/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2010-2018 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "openmm/internal/AssertionUtilities.h" #include "openmm/Context.h" #include "openmm/HarmonicBondForce.h" #include "openmm/LocalEnergyMinimizer.h" #include "openmm/NonbondedForce.h" #include "openmm/VerletIntegrator.h" #include "openmm/VirtualSite.h" #include "sfmt/SFMT.h" #include #include #include using namespace OpenMM; using namespace std; void testHarmonicBonds() { const int numParticles = 10; System system; HarmonicBondForce* bonds = new HarmonicBondForce(); system.addForce(bonds); // Create a chain of particles connected by harmonic bonds. vector positions(numParticles); for (int i = 0; i < numParticles; i++) { system.addParticle(1.0); positions[i] = Vec3(i, 0, 0); if (i > 0) bonds->addBond(i-1, i, 1+0.1*i, 1); } // Minimize it and check that all bonds are at their equilibrium distances. VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); LocalEnergyMinimizer::minimize(context, 1e-5); State state = context.getState(State::Positions); for (int i = 1; i < numParticles; i++) { Vec3 delta = state.getPositions()[i]-state.getPositions()[i-1]; ASSERT_EQUAL_TOL(1+0.1*i, sqrt(delta.dot(delta)), 1e-4); } } void testLargeSystem() { const int numMolecules = 25; const int numParticles = numMolecules*2; const double cutoff = 2.0; const double boxSize = 4.0; const double tolerance = 15; System system; system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize)); NonbondedForce* nonbonded = new NonbondedForce(); nonbonded->setCutoffDistance(cutoff); nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic); system.addForce(nonbonded); // Create a cloud of molecules. OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector positions(numParticles); for (int i = 0; i < numMolecules; i++) { system.addParticle(1.0); system.addParticle(1.0); nonbonded->addParticle(-1.0, 0.2, 0.2); nonbonded->addParticle(1.0, 0.2, 0.2); positions[2*i] = Vec3(boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt)); positions[2*i+1] = Vec3(positions[2*i][0]+1.0, positions[2*i][1], positions[2*i][2]); system.addConstraint(2*i, 2*i+1, 1.0); } // Minimize it and verify that the energy has decreased. VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); State initialState = context.getState(State::Forces | State::Energy); LocalEnergyMinimizer::minimize(context, tolerance); State finalState = context.getState(State::Forces | State::Energy | State::Positions); ASSERT(finalState.getPotentialEnergy() < initialState.getPotentialEnergy()); // Compute the force magnitude, subtracting off any component parallel to a constraint, and // check that it satisfies the requested tolerance. double forceNorm = 0.0; for (int i = 0; i < numParticles; i += 2) { Vec3 dir = finalState.getPositions()[i+1]-finalState.getPositions()[i]; double distance = sqrt(dir.dot(dir)); dir *= 1.0/distance; Vec3 f = finalState.getForces()[i]; f -= dir*dir.dot(f); forceNorm += f.dot(f); f = finalState.getForces()[i+1]; f -= dir*dir.dot(f); forceNorm += f.dot(f); } forceNorm = sqrt(forceNorm/(5*numMolecules)); ASSERT(forceNorm < 2*tolerance); } void testVirtualSites() { const int numMolecules = 25; const int numParticles = numMolecules*3; const double cutoff = 2.0; const double boxSize = 4.0; const double tolerance = 10; System system; system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize)); NonbondedForce* nonbonded = new NonbondedForce(); nonbonded->setCutoffDistance(cutoff); nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic); system.addForce(nonbonded); // Create a cloud of molecules. OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); vector positions(numParticles); for (int i = 0; i < numMolecules; i++) { system.addParticle(1.0); system.addParticle(1.0); system.addParticle(0.0); nonbonded->addParticle(-1.0, 0.2, 0.2); nonbonded->addParticle(0.5, 0.2, 0.2); nonbonded->addParticle(0.5, 0.2, 0.2); positions[3*i] = Vec3(boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt)); positions[3*i+1] = Vec3(positions[3*i][0]+1.0, positions[3*i][1], positions[3*i][2]); positions[3*i+2] = Vec3(); system.addConstraint(3*i, 3*i+1, 1.0); system.setVirtualSite(3*i+2, new TwoParticleAverageSite(3*i, 3*i+1, 0.5, 0.5)); } // Minimize it and verify that the energy has decreased. VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); context.applyConstraints(1e-5); State initialState = context.getState(State::Forces | State::Energy); LocalEnergyMinimizer::minimize(context, tolerance); State finalState = context.getState(State::Forces | State::Energy | State::Positions); ASSERT(finalState.getPotentialEnergy() < initialState.getPotentialEnergy()); // Compute the force magnitude, subtracting off any component parallel to a constraint, and // check that it satisfies the requested tolerance. double forceNorm = 0.0; for (int i = 0; i < numParticles; i += 3) { Vec3 dir = finalState.getPositions()[i+1]-finalState.getPositions()[i]; double distance = sqrt(dir.dot(dir)); dir *= 1.0/distance; Vec3 f = finalState.getForces()[i]; f -= dir*dir.dot(f); forceNorm += f.dot(f); f = finalState.getForces()[i+1]; f -= dir*dir.dot(f); forceNorm += f.dot(f); // Check the virtual site location. ASSERT_EQUAL_VEC((finalState.getPositions()[i+1]+finalState.getPositions()[i])*0.5, finalState.getPositions()[i+2], 1e-5); } forceNorm = sqrt(forceNorm/(5*numMolecules)); ASSERT(forceNorm < 2*tolerance); } void testLargeForces() { // Create a set of particles that are almost on top of each other so the initial // forces are huge. const int numParticles = 10; System system; NonbondedForce* nonbonded = new NonbondedForce(); system.addForce(nonbonded); for (int i = 0; i < numParticles; i++) { system.addParticle(1.0); nonbonded->addParticle(1.0, 0.2, 1.0); } vector positions(numParticles); OpenMM_SFMT::SFMT sfmt; init_gen_rand(0, sfmt); for (int i = 0; i < numParticles; i++) positions[i] = Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt))*1e-10; // Minimize it and verify that it didn't blow up. VerletIntegrator integrator(0.01); Context context(system, integrator, platform); context.setPositions(positions); LocalEnergyMinimizer::minimize(context, 1.0); State state = context.getState(State::Positions); double maxdist = 0.0; for (int i = 0; i < numParticles; i++) { Vec3 r = state.getPositions()[i]; maxdist = max(maxdist, sqrt(r.dot(r))); } ASSERT(maxdist > 0.1); ASSERT(maxdist < 10.0); } void runPlatformTests(); int main(int argc, char* argv[]) { try { initializeTests(argc, argv); testHarmonicBonds(); testLargeSystem(); testVirtualSites(); testLargeForces(); runPlatformTests(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }