// // Copyright 2018 DreamWorks Animation LLC. // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include "../far/loopPatchBuilder.h" #include "../vtr/stackBuffer.h" #include "../sdc/loopScheme.h" #include #include #include namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { using Vtr::Array; using Vtr::ConstArray; using Vtr::internal::StackBuffer; namespace Far { // // A simple struct with methods to compute Loop limit points (following // the pattern established for Catmull-Clark limit points) // // Unlike the corresponding Catmull-Clark struct, Loop limit points are // computed using the limit masks provided by the Sdc Scheme for Loop. // template struct LoopLimits { public: // // Local classes to fulfill the interface requirements of template // arguments to the Sdc::Scheme methods // // Class fulfilling : // class LimitVertex { public: LimitVertex() : _nFaces(0), _nEdges(0) { } LimitVertex(int faces, int edges) : _nFaces(faces), _nEdges(edges) { } void Assign(int faces, int edges) { _nFaces = faces; _nEdges = edges; } int GetNumEdges() const { return _nEdges; } int GetNumFaces() const { return _nFaces; } void GetSharpnessPerEdge(float sharpness[]) const { sharpness[0] = Sdc::Crease::SHARPNESS_INFINITE; for (int i = 1; i < _nEdges - 1; ++i) { sharpness[i] = Sdc::Crease::SHARPNESS_SMOOTH; } sharpness[_nEdges - 1] = Sdc::Crease::SHARPNESS_INFINITE; } private: int _nFaces; int _nEdges; }; // // Class fulfilling : // class LimitMask { public: typedef REAL Weight; // Also part of the expected interface public: LimitMask(Weight* w) : _weights(w), _valence(0) { } ~LimitMask() { } public: // Generic interface expected of : int GetNumVertexWeights() const { return 1; } int GetNumEdgeWeights() const { return _valence; } int GetNumFaceWeights() const { return 0; } void SetNumVertexWeights(int) { } void SetNumEdgeWeights(int count) { _valence = count; } void SetNumFaceWeights(int) { } Weight const& VertexWeight(int) const { return _weights[0]; } Weight const& EdgeWeight(int index) const { return _weights[1 + index]; } Weight const& FaceWeight(int) const { return _weights[0]; } Weight& VertexWeight(int) { return _weights[0]; } Weight& EdgeWeight( int index) { return _weights[1 + index]; } Weight& FaceWeight( int) { return _weights[0]; } bool AreFaceWeightsForFaceCenters() const { return false; } void SetFaceWeightsForFaceCenters(bool) { } private: Weight* _weights; int _valence; }; public: typedef Sdc::Scheme SchemeLoop; static void ComputeInteriorPointWeights(int valence, int faceInRing, REAL* pWeights, REAL* epWeights, REAL* emWeights); static void ComputeBoundaryPointWeights(int valence, int faceInRing, REAL* pWeights, REAL* epWeights, REAL* emWeights); }; template void LoopLimits::ComputeInteriorPointWeights(int valence, int faceInRing, REAL* pWeights, REAL* epWeights, REAL* emWeights) { int ringSize = valence + 1; LimitVertex vertex(valence, valence); bool computeTangentPoints = epWeights && emWeights; if (!computeTangentPoints) { // // The interior position mask is symmetric -- no need to rotate // or otherwise account for orientation: // LimitMask pMask(pWeights); SchemeLoop().ComputeVertexLimitMask(vertex, pMask, Sdc::Crease::RULE_SMOOTH); } else { // // The interior tangent masks will be directed along the first // two edges (the second a rotation of the first). Adjust the // tangent weights for a point along the tangent, then rotate // according to the face within the ring: // int weightWidth = valence + 1; StackBuffer tWeights(2 * weightWidth); REAL * t1Weights = &tWeights[0]; REAL * t2Weights = t1Weights + ringSize; LimitMask pMask(pWeights); LimitMask t1Mask(t1Weights); LimitMask t2Mask(t2Weights); SchemeLoop().ComputeVertexLimitMask(vertex, pMask, t1Mask, t2Mask, Sdc::Crease::RULE_SMOOTH); // // Use the subdominant eigenvalue to scale the limit tangent t1: // // e = (3 + cos(2*PI/valence)) / 8 // // Combine it with a normalizing factor of (2 / valence) to account // for the scale inherent in the tangent weights, and (2 / 3) to // match desired placement of the cubic point in the regular case. // // The weights for t1 can simply be rotated around the ring to yield // t2. Combine the weights for the point in a single set for t2 and // then copy it into the appropriate orientation for ep and em: // double theta = 2.0 * M_PI / (double) valence; REAL tanScale = (REAL) ((3.0 + 2.0 * std::cos(theta)) / (6.0 * valence)); for (int i = 0; i < ringSize; ++i) { t2Weights[i] = pWeights[i] + t1Weights[i] * tanScale; } int n1 = faceInRing; int n2 = valence - n1; epWeights[0] = t2Weights[0]; std::memcpy(epWeights + 1, t2Weights + 1 + n2, n1 * sizeof(REAL)); std::memcpy(epWeights + 1 + n1, t2Weights + 1, n2 * sizeof(REAL)); n1 = (faceInRing + 1) % valence; n2 = valence - n1; emWeights[0] = t2Weights[0]; std::memcpy(emWeights + 1, t2Weights + 1 + n2, n1 * sizeof(REAL)); std::memcpy(emWeights + 1 + n1, t2Weights + 1, n2 * sizeof(REAL)); } } template void LoopLimits::ComputeBoundaryPointWeights(int valence, int faceInRing, REAL* pWeights, REAL* epWeights, REAL* emWeights) { LimitVertex vertex(valence - 1, valence); bool computeTangentPoints = epWeights && emWeights; if (!computeTangentPoints) { // // The boundary position mask will be assigned non-zero weights // for the vertex and its first and last edges: // LimitMask pMask(pWeights); SchemeLoop().ComputeVertexLimitMask(vertex, pMask, Sdc::Crease::RULE_CREASE); } else { // // The boundary tangent masks need more explicit handling than // the interior. One of the tangents will be along the boundary // and the other towards the interior, but one or both edge // points may be along interior edges. A boundary edge point is // easy to deal with once identified, but interior edge points // need a numerical rotation of the interior tangent to orient it // along the desired edge. // int weightWidth = valence + 1; StackBuffer tWeights(2 * weightWidth); REAL * t1Weights = &tWeights[0]; REAL * t2Weights = t1Weights + weightWidth; REAL t1Leading = (REAL) (1.0 / 6.0); REAL t1Trailing = -(REAL) (1.0 / 6.0); REAL t2Scale = (REAL) (1.0 / 24.0); LimitMask pMask(pWeights); LimitMask t1Mask(t1Weights); LimitMask t2Mask(t2Weights); SchemeLoop().ComputeVertexLimitMask(vertex, pMask, t1Mask, t2Mask, Sdc::Crease::RULE_CREASE); bool epOnLeadingEdge = (faceInRing == 0); bool emOnTrailingEdge = (faceInRing == (valence - 1)); if (epOnLeadingEdge) { std::memset(&epWeights[0], 0, weightWidth * sizeof(REAL)); epWeights[0] = (REAL) (2.0 / 3.0); epWeights[1] = (REAL) (1.0 / 3.0); } else { int iEdgeNext = faceInRing; REAL faceAngle = (REAL) (M_PI / (double)(valence - 1)); REAL faceAngleNext = faceAngle * (REAL)iEdgeNext; REAL cosAngleNext = std::cos(faceAngleNext); REAL sinAngleNext = std::sin(faceAngleNext); for (int i = 0; i < weightWidth; ++i) { epWeights[i] = t2Scale * t2Weights[i] * sinAngleNext; } epWeights[0] += pWeights[0]; epWeights[1] += pWeights[1] + t1Leading * cosAngleNext; epWeights[valence] += pWeights[valence] + t1Trailing * cosAngleNext; } if (emOnTrailingEdge) { std::memset(&emWeights[0], 0, weightWidth * sizeof(REAL)); emWeights[0] = (REAL) (2.0 / 3.0); emWeights[valence] = (REAL) (1.0 / 3.0); } else { int iEdgePrev = (faceInRing + 1) % valence; REAL faceAngle = (REAL) (M_PI / (double)(valence - 1)); REAL faceAnglePrev = faceAngle * (REAL)iEdgePrev; REAL cosAnglePrev = std::cos(faceAnglePrev); REAL sinAnglePrev = std::sin(faceAnglePrev); for (int i = 0; i < weightWidth; ++i) { emWeights[i] = t2Scale * t2Weights[i] * sinAnglePrev; } emWeights[0] += pWeights[0]; emWeights[1] += pWeights[1] + t1Leading * cosAnglePrev; emWeights[valence] += pWeights[valence] + t1Trailing * cosAnglePrev; } } } // // SparseMatrixRow // // This was copied from the CatmarkPatchBuilder as a starting point, so // comments below relate to the state of CatmarkPatchBuilder... // // This is a utility class representing a row of a SparseMatrix -- which // in turn corresponds to a point of a resulting patch. Instances of this // class are intended to encapsulate the contributions of a point and be // passed to functions as such. // // (Consider moving this to PatchBuilder as a protected class or maybe a // public class within SparseMatrix itself, e.g. SparseMatrix::Row.) // namespace { template class SparseMatrixRow { public: SparseMatrixRow(SparseMatrix & matrix, int row) : _size(matrix.GetRowSize(row)), _indices(matrix.SetRowColumns(row).begin()), _weights(matrix.SetRowElements(row).begin()) { } int GetSize() const { return _size; } void SetWeight(int i, REAL weight) { _weights[i] = weight; } void Assign(int rowEntry, Index index, REAL weight) { _indices[rowEntry] = index; _weights[rowEntry] = weight; } void Copy(SparseMatrixRow const & other) { assert(GetSize() == other.GetSize()); std::memcpy(_indices, other._indices, _size * sizeof(Index)); std::memcpy(_weights, other._weights, _size * sizeof(REAL)); } public: int _size; Index * _indices; REAL * _weights; }; } // end namespace // // Simple utility functions for dealing with SparseMatrix: // namespace { #ifdef __INTEL_COMPILER #pragma warning (push) #pragma warning disable 1572 #endif template inline bool _isZero(REAL w) { return (w == (REAL)0.0); } #ifdef __INTEL_COMPILER #pragma warning (pop) #endif template void _initializeFullMatrix(SparseMatrix & M, int nRows, int nColumns) { M.Resize(nRows, nColumns, nRows * nColumns); // Fill row 0 with index for every column: M.SetRowSize(0, nColumns); Array row0Columns = M.SetRowColumns(0); for (int i = 0; i < nColumns; ++i) { row0Columns[i] = i; } // Copy row 0's indices into all other rows: for (int row = 1; row < nRows; ++row) { M.SetRowSize(row, nColumns); Array dstRowColumns = M.SetRowColumns(row); std::memcpy(&dstRowColumns[0], &row0Columns[0], nColumns * sizeof(int)); } } template void _resizeMatrix(SparseMatrix & matrix, int numRows, int numColumns, int numElements, int const rowSizes[]) { matrix.Resize(numRows, numColumns, numElements); for (int i = 0; i < numRows; ++i) { matrix.SetRowSize(i, rowSizes[i]); } assert(matrix.GetNumElements() == numElements); } template void _addSparsePointToFullRow(REAL * fullRow, SparseMatrixRow const & p, REAL s, int * indexMask) { for (int i = 0; i < p.GetSize(); ++i) { int index = p._indices[i]; fullRow[index] += s * p._weights[i]; indexMask[index] = 1 + index; } } template void _combineSparsePointsInFullRow(SparseMatrixRow & p, REAL aCoeff, SparseMatrixRow const & a, REAL bCoeff, SparseMatrixRow const & b, int rowSize, REAL * rowBuffer, int * maskBuffer) { std::memset(maskBuffer, 0, rowSize * sizeof(int)); std::memset(rowBuffer, 0, rowSize * sizeof(REAL)); _addSparsePointToFullRow(rowBuffer, a, aCoeff, maskBuffer); _addSparsePointToFullRow(rowBuffer, b, bCoeff, maskBuffer); int nWeights = 0; for (int i = 0; i < rowSize; ++i) { if (maskBuffer[i]) { p.Assign(nWeights++, maskBuffer[i] - 1, rowBuffer[i]); } } assert(nWeights <= p.GetSize()); for (int i = nWeights; i < p.GetSize(); ++i, ++nWeights) { p.Assign(i, 0, 0.0f); } } template void _addSparseRowToFull(REAL * fullRow, SparseMatrix const & M, int sparseRow, REAL s) { ConstArray indices = M.GetRowColumns(sparseRow); ConstArray weights = M.GetRowElements(sparseRow); for (int i = 0; i < indices.size(); ++i) { fullRow[indices[i]] += s * weights[i]; } } template void _combineSparseMatrixRowsInFull(SparseMatrix & dstMatrix, int dstRowIndex, SparseMatrix const & srcMatrix, int numSrcRows, int const srcRowIndices[], REAL const * srcRowWeights) { REAL * dstRow = &dstMatrix.SetRowElements(dstRowIndex)[0]; std::memset(dstRow, 0, dstMatrix.GetNumColumns() * sizeof(REAL)); for (int i = 0; i < numSrcRows; ++i) { if (!_isZero(srcRowWeights[i])) { _addSparseRowToFull(dstRow, srcMatrix, srcRowIndices[i], srcRowWeights[i]); } } } template void _matrixPrintDensity(const char* prefix, SparseMatrix const & M) { int fullSize = M.GetNumRows() * M.GetNumColumns(); int sparseSize = M.GetNumElements(); int nonZeroSize = 0; for (int i = 0; i < M.GetNumRows(); ++i) { ConstArray elements = M.GetRowElements(i); for (int j = 0; j < elements.size(); ++j) { nonZeroSize += (elements[j] != 0); } } printf("%s(%dx%d = %d): elements = %d, non-zero = %d, density = %.1f\n", prefix, M.GetNumRows(), M.GetNumColumns(), fullSize, sparseSize, nonZeroSize, (REAL)nonZeroSize * 100.0f / (REAL)fullSize); } // // The valence-2 interior case poses problems for the way patch points // are computed as combinations of source points and stored as a row in // a SparseMatrix. An interior vertex of valence-2 causes duplicate // vertices to appear in the 1-rings of its neighboring vertices and we // want the entries of a SparseMatrix row to be unique. // // For the most part, this does not pose a problem while the matrix (set // of patch points) is being constructed, so we leave those duplicate // entries in place and deal with them as a post-process here. // // The SourcePatch is also sensitive to the presence of such valence-2 // vertices for its own reasons (it needs to identifiy a unique set of // source points from a set of corner rings), so a simple query of its // corners indicates when this post-process is necessary. (And since // this case is a rare occurrence, efficiency is not a major concern.) // template void _removeValence2Duplicates(SparseMatrix & M) { // This will later be determined by the PatchBuilder member: int regFaceSize = 4; SparseMatrix T; T.Resize(M.GetNumRows(), M.GetNumColumns(), M.GetNumElements()); int nRows = M.GetNumRows(); for (int row = 0; row < nRows; ++row) { int srcRowSize = M.GetRowSize(row); int const * srcIndices = M.GetRowColumns(row).begin(); REAL const * srcWeights = M.GetRowElements(row).begin(); // Scan the entries to see if there are duplicates -- copy // the row if not, otherwise, need to compress it: bool cornerUsed[4] = { false, false, false, false }; int srcDupCount = 0; for (int i = 0; i < srcRowSize; ++i) { int srcIndex = srcIndices[i]; if (srcIndex < regFaceSize) { srcDupCount += (int) cornerUsed[srcIndex]; cornerUsed[srcIndex] = true; } } // Size this row for the destination and copy or compress: T.SetRowSize(row, srcRowSize - srcDupCount); int* dstIndices = T.SetRowColumns(row).begin(); REAL* dstWeights = T.SetRowElements(row).begin(); if (srcDupCount) { REAL * cornerDstPtr[4] = { 0, 0, 0, 0 }; for (int i = 0; i < srcRowSize; ++i) { int srcIndex = *srcIndices++; REAL srcWeight = *srcWeights++; if (srcIndex < regFaceSize) { if (cornerDstPtr[srcIndex]) { *cornerDstPtr[srcIndex] += srcWeight; continue; } else { cornerDstPtr[srcIndex] = dstWeights; } } *dstIndices++ = srcIndex; *dstWeights++ = srcWeight; } } else { std::memcpy(&dstIndices[0], &srcIndices[0], srcRowSize * sizeof(Index)); std::memcpy(&dstWeights[0], &srcWeights[0], srcRowSize * sizeof(REAL)); } } M.Swap(T); } } // end namespace for SparseMatrix utilities // // GregoryTriConverter // // The GregoryTriConverter class provides a change-of-basis matrix from source // vertices in a Loop mesh to the 18 control points of a quartic Gregory triangle. // // The quartic triangle is first constructed as a cubic/quartic hybrid -- with // cubic boundary curves and cross-boundary continuity formulated in terms of // cubics. The result is then raised to a full quartic once continuity across // all boundaries is achieved. In most cases 2 of the 3 boundaries will be // cubic (though now represented as quartic) and only one boundary need be a // true quartic to meet a regular Box-spline patch. // // Control points are labeled using the convention adopted for quads, with // Ep and Em referring to the "plus" and "minus" edge points and similarly // for the face points Fp and Fm. The additional quartic "mid-edge" points // associated with each boundary are referred to as M. // template class GregoryTriConverter { public: typedef REAL Weight; typedef SparseMatrix Matrix; typedef SparseMatrixRow Point; public: GregoryTriConverter() : _numSourcePoints(0) { } GregoryTriConverter(SourcePatch const & sourcePatch); GregoryTriConverter(SourcePatch const & sourcePatch, Matrix & sparseMatrix); void Initialize(SourcePatch const & sourcePatch); bool IsIsolatedInteriorPatch() const { return _isIsolatedInteriorPatch; } bool HasVal2InteriorCorner() const { return _hasVal2InteriorCorner; } int GetIsolatedInteriorCorner() const { return _isolatedCorner; } int GetIsolatedInteriorValence() const { return _isolatedValence; } void Convert(Matrix & sparseMatrix) const; private: // // Local nested class for GregoryTriConverter to cache information for // the corners of the source patch. It copies some information from the // SourcePatch so that we don't have to keep it around, but it contains // additional information relevant to the determination of the Gregory // points -- most notably classifications of the face-points and the // cosines of angles for the face corners that are used repeatedly. // struct CornerTopology { // Basic flags copied from the SourcePatch unsigned int isBoundary : 1; unsigned int isSharp : 1; unsigned int isDart : 1; unsigned int isRegular : 1; unsigned int isVal2Int : 1; unsigned int isCorner : 1; // Flags for edge- and face-points relating to adjacent corners: unsigned int epOnBoundary : 1; unsigned int emOnBoundary : 1; unsigned int fpIsRegular : 1; unsigned int fmIsRegular : 1; unsigned int fpIsCopied : 1; unsigned int fmIsCopied : 1; // Other values stored for repeated use: int valence; int numFaces; int faceInRing; REAL faceAngle; REAL cosFaceAngle; // Its useful to have the ring for each corner immediately available: StackBuffer ringPoints; }; // // Methods to resize the matrix before populating it: // void resizeMatrixUnisolated(Matrix & matrix) const; void resizeMatrixIsolatedIrregular(Matrix & matrix, int irregCornerIndex, int irregValence) const; // // Methods to compute the various rows of points in the matrix: // void assignRegularEdgePoints(int cornerIndex, Matrix & matrix) const; void computeIrregularEdgePoints(int cornerIndex, Matrix & matrix, Weight *weightBuffer) const; void assignRegularFacePoints(int cornerIndex, Matrix & matrix) const; void computeIrregularFacePoints(int cornerIndex, Matrix & matrix, Weight *weightBuffer, int *indexBuffer) const; void computeIrregularInteriorEdgePoints(int cornerIndex, Point & P, Point & Ep, Point & Em, Weight *weightBuffer) const; void computeIrregularBoundaryEdgePoints(int cornerIndex, Point & P, Point & Ep, Point & Em, Weight *weightBuffer) const; int getIrregularFacePointSize(int cornerNear, int cornerFar) const; void computeIrregularFacePoint( int cornerNear, int edgeInNearRing, int cornerFar, Point const & p, Point const & eNear, Point const & eFar, Point & fNear, REAL signForSideOfEdge /* -1.0 or 1.0 */, Weight *rowWeights, int *columnMask) const; void assignRegularMidEdgePoint(int edgeIndex, Matrix & matrix) const; void computeIrregularMidEdgePoint(int edgeIndex, Matrix & matrix, Weight *rowWeights, int *columnMask) const; void promoteCubicEdgePointsToQuartic(Matrix & matrix, Weight *rowWeights, int *columnMask) const; private: int _numSourcePoints; int _maxValence; bool _isIsolatedInteriorPatch; bool _hasVal2InteriorCorner; int _isolatedCorner; int _isolatedValence; CornerTopology _corners[3]; }; // // GregoryTriConverter // // Construction and initialization/computation of the change-of-basis // matrix to a Gregory patch. // template GregoryTriConverter::GregoryTriConverter( SourcePatch const & sourcePatch) { Initialize(sourcePatch); } template GregoryTriConverter::GregoryTriConverter( SourcePatch const & sourcePatch, Matrix & sparseMatrix) { Initialize(sourcePatch); Convert(sparseMatrix); } template void GregoryTriConverter::Initialize(SourcePatch const & sourcePatch) { // // Allocate and gather the 1-rings for the corner vertices and other // topological information for more immediate access: // int width = sourcePatch.GetNumSourcePoints(); _numSourcePoints = width; _maxValence = sourcePatch.GetMaxValence(); int boundaryCount = 0; int irregularCount = 0; int irregularCorner = -1; int irregularValence = -1; int sharpCount = 0; int val2IntCount = 0; for (int cIndex = 0; cIndex < 3; ++cIndex) { SourcePatch::Corner srcCorner = sourcePatch._corners[cIndex]; CornerTopology& corner = _corners[cIndex]; corner.isBoundary = srcCorner._boundary; corner.isSharp = srcCorner._sharp; corner.isDart = srcCorner._dart; corner.isCorner = (srcCorner._numFaces == 1); corner.numFaces = srcCorner._numFaces; corner.faceInRing = srcCorner._patchFace; corner.isVal2Int = srcCorner._val2Interior; corner.valence = corner.numFaces + corner.isBoundary; corner.isRegular = ((corner.numFaces << corner.isBoundary) == 6) && !corner.isSharp; if (corner.isRegular) { corner.faceAngle = (REAL)(M_PI / 3.0); corner.cosFaceAngle = 0.5f; } else { corner.faceAngle = (corner.isBoundary ? REAL(M_PI) : REAL(2.0 * M_PI)) / REAL(corner.numFaces); corner.cosFaceAngle = std::cos(corner.faceAngle); } corner.ringPoints.SetSize(sourcePatch.GetCornerRingSize(cIndex)); sourcePatch.GetCornerRingPoints(cIndex, corner.ringPoints); // Accumulate topology information to categorize the patch as a whole: boundaryCount += corner.isBoundary; if (!corner.isRegular) { irregularCount ++; irregularCorner = cIndex; irregularValence = corner.valence; } sharpCount += corner.isSharp; val2IntCount += corner.isVal2Int; } // Make a second pass to assign tags dependent on adjacent corners for (int cIndex = 0; cIndex < 3; ++cIndex) { CornerTopology& corner = _corners[cIndex]; int cNext = (cIndex + 1) % 3; int cPrev = (cIndex + 2) % 3; corner.epOnBoundary = false; corner.emOnBoundary = false; // // Identify if the face points are regular or shared/copied from // one of the pair: // corner.fpIsRegular = corner.isRegular && _corners[cNext].isRegular; corner.fmIsRegular = corner.isRegular && _corners[cPrev].isRegular; corner.fpIsCopied = false; corner.fmIsCopied = false; if (corner.isBoundary) { corner.epOnBoundary = (corner.faceInRing == 0); corner.emOnBoundary = (corner.faceInRing == (corner.numFaces - 1)); // Both face points are same when one of the two corners' edges // is discontinuous -- one is then copied from the other (unless // regular) if (corner.numFaces > 1) { if (corner.epOnBoundary) { corner.fpIsRegular = corner.fmIsRegular; corner.fpIsCopied = !corner.fpIsRegular; } if (corner.emOnBoundary) { corner.fmIsRegular = corner.fpIsRegular; corner.fmIsCopied = !corner.fmIsRegular; } } else { // The case of a corner patch is always regular corner.fpIsRegular = true; corner.fmIsRegular = true; } } } _isIsolatedInteriorPatch = (irregularCount == 1) && (boundaryCount == 0) && (irregularValence > 2) && (sharpCount == 0); if (_isIsolatedInteriorPatch) { _isolatedCorner = irregularCorner; _isolatedValence = irregularValence; } _hasVal2InteriorCorner = (val2IntCount > 0); } template void GregoryTriConverter::Convert(Matrix & matrix) const { // // Initialize the sparse matrix to accomodate the coefficients for each // row/point -- identify common topological cases to treat more easily // (and note that specializing the population of the matrix may also be // worthwhile in such cases) // if (_isIsolatedInteriorPatch) { resizeMatrixIsolatedIrregular(matrix, _isolatedCorner, _isolatedValence); } else { resizeMatrixUnisolated(matrix); } // // Compute the corner and edge points P, Ep and Em first. Since face // points Fp and Fm involve edge points for two adjacent corners, their // computation must follow: // int maxRingSize = 1 + _maxValence; int weightBufferSize = std::max(3 * maxRingSize, 2 * _numSourcePoints); StackBuffer weightBuffer(weightBufferSize); StackBuffer indexBuffer(weightBufferSize); for (int cIndex = 0; cIndex < 3; ++cIndex) { if (_corners[cIndex].isRegular) { assignRegularEdgePoints(cIndex, matrix); } else { computeIrregularEdgePoints(cIndex, matrix, weightBuffer); } } for (int cIndex = 0; cIndex < 3; ++cIndex) { if (_corners[cIndex].fpIsRegular || _corners[cIndex].fmIsRegular) { assignRegularFacePoints(cIndex, matrix); } if (!_corners[cIndex].fpIsRegular || !_corners[cIndex].fmIsRegular) { computeIrregularFacePoints(cIndex, matrix, weightBuffer, indexBuffer); } } for (int eIndex = 0; eIndex < 3; ++eIndex) { CornerTopology const & c0 = _corners[eIndex]; CornerTopology const & c1 = _corners[(eIndex + 1) % 3]; bool isBoundaryEdge = c0.epOnBoundary && c1.emOnBoundary; bool isDartEdge = c0.epOnBoundary != c1.emOnBoundary; if (isBoundaryEdge || (c0.isRegular && c1.isRegular && !isDartEdge)) { assignRegularMidEdgePoint(eIndex, matrix); } else { computeIrregularMidEdgePoint(eIndex, matrix, weightBuffer, indexBuffer); } } promoteCubicEdgePointsToQuartic(matrix, weightBuffer, indexBuffer); if (_hasVal2InteriorCorner) { _removeValence2Duplicates(matrix); } } template void GregoryTriConverter::resizeMatrixIsolatedIrregular( Matrix & matrix, int cornerIndex, int cornerValence) const { int irregRingSize = 1 + cornerValence; int irregCorner = cornerIndex; int irregPlus = (cornerIndex + 1) % 3; int irregMinus = (cornerIndex + 2) % 3; int rowSizes[18]; int * rowSizePtr = 0; rowSizePtr = rowSizes + irregCorner * 5; *rowSizePtr++ = irregRingSize; *rowSizePtr++ = irregRingSize; *rowSizePtr++ = irregRingSize; *rowSizePtr++ = 3 + irregRingSize; *rowSizePtr++ = 3 + irregRingSize; rowSizePtr = rowSizes + irregPlus * 5; *rowSizePtr++ = 7; *rowSizePtr++ = 7; *rowSizePtr++ = 7; *rowSizePtr++ = 5; *rowSizePtr++ = 3 + irregRingSize; rowSizePtr = rowSizes + irregMinus * 5; *rowSizePtr++ = 7; *rowSizePtr++ = 7; *rowSizePtr++ = 7; *rowSizePtr++ = 3 + irregRingSize; *rowSizePtr++ = 5; // The 3 quartic mid-edge points are not grouped with corners: rowSizes[15 + irregCorner] = 3 + irregRingSize; rowSizes[15 + irregPlus] = 4; rowSizes[15 + irregMinus] = 3 + irregRingSize; int numElements = 9*irregRingSize + 74; _resizeMatrix(matrix, 18, _numSourcePoints, numElements, rowSizes); } template void GregoryTriConverter::resizeMatrixUnisolated(Matrix & matrix) const { int rowSizes[18]; int numElements = 0; for (int cIndex = 0; cIndex < 3; ++cIndex) { int * rowSize = rowSizes + cIndex*5; CornerTopology const & corner = _corners[cIndex]; // First, the corner and pair of edge points: if (corner.isRegular) { if (! corner.isBoundary) { rowSize[0] = 7; rowSize[1] = 7; rowSize[2] = 7; } else { rowSize[0] = 3; rowSize[1] = corner.epOnBoundary ? 3 : 5; rowSize[2] = corner.emOnBoundary ? 3 : 5; } } else { if (corner.isSharp) { rowSize[0] = 1; rowSize[1] = 2; rowSize[2] = 2; } else if (! corner.isBoundary) { int ringSize = 1 + corner.valence; rowSize[0] = ringSize; rowSize[1] = ringSize; rowSize[2] = ringSize; } else if (corner.numFaces > 1) { int ringSize = 1 + corner.valence; rowSize[0] = 3; rowSize[1] = corner.epOnBoundary ? 3 : ringSize; rowSize[2] = corner.emOnBoundary ? 3 : ringSize; } else { rowSize[0] = 3; rowSize[1] = 3; rowSize[2] = 3; } } numElements += rowSize[0] + rowSize[1] + rowSize[2]; // Second, the pair of face points: rowSize[3] = 5 - corner.epOnBoundary - corner.emOnBoundary; rowSize[4] = 5 - corner.epOnBoundary - corner.emOnBoundary; if (!corner.fpIsRegular || !corner.fmIsRegular) { int cNext = (cIndex + 1) % 3; int cPrev = (cIndex + 2) % 3; if (!corner.fpIsRegular) { rowSize[3] = getIrregularFacePointSize(cIndex, corner.fpIsCopied ? cPrev : cNext); } if (!corner.fmIsRegular) { rowSize[4] = getIrregularFacePointSize(cIndex, corner.fmIsCopied ? cNext : cPrev); } } numElements += rowSize[3] + rowSize[4]; // Third, the quartic mid-edge boundary point (edge following corner): int cNext = (cIndex + 1) % 3; CornerTopology const & cornerNext = _corners[cNext]; int & midEdgeSize = rowSizes[15 + cIndex]; if (corner.epOnBoundary && cornerNext.emOnBoundary) { midEdgeSize = 2; } else if (corner.isRegular && cornerNext.isRegular && (corner.epOnBoundary == cornerNext.emOnBoundary)) { midEdgeSize = 4; } else { midEdgeSize = getIrregularFacePointSize(cIndex, cNext); } numElements += midEdgeSize; } _resizeMatrix(matrix, 18, _numSourcePoints, numElements, rowSizes); } template void GregoryTriConverter::assignRegularEdgePoints(int cIndex, Matrix & matrix) const { Point p (matrix, 5*cIndex + 0); Point ep(matrix, 5*cIndex + 1); Point em(matrix, 5*cIndex + 2); CornerTopology const & corner = _corners[cIndex]; int const * cRing = corner.ringPoints; if (! corner.isBoundary) { REAL const pScale = (REAL) (1.0 / 12.0); p.Assign(0, cIndex, 0.5f); p.Assign(1, cRing[0], pScale); p.Assign(2, cRing[1], pScale); p.Assign(3, cRing[2], pScale); p.Assign(4, cRing[3], pScale); p.Assign(5, cRing[4], pScale); p.Assign(6, cRing[5], pScale); assert(p.GetSize() == 7); // Identify the edges along Ep and Em and those opposite them: REAL const eWeights[6] = { 7.0f, 5.0f, 1.0f, -1.0f, 1.0f, 5.0f }; REAL const eScale = (REAL) (1.0 / 36.0); int iEdgeEp = corner.faceInRing; int iEdgeEm = (corner.faceInRing + 1) % 6; ep.Assign(0, cIndex, 0.5f); ep.Assign(1, cRing[iEdgeEp], eScale * eWeights[0]); ep.Assign(2, cRing[(iEdgeEp + 1) % 6], eScale * eWeights[1]); ep.Assign(3, cRing[(iEdgeEp + 2) % 6], eScale * eWeights[2]); ep.Assign(4, cRing[(iEdgeEp + 3) % 6], eScale * eWeights[3]); ep.Assign(5, cRing[(iEdgeEp + 4) % 6], eScale * eWeights[4]); ep.Assign(6, cRing[(iEdgeEp + 5) % 6], eScale * eWeights[5]); assert(ep.GetSize() == 7); em.Assign(0, cIndex, 0.5f); em.Assign(1, cRing[iEdgeEm], eScale * eWeights[0]); em.Assign(2, cRing[(iEdgeEm + 1) % 6], eScale * eWeights[1]); em.Assign(3, cRing[(iEdgeEm + 2) % 6], eScale * eWeights[2]); em.Assign(4, cRing[(iEdgeEm + 3) % 6], eScale * eWeights[3]); em.Assign(5, cRing[(iEdgeEm + 4) % 6], eScale * eWeights[4]); em.Assign(6, cRing[(iEdgeEm + 5) % 6], eScale * eWeights[5]); assert(em.GetSize() == 7); } else { REAL oneThird = (REAL) (1.0 / 3.0); REAL twoThirds = (REAL) (2.0 / 3.0); REAL oneSixth = (REAL) (1.0 / 6.0); p.Assign(0, cIndex, twoThirds); p.Assign(1, cRing[0], oneSixth); p.Assign(2, cRing[3], oneSixth); assert(p.GetSize() == 3); // // We have three triangles here, and the two edge points may be along two // of four edges -- two of which are interior and require weights adjusted // from above to account for phantom points (yielding {1/2, 1/6, 1/6, 1/6}) // if (corner.epOnBoundary) { ep.Assign(0, cIndex, twoThirds); ep.Assign(1, cRing[0], oneThird); ep.Assign(2, cRing[3], 0.0f); assert(ep.GetSize() == 3); } else { ep.Assign(0, cIndex, 0.5f); ep.Assign(1, cRing[1], oneSixth); ep.Assign(2, cRing[2], oneSixth); ep.Assign(3, cRing[corner.emOnBoundary ? 3 : 0], oneSixth); ep.Assign(4, cRing[corner.emOnBoundary ? 0 : 3], 0.0f); assert(ep.GetSize() == 5); } if (corner.emOnBoundary) { em.Assign(0, cIndex, twoThirds); em.Assign(1, cRing[3], oneThird); em.Assign(2, cRing[0], 0.0f); assert(em.GetSize() == 3); } else { em.Assign(0, cIndex, 0.5f); em.Assign(1, cRing[1], oneSixth); em.Assign(2, cRing[2], oneSixth); em.Assign(3, cRing[corner.epOnBoundary ? 0 : 3], oneSixth); em.Assign(4, cRing[corner.epOnBoundary ? 3 : 0], 0.0f); assert(em.GetSize() == 5); } } } template void GregoryTriConverter::computeIrregularEdgePoints(int cIndex, Matrix & matrix, Weight *weightBuffer) const { Point p (matrix, 5*cIndex + 0); Point ep(matrix, 5*cIndex + 1); Point em(matrix, 5*cIndex + 2); // // The corner and edge points P, Ep and Em are completely determined // by the 1-ring of vertices around (and including) the corner vertex. // We combine full sets of coefficients for the vertex and its 1-ring. // CornerTopology const & corner = _corners[cIndex]; if (corner.isSharp) { // // The sharp case -- both interior and boundary... // p.Assign(0, cIndex, 1.0f); assert(p.GetSize() == 1); // Approximating these for now, pending future investigation... ep.Assign(0, cIndex, (REAL) (2.0 / 3.0)); ep.Assign(1, (cIndex+1) % 3, (REAL) (1.0 / 3.0)); assert(ep.GetSize() == 2); em.Assign(0, cIndex, (REAL) (2.0 / 3.0)); em.Assign(1, (cIndex+2) % 3, (REAL) (1.0 / 3.0)); assert(em.GetSize() == 2); } else if (! corner.isBoundary) { // // The irregular interior case: // computeIrregularInteriorEdgePoints(cIndex, p, ep, em, weightBuffer); } else if (corner.numFaces > 1) { // // The irregular boundary case: // computeIrregularBoundaryEdgePoints(cIndex, p, ep, em, weightBuffer); } else { // // The irregular/smooth corner case: // p.Assign(0, cIndex, (REAL) (4.0 / 6.0)); p.Assign(1, (cIndex+1) % 3, (REAL) (1.0 / 6.0)); p.Assign(2, (cIndex+2) % 3, (REAL) (1.0 / 6.0)); assert(p.GetSize() == 3); ep.Assign(0, cIndex, (REAL) (2.0 / 3.0)); ep.Assign(1, (cIndex+1) % 3, (REAL) (1.0 / 3.0)); ep.Assign(2, (cIndex+2) % 3, 0.0f); assert(ep.GetSize() == 3); em.Assign(0, cIndex, (REAL) (2.0 / 3.0)); em.Assign(1, (cIndex+2) % 3, (REAL) (1.0 / 3.0)); em.Assign(2, (cIndex+1) % 3, 0.0f); assert(em.GetSize() == 3); } } template void GregoryTriConverter::computeIrregularInteriorEdgePoints( int cIndex, Point& p, Point& ep, Point& em, Weight *ringWeights) const { CornerTopology const & corner = _corners[cIndex]; int valence = corner.valence; int weightWidth = 1 + valence; Weight* pWeights = &ringWeights[0]; Weight* epWeights = pWeights + weightWidth; Weight* emWeights = pWeights + weightWidth * 2; // // The interior (smooth) case -- invoke the public static method that // computes pre-allocated ring weights for P, Ep and Em: // LoopLimits::ComputeInteriorPointWeights(valence, corner.faceInRing, pWeights, epWeights, emWeights); // // Transer the weights for the ring into the stencil form of the required // Point type. The limit mask for position involves all ring weights, and // since Ep and Em depend on it, there should be no need to filter weights // with value 0: // p.Assign( 0, cIndex, pWeights[0]); ep.Assign(0, cIndex, epWeights[0]); em.Assign(0, cIndex, emWeights[0]); for (int i = 1; i < weightWidth; ++i) { int pRingPoint = corner.ringPoints[i-1]; p.Assign( i, pRingPoint, pWeights[i]); ep.Assign(i, pRingPoint, epWeights[i]); em.Assign(i, pRingPoint, emWeights[i]); } assert(p.GetSize() == weightWidth); assert(ep.GetSize() == weightWidth); assert(em.GetSize() == weightWidth); } template void GregoryTriConverter::computeIrregularBoundaryEdgePoints( int cIndex, Point& p, Point& ep, Point& em, Weight *ringWeights) const { CornerTopology const & corner = _corners[cIndex]; int valence = corner.valence; int weightWidth = 1 + corner.valence; Weight* pWeights = &ringWeights[0]; Weight* epWeights = pWeights + weightWidth; Weight* emWeights = pWeights + weightWidth * 2; // // The boundary (smooth) case -- invoke the public static method that // computes pre-allocated ring weights for P, Ep and Em: // LoopLimits::ComputeBoundaryPointWeights(valence, corner.faceInRing, pWeights, epWeights, emWeights); // // Transfer ring weights into points -- exploiting cases where they // are known to be non-zero only along the two boundary edges: // int N = weightWidth - 1; int p0 = cIndex; int p1 = corner.ringPoints[0]; int pN = corner.ringPoints[valence-1]; p.Assign(0, p0, pWeights[0]); p.Assign(1, p1, pWeights[1]); p.Assign(2, pN, pWeights[N]); assert(p.GetSize() == 3); // If Ep is on the boundary edge, it has only two non-zero weights along // that edge: ep.Assign(0, p0, epWeights[0]); if (corner.epOnBoundary) { ep.Assign(1, p1, epWeights[1]); ep.Assign(2, pN, 0.0f); assert(ep.GetSize() == 3); } else { for (int i = 1; i < weightWidth; ++i) { ep.Assign(i, corner.ringPoints[i-1], epWeights[i]); } assert(ep.GetSize() == weightWidth); } // If Em is on the boundary edge, it has only two non-zero weights along // that edge: em.Assign(0, p0, emWeights[0]); if (corner.emOnBoundary) { em.Assign(1, pN, emWeights[N]); em.Assign(2, p1, 0.0f); assert(em.GetSize() == 3); } else { for (int i = 1; i < weightWidth; ++i) { em.Assign(i, corner.ringPoints[i-1], emWeights[i]); } assert(em.GetSize() == weightWidth); } } template int GregoryTriConverter::getIrregularFacePointSize( int cIndexNear, int cIndexFar) const { CornerTopology const & nearCorner = _corners[cIndexNear]; CornerTopology const & farCorner = _corners[cIndexFar]; if (nearCorner.isSharp && farCorner.isSharp) return 2; int nearSize = nearCorner.ringPoints.GetSize() - 3; int farSize = farCorner.ringPoints.GetSize() - 3; return 4 + (((nearSize > 0) && !nearCorner.isSharp) ? nearSize : 0) + (((farSize > 0) && !farCorner.isSharp) ? farSize : 0); } template void GregoryTriConverter::computeIrregularFacePoint( int cIndexNear, int edgeInNearCornerRing, int cIndexFar, Point const & p, Point const & eNear, Point const & eFar, Point & fNear, REAL signForSideOfEdge, Weight *rowWeights, int *columnMask) const { CornerTopology const & cornerNear = _corners[cIndexNear]; CornerTopology const & cornerFar = _corners[cIndexFar]; int valence = cornerNear.valence; Weight cosNear = cornerNear.cosFaceAngle; Weight cosFar = cornerFar.cosFaceAngle; // // From Loop, Schaefer et al, a face point F is computed as: // // F = (1/d) * (c0 * P0 + (d - 2*c0 - c1) * E0 + 2*c1 * E1 + R) // // where d = 3 for quads and d = 4 for triangles, and R is: // // R = 1/3 (Mm + Mp) + 2/3 (Cm + Cp) // // where Mm and Mp are the midpoints of the two adjacent edges // and Cm and Cp are the midpoints of the two adjacent faces. // Weight pCoeff = cosFar / 4.0f; Weight eNearCoeff = (4.0f - 2.0f * cosNear - cosFar) / 4.0f; Weight eFarCoeff = 2.0f * cosNear / 4.0f; int fullRowSize = _numSourcePoints; std::memset(&columnMask[0], 0, fullRowSize * sizeof(int)); std::memset(&rowWeights[0], 0, fullRowSize * sizeof(Weight)); _addSparsePointToFullRow(rowWeights, p, pCoeff, columnMask); _addSparsePointToFullRow(rowWeights, eNear, eNearCoeff, columnMask); _addSparsePointToFullRow(rowWeights, eFar, eFarCoeff, columnMask); // Remember that R is to be computed about an interior edge and is // comprised of the two pairs of points opposite the interior edge // int iEdgeInterior = edgeInNearCornerRing; int iEdgePrev = (iEdgeInterior + valence - 1) % valence; int iEdgeNext = (iEdgeInterior + 1) % valence; Weight rScale = (REAL) (0.25 * (7.0 / 18.0)); rowWeights[cornerNear.ringPoints[iEdgePrev]] += -signForSideOfEdge * rScale; rowWeights[cornerNear.ringPoints[iEdgeNext]] += signForSideOfEdge * rScale; int nWeights = 0; for (int i = 0; i < fullRowSize; ++i) { if (columnMask[i]) { fNear.Assign(nWeights++, columnMask[i] - 1, rowWeights[i]); } } // Complete the expected row size when val-2 corners induce duplicates: if (_hasVal2InteriorCorner && (nWeights < fNear.GetSize())) { while (nWeights < fNear.GetSize()) { fNear.Assign(nWeights++, cIndexNear, 0.0f); } } assert(fNear.GetSize() == nWeights); } template void GregoryTriConverter::assignRegularFacePoints(int cIndex, Matrix & matrix) const { CornerTopology const & corner = _corners[cIndex]; int cNext = (cIndex+1) % 3; int cPrev = (cIndex+2) % 3; int const * cRing = corner.ringPoints; // // Regular face-points are computed the same for both face-points of a // a corner (fp and fm), so iterate through both and make appropriate // assignments when tagged as regular: // for (int fIsFm = 0; fIsFm < 2; ++fIsFm) { bool fIsRegular = fIsFm ? corner.fmIsRegular : corner.fpIsRegular; if (!fIsRegular) continue; Point f(matrix, 5*cIndex + 3 + fIsFm); if (corner.isCorner) { f.Assign(0, cIndex, 0.5f); f.Assign(1, cNext, 0.25f); f.Assign(2, cPrev, 0.25f); assert(f.GetSize() == 3); } else if (corner.epOnBoundary) { // Face is the first/leading face of the boundary ring: f.Assign(0, cIndex, (REAL) (11.0 / 24.0)); f.Assign(1, cRing[0], (REAL) ( 7.0 / 24.0)); f.Assign(2, cRing[1], (REAL) ( 5.0 / 24.0)); f.Assign(3, cRing[2], (REAL) ( 1.0 / 24.0)); assert(f.GetSize() == 4); } else if (corner.emOnBoundary) { // Face is the last/trailing face of the boundary ring: f.Assign(0, cIndex, (REAL) (11.0 / 24.0)); f.Assign(1, cRing[3], (REAL) ( 7.0 / 24.0)); f.Assign(2, cRing[2], (REAL) ( 5.0 / 24.0)); f.Assign(3, cRing[1], (REAL) ( 1.0 / 24.0)); assert(f.GetSize() == 4); } else { // Face is interior or the middle face of the boundary: int eNext = corner.isBoundary ? 0 : ((corner.faceInRing + 5) % 6); int ePrev = corner.isBoundary ? 3 : ((corner.faceInRing + 2) % 6); f.Assign(0, cIndex, (REAL) (10.0 / 24.0)); f.Assign(1, cPrev, 0.25f); f.Assign(2, cNext, 0.25f); f.Assign(3, cRing[ePrev], (REAL) ( 1.0 / 24.0)); f.Assign(4, cRing[eNext], (REAL) ( 1.0 / 24.0)); assert(f.GetSize() == 5); } } } template void GregoryTriConverter::computeIrregularFacePoints(int cIndex, Matrix & matrix, Weight *rowWeights, int *columnMask) const { // Identify neighboring corners: CornerTopology const & corner = _corners[cIndex]; int cNext = (cIndex+1) % 3; int cPrev = (cIndex+2) % 3; Point epPrev(matrix, 5*cPrev + 1); Point em (matrix, 5*cIndex + 2); Point p (matrix, 5*cIndex + 0); Point ep (matrix, 5*cIndex + 1); Point emNext(matrix, 5*cNext + 2); Point fp(matrix, 5*cIndex + 3); Point fm(matrix, 5*cIndex + 4); // // Compute the face points Fp and Fm in terms of the corner (P) and edge // points (Ep and Em) previously computed. The caller provides a buffer // of the appropriate size (twice the width of the matrix) to use for // combining weights, along with an integer buffer used to identify // non-zero weights and preserve the sparsity of the combinations (note // they use index + 1 to detect index 0 when cleared with 0 entries). // if (!corner.fpIsRegular && !corner.fpIsCopied) { int iEdgeP = corner.faceInRing; computeIrregularFacePoint(cIndex, iEdgeP, cNext, p, ep, emNext, fp, 1.0, rowWeights, columnMask); } if (!corner.fmIsRegular && !corner.fmIsCopied) { int iEdgeM = (corner.faceInRing + 1) % corner.valence; computeIrregularFacePoint(cIndex, iEdgeM, cPrev, p, em, epPrev, fm, -1.0, rowWeights, columnMask); } // Copy Fp or Fm now that any shared values were computed above: if (corner.fpIsCopied) { fp.Copy(fm); } if (corner.fmIsCopied) { fm.Copy(fp); } if (!corner.fpIsRegular) assert(matrix.GetRowSize(5*cIndex + 3) == fp.GetSize()); if (!corner.fmIsRegular) assert(matrix.GetRowSize(5*cIndex + 4) == fm.GetSize()); } template void GregoryTriConverter::assignRegularMidEdgePoint(int edgeIndex, Matrix & matrix) const { Point M(matrix, 15 + edgeIndex); CornerTopology const & corner = _corners[edgeIndex]; if (corner.epOnBoundary) { // Trivial boundary edge case -- midway between two corners M.Assign(0, edgeIndex, 0.5f); M.Assign(1, (edgeIndex + 1) % 3, 0.5f); assert(M.GetSize() == 2); } else { // Regular case -- two corners and two vertices opposite the edge int oppositeInRing = corner.isBoundary ? (corner.faceInRing - 1) : ((corner.faceInRing + 5) % 6); int oppositeVertex = corner.ringPoints[oppositeInRing]; M.Assign(0, edgeIndex, (REAL) (1.0 / 3.0)); M.Assign(1, (edgeIndex + 1) % 3, (REAL) (1.0 / 3.0)); M.Assign(2, (edgeIndex + 2) % 3, (REAL) (1.0 / 6.0)); M.Assign(3, oppositeVertex, (REAL) (1.0 / 6.0)); assert(M.GetSize() == 4); } } template void GregoryTriConverter::computeIrregularMidEdgePoint(int edgeIndex, Matrix & matrix, Weight * rowWeights, int * columnMask) const { // // General case -- interpolate midway between cubic edge points E0 and E1: // int cIndex0 = edgeIndex; int cIndex1 = (edgeIndex + 1) % 3; Point E0p(matrix, 5 * (cIndex0) + 1); Point E1m(matrix, 5 * (cIndex1) + 2); Point M(matrix, 15 + edgeIndex); _combineSparsePointsInFullRow(M, (REAL)0.5f, E0p, (REAL)0.5f, E1m, _numSourcePoints, rowWeights, columnMask); } template void GregoryTriConverter::promoteCubicEdgePointsToQuartic(Matrix & matrix, Weight * rowWeights, int * columnMask) const { // // Re-assign all regular edge-point weights with quartic coefficients, // so only perform general combinations for the irregular case. // REAL const onBoundaryWeights[3] = { 16, 7, 1 }; REAL const regBoundaryWeights[5] = { 13, 3, 3, 4, 1 }; REAL const regInteriorWeights[7] = { 12, 4, 3, 1, 0, 1, 3 }; REAL const oneOver24 = (REAL) (1.0 / 24.0); for (int cIndex = 0; cIndex < 3; ++cIndex) { CornerTopology const & corner = _corners[cIndex]; // // Ordering of weight values for symmetric ep and em is the same, so // we can re-assign in a loop of 2 for {ep, em} // Point P(matrix, 5 * cIndex); for (int ePair = 0; ePair < 2; ++ePair) { Point E(matrix, 5 * cIndex + 1 + ePair); REAL const * weightsToReassign = 0; bool eOnBoundary = ePair ? corner.emOnBoundary : corner.epOnBoundary; if (eOnBoundary && !corner.isSharp) { assert(E.GetSize() == 3); weightsToReassign = onBoundaryWeights; } else if (corner.isRegular) { if (corner.isBoundary) { assert(E.GetSize() == 5); weightsToReassign = regBoundaryWeights; } else { assert(E.GetSize() == 7); weightsToReassign = regInteriorWeights; } } if (weightsToReassign) { for (int i = 0; i < E.GetSize(); ++i) { E.SetWeight(i, weightsToReassign[i] * oneOver24); } } else { _combineSparsePointsInFullRow(E, (REAL)0.25f, P, (REAL)0.75f, E, _numSourcePoints, rowWeights, columnMask); } } } } namespace { template void _printPoint(SparseMatrixRow const & p, bool printIndices = true, bool printWeights = true) { printf(" Point size = %d:\n", p._size); if (printIndices) { printf(" Indices: "); for (int j = 0; j < p._size; ++j) { printf("%6d ", p._indices[j]); } printf("\n"); } if (printWeights) { printf(" Weights: "); for (int j = 0; j < p._size; ++j) { printf("%6.3f ", (REAL)p._weights[j]); } printf("\n"); } } template void _printMatrix(SparseMatrix const & matrix, bool printIndices = true, bool printWeights = true) { printf("Matrix %d x %d, %d elements:\n", matrix.GetNumRows(), matrix.GetNumColumns(), matrix.GetNumElements()); for (int i = 0; i < matrix.GetNumRows(); ++i) { int rowSize = matrix.GetRowSize(i); printf(" Row %d (size = %d):\n", i, rowSize); if (printIndices) { ConstArray indices = matrix.GetRowColumns(i); printf(" Indices: "); for (int j = 0; j < rowSize; ++j) { printf("%6d ", indices[j]); } printf("\n"); } if (printWeights) { ConstArray weights = matrix.GetRowElements(i); printf(" Weights: "); for (int j = 0; j < rowSize; ++j) { printf("%6.3f ", (REAL)weights[j]); } printf("\n"); } } } #ifdef FAR_DEBUG_LOOP_PATCH_BUILDER void _printSourcePatch(SourcePatch const & patch, bool printCornerInfo = true, bool printRingPoints = true) { printf("SoucePatch - %d corners, %d points:\n", patch._numCorners, patch._numSourcePoints); if (printCornerInfo) { printf(" Corner info:\n"); for (int i = 0; i < patch._numCorners; ++i) { printf("%6d: boundary = %d, sharp = %d, numFaces = %d, in-ring = %d, ringSize = %d\n", i, patch._corners[i]._boundary, patch._corners[i]._sharp, patch._corners[i]._numFaces, patch._corners[i]._patchFace, patch._ringSizes[i]); } } if (printRingPoints) { StackBuffer ringPoints; printf(" Ring points:\n"); for (int i = 0; i < patch._numCorners; ++i) { int ringSize = patch._ringSizes[i]; ringPoints.SetSize(ringSize); patch.GetCornerRingPoints(i, ringPoints); printf("%6d: ", i); for (int j = 0; j < ringSize; ++j) { printf("%d ", ringPoints[j]); } printf("\n"); } } } #endif } // // Not using the same "Converter" pattern used above and in the Catmark scheme, // since the two remaining conversions are fairly trivial. // template void convertToLinear(SourcePatch const & sourcePatch, SparseMatrix & matrix) { typedef REAL Weight; StackBuffer indexBuffer(1 + sourcePatch.GetMaxRingSize()); StackBuffer weightBuffer(1 + sourcePatch.GetMaxRingSize()); int numElements = sourcePatch.GetCornerRingSize(0) + sourcePatch.GetCornerRingSize(1) + sourcePatch.GetCornerRingSize(2); matrix.Resize(3, sourcePatch.GetNumSourcePoints(), numElements); bool hasVal2InteriorCorner = false; for (int cIndex = 0; cIndex < 3; ++cIndex) { SourcePatch::Corner const & sourceCorner = sourcePatch._corners[cIndex]; int ringSize = sourcePatch.GetCornerRingSize(cIndex); if (sourceCorner._sharp) { matrix.SetRowSize(cIndex, 1); } else if (sourceCorner._boundary) { matrix.SetRowSize(cIndex, 3); } else { matrix.SetRowSize(cIndex, 1 + ringSize); } Array rowIndices = matrix.SetRowColumns(cIndex); Array rowWeights = matrix.SetRowElements(cIndex); indexBuffer[0] = cIndex; sourcePatch.GetCornerRingPoints(cIndex, &indexBuffer[1]); if (sourceCorner._sharp) { rowIndices[0] = cIndex; rowWeights[0] = 1.0f; } else if (sourceCorner._boundary) { LoopLimits::ComputeBoundaryPointWeights( 1 + sourceCorner._numFaces, sourceCorner._patchFace, &weightBuffer[0], 0, 0); rowIndices[0] = indexBuffer[0]; rowIndices[1] = indexBuffer[1]; rowIndices[2] = indexBuffer[ringSize]; rowWeights[0] = weightBuffer[0]; rowWeights[1] = weightBuffer[1]; rowWeights[2] = weightBuffer[ringSize]; } else { LoopLimits::ComputeInteriorPointWeights( sourceCorner._numFaces, sourceCorner._patchFace, &weightBuffer[0], 0, 0); std::memcpy(&rowIndices[0], indexBuffer, rowIndices.size() * sizeof(Index)); std::memcpy(&rowWeights[0], weightBuffer, rowWeights.size() * sizeof(Weight)); } hasVal2InteriorCorner |= sourceCorner._val2Interior; } if (hasVal2InteriorCorner) { _removeValence2Duplicates(matrix); } } template void convertToGregory(SourcePatch const & sourcePatch, SparseMatrix & matrix) { GregoryTriConverter gregoryConverter(sourcePatch); gregoryConverter.Convert(matrix); } template void convertToLoop(SourcePatch const & sourcePatch, SparseMatrix & matrix) { // // Unlike quads, there are not enough degrees of freedom in the regular patch // to enforce interpolation of the limit point and tangent at the corner while // preserving the two adjoining boundary curves. Since we end up destroying // neighboring conintuity in doing so, we use a fully constructed Gregory // patch here for the isolated corner case as well as the general case. // // Unfortunately, the regular patch here -- a quartic Box-spline triangle -- // is not as flexible as the BSpline patches for Catmark. Unlike BSplines // and Bezier patches, the Box-splines do not span the full space of possible // shapes (only 12 control points in a space spanned by 15 polynomials for // the quartic case). So it is possible to construct shapes with a Gregory // or Bezier triangle that cannot be represented by the Box-spline. // // The solution fits a Box-spline patch to the constructed Gregory patch with // a set of constraints. With quartic boundary curves, 12 constraints on the // boundary curve make this tightly constrained. Such a set of constraints // is rank deficient (11 instead of 12) so an additional constraint on the // midpoint of the patch is included and a conversion matrix is constructed // from the pseudo-inverse of the 13 constraints. // // For the full 12x15 conversion matrix from 15-point quartic Bezier patch // back to a Box spline patch, the matrix rows and columns are ordered // according to control point orientations used elsewhere. Correllation of // points between the Bezier and Gregory points is as follows: // // Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 // G0 G1 G15 G7 G5 G2 G3,4 G8,9 G6 G17 G13,14 G16 G11 G12 G10 // // As with conversion from Gregory to BSpline for Catmark, one of the face // points is chosen as a Bezier point in the conversion rather than combining // the pair (which would avoid slight asymmetric artefacts of the choice). // And given the solution now depends primarily on the boundary, its not // necessary to construct a full Gregory patch with enforced continuity. // REAL const gregoryToLoopMatrix[12][15] = { { 8.214411f, 7.571190f, -7.690082f, 2.237840f, -1.118922f,-16.428828f, 0.666666f, 0.666666f, 2.237835f, 6.309870f, 0.666666f, -1.690100f, -0.428812f, -0.428805f, 0.214407f }, { -0.304687f, 0.609374f, 6.752593f, 0.609374f, -0.304687f, 0.609378f, -3.333333f, -3.333333f, 0.609378f, -1.247389f, -3.333333f, -1.247389f, 3.276037f, 3.276037f, -1.638020f }, { -1.118922f, 2.237840f, -7.690082f, 7.571190f, 8.214411f, 2.237835f, 0.666666f, 0.666666f, -16.428828f, -1.690100f, 0.666666f, 6.309870f, -0.428805f, -0.428812f, 0.214407f }, { 8.214411f,-16.428828f, 6.309870f, -0.428812f, 0.214407f, 7.571190f, 0.666666f, 0.666666f, -0.428805f, -7.690082f, 0.666666f, -1.690100f, 2.237840f, 2.237835f, -1.118922f }, { -0.813368f, 1.626735f, -0.773435f, -1.039929f, 0.519965f, 1.626735f, 0.666666f, 0.666666f, -1.039930f, -0.773435f, 0.666666f, 1.226558f, -1.039929f, -1.039930f, 0.519965f }, { 0.519965f, -1.039929f, -0.773435f, 1.626735f, -0.813368f, -1.039930f, 0.666666f, 0.666666f, 1.626735f, 1.226558f, 0.666666f, -0.773435f, -1.039930f, -1.039929f, 0.519965f }, { 0.214407f, -0.428812f, 6.309870f,-16.428828f, 8.214411f, -0.428805f, 0.666666f, 0.666666f, 7.571190f, -1.690100f, 0.666666f, -7.690082f, 2.237835f, 2.237840f, -1.118922f }, { -0.304687f, 0.609378f, -1.247389f, 3.276037f, -1.638020f, 0.609374f, -3.333333f, -3.333333f, 3.276037f, 6.752593f, -3.333333f, -1.247389f, 0.609374f, 0.609378f, -0.304687f }, { 0.519965f, -1.039930f, 1.226558f, -1.039930f, 0.519965f, -1.039929f, 0.666666f, 0.666666f, -1.039929f, -0.773435f, 0.666666f, -0.773435f, 1.626735f, 1.626735f, -0.813368f }, { -1.638020f, 3.276037f, -1.247389f, 0.609378f, -0.304687f, 3.276037f, -3.333333f, -3.333333f, 0.609374f, -1.247389f, -3.333333f, 6.752593f, 0.609378f, 0.609374f, -0.304687f }, { -1.118922f, 2.237835f, -1.690100f, -0.428805f, 0.214407f, 2.237840f, 0.666666f, 0.666666f, -0.428812f, -7.690082f, 0.666666f, 6.309870f, 7.571190f,-16.428828f, 8.214411f }, { 0.214407f, -0.428805f, -1.690100f, 2.237835f, -1.118922f, -0.428812f, 0.666666f, 0.666666f, 2.237840f, 6.309870f, 0.666666f, -7.690082f,-16.428828f, 7.571190f, 8.214411f } }; int const gRowIndices[15] = { 0,1,15,7,5, 2,4,8,6, 17,14,16, 11,12, 10 }; SparseMatrix G; convertToGregory(sourcePatch, G); _initializeFullMatrix(matrix, 12, G.GetNumColumns()); for (int i = 0; i < 12; ++i) { REAL const * gRowWeights = gregoryToLoopMatrix[i]; _combineSparseMatrixRowsInFull(matrix, i, G, 15, gRowIndices, gRowWeights); } } // // Internal utilities more relevant to the LoopPatchBuilder: // namespace { // // The patch type associated with each basis for Loop -- quickly // indexed from an array. The patch type here is essentially the // triangle form of each basis. // PatchDescriptor::Type patchTypeFromBasisArray[] = { PatchDescriptor::NON_PATCH, // undefined PatchDescriptor::LOOP, // regular PatchDescriptor::GREGORY_TRIANGLE, // Gregory PatchDescriptor::TRIANGLES, // linear PatchDescriptor::NON_PATCH }; // Bezier -- for future use }; LoopPatchBuilder::LoopPatchBuilder( TopologyRefiner const& refiner, Options const& options) : PatchBuilder(refiner, options) { _regPatchType = patchTypeFromBasisArray[_options.regBasisType]; _irregPatchType = (_options.irregBasisType == BASIS_UNSPECIFIED) ? _regPatchType : patchTypeFromBasisArray[_options.irregBasisType]; _nativePatchType = PatchDescriptor::LOOP; _linearPatchType = PatchDescriptor::TRIANGLES; } LoopPatchBuilder::~LoopPatchBuilder() { } PatchDescriptor::Type LoopPatchBuilder::patchTypeFromBasis(BasisType basis) const { return patchTypeFromBasisArray[(int)basis]; } template int LoopPatchBuilder::convertSourcePatch(SourcePatch const & sourcePatch, PatchDescriptor::Type patchType, SparseMatrix & matrix) const { assert(_schemeType == Sdc::SCHEME_LOOP); if (patchType == PatchDescriptor::LOOP) { convertToLoop(sourcePatch, matrix); } else if (patchType == PatchDescriptor::TRIANGLES) { convertToLinear(sourcePatch, matrix); } else if (patchType == PatchDescriptor::GREGORY_TRIANGLE) { convertToGregory(sourcePatch, matrix); } else { assert("Unknown or unsupported patch type" == 0); } return matrix.GetNumRows(); } int LoopPatchBuilder::convertToPatchType(SourcePatch const & sourcePatch, PatchDescriptor::Type patchType, SparseMatrix & matrix) const { return convertSourcePatch(sourcePatch, patchType, matrix); } int LoopPatchBuilder::convertToPatchType(SourcePatch const & sourcePatch, PatchDescriptor::Type patchType, SparseMatrix & matrix) const { return convertSourcePatch(sourcePatch, patchType, matrix); } } // end namespace Far } // end namespace OPENSUBDIV_VERSION } // end namespace OpenSubdiv