/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2008-2016 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "openmm/internal/AssertionUtilities.h" #include "sfmt/SFMT.h" #include "openmm/Context.h" #include "openmm/CustomGBForce.h" #include "openmm/GBSAOBCForce.h" #include "openmm/OpenMMException.h" #include "openmm/System.h" #include "openmm/VerletIntegrator.h" #include #include using namespace OpenMM; using namespace std; const double TOL = 1e-5; void testOBC(GBSAOBCForce::NonbondedMethod obcMethod, CustomGBForce::NonbondedMethod customMethod) { const int numMolecules = 70; const int numParticles = numMolecules*2; const double boxSize = 10.0; const double cutoff = 2.0; // Create two systems: one with a GBSAOBCForce, and one using a CustomGBForce to implement the same interaction. System standardSystem; System customSystem; for (int i = 0; i < numParticles; i++) { standardSystem.addParticle(1.0); customSystem.addParticle(1.0); } standardSystem.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0.0, 0.0), Vec3(0.0, boxSize, 0.0), Vec3(0.0, 0.0, boxSize)); customSystem.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0.0, 0.0), Vec3(0.0, boxSize, 0.0), Vec3(0.0, 0.0, boxSize)); GBSAOBCForce* obc = new GBSAOBCForce(); CustomGBForce* custom = new CustomGBForce(); obc->setCutoffDistance(cutoff); custom->setCutoffDistance(cutoff); custom->addPerParticleParameter("q"); custom->addPerParticleParameter("radius"); custom->addPerParticleParameter("scale"); custom->addGlobalParameter("solventDielectric", obc->getSolventDielectric()); custom->addGlobalParameter("soluteDielectric", obc->getSoluteDielectric()); custom->addComputedValue("I", "step(r+sr2-or1)*0.5*(1/L-1/U+0.25*(1/U^2-1/L^2)*(r-sr2*sr2/r)+0.5*log(L/U)/r+C);" "U=r+sr2;" "C=2*(1/or1-1/L)*step(sr2-r-or1);" "L=max(or1, D);" "D=abs(r-sr2);" "sr2 = scale2*or2;" "or1 = radius1-0.009; or2 = radius2-0.009", CustomGBForce::ParticlePairNoExclusions); custom->addComputedValue("B", "1/(1/or-tanh(1*psi-0.8*psi^2+4.85*psi^3)/radius);" "psi=I*or; or=radius-0.009", CustomGBForce::SingleParticle); custom->addEnergyTerm("28.3919551*(radius+0.14)^2*(radius/B)^6-0.5*138.935485*(1/soluteDielectric-1/solventDielectric)*q^2/B", CustomGBForce::SingleParticle); string invCutoffString = ""; if (obcMethod != GBSAOBCForce::NoCutoff) { stringstream s; s<<(1.0/cutoff); invCutoffString = s.str(); } custom->addEnergyTerm("138.935485*(1/soluteDielectric-1/solventDielectric)*q1*q2*("+invCutoffString+"-1/f);" "f=sqrt(r^2+B1*B2*exp(-r^2/(4*B1*B2)))", CustomGBForce::ParticlePairNoExclusions); vector positions(numParticles); vector velocities(numParticles); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector params(3); for (int i = 0; i < numMolecules; i++) { if (i < numMolecules/2) { obc->addParticle(1.0, 0.2, 0.5); params[0] = 1.0; params[1] = 0.2; params[2] = 0.5; custom->addParticle(params); obc->addParticle(-1.0, 0.1, 0.5); params[0] = -1.0; params[1] = 0.1; custom->addParticle(params); } else { obc->addParticle(1.0, 0.2, 0.8); params[0] = 1.0; params[1] = 0.2; params[2] = 0.8; custom->addParticle(params); obc->addParticle(-1.0, 0.1, 0.8); params[0] = -1.0; params[1] = 0.1; custom->addParticle(params); } custom->addExclusion(2*i, 2*i+1); positions[2*i] = Vec3(boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt)); positions[2*i+1] = Vec3(positions[2*i][0]+1.0, positions[2*i][1], positions[2*i][2]); velocities[2*i] = Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt)); velocities[2*i+1] = Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt)); } obc->setNonbondedMethod(obcMethod); custom->setNonbondedMethod(customMethod); standardSystem.addForce(obc); customSystem.addForce(custom); if (customMethod == CustomGBForce::CutoffPeriodic) { ASSERT(custom->usesPeriodicBoundaryConditions()); ASSERT(obc->usesPeriodicBoundaryConditions()); ASSERT(standardSystem.usesPeriodicBoundaryConditions()); ASSERT(customSystem.usesPeriodicBoundaryConditions()); } else { ASSERT(!custom->usesPeriodicBoundaryConditions()); ASSERT(!obc->usesPeriodicBoundaryConditions()); ASSERT(!standardSystem.usesPeriodicBoundaryConditions()); ASSERT(!customSystem.usesPeriodicBoundaryConditions()); } VerletIntegrator integrator1(0.01); VerletIntegrator integrator2(0.01); Context context1(standardSystem, integrator1, platform); context1.setPositions(positions); context1.setVelocities(velocities); State state1 = context1.getState(State::Forces | State::Energy); Context context2(customSystem, integrator2, platform); context2.setPositions(positions); context2.setVelocities(velocities); State state2 = context2.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-4); for (int i = 0; i < numParticles; i++) { ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-4); } // Try changing the particle parameters and make sure it's still correct. for (int i = 0; i < numMolecules/2; i++) { obc->setParticleParameters(2*i, 1.1, 0.3, 0.6); params[0] = 1.1; params[1] = 0.3; params[2] = 0.6; custom->setParticleParameters(2*i, params); obc->setParticleParameters(2*i+1, -1.1, 0.2, 0.4); params[0] = -1.1; params[1] = 0.2; params[2] = 0.4; custom->setParticleParameters(2*i+1, params); } obc->updateParametersInContext(context1); custom->updateParametersInContext(context2); state1 = context1.getState(State::Forces | State::Energy); state2 = context2.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-4); for (int i = 0; i < numParticles; i++) { ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-4); } } void testMembrane() { const int numMolecules = 70; const int numParticles = numMolecules*2; const double boxSize = 10.0; // Create a system with an implicit membrane. System system; for (int i = 0; i < numParticles; i++) { system.addParticle(1.0); } system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0.0, 0.0), Vec3(0.0, boxSize, 0.0), Vec3(0.0, 0.0, boxSize)); CustomGBForce* custom = new CustomGBForce(); custom->setCutoffDistance(2.0); custom->addPerParticleParameter("q"); custom->addPerParticleParameter("radius"); custom->addPerParticleParameter("scale"); custom->addGlobalParameter("thickness", 3); custom->addGlobalParameter("solventDielectric", 78.3); custom->addGlobalParameter("soluteDielectric", 1); custom->addComputedValue("Imol", "step(r+sr2-or1)*0.5*(1/L-1/U+0.25*(1/U^2-1/L^2)*(r-sr2*sr2/r)+0.5*log(L/U)/r+C);" "U=r+sr2;" "C=2*(1/or1-1/L)*step(sr2-r-or1);" "L=max(or1, D);" "D=abs(r-sr2);" "sr2 = scale2*or2;" "or1 = radius1-0.009; or2 = radius2-0.009", CustomGBForce::ParticlePairNoExclusions); custom->addComputedValue("Imem", "(1/radius+2*log(2)/thickness)/(1+exp(7.2*(abs(z)+radius-0.5*thickness)))", CustomGBForce::SingleParticle); custom->addComputedValue("B", "1/(1/or-tanh(1*psi-0.8*psi^2+4.85*psi^3)/radius);" "psi=max(Imol,Imem)*or; or=radius-0.009", CustomGBForce::SingleParticle); custom->addEnergyTerm("28.3919551*(radius+0.14)^2*(radius/B)^6-0.5*138.935456*(1/soluteDielectric-1/solventDielectric)*q^2/B", CustomGBForce::SingleParticle); custom->addEnergyTerm("-138.935456*(1/soluteDielectric-1/solventDielectric)*q1*q2/f;" "f=sqrt(r^2+B1*B2*exp(-r^2/(4*B1*B2)))", CustomGBForce::ParticlePairNoExclusions); vector positions(numParticles); vector velocities(numParticles); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector params(3); for (int i = 0; i < numMolecules; i++) { if (i < numMolecules/2) { params[0] = 1.0; params[1] = 0.2; params[2] = 0.5; custom->addParticle(params); params[0] = -1.0; params[1] = 0.1; custom->addParticle(params); } else { params[0] = 1.0; params[1] = 0.2; params[2] = 0.8; custom->addParticle(params); params[0] = -1.0; params[1] = 0.1; custom->addParticle(params); } positions[2*i] = Vec3(boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt)); positions[2*i+1] = Vec3(positions[2*i][0]+1.0, positions[2*i][1], positions[2*i][2]); velocities[2*i] = Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt)); velocities[2*i+1] = Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt)); } system.addForce(custom); VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); context.setVelocities(velocities); State state = context.getState(State::Forces | State::Energy); const vector& forces = state.getForces(); // Take a small step in the direction of the energy gradient and see whether the potential energy changes by the expected amount. double norm = 0.0; for (int i = 0; i < (int) forces.size(); ++i) norm += forces[i].dot(forces[i]); norm = std::sqrt(norm); const double stepSize = 1e-2; double step = 0.5*stepSize/norm; vector positions2(numParticles), positions3(numParticles); for (int i = 0; i < (int) positions.size(); ++i) { Vec3 p = positions[i]; Vec3 f = forces[i]; positions2[i] = Vec3(p[0]-f[0]*step, p[1]-f[1]*step, p[2]-f[2]*step); positions3[i] = Vec3(p[0]+f[0]*step, p[1]+f[1]*step, p[2]+f[2]*step); } context.setPositions(positions2); State state2 = context.getState(State::Energy); context.setPositions(positions3); State state3 = context.getState(State::Energy); ASSERT_EQUAL_TOL(norm, (state2.getPotentialEnergy()-state3.getPotentialEnergy())/stepSize, 1e-3); } void testTabulatedFunction() { System system; system.addParticle(1.0); system.addParticle(1.0); VerletIntegrator integrator(0.01); CustomGBForce* force = new CustomGBForce(); force->addComputedValue("a", "0", CustomGBForce::ParticlePair); force->addEnergyTerm("fn(r)+1", CustomGBForce::ParticlePair); force->addParticle(vector()); force->addParticle(vector()); vector table; for (int i = 0; i < 21; i++) table.push_back(std::sin(0.25*i)); force->addTabulatedFunction("fn", new Continuous1DFunction(table, 1.0, 6.0)); system.addForce(force); Context context(system, integrator, platform); vector positions(2); positions[0] = Vec3(0, 0, 0); for (int i = 1; i < 30; i++) { // Check interpolated values. double x = (7.0/30.0)*i; positions[1] = Vec3(x, 0, 0); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); const vector& forces = state.getForces(); double force = (x < 1.0 || x > 6.0 ? 0.0 : -std::cos(x-1.0)); double energy = (x < 1.0 || x > 6.0 ? 0.0 : std::sin(x-1.0))+1.0; ASSERT_EQUAL_VEC(Vec3(-force, 0, 0), forces[0], 0.1); ASSERT_EQUAL_VEC(Vec3(force, 0, 0), forces[1], 0.1); ASSERT_EQUAL_TOL(energy, state.getPotentialEnergy(), 0.02); } for (int i = 1; i < 20; i++) { // These values are exactly on table points, so they should match more precisely. double x = 0.25*i+1.0; positions[1] = Vec3(x, 0, 0); context.setPositions(positions); State state = context.getState(State::Energy); double energy = (x < 1.0 || x > 6.0 ? 0.0 : std::sin(x-1.0))+1.0; ASSERT_EQUAL_TOL(energy, state.getPotentialEnergy(), 1e-4); } } void testMultipleChainRules() { System system; system.addParticle(1.0); system.addParticle(1.0); VerletIntegrator integrator(0.01); CustomGBForce* force = new CustomGBForce(); force->addComputedValue("a", "2*r", CustomGBForce::ParticlePair); force->addComputedValue("b", "a+1", CustomGBForce::SingleParticle); force->addComputedValue("c", "2*b+a", CustomGBForce::SingleParticle); force->addEnergyTerm("0.1*a+1*b+10*c", CustomGBForce::SingleParticle); // 0.1*(2*r) + 2*r+1 + 10*(3*a+2) = 0.2*r + 2*r+1 + 40*r+20+20*r = 62.2*r+21 force->addParticle(vector()); force->addParticle(vector()); system.addForce(force); Context context(system, integrator, platform); vector positions(2); positions[0] = Vec3(0, 0, 0); for (int i = 1; i < 5; i++) { positions[1] = Vec3(i, 0, 0); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); const vector& forces = state.getForces(); ASSERT_EQUAL_VEC(Vec3(124.4, 0, 0), forces[0], 1e-4); ASSERT_EQUAL_VEC(Vec3(-124.4, 0, 0), forces[1], 1e-4); ASSERT_EQUAL_TOL(2*(62.2*i+21), state.getPotentialEnergy(), 0.02); } } void testPositionDependence() { System system; system.addParticle(1.0); system.addParticle(1.0); VerletIntegrator integrator(0.01); CustomGBForce* force = new CustomGBForce(); force->addComputedValue("a", "r", CustomGBForce::ParticlePair); force->addComputedValue("b", "a+x*y", CustomGBForce::SingleParticle); force->addEnergyTerm("b*z", CustomGBForce::SingleParticle); force->addEnergyTerm("b1+b2", CustomGBForce::ParticlePair); // = 2*r+x1*y1+x2*y2 force->addParticle(vector()); force->addParticle(vector()); system.addForce(force); Context context(system, integrator, platform); vector positions(2); vector forces(2); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); for (int i = 0; i < 5; i++) { positions[0] = Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt)); positions[1] = Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt)); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); const vector& forces = state.getForces(); Vec3 delta = positions[0]-positions[1]; double r = sqrt(delta.dot(delta)); double energy = 2*r+positions[0][0]*positions[0][1]+positions[1][0]*positions[1][1]; for (int j = 0; j < 2; j++) energy += positions[j][2]*(r+positions[j][0]*positions[j][1]); Vec3 force1(-(1+positions[0][2])*delta[0]/r-(1+positions[0][2])*positions[0][1]-(1+positions[1][2])*delta[0]/r, -(1+positions[0][2])*delta[1]/r-(1+positions[0][2])*positions[0][0]-(1+positions[1][2])*delta[1]/r, -(1+positions[0][2])*delta[2]/r-(r+positions[0][0]*positions[0][1])-(1+positions[1][2])*delta[2]/r); Vec3 force2((1+positions[0][2])*delta[0]/r+(1+positions[1][2])*delta[0]/r-(1+positions[1][2])*positions[1][1], (1+positions[0][2])*delta[1]/r+(1+positions[1][2])*delta[1]/r-(1+positions[1][2])*positions[1][0], (1+positions[0][2])*delta[2]/r+(1+positions[1][2])*delta[2]/r-(r+positions[1][0]*positions[1][1])); ASSERT_EQUAL_VEC(force1, forces[0], 1e-4); ASSERT_EQUAL_VEC(force2, forces[1], 1e-4); ASSERT_EQUAL_TOL(energy, state.getPotentialEnergy(), 0.02); // Take a small step in the direction of the energy gradient and see whether the potential energy changes by the expected amount. double norm = 0.0; for (int i = 0; i < (int) forces.size(); ++i) norm += forces[i].dot(forces[i]); norm = std::sqrt(norm); const double stepSize = 1e-3; double step = 0.5*stepSize/norm; vector positions2(2), positions3(2); for (int i = 0; i < (int) positions.size(); ++i) { Vec3 p = positions[i]; Vec3 f = forces[i]; positions2[i] = Vec3(p[0]-f[0]*step, p[1]-f[1]*step, p[2]-f[2]*step); positions3[i] = Vec3(p[0]+f[0]*step, p[1]+f[1]*step, p[2]+f[2]*step); } context.setPositions(positions2); State state2 = context.getState(State::Energy); context.setPositions(positions3); State state3 = context.getState(State::Energy); ASSERT_EQUAL_TOL(norm, (state2.getPotentialEnergy()-state3.getPotentialEnergy())/stepSize, 1e-3); } } void testExclusions() { for (int i = 0; i < 4; i++) { System system; system.addParticle(1.0); system.addParticle(1.0); VerletIntegrator integrator(0.01); CustomGBForce* force = new CustomGBForce(); force->addComputedValue("a", "r", i < 2 ? CustomGBForce::ParticlePair : CustomGBForce::ParticlePairNoExclusions); force->addEnergyTerm("a", CustomGBForce::SingleParticle); force->addEnergyTerm("(1+a1+a2)*r", i%2 == 0 ? CustomGBForce::ParticlePair : CustomGBForce::ParticlePairNoExclusions); force->addParticle(vector()); force->addParticle(vector()); force->addExclusion(0, 1); system.addForce(force); Context context(system, integrator, platform); vector positions(2); positions[0] = Vec3(0, 0, 0); positions[1] = Vec3(1, 0, 0); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); const vector& forces = state.getForces(); double f, energy; switch (i) { case 0: // e = 0 f = 0; energy = 0; break; case 1: // e = r f = 1; energy = 1; break; case 2: // e = 2r f = 2; energy = 2; break; case 3: // e = 3r + 2r^2 f = 7; energy = 5; break; default: ASSERT(false); } ASSERT_EQUAL_VEC(Vec3(f, 0, 0), forces[0], 1e-4); ASSERT_EQUAL_VEC(Vec3(-f, 0, 0), forces[1], 1e-4); ASSERT_EQUAL_TOL(energy, state.getPotentialEnergy(), 1e-4); // Take a small step in the direction of the energy gradient and see whether the potential energy changes by the expected amount. double norm = 0.0; for (int i = 0; i < (int) forces.size(); ++i) norm += forces[i].dot(forces[i]); norm = std::sqrt(norm); if (norm > 0) { const double stepSize = 1e-3; double step = stepSize/norm; for (int i = 0; i < (int) positions.size(); ++i) { Vec3 p = positions[i]; Vec3 f = forces[i]; positions[i] = Vec3(p[0]-f[0]*step, p[1]-f[1]*step, p[2]-f[2]*step); } context.setPositions(positions); State state2 = context.getState(State::Energy); ASSERT_EQUAL_TOL(norm, (state2.getPotentialEnergy()-state.getPotentialEnergy())/stepSize, 1e-3*abs(state.getPotentialEnergy())); } } } void testIllegalVariable() { System system; system.addParticle(1.0); CustomGBForce* force = new CustomGBForce(); force->addComputedValue("a", "r+none", CustomGBForce::ParticlePair); force->addParticle(); system.addForce(force); VerletIntegrator integrator(0.001); bool threwException = false; try { Context(system, integrator, platform); } catch (const exception& e) { threwException = true; } ASSERT(threwException); } void testEnergyParameterDerivatives() { // Create a box of particles. const int numParticles = 40; const int numParameters = 4; const double boxSize = 2.0; const double delta = 1e-3; const string paramNames[] = {"A", "B", "C", "D"}; const double paramValues[] = {0.8, 2.1, 3.2, 1.3}; System system; system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize)); CustomGBForce* force = new CustomGBForce(); system.addForce(force); force->addComputedValue("a", "0.5*(r-A)^2", CustomGBForce::ParticlePair); force->addComputedValue("b", "a+B", CustomGBForce::SingleParticle); force->addEnergyTerm("C*(a1+b1+a2+b2+r)^0.8", CustomGBForce::ParticlePair); force->addEnergyTerm("(D-B)*b", CustomGBForce::SingleParticle); for (int i = 0; i < numParameters; i++) force->addGlobalParameter(paramNames[i], paramValues[i]); for (int i = numParameters-1; i >= 0; i--) force->addEnergyParameterDerivative(paramNames[i]); force->setNonbondedMethod(CustomGBForce::CutoffPeriodic); force->setCutoffDistance(1.0); vector positions; vector parameters; OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); for (int i = 0; i < numParticles; i++) { system.addParticle(1.0); force->addParticle(parameters); positions.push_back(Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt))*boxSize); } // Compute the energy derivative and compare it to a finite difference approximation. VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); map derivs = context.getState(State::ParameterDerivatives).getEnergyParameterDerivatives(); for (int i = 0; i < numParameters; i++) { context.setParameter(paramNames[i], paramValues[i]+delta); double energy1 = context.getState(State::Energy).getPotentialEnergy(); context.setParameter(paramNames[i], paramValues[i]-delta); double energy2 = context.getState(State::Energy).getPotentialEnergy(); ASSERT_EQUAL_TOL((energy1-energy2)/(2*delta), derivs[paramNames[i]], 5e-3); } } void runPlatformTests(); int main(int argc, char* argv[]) { try { initializeTests(argc, argv); testOBC(GBSAOBCForce::NoCutoff, CustomGBForce::NoCutoff); testOBC(GBSAOBCForce::CutoffNonPeriodic, CustomGBForce::CutoffNonPeriodic); testOBC(GBSAOBCForce::CutoffPeriodic, CustomGBForce::CutoffPeriodic); testMembrane(); testTabulatedFunction(); testMultipleChainRules(); testPositionDependence(); testExclusions(); testIllegalVariable(); testEnergyParameterDerivatives(); runPlatformTests(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }