/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2016 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #ifdef WIN32 #define _USE_MATH_DEFINES // Needed to get M_PI #endif #include "openmm/internal/AssertionUtilities.h" #include "openmm/Context.h" #include "openmm/GayBerneForce.h" #include "openmm/NonbondedForce.h" #include "openmm/System.h" #include "openmm/VerletIntegrator.h" #include "sfmt/SFMT.h" #include #include using namespace OpenMM; using namespace std; const double TOL = 1e-5; void testPointParticles() { // For point particles, it should be identical to a standard Lennard-Jones force. const int numParticles = 10; const double sigma = 0.5; const double epsilon = 1.5; System system; GayBerneForce* gb = new GayBerneForce(); NonbondedForce* nb = new NonbondedForce(); system.addForce(gb); system.addForce(nb); gb->setForceGroup(1); vector positions; OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); for (int i = 0; i < numParticles; i++) { system.addParticle(1.0); gb->addParticle(sigma, epsilon, -1, -1, sigma, sigma, sigma, 1, 1, 1); nb->addParticle(0, sigma, epsilon); positions.push_back(Vec3(2.0*genrand_real2(sfmt), 2.0*genrand_real2(sfmt), 2.0*genrand_real2(sfmt))); } VerletIntegrator integ(0.001); // Compute forces and energy with each one and compare them. Context context(system, integ, platform); context.setPositions(positions); State state1 = context.getState(State::Forces | State::Energy, false, 1); State state2 = context.getState(State::Forces | State::Energy, false, 2); ASSERT_EQUAL_TOL(state1.getPotentialEnergy(), state2.getPotentialEnergy(), 1e-5); for (int i = 0; i < numParticles; i++) ASSERT_EQUAL_VEC(state1.getForces()[i], state2.getForces()[i], 1e-4); } void testEnergyScales() { // Create two Lennard-Jones particles for which the energy scale factors vary. const double sigma = 0.5; const double epsilon = 1.5; System system; for (int i = 0; i < 6; i++) system.addParticle(1.0); GayBerneForce* gb = new GayBerneForce(); system.addForce(gb); gb->addParticle(sigma, epsilon, 1, 2, sigma, sigma, sigma, 1.1, 1.5, 1.8); gb->addParticle(1, 0, -1, -1, 1, 1, 1, 1, 1, 1); gb->addParticle(1, 0, -1, -1, 1, 1, 1, 1, 1, 1); gb->addParticle(sigma, epsilon, 4, 5, sigma, sigma, sigma, 1.2, 1.6, 1.7); gb->addParticle(1, 0, -1, -1, 1, 1, 1, 1, 1, 1); gb->addParticle(1, 0, -1, -1, 1, 1, 1, 1, 1, 1); vector positions(6); positions[0] = Vec3(0, 0, 0); positions[1] = Vec3(1, 0, 0); positions[2] = Vec3(0, 1, 0); positions[3] = Vec3(1, 0, 0); positions[4] = Vec3(2, 0, 0); positions[5] = Vec3(1, 1, 0); VerletIntegrator integ(0.001); Context context(system, integ, platform); context.setPositions(positions); // Depending on their relative orientations, the interaction should be equivalent // to LJ with different values of epsilon. double expectedEnergy = 4*epsilon*(pow(sigma, 12.0)-pow(sigma, 6.0)); double expectedForce = 4*epsilon*(12*pow(sigma, 12.0)-6*pow(sigma, 6.0)); double expectedScale = pow(2.0/(1/sqrt(1.1) + 1/sqrt(1.2)), 2.0); State state = context.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(expectedEnergy*expectedScale, state.getPotentialEnergy(), 1e-5); ASSERT_EQUAL_VEC(Vec3(expectedForce*expectedScale, 0, 0), state.getForces()[3], 1e-5); positions[3] = Vec3(0, 1, 0); positions[4] = Vec3(1, 1, 0); positions[5] = Vec3(0, 2, 0); context.setPositions(positions); expectedScale = pow(2.0/(1/sqrt(1.5) + 1/sqrt(1.6)), 2.0); state = context.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(expectedEnergy*expectedScale, state.getPotentialEnergy(), 1e-5); ASSERT_EQUAL_VEC(Vec3(0, expectedForce*expectedScale, 0), state.getForces()[3], 1e-5); positions[3] = Vec3(0, 1, 0); positions[4] = Vec3(1, 1, 0); positions[5] = Vec3(0, 1, 1); context.setPositions(positions); expectedScale = pow(2.0/(1/sqrt(1.5) + 1/sqrt(1.7)), 2.0); state = context.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(expectedEnergy*expectedScale, state.getPotentialEnergy(), 1e-5); ASSERT_EQUAL_VEC(Vec3(0, expectedForce*expectedScale, 0), state.getForces()[3], 1e-5); // Modify their parameters and see if the result is still correct. double newSigma = 1.1*sigma; gb->setParticleParameters(0, newSigma, 1.5*epsilon, 1, 2, newSigma, newSigma, newSigma, 1.2, 1.6, 1.9); gb->setParticleParameters(3, newSigma, epsilon, 4, 5, newSigma, newSigma, newSigma, 1.3, 1.7, 1.8); gb->updateParametersInContext(context); double combinedEpsilon = sqrt(1.5)*epsilon; expectedEnergy = 4*combinedEpsilon*(pow(newSigma, 12.0)-pow(newSigma, 6.0)); expectedForce = 4*combinedEpsilon*(12*pow(newSigma, 12.0)-6*pow(newSigma, 6.0)); expectedScale = pow(2.0/(1/sqrt(1.6) + 1/sqrt(1.8)), 2.0); state = context.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(expectedEnergy*expectedScale, state.getPotentialEnergy(), 1e-5); ASSERT_EQUAL_VEC(Vec3(0, expectedForce*expectedScale, 0), state.getForces()[3], 1e-5); } void testEnergyConservation() { // Create a box of ellipsoids and make sure a simulation conserves energy. // That verifies that forces and energies are consistent. const double boxSize = 3.0; System system; system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize)); GayBerneForce* gb = new GayBerneForce(); system.addForce(gb); gb->setNonbondedMethod(GayBerneForce::CutoffPeriodic); gb->setCutoffDistance(1.0); gb->setUseSwitchingFunction(true); gb->setSwitchingDistance(0.9); vector positions; for (int x = 0; x < 3; x++) { for (int y = 0; y < 3; y++) { for (int z = 0; z < 3; z++) { int first = system.getNumParticles(); system.addParticle(10.0); system.addParticle(1.0); system.addParticle(1.0); gb->addParticle(0.2, 10.0, first+1, first+2, 0.2, 0.25, 0.3, 0.9, 1.0, 1.1); gb->addParticle(1.0, 0.0, -1, -1, 1, 1, 1, 1, 1, 1); gb->addParticle(1.0, 0.0, -1, -1, 1, 1, 1, 1, 1, 1); positions.push_back(Vec3(x, y, z)); positions.push_back(Vec3(x+0.1, y, z)); positions.push_back(Vec3(x, y+0.1, z)); system.addConstraint(first, first+1, 0.1); system.addConstraint(first, first+2, 0.1); system.addConstraint(first+1, first+2, 0.1*sqrt(2.0)); } } } VerletIntegrator integ(0.0005); Context context(system, integ, platform); context.setPositions(positions); context.setVelocitiesToTemperature(300.0); double initialEnergy; for (int i = 0; i < 100; i++) { integ.step(5); State state = context.getState(State::Energy); double energy = state.getPotentialEnergy()+state.getKineticEnergy(); if (i == 0) initialEnergy = energy; else ASSERT_EQUAL_TOL(initialEnergy, energy, 1e-4); } } void testExceptions() { // Create two Lennard-Jones particles for which the energy scale factors vary, // then override their interaction with an exception. const double sigma = 0.5; const double epsilon = 1.5; System system; for (int i = 0; i < 6; i++) system.addParticle(1.0); GayBerneForce* gb = new GayBerneForce(); system.addForce(gb); gb->addParticle(sigma, epsilon, 1, 2, sigma, sigma, sigma, 1.1, 1.5, 1.8); gb->addParticle(1, 0, -1, -1, 1, 1, 1, 1, 1, 1); gb->addParticle(1, 0, -1, -1, 1, 1, 1, 1, 1, 1); gb->addParticle(sigma, epsilon, 4, 5, sigma, sigma, sigma, 1.2, 1.6, 1.7); gb->addParticle(1, 0, -1, -1, 1, 1, 1, 1, 1, 1); gb->addParticle(1, 0, -1, -1, 1, 1, 1, 1, 1, 1); gb->addException(0, 3, sigma, 3.5*epsilon); vector positions(6); positions[0] = Vec3(0, 0, 0); positions[1] = Vec3(1, 0, 0); positions[2] = Vec3(0, 1, 0); positions[3] = Vec3(1, 0, 0); positions[4] = Vec3(2, 0, 0); positions[5] = Vec3(1, 1, 0); VerletIntegrator integ(0.001); Context context(system, integ, platform); context.setPositions(positions); double expectedEnergy = 3.5*4*epsilon*(pow(sigma, 12.0)-pow(sigma, 6.0)); double expectedForce = 3.5*4*epsilon*(12*pow(sigma, 12.0)-6*pow(sigma, 6.0)); double expectedScale = pow(2.0/(1/sqrt(1.1) + 1/sqrt(1.2)), 2.0); State state = context.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(expectedEnergy*expectedScale, state.getPotentialEnergy(), 1e-5); ASSERT_EQUAL_VEC(Vec3(expectedForce*expectedScale, 0, 0), state.getForces()[3], 1e-5); // Modify the exception and see if the results are still correct. gb->setExceptionParameters(0, 0, 3, sigma, 3.1*epsilon); gb->updateParametersInContext(context); expectedEnergy = 3.1*4*epsilon*(pow(sigma, 12.0)-pow(sigma, 6.0)); expectedForce = 3.1*4*epsilon*(12*pow(sigma, 12.0)-6*pow(sigma, 6.0)); state = context.getState(State::Forces | State::Energy); ASSERT_EQUAL_TOL(expectedEnergy*expectedScale, state.getPotentialEnergy(), 1e-5); ASSERT_EQUAL_VEC(Vec3(expectedForce*expectedScale, 0, 0), state.getForces()[3], 1e-5); } void runPlatformTests(); int main(int argc, char* argv[]) { try { initializeTests(argc, argv); testPointParticles(); testEnergyScales(); testEnergyConservation(); testExceptions(); runPlatformTests(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }