/* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2010 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #ifdef WIN32 #define _USE_MATH_DEFINES // Needed to get M_PI #endif #include "openmm/internal/AssertionUtilities.h" #include "openmm/internal/SplineFitter.h" #include #include #include using namespace OpenMM; using namespace std; void testNaturalSpline() { vector x(20); vector y(20); for (unsigned int i = 0; i < x.size(); i++) { x[i] = 0.5*i+0.1*sin(double(i)); y[i] = sin(double(x[i])); } vector deriv; SplineFitter::createNaturalSpline(x, y, deriv); ASSERT_EQUAL_TOL(deriv[0], 0.0, 1e-6); ASSERT_EQUAL_TOL(deriv[deriv.size()-1], 0.0, 1e-6); for (unsigned int i = 0; i < x.size(); i++) { ASSERT_EQUAL_TOL(y[i], SplineFitter::evaluateSpline(x, y, deriv, x[i]), 1e-6); ASSERT_EQUAL_TOL(cos(x[i]), SplineFitter::evaluateSplineDerivative(x, y, deriv, x[i]), 0.05); } for (int i = 1; i < 9; i++) { ASSERT_EQUAL_TOL(sin((double)i), SplineFitter::evaluateSpline(x, y, deriv, i), 0.05); ASSERT_EQUAL_TOL(cos((double)i), SplineFitter::evaluateSplineDerivative(x, y, deriv, i), 0.05); } } void testPeriodicSpline() { vector x(26); vector y(26); for (unsigned int i = 0; i < x.size()-1; i++) { x[i] = 0.5*i+0.1*sin((double)i); y[i] = sin((double)x[i]); } x[x.size()-1] = 4*M_PI; y[y.size()-1] = y[0]; vector deriv; SplineFitter::createPeriodicSpline(x, y, deriv); ASSERT_EQUAL_TOL(deriv[0], deriv[deriv.size()-1], 1e-6); for (unsigned int i = 0; i < x.size(); i++) { ASSERT_EQUAL_TOL(y[i], SplineFitter::evaluateSpline(x, y, deriv, x[i]), 1e-6); ASSERT_EQUAL_TOL(cos(x[i]), SplineFitter::evaluateSplineDerivative(x, y, deriv, x[i]), 0.05); } for (int i = 1; i < 9; i++) { ASSERT_EQUAL_TOL(sin((double)i), SplineFitter::evaluateSpline(x, y, deriv, i), 0.05); ASSERT_EQUAL_TOL(cos((double)i), SplineFitter::evaluateSplineDerivative(x, y, deriv, i), 0.05); } } void test2DSpline() { const int xsize = 15; const int ysize = 17; vector x(xsize); vector y(ysize); vector f(xsize*ysize); for (int i = 0; i < xsize; i++) x[i] = 0.5*i+0.1*sin(double(i)); for (int i = 0; i < ysize; i++) y[i] = 0.6*i+0.1*sin(double(i)); for (int i = 0; i < xsize; i++) for (int j = 0; j < ysize; j++) f[i+j*xsize] = sin(x[i])*cos(0.4*y[j]); vector > c; SplineFitter::create2DNaturalSpline(x, y, f, c); for (int i = 0; i < xsize; i++) for (int j = 0; j < ysize; j++) { double value = SplineFitter::evaluate2DSpline(x, y, f, c, x[i], y[j]); ASSERT_EQUAL_TOL(f[i+j*xsize], value, 1e-6); } for (int i = 0; i < 10; i++) { for (int j = 0; j < 10; j++) { double s = x[0]+(i+1)*(x[xsize-1]-x[0])/12.0; double t = y[0]+(j+1)*(y[ysize-1]-y[0])/12.0; double value = SplineFitter::evaluate2DSpline(x, y, f, c, s, t); ASSERT_EQUAL_TOL(sin(s)*cos(0.4*t), value, 0.02); double dx, dy; SplineFitter::evaluate2DSplineDerivatives(x, y, f, c, s, t, dx, dy); ASSERT_EQUAL_TOL(cos(s)*cos(0.4*t), dx, 0.05); ASSERT_EQUAL_TOL(-0.4*sin(s)*sin(0.4*t), dy, 0.05); } } } void test3DSpline() { const int xsize = 8; const int ysize = 9; const int zsize = 10; vector x(xsize); vector y(ysize); vector z(zsize); vector f(xsize*ysize*zsize); for (int i = 0; i < xsize; i++) x[i] = 0.2*i+0.02*sin(0.4*double(i)); for (int i = 0; i < ysize; i++) y[i] = 0.2*i+0.02*sin(0.45*double(i)); for (int i = 0; i < zsize; i++) z[i] = 0.2*i+0.02*sin(0.5*double(i)); for (int i = 0; i < xsize; i++) for (int j = 0; j < ysize; j++) for (int k = 0; k < zsize; k++) f[i+j*xsize+k*xsize*ysize] = sin(x[i])*cos(0.4*y[j])*(1+z[k]); vector > c; SplineFitter::create3DNaturalSpline(x, y, z, f, c); for (int i = 0; i < xsize; i++) for (int j = 0; j < ysize; j++) { for (int k = 0; k < zsize; k++) { double value = SplineFitter::evaluate3DSpline(x, y, z, f, c, x[i], y[j], z[k]); ASSERT_EQUAL_TOL(f[i+j*xsize+k*xsize*ysize], value, 1e-6); } } for (int i = 0; i < 10; i++) { for (int j = 0; j < 10; j++) { for (int k = 0; k < 10; k++) { double s = x[0]+(i+1)*(x[xsize-1]-x[0])/12.0; double t = y[0]+(j+1)*(y[ysize-1]-y[0])/12.0; double u = z[0]+(k+1)*(z[zsize-1]-z[0])/12.0; double value = SplineFitter::evaluate3DSpline(x, y, z, f, c, s, t, u); ASSERT_EQUAL_TOL(sin(s)*cos(0.4*t)*(1+u), value, 0.02); double dx, dy, dz; SplineFitter::evaluate3DSplineDerivatives(x, y, z, f, c, s, t, u, dx, dy, dz); ASSERT_EQUAL_TOL(cos(s)*cos(0.4*t)*(1+u), dx, 0.1); ASSERT_EQUAL_TOL(-0.4*sin(s)*sin(0.4*t)*(1+u), dy, 0.1); ASSERT_EQUAL_TOL(sin(s)*cos(0.4*t), dz, 0.1); } } } } int main() { try { testNaturalSpline(); testPeriodicSpline(); test2DSpline(); test3DSpline(); } catch(const exception& e) { cout << "exception: " << e.what() << endl; return 1; } cout << "Done" << endl; return 0; }