERT_EQUAL_VEC(Vec3(2*0.5*(4.0/12.0), 0, 0), state.getForces()[3], TOL); ASSERT_EQUAL_VEC(Vec3(2*0.5*(5.0/12.0), 0, 0), state.getForces()[4], TOL); } void testEnergyParameterDerivatives() { System system; system.addParticle(1.0); system.addParticle(2.0); system.addParticle(3.0); system.addParticle(4.0); system.addParticle(5.0); CustomCentroidBondForce* force = new CustomCentroidBondForce(2, "k*(distance(g1,g2)-r0)^2"); force->addGlobalParameter("r0", 0.0); force->addGlobalParameter("k", 0.0); force->addEnergyParameterDerivative("r0"); force->addEnergyParameterDerivative("k"); vector particles1; particles1.push_back(0); particles1.push_back(1); vector particles2; particles2.push_back(2); particles2.push_back(3); particles2.push_back(4); force->addGroup(particles1); force->addGroup(particles2); vector groups; groups.push_back(0); groups.push_back(1); vector parameters; force->addBond(groups, parameters); system.addForce(force); // The center of mass of group 0 is (1.5, 0, 0). vector positions(5); positions[0] = Vec3(2.5, 0, 0); positions[1] = Vec3(1, 0, 0); // The center of mass of group 1 is (-1, 0, 0). positions[2] = Vec3(-6, 0, 0); positions[3] = Vec3(-1, 0, 0); positions[4] = Vec3(2, 0, 0); // Check the derivatives. VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); for (int i = 0; i < 10; i++) { double r0 = 0.1*i; double k = 10-i; context.setParameter("r0", r0); context.setParameter("k", k); State state = context.getState(State::ParameterDerivatives); map derivs = state.getEnergyParameterDerivatives(); double dEdr0 = -2*k*(2.5-r0); double dEdk = (2.5-r0)*(2.5-r0); ASSERT_EQUAL_TOL(dEdr0, derivs["r0"], 1e-5); ASSERT_EQUAL_TOL(dEdk, derivs["k"], 1e-5); } } void runPlatformTests(); int main(int argc, char* argv[]) { try { initializeTests(argc, argv); testHarmonicBond(); testComplexFunction(); testCustomWeights(); testIllegalVariable(); testPeriodic(); testEnergyParameterDerivatives(); runPlatformTests(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }