/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2008-2015 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "openmm/internal/AssertionUtilities.h" #include "openmm/Context.h" #include "ReferencePlatform.h" #include "openmm/GBSAOBCForce.h" #include "openmm/System.h" #include "openmm/LangevinIntegrator.h" #include "openmm/NonbondedForce.h" #include "SimTKOpenMMRealType.h" #include "sfmt/SFMT.h" #include #include using namespace OpenMM; using namespace std; const double TOL = 1e-5; void testSingleParticle() { System system; system.addParticle(2.0); LangevinIntegrator integrator(0, 0.1, 0.01); GBSAOBCForce* gbsa = new GBSAOBCForce(); NonbondedForce* nonbonded = new NonbondedForce(); gbsa->addParticle(0.5, 0.15, 1); nonbonded->addParticle(0.5, 1, 0); system.addForce(gbsa); system.addForce(nonbonded); ASSERT(!gbsa->usesPeriodicBoundaryConditions()); ASSERT(!system.usesPeriodicBoundaryConditions()); Context context(system, integrator, platform); vector positions(1); positions[0] = Vec3(0, 0, 0); context.setPositions(positions); State state = context.getState(State::Energy); double bornRadius = 0.15-0.009; // dielectric offset double eps0 = EPSILON0; double bornEnergy = (-0.5*0.5/(8*PI_M*eps0))*(1.0/gbsa->getSoluteDielectric()-1.0/gbsa->getSolventDielectric())/bornRadius; double extendedRadius = 0.15+0.14; // probe radius double nonpolarEnergy = 4*PI_M*2.25936*extendedRadius*extendedRadius*std::pow(0.15/bornRadius, 6.0); ASSERT_EQUAL_TOL((bornEnergy+nonpolarEnergy), state.getPotentialEnergy(), 0.01); // Change the parameters and see if it is still correct. gbsa->setParticleParameters(0, 0.4, 0.25, 1); gbsa->updateParametersInContext(context); state = context.getState(State::Energy); bornRadius = 0.25-0.009; // dielectric offset bornEnergy = (-0.4*0.4/(8*PI_M*eps0))*(1.0/gbsa->getSoluteDielectric()-1.0/gbsa->getSolventDielectric())/bornRadius; extendedRadius = 0.25+0.14; nonpolarEnergy = 4*PI_M*2.25936*extendedRadius*extendedRadius*std::pow(0.25/bornRadius, 6.0); ASSERT_EQUAL_TOL((bornEnergy+nonpolarEnergy), state.getPotentialEnergy(), 0.01); } void testGlobalSettings() { System system; system.addParticle(2.0); LangevinIntegrator integrator(0, 0.1, 0.01); GBSAOBCForce* gbsa = new GBSAOBCForce(); gbsa->addParticle(0.5, 0.15, 1); const double soluteDielectric = 2.1; const double solventDielectric = 35.0; const double surfaceAreaEnergy = 0.75; gbsa->setSoluteDielectric(soluteDielectric); gbsa->setSolventDielectric(solventDielectric); gbsa->setSurfaceAreaEnergy(surfaceAreaEnergy); system.addForce(gbsa); ASSERT(!gbsa->usesPeriodicBoundaryConditions()); ASSERT(!system.usesPeriodicBoundaryConditions()); Context context(system, integrator, platform); vector positions(1); positions[0] = Vec3(0, 0, 0); context.setPositions(positions); State state = context.getState(State::Energy); double bornRadius = 0.15-0.009; // dielectric offset double eps0 = EPSILON0; double bornEnergy = (-0.5*0.5/(8*PI_M*eps0))*(1.0/soluteDielectric-1.0/solventDielectric)/bornRadius; double extendedRadius = 0.15+0.14; // probe radius double nonpolarEnergy = 4*PI_M*surfaceAreaEnergy*extendedRadius*extendedRadius*std::pow(0.15/bornRadius, 6.0); ASSERT_EQUAL_TOL((bornEnergy+nonpolarEnergy), state.getPotentialEnergy(), 0.01); } void testCutoffAndPeriodic() { System system; system.addParticle(1.0); system.addParticle(1.0); LangevinIntegrator integrator(0, 0.1, 0.01); GBSAOBCForce* gbsa = new GBSAOBCForce(); NonbondedForce* nonbonded = new NonbondedForce(); gbsa->addParticle(-1, 0.15, 1); nonbonded->addParticle(-1, 1, 0); gbsa->addParticle(1, 0.15, 1); nonbonded->addParticle(1, 1, 0); const double cutoffDistance = 3.0; const double boxSize = 10.0; nonbonded->setCutoffDistance(cutoffDistance); gbsa->setCutoffDistance(cutoffDistance); system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize)); system.addForce(gbsa); system.addForce(nonbonded); vector positions(2); positions[0] = Vec3(0, 0, 0); positions[1] = Vec3(2, 0, 0); // Calculate the forces for both cutoff and periodic with two different atom positions. nonbonded->setNonbondedMethod(NonbondedForce::CutoffNonPeriodic); gbsa->setNonbondedMethod(GBSAOBCForce::CutoffNonPeriodic); ASSERT(!nonbonded->usesPeriodicBoundaryConditions()); ASSERT(!gbsa->usesPeriodicBoundaryConditions()); ASSERT(!system.usesPeriodicBoundaryConditions()); Context context(system, integrator, platform); context.setPositions(positions); State state1 = context.getState(State::Forces); nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic); gbsa->setNonbondedMethod(GBSAOBCForce::CutoffPeriodic); ASSERT(nonbonded->usesPeriodicBoundaryConditions()); ASSERT(gbsa->usesPeriodicBoundaryConditions()); ASSERT(system.usesPeriodicBoundaryConditions()); context.reinitialize(); context.setPositions(positions); State state2 = context.getState(State::Forces); positions[1][0]+= boxSize; nonbonded->setNonbondedMethod(NonbondedForce::CutoffNonPeriodic); gbsa->setNonbondedMethod(GBSAOBCForce::CutoffNonPeriodic); ASSERT(!nonbonded->usesPeriodicBoundaryConditions()); ASSERT(!gbsa->usesPeriodicBoundaryConditions()); ASSERT(!system.usesPeriodicBoundaryConditions()); context.reinitialize(); context.setPositions(positions); State state3 = context.getState(State::Forces); nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic); gbsa->setNonbondedMethod(GBSAOBCForce::CutoffPeriodic); ASSERT(nonbonded->usesPeriodicBoundaryConditions()); ASSERT(gbsa->usesPeriodicBoundaryConditions()); ASSERT(system.usesPeriodicBoundaryConditions()); context.reinitialize(); context.setPositions(positions); State state4 = context.getState(State::Forces); // All forces should be identical, exception state3 which should be zero. ASSERT_EQUAL_VEC(state1.getForces()[0], state2.getForces()[0], 0.01); ASSERT_EQUAL_VEC(state1.getForces()[1], state2.getForces()[1], 0.01); ASSERT_EQUAL_VEC(state1.getForces()[0], state4.getForces()[0], 0.01); ASSERT_EQUAL_VEC(state1.getForces()[1], state4.getForces()[1], 0.01); ASSERT_EQUAL_VEC(state3.getForces()[0], Vec3(0, 0, 0), 0.01); ASSERT_EQUAL_VEC(state3.getForces()[1], Vec3(0, 0, 0), 0.01); } void testForce(int numParticles, NonbondedForce::NonbondedMethod method, GBSAOBCForce::NonbondedMethod method2) { ReferencePlatform reference; System system; GBSAOBCForce* gbsa = new GBSAOBCForce(); NonbondedForce* nonbonded = new NonbondedForce(); for (int i = 0; i < numParticles; ++i) { system.addParticle(1.0); double charge = i%2 == 0 ? -1 : 1; gbsa->addParticle(charge, 0.15, 1); nonbonded->addParticle(charge, 1, 0); } nonbonded->setNonbondedMethod(method); gbsa->setNonbondedMethod(method2); nonbonded->setCutoffDistance(3.0); gbsa->setCutoffDistance(3.0); int grid = (int) floor(0.5+pow(numParticles, 1.0/3.0)); if (method == NonbondedForce::CutoffPeriodic) { double boxSize = (grid+1)*1.1; system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize)); } system.addForce(gbsa); system.addForce(nonbonded); LangevinIntegrator integrator1(0, 0.1, 0.01); LangevinIntegrator integrator2(0, 0.1, 0.01); Context context(system, integrator1, platform); Context refContext(system, integrator2, reference); // Set random (but uniformly distributed) positions for all the particles. vector positions(numParticles); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); for (int i = 0; i < grid; i++) for (int j = 0; j < grid; j++) for (int k = 0; k < grid; k++) positions[i*grid*grid+j*grid+k] = Vec3(i*1.1, j*1.1, k*1.1); for (int i = 0; i < numParticles; ++i) positions[i] = positions[i] + Vec3(0.5*genrand_real2(sfmt), 0.5*genrand_real2(sfmt), 0.5*genrand_real2(sfmt)); context.setPositions(positions); refContext.setPositions(positions); State state = context.getState(State::Forces | State::Energy); State refState = refContext.getState(State::Forces | State::Energy); // Make sure this agrees with the Reference platform. double norm = 0.0; double diff = 0.0; for (int i = 0; i < numParticles; ++i) { Vec3 f = state.getForces()[i]; norm += f[0]*f[0] + f[1]*f[1] + f[2]*f[2]; Vec3 delta = f-refState.getForces()[i]; diff += delta[0]*delta[0] + delta[1]*delta[1] + delta[2]*delta[2]; } norm = std::sqrt(norm); diff = std::sqrt(diff); ASSERT_EQUAL_TOL(0.0, diff, 0.001*norm); ASSERT_EQUAL_TOL(state.getPotentialEnergy(), refState.getPotentialEnergy(), 1e-3); // Take a small step in the direction of the energy gradient and see whether the potential energy changes by the expected amount. // (This doesn't work with cutoffs, since the energy changes discontinuously at the cutoff distance.) if (method == NonbondedForce::NoCutoff) { const double delta = 0.3; double step = 0.5*delta/norm; vector positions2(numParticles), positions3(numParticles); for (int i = 0; i < numParticles; ++i) { Vec3 p = positions[i]; Vec3 f = state.getForces()[i]; positions2[i] = Vec3(p[0]-f[0]*step, p[1]-f[1]*step, p[2]-f[2]*step); positions3[i] = Vec3(p[0]+f[0]*step, p[1]+f[1]*step, p[2]+f[2]*step); } context.setPositions(positions2); State state2 = context.getState(State::Energy); context.setPositions(positions3); State state3 = context.getState(State::Energy); ASSERT_EQUAL_TOL(state2.getPotentialEnergy(), state3.getPotentialEnergy()+norm*delta, 1e-5) } } void runPlatformTests(); int main(int argc, char* argv[]) { try { initializeTests(argc, argv); testSingleParticle(); testGlobalSettings(); testCutoffAndPeriodic(); for (int i = 5; i < 11; i++) { testForce(i*i*i, NonbondedForce::NoCutoff, GBSAOBCForce::NoCutoff); testForce(i*i*i, NonbondedForce::CutoffNonPeriodic, GBSAOBCForce::CutoffNonPeriodic); testForce(i*i*i, NonbondedForce::CutoffPeriodic, GBSAOBCForce::CutoffPeriodic); } runPlatformTests(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }