/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2008-2016 Stanford University and the Authors.s * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "openmm/internal/AssertionUtilities.h" #include "openmm/Context.h" #include "openmm/HarmonicAngleForce.h" #include "openmm/System.h" #include "openmm/VerletIntegrator.h" #include "SimTKOpenMMRealType.h" #include #include using namespace OpenMM; using namespace std; const double TOL = 1e-5; void testAngles() { System system; system.addParticle(1.0); system.addParticle(1.0); system.addParticle(1.0); system.addParticle(1.0); VerletIntegrator integrator(0.01); HarmonicAngleForce* forceField = new HarmonicAngleForce(); forceField->addAngle(0, 1, 2, PI_M/3, 1.1); forceField->addAngle(1, 2, 3, PI_M/2, 1.2); system.addForce(forceField); ASSERT(!forceField->usesPeriodicBoundaryConditions()); ASSERT(!system.usesPeriodicBoundaryConditions()); Context context(system, integrator, platform); vector positions(4); positions[0] = Vec3(0, 1, 0); positions[1] = Vec3(0, 0, 0); positions[2] = Vec3(1, 0, 0); positions[3] = Vec3(2, 1, 0); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); { const vector& forces = state.getForces(); double torque1 = 1.1*PI_M/6; double torque2 = 1.2*PI_M/4; ASSERT_EQUAL_VEC(Vec3(torque1, 0, 0), forces[0], TOL); ASSERT_EQUAL_VEC(Vec3(-0.5*torque2, 0.5*torque2, 0), forces[3], TOL); // reduced by sqrt(2) due to the bond length, another sqrt(2) due to the angle ASSERT_EQUAL_VEC(Vec3(forces[0][0]+forces[1][0]+forces[2][0]+forces[3][0], forces[0][1]+forces[1][1]+forces[2][1]+forces[3][1], forces[0][2]+forces[1][2]+forces[2][2]+forces[3][2]), Vec3(0, 0, 0), TOL); ASSERT_EQUAL_TOL(0.5*1.1*(PI_M/6)*(PI_M/6) + 0.5*1.2*(PI_M/4)*(PI_M/4), state.getPotentialEnergy(), TOL); } // Try changing the angle parameters and make sure it's still correct. forceField->setAngleParameters(0, 0, 1, 2, PI_M/3.1, 1.3); forceField->setAngleParameters(1, 1, 2, 3, PI_M/2.1, 1.4); forceField->updateParametersInContext(context); state = context.getState(State::Forces | State::Energy); { const vector& forces = state.getForces(); double dtheta1 = (PI_M/2)-(PI_M/3.1); double dtheta2 = (3*PI_M/4)-(PI_M/2.1); double torque1 = 1.3*dtheta1; double torque2 = 1.4*dtheta2; ASSERT_EQUAL_VEC(Vec3(torque1, 0, 0), forces[0], TOL); ASSERT_EQUAL_VEC(Vec3(-0.5*torque2, 0.5*torque2, 0), forces[3], TOL); // reduced by sqrt(2) due to the bond length, another sqrt(2) due to the angle ASSERT_EQUAL_VEC(Vec3(forces[0][0]+forces[1][0]+forces[2][0]+forces[3][0], forces[0][1]+forces[1][1]+forces[2][1]+forces[3][1], forces[0][2]+forces[1][2]+forces[2][2]+forces[3][2]), Vec3(0, 0, 0), TOL); ASSERT_EQUAL_TOL(0.5*1.3*dtheta1*dtheta1 + 0.5*1.4*dtheta2*dtheta2, state.getPotentialEnergy(), TOL); } } void testPeriodic() { // Create a force that uses periodic boundary conditions. System system; system.addParticle(1.0); system.addParticle(1.0); system.addParticle(1.0); system.setDefaultPeriodicBoxVectors(Vec3(3, 0, 0), Vec3(0, 1.5, 0), Vec3(0, 0, 3)); VerletIntegrator integrator(0.01); HarmonicAngleForce* angles = new HarmonicAngleForce(); angles->addAngle(0, 1, 2, PI_M/3, 1.1); system.addForce(angles); angles->setUsesPeriodicBoundaryConditions(true); Context context(system, integrator, platform); vector positions(3); positions[0] = Vec3(0, 1, 0); positions[1] = Vec3(0, 0, 0); positions[2] = Vec3(1, 0, 0); context.setPositions(positions); State state = context.getState(State::Forces | State::Energy); const vector& forces = state.getForces(); double torque = 1.1*PI_M/6; ASSERT_EQUAL_VEC(Vec3(2*torque, 0, 0), forces[0], TOL); ASSERT_EQUAL_VEC(Vec3(0, -torque, 0), forces[2], TOL); ASSERT_EQUAL_TOL(0.5*1.1*(PI_M/6)*(PI_M/6), state.getPotentialEnergy(), TOL); } void runPlatformTests(); int main(int argc, char* argv[]) { try { initializeTests(argc, argv); testAngles(); testPeriodic(); runPlatformTests(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }