// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // // // typical shader composition ordering (see glDrawRegistry:_CompileShader) // // // - glsl version string (#version 430) // // - common defines (#define OSD_ENABLE_PATCH_CULL, ...) // - source defines (#define VERTEX_SHADER, ...) // // - osd headers (glslPatchCommon: varying structs, // glslPtexCommon: ptex functions) // - client header (Osd*Matrix(), displacement callback, ...) // // - osd shader source (glslPatchBSpline, glslPatchGregory, ...) // or // client shader source (vertex/geometry/fragment shader) // //---------------------------------------------------------- // Patches.Common //---------------------------------------------------------- // XXXdyu all handling of varying data can be managed by client code #ifndef OSD_USER_VARYING_DECLARE #define OSD_USER_VARYING_DECLARE // type var; #endif #ifndef OSD_USER_VARYING_ATTRIBUTE_DECLARE #define OSD_USER_VARYING_ATTRIBUTE_DECLARE // layout(location = loc) in type var; #endif #ifndef OSD_USER_VARYING_PER_VERTEX #define OSD_USER_VARYING_PER_VERTEX() // output.var = var; #endif #ifndef OSD_USER_VARYING_PER_CONTROL_POINT #define OSD_USER_VARYING_PER_CONTROL_POINT(ID_OUT, ID_IN) // output[ID_OUT].var = input[ID_IN].var #endif #ifndef OSD_USER_VARYING_PER_EVAL_POINT #define OSD_USER_VARYING_PER_EVAL_POINT(UV, a, b, c, d) // output.var = // mix(mix(input[a].var, input[b].var, UV.x), // mix(input[c].var, input[d].var, UV.x), UV.y) #endif #ifndef OSD_USER_VARYING_PER_EVAL_POINT_TRIANGLE #define OSD_USER_VARYING_PER_EVAL_POINT_TRIANGLE(UV, a, b, c) // output.var = // input[a].var * (1.0f-UV.x-UV.y) + // input[b].var * UV.x + // input[c].var * UV.y; #endif #if __VERSION__ < 420 #define centroid #endif struct ControlVertex { vec4 position; #ifdef OSD_ENABLE_PATCH_CULL ivec3 clipFlag; #endif }; // XXXdyu all downstream data can be handled by client code struct OutputVertex { vec4 position; vec3 normal; vec3 tangent; vec3 bitangent; vec4 patchCoord; // u, v, faceLevel, faceId vec2 tessCoord; // tesscoord.st #if defined OSD_COMPUTE_NORMAL_DERIVATIVES vec3 Nu; vec3 Nv; #endif }; // osd shaders need following functions defined mat4 OsdModelViewMatrix(); mat4 OsdProjectionMatrix(); mat4 OsdModelViewProjectionMatrix(); float OsdTessLevel(); int OsdGregoryQuadOffsetBase(); int OsdPrimitiveIdBase(); int OsdBaseVertex(); #ifndef OSD_DISPLACEMENT_CALLBACK #define OSD_DISPLACEMENT_CALLBACK #endif // ---------------------------------------------------------------------------- // Patch Parameters // ---------------------------------------------------------------------------- // // Each patch has a corresponding patchParam. This is a set of three values // specifying additional information about the patch: // // faceId -- topological face identifier (e.g. Ptex FaceId) // bitfield -- refinement-level, non-quad, boundary, transition, uv-offset // sharpness -- crease sharpness for single-crease patches // // These are stored in OsdPatchParamBuffer indexed by the value returned // from OsdGetPatchIndex() which is a function of the current PrimitiveID // along with an optional client provided offset. // uniform isamplerBuffer OsdPatchParamBuffer; int OsdGetPatchIndex(int primitiveId) { return (primitiveId + OsdPrimitiveIdBase()); } ivec3 OsdGetPatchParam(int patchIndex) { return texelFetch(OsdPatchParamBuffer, patchIndex).xyz; } int OsdGetPatchFaceId(ivec3 patchParam) { return (patchParam.x & 0xfffffff); } int OsdGetPatchFaceLevel(ivec3 patchParam) { return (1 << ((patchParam.y & 0xf) - ((patchParam.y >> 4) & 1))); } int OsdGetPatchRefinementLevel(ivec3 patchParam) { return (patchParam.y & 0xf); } int OsdGetPatchBoundaryMask(ivec3 patchParam) { return ((patchParam.y >> 7) & 0x1f); } int OsdGetPatchTransitionMask(ivec3 patchParam) { return ((patchParam.x >> 28) & 0xf); } ivec2 OsdGetPatchFaceUV(ivec3 patchParam) { int u = (patchParam.y >> 22) & 0x3ff; int v = (patchParam.y >> 12) & 0x3ff; return ivec2(u,v); } bool OsdGetPatchIsRegular(ivec3 patchParam) { return ((patchParam.y >> 5) & 0x1) != 0; } bool OsdGetPatchIsTriangleRotated(ivec3 patchParam) { ivec2 uv = OsdGetPatchFaceUV(patchParam); return (uv.x + uv.y) >= OsdGetPatchFaceLevel(patchParam); } float OsdGetPatchSharpness(ivec3 patchParam) { return intBitsToFloat(patchParam.z); } float OsdGetPatchSingleCreaseSegmentParameter(ivec3 patchParam, vec2 uv) { int boundaryMask = OsdGetPatchBoundaryMask(patchParam); float s = 0; if ((boundaryMask & 1) != 0) { s = 1 - uv.y; } else if ((boundaryMask & 2) != 0) { s = uv.x; } else if ((boundaryMask & 4) != 0) { s = uv.y; } else if ((boundaryMask & 8) != 0) { s = 1 - uv.x; } return s; } ivec4 OsdGetPatchCoord(ivec3 patchParam) { int faceId = OsdGetPatchFaceId(patchParam); int faceLevel = OsdGetPatchFaceLevel(patchParam); ivec2 faceUV = OsdGetPatchFaceUV(patchParam); return ivec4(faceUV.x, faceUV.y, faceLevel, faceId); } vec4 OsdInterpolatePatchCoord(vec2 localUV, ivec3 patchParam) { ivec4 perPrimPatchCoord = OsdGetPatchCoord(patchParam); int faceId = perPrimPatchCoord.w; int faceLevel = perPrimPatchCoord.z; vec2 faceUV = vec2(perPrimPatchCoord.x, perPrimPatchCoord.y); vec2 uv = localUV/faceLevel + faceUV/faceLevel; // add 0.5 to integer values for more robust interpolation return vec4(uv.x, uv.y, faceLevel+0.5f, faceId+0.5f); } vec4 OsdInterpolatePatchCoordTriangle(vec2 localUV, ivec3 patchParam) { vec4 result = OsdInterpolatePatchCoord(localUV, patchParam); if (OsdGetPatchIsTriangleRotated(patchParam)) { result.xy = vec2(1.0f) - result.xy; } return result; } // ---------------------------------------------------------------------------- // patch culling // ---------------------------------------------------------------------------- #ifdef OSD_ENABLE_PATCH_CULL #define OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(P) \ vec4 clipPos = OsdModelViewProjectionMatrix() * P; \ bvec3 clip0 = lessThan(clipPos.xyz, vec3(clipPos.w)); \ bvec3 clip1 = greaterThan(clipPos.xyz, -vec3(clipPos.w)); \ outpt.v.clipFlag = ivec3(clip0) + 2*ivec3(clip1); \ #define OSD_PATCH_CULL(N) \ ivec3 clipFlag = ivec3(0); \ for(int i = 0; i < N; ++i) { \ clipFlag |= inpt[i].v.clipFlag; \ } \ if (clipFlag != ivec3(3) ) { \ gl_TessLevelInner[0] = 0; \ gl_TessLevelInner[1] = 0; \ gl_TessLevelOuter[0] = 0; \ gl_TessLevelOuter[1] = 0; \ gl_TessLevelOuter[2] = 0; \ gl_TessLevelOuter[3] = 0; \ return; \ } #else #define OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(P) #define OSD_PATCH_CULL(N) #endif // ---------------------------------------------------------------------------- void OsdUnivar4x4(in float u, out float B[4], out float D[4]) { float t = u; float s = 1.0f - u; float A0 = s * s; float A1 = 2 * s * t; float A2 = t * t; B[0] = s * A0; B[1] = t * A0 + s * A1; B[2] = t * A1 + s * A2; B[3] = t * A2; D[0] = - A0; D[1] = A0 - A1; D[2] = A1 - A2; D[3] = A2; } void OsdUnivar4x4(in float u, out float B[4], out float D[4], out float C[4]) { float t = u; float s = 1.0f - u; float A0 = s * s; float A1 = 2 * s * t; float A2 = t * t; B[0] = s * A0; B[1] = t * A0 + s * A1; B[2] = t * A1 + s * A2; B[3] = t * A2; D[0] = - A0; D[1] = A0 - A1; D[2] = A1 - A2; D[3] = A2; A0 = - s; A1 = s - t; A2 = t; C[0] = - A0; C[1] = A0 - A1; C[2] = A1 - A2; C[3] = A2; } // ---------------------------------------------------------------------------- struct OsdPerPatchVertexBezier { ivec3 patchParam; vec3 P; #if defined OSD_PATCH_ENABLE_SINGLE_CREASE vec3 P1; vec3 P2; vec2 vSegments; #endif }; vec3 OsdEvalBezier(vec3 cp[16], vec2 uv) { vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)); float B[4], D[4]; OsdUnivar4x4(uv.x, B, D); for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cp[4*i + j]; BUCP[i] += A * B[j]; } } vec3 P = vec3(0); OsdUnivar4x4(uv.y, B, D); for (int k=0; k<4; ++k) { P += B[k] * BUCP[k]; } return P; } // When OSD_PATCH_ENABLE_SINGLE_CREASE is defined, // this function evaluates single-crease patch, which is segmented into // 3 parts in the v-direction. // // v=0 vSegment.x vSegment.y v=1 // +------------------+-------------------+------------------+ // | cp 0 | cp 1 | cp 2 | // | (infinite sharp) | (floor sharpness) | (ceil sharpness) | // +------------------+-------------------+------------------+ // vec3 OsdEvalBezier(OsdPerPatchVertexBezier cp[16], ivec3 patchParam, vec2 uv) { vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)); float B[4], D[4]; float s = OsdGetPatchSingleCreaseSegmentParameter(patchParam, uv); OsdUnivar4x4(uv.x, B, D); #if defined OSD_PATCH_ENABLE_SINGLE_CREASE vec2 vSegments = cp[0].vSegments; if (s <= vSegments.x) { for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cp[4*i + j].P; BUCP[i] += A * B[j]; } } } else if (s <= vSegments.y) { for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cp[4*i + j].P1; BUCP[i] += A * B[j]; } } } else { for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cp[4*i + j].P2; BUCP[i] += A * B[j]; } } } #else for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cp[4*i + j].P; BUCP[i] += A * B[j]; } } #endif vec3 P = vec3(0); OsdUnivar4x4(uv.y, B, D); for (int k=0; k<4; ++k) { P += B[k] * BUCP[k]; } return P; } // ---------------------------------------------------------------------------- // Boundary Interpolation // ---------------------------------------------------------------------------- void OsdComputeBSplineBoundaryPoints(inout vec3 cpt[16], ivec3 patchParam) { int boundaryMask = OsdGetPatchBoundaryMask(patchParam); // Don't extrapolate corner points until all boundary points in place if ((boundaryMask & 1) != 0) { cpt[1] = 2*cpt[5] - cpt[9]; cpt[2] = 2*cpt[6] - cpt[10]; } if ((boundaryMask & 2) != 0) { cpt[7] = 2*cpt[6] - cpt[5]; cpt[11] = 2*cpt[10] - cpt[9]; } if ((boundaryMask & 4) != 0) { cpt[13] = 2*cpt[9] - cpt[5]; cpt[14] = 2*cpt[10] - cpt[6]; } if ((boundaryMask & 8) != 0) { cpt[4] = 2*cpt[5] - cpt[6]; cpt[8] = 2*cpt[9] - cpt[10]; } // Now safe to extrapolate corner points: if ((boundaryMask & 1) != 0) { cpt[0] = 2*cpt[4] - cpt[8]; cpt[3] = 2*cpt[7] - cpt[11]; } if ((boundaryMask & 2) != 0) { cpt[3] = 2*cpt[2] - cpt[1]; cpt[15] = 2*cpt[14] - cpt[13]; } if ((boundaryMask & 4) != 0) { cpt[12] = 2*cpt[8] - cpt[4]; cpt[15] = 2*cpt[11] - cpt[7]; } if ((boundaryMask & 8) != 0) { cpt[0] = 2*cpt[1] - cpt[2]; cpt[12] = 2*cpt[13] - cpt[14]; } } void OsdComputeBoxSplineTriangleBoundaryPoints(inout vec3 cpt[12], ivec3 patchParam) { int boundaryMask = OsdGetPatchBoundaryMask(patchParam); if (boundaryMask == 0) return; int upperBits = (boundaryMask >> 3) & 0x3; int lowerBits = boundaryMask & 7; int eBits = lowerBits; int vBits = 0; if (upperBits == 1) { vBits = eBits; eBits = 0; } else if (upperBits == 2) { // Opposite vertex bit is edge bit rotated one to the right: vBits = ((eBits & 1) << 2) | (eBits >> 1); } bool edge0IsBoundary = (eBits & 1) != 0; bool edge1IsBoundary = (eBits & 2) != 0; bool edge2IsBoundary = (eBits & 4) != 0; if (edge0IsBoundary) { if (edge2IsBoundary) { cpt[0] = cpt[4] + (cpt[4] - cpt[8]); } else { cpt[0] = cpt[4] + (cpt[3] - cpt[7]); } cpt[1] = cpt[4] + cpt[5] - cpt[8]; if (edge1IsBoundary) { cpt[2] = cpt[5] + (cpt[5] - cpt[8]); } else { cpt[2] = cpt[5] + (cpt[6] - cpt[9]); } } if (edge1IsBoundary) { if (edge0IsBoundary) { cpt[6] = cpt[5] + (cpt[5] - cpt[4]); } else { cpt[6] = cpt[5] + (cpt[2] - cpt[1]); } cpt[9] = cpt[5] + cpt[8] - cpt[4]; if (edge2IsBoundary) { cpt[11] = cpt[8] + (cpt[8] - cpt[4]); } else { cpt[11] = cpt[8] + (cpt[10] - cpt[7]); } } if (edge2IsBoundary) { if (edge1IsBoundary) { cpt[10] = cpt[8] + (cpt[8] - cpt[5]); } else { cpt[10] = cpt[8] + (cpt[11] - cpt[9]); } cpt[7] = cpt[8] + cpt[4] - cpt[5]; if (edge0IsBoundary) { cpt[3] = cpt[4] + (cpt[4] - cpt[5]); } else { cpt[3] = cpt[4] + (cpt[0] - cpt[1]); } } if ((vBits & 1) != 0) { cpt[3] = cpt[4] + cpt[7] - cpt[8]; cpt[0] = cpt[4] + cpt[1] - cpt[5]; } if ((vBits & 2) != 0) { cpt[2] = cpt[5] + cpt[1] - cpt[4]; cpt[6] = cpt[5] + cpt[9] - cpt[8]; } if ((vBits & 4) != 0) { cpt[11] = cpt[8] + cpt[9] - cpt[5]; cpt[10] = cpt[8] + cpt[7] - cpt[4]; } } // ---------------------------------------------------------------------------- // BSpline // ---------------------------------------------------------------------------- // compute single-crease patch matrix mat4 OsdComputeMs(float sharpness) { float s = pow(2.0f, sharpness); float s2 = s*s; float s3 = s2*s; mat4 m = mat4( 0, s + 1 + 3*s2 - s3, 7*s - 2 - 6*s2 + 2*s3, (1-s)*(s-1)*(s-1), 0, (1+s)*(1+s), 6*s - 2 - 2*s2, (s-1)*(s-1), 0, 1+s, 6*s - 2, 1-s, 0, 1, 6*s - 2, 1); m /= (s*6.0); m[0][0] = 1.0/6.0; return m; } // flip matrix orientation mat4 OsdFlipMatrix(mat4 m) { return mat4(m[3][3], m[3][2], m[3][1], m[3][0], m[2][3], m[2][2], m[2][1], m[2][0], m[1][3], m[1][2], m[1][1], m[1][0], m[0][3], m[0][2], m[0][1], m[0][0]); } // Regular BSpline to Bezier uniform mat4 Q = mat4( 1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f, 0.f, 4.f/6.f, 2.f/6.f, 0.f, 0.f, 2.f/6.f, 4.f/6.f, 0.f, 0.f, 1.f/6.f, 4.f/6.f, 1.f/6.f ); // Infinitely Sharp (boundary) uniform mat4 Mi = mat4( 1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f, 0.f, 4.f/6.f, 2.f/6.f, 0.f, 0.f, 2.f/6.f, 4.f/6.f, 0.f, 0.f, 0.f, 1.f, 0.f ); // convert BSpline cv to Bezier cv void OsdComputePerPatchVertexBSpline(ivec3 patchParam, int ID, vec3 cv[16], out OsdPerPatchVertexBezier result) { result.patchParam = patchParam; int i = ID%4; int j = ID/4; #if defined OSD_PATCH_ENABLE_SINGLE_CREASE vec3 P = vec3(0); // 0 to 1-2^(-Sf) vec3 P1 = vec3(0); // 1-2^(-Sf) to 1-2^(-Sc) vec3 P2 = vec3(0); // 1-2^(-Sc) to 1 float sharpness = OsdGetPatchSharpness(patchParam); if (sharpness > 0) { float Sf = floor(sharpness); float Sc = ceil(sharpness); float Sr = fract(sharpness); mat4 Mf = OsdComputeMs(Sf); mat4 Mc = OsdComputeMs(Sc); mat4 Mj = (1-Sr) * Mf + Sr * Mi; mat4 Ms = (1-Sr) * Mf + Sr * Mc; float s0 = 1 - pow(2, -floor(sharpness)); float s1 = 1 - pow(2, -ceil(sharpness)); result.vSegments = vec2(s0, s1); mat4 MUi = Q, MUj = Q, MUs = Q; mat4 MVi = Q, MVj = Q, MVs = Q; int boundaryMask = OsdGetPatchBoundaryMask(patchParam); if ((boundaryMask & 1) != 0) { MVi = OsdFlipMatrix(Mi); MVj = OsdFlipMatrix(Mj); MVs = OsdFlipMatrix(Ms); } if ((boundaryMask & 2) != 0) { MUi = Mi; MUj = Mj; MUs = Ms; } if ((boundaryMask & 4) != 0) { MVi = Mi; MVj = Mj; MVs = Ms; } if ((boundaryMask & 8) != 0) { MUi = OsdFlipMatrix(Mi); MUj = OsdFlipMatrix(Mj); MUs = OsdFlipMatrix(Ms); } vec3 Hi[4], Hj[4], Hs[4]; for (int l=0; l<4; ++l) { Hi[l] = Hj[l] = Hs[l] = vec3(0); for (int k=0; k<4; ++k) { Hi[l] += MUi[i][k] * cv[l*4 + k]; Hj[l] += MUj[i][k] * cv[l*4 + k]; Hs[l] += MUs[i][k] * cv[l*4 + k]; } } for (int k=0; k<4; ++k) { P += MVi[j][k]*Hi[k]; P1 += MVj[j][k]*Hj[k]; P2 += MVs[j][k]*Hs[k]; } result.P = P; result.P1 = P1; result.P2 = P2; } else { result.vSegments = vec2(0); OsdComputeBSplineBoundaryPoints(cv, patchParam); vec3 Hi[4]; for (int l=0; l<4; ++l) { Hi[l] = vec3(0); for (int k=0; k<4; ++k) { Hi[l] += Q[i][k] * cv[l*4 + k]; } } for (int k=0; k<4; ++k) { P += Q[j][k]*Hi[k]; } result.P = P; result.P1 = P; result.P2 = P; } #else OsdComputeBSplineBoundaryPoints(cv, patchParam); vec3 H[4]; for (int l=0; l<4; ++l) { H[l] = vec3(0); for (int k=0; k<4; ++k) { H[l] += Q[i][k] * cv[l*4 + k]; } } { result.P = vec3(0); for (int k=0; k<4; ++k) { result.P += Q[j][k]*H[k]; } } #endif } void OsdEvalPatchBezier(ivec3 patchParam, vec2 UV, OsdPerPatchVertexBezier cv[16], out vec3 P, out vec3 dPu, out vec3 dPv, out vec3 N, out vec3 dNu, out vec3 dNv) { // // Use the recursive nature of the basis functions to compute a 2x2 set // of intermediate points (via repeated linear interpolation). These // points define a bilinear surface tangent to the desired surface at P // and so containing dPu and dPv. The cost of computing P, dPu and dPv // this way is comparable to that of typical tensor product evaluation // (if not faster). // // If N = dPu X dPv degenerates, it often results from an edge of the // 2x2 bilinear hull collapsing or two adjacent edges colinear. In both // cases, the expected non-planar quad degenerates into a triangle, and // the tangent plane of that triangle provides the desired normal N. // // Reduce 4x4 points to 2x4 -- two levels of linear interpolation in U // and so 3 original rows contributing to each of the 2 resulting rows: float u = UV.x; float uinv = 1.0f - u; float u0 = uinv * uinv; float u1 = u * uinv * 2.0f; float u2 = u * u; vec3 LROW[4], RROW[4]; #ifndef OSD_PATCH_ENABLE_SINGLE_CREASE LROW[0] = u0 * cv[ 0].P + u1 * cv[ 1].P + u2 * cv[ 2].P; LROW[1] = u0 * cv[ 4].P + u1 * cv[ 5].P + u2 * cv[ 6].P; LROW[2] = u0 * cv[ 8].P + u1 * cv[ 9].P + u2 * cv[10].P; LROW[3] = u0 * cv[12].P + u1 * cv[13].P + u2 * cv[14].P; RROW[0] = u0 * cv[ 1].P + u1 * cv[ 2].P + u2 * cv[ 3].P; RROW[1] = u0 * cv[ 5].P + u1 * cv[ 6].P + u2 * cv[ 7].P; RROW[2] = u0 * cv[ 9].P + u1 * cv[10].P + u2 * cv[11].P; RROW[3] = u0 * cv[13].P + u1 * cv[14].P + u2 * cv[15].P; #else vec2 vSegments = cv[0].vSegments; float s = OsdGetPatchSingleCreaseSegmentParameter(patchParam, UV); for (int i = 0; i < 4; ++i) { int j = i*4; if (s <= vSegments.x) { LROW[i] = u0 * cv[ j ].P + u1 * cv[j+1].P + u2 * cv[j+2].P; RROW[i] = u0 * cv[j+1].P + u1 * cv[j+2].P + u2 * cv[j+3].P; } else if (s <= vSegments.y) { LROW[i] = u0 * cv[ j ].P1 + u1 * cv[j+1].P1 + u2 * cv[j+2].P1; RROW[i] = u0 * cv[j+1].P1 + u1 * cv[j+2].P1 + u2 * cv[j+3].P1; } else { LROW[i] = u0 * cv[ j ].P2 + u1 * cv[j+1].P2 + u2 * cv[j+2].P2; RROW[i] = u0 * cv[j+1].P2 + u1 * cv[j+2].P2 + u2 * cv[j+3].P2; } } #endif // Reduce 2x4 points to 2x2 -- two levels of linear interpolation in V // and so 3 original pairs contributing to each of the 2 resulting: float v = UV.y; float vinv = 1.0f - v; float v0 = vinv * vinv; float v1 = v * vinv * 2.0f; float v2 = v * v; vec3 LPAIR[2], RPAIR[2]; LPAIR[0] = v0 * LROW[0] + v1 * LROW[1] + v2 * LROW[2]; RPAIR[0] = v0 * RROW[0] + v1 * RROW[1] + v2 * RROW[2]; LPAIR[1] = v0 * LROW[1] + v1 * LROW[2] + v2 * LROW[3]; RPAIR[1] = v0 * RROW[1] + v1 * RROW[2] + v2 * RROW[3]; // Interpolate points on the edges of the 2x2 bilinear hull from which // both position and partials are trivially determined: vec3 DU0 = vinv * LPAIR[0] + v * LPAIR[1]; vec3 DU1 = vinv * RPAIR[0] + v * RPAIR[1]; vec3 DV0 = uinv * LPAIR[0] + u * RPAIR[0]; vec3 DV1 = uinv * LPAIR[1] + u * RPAIR[1]; int level = OsdGetPatchFaceLevel(patchParam); dPu = (DU1 - DU0) * 3 * level; dPv = (DV1 - DV0) * 3 * level; P = u * DU1 + uinv * DU0; // Compute the normal and test for degeneracy: // // We need a geometric measure of the size of the patch for a suitable // tolerance. Magnitudes of the partials are generally proportional to // that size -- the sum of the partials is readily available, cheap to // compute, and has proved effective in most cases (though not perfect). // The size of the bounding box of the patch, or some approximation to // it, would be better but more costly to compute. // float proportionalNormalTolerance = 0.00001f; float nEpsilon = (length(dPu) + length(dPv)) * proportionalNormalTolerance; N = cross(dPu, dPv); float nLength = length(N); if (nLength > nEpsilon) { N = N / nLength; } else { vec3 diagCross = cross(RPAIR[1] - LPAIR[0], LPAIR[1] - RPAIR[0]); float diagCrossLength = length(diagCross); if (diagCrossLength > nEpsilon) { N = diagCross / diagCrossLength; } } #ifndef OSD_COMPUTE_NORMAL_DERIVATIVES dNu = vec3(0); dNv = vec3(0); #else // // Compute 2nd order partials of P(u,v) in order to compute 1st order partials // for the un-normalized n(u,v) = dPu X dPv, then project into the tangent // plane of normalized N. With resulting dNu and dNv we can make another // attempt to resolve a still-degenerate normal. // // We don't use the Weingarten equations here as they require N != 0 and also // are a little less numerically stable/accurate in single precision. // float B0u[4], B1u[4], B2u[4]; float B0v[4], B1v[4], B2v[4]; OsdUnivar4x4(UV.x, B0u, B1u, B2u); OsdUnivar4x4(UV.y, B0v, B1v, B2v); vec3 dUU = vec3(0); vec3 dVV = vec3(0); vec3 dUV = vec3(0); for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { #ifdef OSD_PATCH_ENABLE_SINGLE_CREASE int k = 4*i + j; vec3 CV = (s <= vSegments.x) ? cv[k].P : ((s <= vSegments.y) ? cv[k].P1 : cv[k].P2); #else vec3 CV = cv[4*i + j].P; #endif dUU += (B0v[i] * B2u[j]) * CV; dVV += (B2v[i] * B0u[j]) * CV; dUV += (B1v[i] * B1u[j]) * CV; } } dUU *= 6 * level; dVV *= 6 * level; dUV *= 9 * level; dNu = cross(dUU, dPv) + cross(dPu, dUV); dNv = cross(dUV, dPv) + cross(dPu, dVV); float nLengthInv = 1.0; if (nLength > nEpsilon) { nLengthInv = 1.0 / nLength; } else { // N may have been resolved above if degenerate, but if N was resolved // we don't have an accurate length for its un-normalized value, and that // length is needed to project the un-normalized dNu and dNv into the // tangent plane of N. // // So compute N more accurately with available second derivatives, i.e. // with a 1st order Taylor approximation to un-normalized N(u,v). float DU = (UV.x == 1.0f) ? -1.0f : 1.0f; float DV = (UV.y == 1.0f) ? -1.0f : 1.0f; N = DU * dNu + DV * dNv; nLength = length(N); if (nLength > nEpsilon) { nLengthInv = 1.0f / nLength; N = N * nLengthInv; } } // Project derivatives of non-unit normals into tangent plane of N: dNu = (dNu - dot(dNu,N) * N) * nLengthInv; dNv = (dNv - dot(dNv,N) * N) * nLengthInv; #endif } // ---------------------------------------------------------------------------- // Gregory Basis // ---------------------------------------------------------------------------- struct OsdPerPatchVertexGregoryBasis { ivec3 patchParam; vec3 P; }; void OsdComputePerPatchVertexGregoryBasis(ivec3 patchParam, int ID, vec3 cv, out OsdPerPatchVertexGregoryBasis result) { result.patchParam = patchParam; result.P = cv; } void OsdEvalPatchGregory(ivec3 patchParam, vec2 UV, vec3 cv[20], out vec3 P, out vec3 dPu, out vec3 dPv, out vec3 N, out vec3 dNu, out vec3 dNv) { float u = UV.x, v = UV.y; float U = 1-u, V = 1-v; //(0,1) (1,1) // P3 e3- e2+ P2 // 15------17-------11-------10 // | | | | // | | | | // | | f3- | f2+ | // | 19 13 | // e3+ 16-----18 14-----12 e2- // | f3+ f2- | // | | // | | // | f0- f1+ | // e0- 2------4 8------6 e1+ // | 3 f0+ 9 | // | | | f1- | // | | | | // | | | | // 0--------1--------7--------5 // P0 e0+ e1- P1 //(0,0) (1,0) float d11 = u+v; float d12 = U+v; float d21 = u+V; float d22 = U+V; OsdPerPatchVertexBezier bezcv[16]; bezcv[ 5].P = (d11 == 0.0) ? cv[3] : (u*cv[3] + v*cv[4])/d11; bezcv[ 6].P = (d12 == 0.0) ? cv[8] : (U*cv[9] + v*cv[8])/d12; bezcv[ 9].P = (d21 == 0.0) ? cv[18] : (u*cv[19] + V*cv[18])/d21; bezcv[10].P = (d22 == 0.0) ? cv[13] : (U*cv[13] + V*cv[14])/d22; bezcv[ 0].P = cv[0]; bezcv[ 1].P = cv[1]; bezcv[ 2].P = cv[7]; bezcv[ 3].P = cv[5]; bezcv[ 4].P = cv[2]; bezcv[ 7].P = cv[6]; bezcv[ 8].P = cv[16]; bezcv[11].P = cv[12]; bezcv[12].P = cv[15]; bezcv[13].P = cv[17]; bezcv[14].P = cv[11]; bezcv[15].P = cv[10]; OsdEvalPatchBezier(patchParam, UV, bezcv, P, dPu, dPv, N, dNu, dNv); } // // Convert the 12 points of a regular patch resulting from Loop subdivision // into a more accessible Bezier patch for both tessellation assessment and // evaluation. // // Regular patch for Loop subdivision -- quartic triangular Box spline: // // 10 --- 11 // . . . . // . . . . // 7 --- 8 --- 9 // . . . . . . // . . . . . . // 3 --- 4 --- 5 --- 6 // . . . . . . // . . . . . . // 0 --- 1 --- 2 // // The equivalant quartic Bezier triangle (15 points): // // 14 // . . // . . // 12 --- 13 // . . . . // . . . . // 9 -- 10 --- 11 // . . . . . . // . . . . . . // 5 --- 6 --- 7 --- 8 // . . . . . . . . // . . . . . . . . // 0 --- 1 --- 2 --- 3 --- 4 // // A hybrid cubic/quartic Bezier patch with cubic boundaries is a close // approximation and would only use 12 control points, but we need a full // quartic patch to maintain accuracy along boundary curves -- especially // between subdivision levels. // void OsdComputePerPatchVertexBoxSplineTriangle(ivec3 patchParam, int ID, vec3 cv[12], out OsdPerPatchVertexBezier result) { // // Conversion matrix from 12-point Box spline to 15-point quartic Bezier // patch and its common scale factor: // const float boxToBezierMatrix[12*15] = float[12*15]( // L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 2, 2, 0, 2, 12, 2, 0, 2, 2, 0, 0, 0, // B0 1, 3, 0, 0, 12, 4, 0, 1, 3, 0, 0, 0, // B1 0, 4, 0, 0, 8, 8, 0, 0, 4, 0, 0, 0, // B2 0, 3, 1, 0, 4, 12, 0, 0, 3, 1, 0, 0, // B3 0, 2, 2, 0, 2, 12, 2, 0, 2, 2, 0, 0, // B4 0, 1, 0, 1, 12, 3, 0, 3, 4, 0, 0, 0, // B5 0, 1, 0, 0, 10, 6, 0, 1, 6, 0, 0, 0, // B6 0, 1, 0, 0, 6, 10, 0, 0, 6, 1, 0, 0, // B7 0, 1, 0, 0, 3, 12, 1, 0, 4, 3, 0, 0, // B8 0, 0, 0, 0, 8, 4, 0, 4, 8, 0, 0, 0, // B9 0, 0, 0, 0, 6, 6, 0, 1, 10, 1, 0, 0, // B10 0, 0, 0, 0, 4, 8, 0, 0, 8, 4, 0, 0, // B11 0, 0, 0, 0, 4, 3, 0, 3, 12, 1, 1, 0, // B12 0, 0, 0, 0, 3, 4, 0, 1, 12, 3, 0, 1, // B13 0, 0, 0, 0, 2, 2, 0, 2, 12, 2, 2, 2 // B14 ); const float boxToBezierMatrixScale = 1.0 / 24.0; OsdComputeBoxSplineTriangleBoundaryPoints(cv, patchParam); result.patchParam = patchParam; result.P = vec3(0); int cvCoeffBase = 12 * ID; for (int i = 0; i < 12; ++i) { result.P += boxToBezierMatrix[cvCoeffBase + i] * cv[i]; } result.P *= boxToBezierMatrixScale; } void OsdEvalPatchBezierTriangle(ivec3 patchParam, vec2 UV, OsdPerPatchVertexBezier cv[15], out vec3 P, out vec3 dPu, out vec3 dPv, out vec3 N, out vec3 dNu, out vec3 dNv) { float u = UV.x; float v = UV.y; float w = 1.0 - u - v; float uu = u * u; float vv = v * v; float ww = w * w; #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES // // When computing normal derivatives, we need 2nd derivatives, so compute // an intermediate quadratic Bezier triangle from which 2nd derivatives // can be easily computed, and which in turn yields the triangle that gives // the position and 1st derivatives. // // Quadratic barycentric basis functions (in addition to those above): float uv = u * v * 2.0; float vw = v * w * 2.0; float wu = w * u * 2.0; vec3 Q0 = ww * cv[ 0].P + wu * cv[ 1].P + uu * cv[ 2].P + uv * cv[ 6].P + vv * cv[ 9].P + vw * cv[ 5].P; vec3 Q1 = ww * cv[ 1].P + wu * cv[ 2].P + uu * cv[ 3].P + uv * cv[ 7].P + vv * cv[10].P + vw * cv[ 6].P; vec3 Q2 = ww * cv[ 2].P + wu * cv[ 3].P + uu * cv[ 4].P + uv * cv[ 8].P + vv * cv[11].P + vw * cv[ 7].P; vec3 Q3 = ww * cv[ 5].P + wu * cv[ 6].P + uu * cv[ 7].P + uv * cv[10].P + vv * cv[12].P + vw * cv[ 9].P; vec3 Q4 = ww * cv[ 6].P + wu * cv[ 7].P + uu * cv[ 8].P + uv * cv[11].P + vv * cv[13].P + vw * cv[10].P; vec3 Q5 = ww * cv[ 9].P + wu * cv[10].P + uu * cv[11].P + uv * cv[13].P + vv * cv[14].P + vw * cv[12].P; vec3 V0 = w * Q0 + u * Q1 + v * Q3; vec3 V1 = w * Q1 + u * Q2 + v * Q4; vec3 V2 = w * Q3 + u * Q4 + v * Q5; #else // // When 2nd derivatives are not required, factor the recursive evaluation // of a point to directly provide the three points of the triangle at the // last stage -- which then trivially provides both position and 1st // derivatives. Each point of the triangle results from evaluating the // corresponding cubic Bezier sub-triangle for each corner of the quartic: // // Cubic barycentric basis functions: float uuu = uu * u; float uuv = uu * v * 3.0; float uvv = u * vv * 3.0; float vvv = vv * v; float vvw = vv * w * 3.0; float vww = v * ww * 3.0; float www = ww * w; float wwu = ww * u * 3.0; float wuu = w * uu * 3.0; float uvw = u * v * w * 6.0; vec3 V0 = www * cv[ 0].P + wwu * cv[ 1].P + wuu * cv[ 2].P + uuu * cv[ 3].P + uuv * cv[ 7].P + uvv * cv[10].P + vvv * cv[12].P + vvw * cv[ 9].P + vww * cv[ 5].P + uvw * cv[ 6].P; vec3 V1 = www * cv[ 1].P + wwu * cv[ 2].P + wuu * cv[ 3].P + uuu * cv[ 4].P + uuv * cv[ 8].P + uvv * cv[11].P + vvv * cv[13].P + vvw * cv[10].P + vww * cv[ 6].P + uvw * cv[ 7].P; vec3 V2 = www * cv[ 5].P + wwu * cv[ 6].P + wuu * cv[ 7].P + uuu * cv[ 8].P + uuv * cv[11].P + uvv * cv[13].P + vvv * cv[14].P + vvw * cv[12].P + vww * cv[ 9].P + uvw * cv[10].P; #endif // // Compute P, du and dv all from the triangle formed from the three Vi: // P = w * V0 + u * V1 + v * V2; int dSign = OsdGetPatchIsTriangleRotated(patchParam) ? -1 : 1; int level = OsdGetPatchFaceLevel(patchParam); float d1Scale = dSign * level * 4; dPu = (V1 - V0) * d1Scale; dPv = (V2 - V0) * d1Scale; // Compute N and test for degeneracy: // // We need a geometric measure of the size of the patch for a suitable // tolerance. Magnitudes of the partials are generally proportional to // that size -- the sum of the partials is readily available, cheap to // compute, and has proved effective in most cases (though not perfect). // The size of the bounding box of the patch, or some approximation to // it, would be better but more costly to compute. // float proportionalNormalTolerance = 0.00001f; float nEpsilon = (length(dPu) + length(dPv)) * proportionalNormalTolerance; N = cross(dPu, dPv); float nLength = length(N); #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES // // Compute normal derivatives using 2nd order partials, then use the // normal derivatives to resolve a degenerate normal: // float d2Scale = dSign * level * level * 12; vec3 dUU = (Q0 - 2 * Q1 + Q2) * d2Scale; vec3 dVV = (Q0 - 2 * Q3 + Q5) * d2Scale; vec3 dUV = (Q0 - Q1 + Q4 - Q3) * d2Scale; dNu = cross(dUU, dPv) + cross(dPu, dUV); dNv = cross(dUV, dPv) + cross(dPu, dVV); if (nLength < nEpsilon) { // Use 1st order Taylor approximation of N(u,v) within patch interior: if (w > 0.0) { N = dNu + dNv; } else if (u >= 1.0) { N = -dNu + dNv; } else if (v >= 1.0) { N = dNu - dNv; } else { N = -dNu - dNv; } nLength = length(N); if (nLength < nEpsilon) { nLength = 1.0; } } N = N / nLength; // Project derivs of non-unit normal function onto tangent plane of N: dNu = (dNu - dot(dNu,N) * N) / nLength; dNv = (dNv - dot(dNv,N) * N) / nLength; #else dNu = vec3(0); dNv = vec3(0); // // Resolve a degenerate normal using the interior triangle of the // intermediate quadratic patch that results from recursive evaluation. // This addresses common cases of degenerate or colinear boundaries // without resorting to use of explicit 2nd derivatives: // if (nLength < nEpsilon) { float uv = u * v * 2.0; float vw = v * w * 2.0; float wu = w * u * 2.0; vec3 Q1 = ww * cv[ 1].P + wu * cv[ 2].P + uu * cv[ 3].P + uv * cv[ 7].P + vv * cv[10].P + vw * cv[ 6].P; vec3 Q3 = ww * cv[ 5].P + wu * cv[ 6].P + uu * cv[ 7].P + uv * cv[10].P + vv * cv[12].P + vw * cv[ 9].P; vec3 Q4 = ww * cv[ 6].P + wu * cv[ 7].P + uu * cv[ 8].P + uv * cv[11].P + vv * cv[13].P + vw * cv[10].P; N = cross((Q4 - Q1), (Q3 - Q1)); nLength = length(N); if (nLength < nEpsilon) { nLength = 1.0; } } N = N / nLength; #endif } void OsdEvalPatchGregoryTriangle(ivec3 patchParam, vec2 UV, vec3 cv[18], out vec3 P, out vec3 dPu, out vec3 dPv, out vec3 N, out vec3 dNu, out vec3 dNv) { float u = UV.x; float v = UV.y; float w = 1.0 - u - v; float duv = u + v; float dvw = v + w; float dwu = w + u; OsdPerPatchVertexBezier bezcv[15]; bezcv[ 6].P = (duv == 0.0) ? cv[3] : ((u*cv[ 3] + v*cv[ 4]) / duv); bezcv[ 7].P = (dvw == 0.0) ? cv[8] : ((v*cv[ 8] + w*cv[ 9]) / dvw); bezcv[10].P = (dwu == 0.0) ? cv[13] : ((w*cv[13] + u*cv[14]) / dwu); bezcv[ 0].P = cv[ 0]; bezcv[ 1].P = cv[ 1]; bezcv[ 2].P = cv[15]; bezcv[ 3].P = cv[ 7]; bezcv[ 4].P = cv[ 5]; bezcv[ 5].P = cv[ 2]; bezcv[ 8].P = cv[ 6]; bezcv[ 9].P = cv[17]; bezcv[11].P = cv[16]; bezcv[12].P = cv[11]; bezcv[13].P = cv[12]; bezcv[14].P = cv[10]; OsdEvalPatchBezierTriangle(patchParam, UV, bezcv, P, dPu, dPv, N, dNu, dNv); }