// // Copyright 2014 DreamWorks Animation LLC. // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include "../sdc/crease.h" namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { namespace Sdc { // // Declarations of creasing constants and non-inline methods: // float const Crease::SHARPNESS_SMOOTH = 0.0f; float const Crease::SHARPNESS_INFINITE = 10.0f; // // Creasing queries dependent on sharpness values: // Crease::Rule Crease::DetermineVertexVertexRule(float vertexSharpness, int sharpEdgeCount) const { if (IsSharp(vertexSharpness)) return Crease::RULE_CORNER; return (sharpEdgeCount > 2) ? Crease::RULE_CORNER : (Crease::Rule)(1 << sharpEdgeCount); } Crease::Rule Crease::DetermineVertexVertexRule(float vertexSharpness, int incidentEdgeCount, float const* incidentEdgeSharpness) const { if (IsSharp(vertexSharpness)) return Crease::RULE_CORNER; int sharpEdgeCount = 0; for (int i = 0; i < incidentEdgeCount; ++i) { sharpEdgeCount += IsSharp(incidentEdgeSharpness[i]); } return (sharpEdgeCount > 2) ? Crease::RULE_CORNER : (Crease::Rule)(1 << sharpEdgeCount); } float Crease::ComputeFractionalWeightAtVertex(float parentVertexSharpness, float childVertexSharpness, int incidentEdgeCount, float const* parentSharpness, float const* childSharpness) const { int transitionCount = 0; float transitionSum = 0.0f; if (IsSharp(parentVertexSharpness) && IsSmooth(childVertexSharpness)) { transitionCount = 1; transitionSum = parentVertexSharpness; } // // We need the child-edge sharpness values for non-simple methods to ensure // that the sharpness went from a non-zero value (potentially greater than // 1.0) to zero... // if (IsUniform() || (childSharpness == 0)) { for (int i = 0; i < incidentEdgeCount; ++i) { if (IsSharp(parentSharpness[i]) && (parentSharpness[i] <= 1.0f)) { transitionSum += parentSharpness[i]; transitionCount ++; } } } else { for (int i = 0; i < incidentEdgeCount; ++i) { if (IsSharp(parentSharpness[i]) && IsSmooth(childSharpness[i])) { transitionSum += parentSharpness[i]; transitionCount ++; } } } if (transitionCount == 0) return 0.0f; float fractionalWeight = transitionSum / (float)transitionCount; return (fractionalWeight > 1.0f) ? 1.0f : fractionalWeight; } // // Subdividing edge sharpness values (vertex sharpness is inline): // float Crease::SubdivideEdgeSharpnessAtVertex(float edgeSharpness, int incEdgeCountAtVertex, float const * incEdgeSharpness) const { if (IsUniform() || (incEdgeCountAtVertex < 2)) { return decrementSharpness(edgeSharpness); } if (IsSmooth(edgeSharpness)) return Crease::SHARPNESS_SMOOTH; if (IsInfinite(edgeSharpness)) return Crease::SHARPNESS_INFINITE; float sharpSum = 0.0f; int sharpCount = 0; for (int i = 0; i < incEdgeCountAtVertex; ++i) { if (IsSemiSharp(incEdgeSharpness[i])) { sharpCount ++; sharpSum += incEdgeSharpness[i]; } } if (sharpCount > 1) { // Chaikin rule is 3/4 original sharpness + 1/4 average of the others float avgSharpnessAtVertex = (sharpSum - edgeSharpness) / (float)(sharpCount - 1); edgeSharpness = (0.75f * edgeSharpness) + (0.25f * avgSharpnessAtVertex); } edgeSharpness -= 1.0f; return IsSharp(edgeSharpness) ? edgeSharpness : Crease::SHARPNESS_SMOOTH; } void Crease::SubdivideEdgeSharpnessesAroundVertex(int edgeCount, float const* parentSharpness, float * childSharpness) const { if (IsUniform() || (edgeCount < 2)) { for (int i = 0; i < edgeCount; ++i) { childSharpness[i] = decrementSharpness(parentSharpness[i]); } return; } // // Chaikin creasing is most efficiently computed for all edges around a vertex at // once as the subdivided value for each creased edge depends on the average of // the other edges around the vertex. So we can sum up the sharpness around the // vertex once and use that for each edge, rather than iterating around the vertex // for each incident edge. // if (_options.GetCreasingMethod() == Options::CREASE_CHAIKIN) { float sharpSum = 0.0f; int sharpCount = 0; for (int i = 0; i < edgeCount; ++i) { if (IsSemiSharp(parentSharpness[i])) { sharpCount ++; sharpSum += parentSharpness[i]; } } // // The smooth case is most common -- specialize for it first: // if (sharpCount == 0) { for (int i = 0; i < edgeCount; ++i) { childSharpness[i] = parentSharpness[i]; } } else { for (int i = 0; i < edgeCount; ++i) { float const& pSharp = parentSharpness[i]; float& cSharp = childSharpness[i]; if (IsSmooth(pSharp)) { cSharp = Crease::SHARPNESS_SMOOTH; } else if (IsInfinite(pSharp)) { cSharp = Crease::SHARPNESS_INFINITE; } else if (sharpCount == 1) { // Need special case here anyway to avoid divide by zero below... cSharp = decrementSharpness(pSharp); } else { float pOtherAverage = (sharpSum - pSharp) / (float)(sharpCount - 1); // Chaikin rule is 3/4 original sharpness + 1/4 average of the others cSharp = ((0.75f * pSharp) + (0.25f * pOtherAverage)) - 1.0f; if (IsSmooth(cSharp)) cSharp = Crease::SHARPNESS_SMOOTH; } } } } } } // end namespace sdc } // end namespace OPENSUBDIV_VERSION } // end namespace OpenSubdiv