/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2008-2019 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "openmm/internal/AssertionUtilities.h" #include "openmm/Context.h" #include "openmm/CustomExternalForce.h" #include "openmm/System.h" #include "openmm/VerletIntegrator.h" #include "SimTKOpenMMRealType.h" #include #include using namespace OpenMM; using namespace std; const double TOL = 1e-5; void testForce() { System system; system.addParticle(1.0); system.addParticle(1.0); system.addParticle(1.0); VerletIntegrator integrator(0.01); CustomExternalForce* forceField = new CustomExternalForce("scale*(x+yscale*(y-y0)^2)"); forceField->addPerParticleParameter("y0"); forceField->addPerParticleParameter("yscale"); forceField->addGlobalParameter("scale", 0.5); vector parameters(2); parameters[0] = 0.5; parameters[1] = 2.0; forceField->addParticle(0, parameters); parameters[0] = 1.5; parameters[1] = 3.0; forceField->addParticle(2, parameters); system.addForce(forceField); ASSERT(!forceField->usesPeriodicBoundaryConditions()); ASSERT(!system.usesPeriodicBoundaryConditions()); Context context(system, integrator, platform); vector positions(3); positions[0] = Vec3(0, 2, 0); positions[1] = Vec3(0, 0, 1); positions[2] = Vec3(1, 0, 1); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); { const vector& forces = state.getForces(); ASSERT_EQUAL_VEC(Vec3(-0.5, -0.5*2.0*2.0*1.5, 0), forces[0], TOL); ASSERT_EQUAL_VEC(Vec3(0, 0, 0), forces[1], TOL); ASSERT_EQUAL_VEC(Vec3(-0.5, 0.5*3.0*2.0*1.5, 0), forces[2], TOL); ASSERT_EQUAL_TOL(0.5*(1.0 + 2.0*1.5*1.5 + 3.0*1.5*1.5), state.getPotentialEnergy(), TOL); } // Try changing the parameters and make sure it's still correct. parameters[0] = 1.4; parameters[1] = 3.5; forceField->setParticleParameters(1, 2, parameters); forceField->updateParametersInContext(context); state = context.getState(State::Forces | State::Energy); { const vector& forces = state.getForces(); ASSERT_EQUAL_VEC(Vec3(-0.5, -0.5*2.0*2.0*1.5, 0), forces[0], TOL); ASSERT_EQUAL_VEC(Vec3(0, 0, 0), forces[1], TOL); ASSERT_EQUAL_VEC(Vec3(-0.5, 0.5*3.5*2.0*1.4, 0), forces[2], TOL); ASSERT_EQUAL_TOL(0.5*(1.0 + 2.0*1.5*1.5 + 3.5*1.4*1.4), state.getPotentialEnergy(), TOL); } } void testManyParameters() { System system; system.addParticle(1.0); VerletIntegrator integrator(0.01); CustomExternalForce* forceField = new CustomExternalForce("xscale*(x-x0)^2+yscale*(y-y0)^2+zscale*(z-z0)^2"); forceField->addPerParticleParameter("x0"); forceField->addPerParticleParameter("y0"); forceField->addPerParticleParameter("z0"); forceField->addPerParticleParameter("xscale"); forceField->addPerParticleParameter("yscale"); forceField->addPerParticleParameter("zscale"); vector parameters(6); parameters[0] = 1.0; parameters[1] = 2.0; parameters[2] = 3.0; parameters[3] = 0.1; parameters[4] = 0.2; parameters[5] = 0.3; forceField->addParticle(0, parameters); system.addForce(forceField); Context context(system, integrator, platform); vector positions(1); positions[0] = Vec3(0, -1, 0); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); const vector& forces = state.getForces(); ASSERT_EQUAL_VEC(Vec3(2*0.1*1.0, 2*0.2*3.0, 2*0.3*3.0), forces[0], TOL); ASSERT_EQUAL_TOL(0.1*1*1 + 0.2*3*3 + 0.3*3*3, state.getPotentialEnergy(), TOL); } void testPeriodic() { Vec3 vx(5, 0, 0); Vec3 vy(0, 6, 0); Vec3 vz(1, 2, 7); double x0 = 51, y0 = -17, z0 = 11.2; System system; system.setDefaultPeriodicBoxVectors(vx, vy, vz); system.addParticle(1.0); CustomExternalForce* force = new CustomExternalForce("periodicdistance(x, y, z, x0, y0, z0)^2"); force->addPerParticleParameter("x0"); force->addPerParticleParameter("y0"); force->addPerParticleParameter("z0"); vector params(3); params[0] = x0; params[1] = y0; params[2] = z0; force->addParticle(0, params); system.addForce(force); ASSERT(force->usesPeriodicBoundaryConditions()); ASSERT(system.usesPeriodicBoundaryConditions()); VerletIntegrator integrator(0.01); Context context(system, integrator, platform); vector positions(1); positions[0] = Vec3(0, 2, 0); context.setPositions(positions); for (int i = 0; i < 100; i++) { State state = context.getState(State::Positions | State::Forces | State::Energy); // Apply periodic boundary conditions to the difference between the two positions. Vec3 delta = Vec3(x0, y0, z0)-state.getPositions()[0]; delta -= vz*floor(delta[2]/vz[2]+0.5); delta -= vy*floor(delta[1]/vy[1]+0.5); delta -= vx*floor(delta[0]/vx[0]+0.5); // Verify that the force and energy are correct. ASSERT_EQUAL_VEC(delta*2, state.getForces()[0], TOL); ASSERT_EQUAL_TOL(delta.dot(delta), state.getPotentialEnergy(), TOL); integrator.step(1); } } void testZeroPeriodicDistance() { Vec3 vx(5, 0, 0); Vec3 vy(0, 6, 0); Vec3 vz(1, 2, 7); double x0 = 51, y0 = -17, z0 = 11.2; System system; system.setDefaultPeriodicBoxVectors(vx, vy, vz); system.addParticle(1.0); CustomExternalForce* force = new CustomExternalForce("periodicdistance(x, y, z, x0, y0, z0)^2"); force->addPerParticleParameter("x0"); force->addPerParticleParameter("y0"); force->addPerParticleParameter("z0"); vector params(3); params[0] = x0; params[1] = y0; params[2] = z0; force->addParticle(0, params); system.addForce(force); ASSERT(force->usesPeriodicBoundaryConditions()); ASSERT(system.usesPeriodicBoundaryConditions()); VerletIntegrator integrator(0.01); Context context(system, integrator, platform); vector positions(1); positions[0] = Vec3(x0, y0, z0); context.setPositions(positions); State state = context.getState(State::Positions | State::Forces | State::Energy); vector forces = state.getForces(); for (int i = 0; i < 3; i++) ASSERT_EQUAL(forces[0][i], forces[0][i]); } void testIllegalVariable() { System system; system.addParticle(1.0); CustomExternalForce* force = new CustomExternalForce("x+none"); force->addParticle(0); system.addForce(force); VerletIntegrator integrator(0.001); bool threwException = false; try { Context(system, integrator, platform); } catch (const exception& e) { threwException = true; } ASSERT(threwException); } void testAtan2() { System system; system.addParticle(1.0); CustomExternalForce* force = new CustomExternalForce("atan2(x, y)"); force->addParticle(0); system.addForce(force); VerletIntegrator integrator(0.01); Context context(system, integrator, platform); vector positions(1); positions[0] = Vec3(1.5, -2.1, 1.2); context.setPositions(positions); State state = context.getState(State::Energy); ASSERT_EQUAL_TOL(atan2(positions[0][0], positions[0][1]), state.getPotentialEnergy(), 1e-5); } void runPlatformTests(); int main(int argc, char* argv[]) { try { initializeTests(argc, argv); testForce(); testManyParameters(); testPeriodic(); testZeroPeriodicDistance(); testIllegalVariable(); testAtan2(); runPlatformTests(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }