//! Example of optimizing the Schwefel function with genetic algorithm. //! //! y = f(x), where x = (x0, x1, ..., xi,... xn). //! Global minimum is x' = (420.9687, 420.9687, ...) for any xi lying in [-500.0; 500.0]. //! f(x') = 0 //! //! # Terms //! * `Goal function` - the function for optimization. y = f(x). //! * `Gene` - a single value of xi. //! * `Chromosome` - a point in the search space. x = (x0, x1, x2, ..., xn). //! * `Individual` - union of x and value of goal function. //! * `Population` - set of the individuals. //! * `Generation` - a number of iteration of genetic algorithm. use num::abs; use optlib::genetic::{self, creation, cross, mutation, pairing, pre_birth, selection}; use optlib::tools::logging; use optlib::tools::stopchecker; use optlib::{GoalFromFunction, Optimizer}; use optlib_testfunc; /// Gene type type Gene = f32; /// Chromosomes type type Chromosomes = Vec; #[test] fn genetic_schwefel() { // General parameters // Search space. Any xi lies in [-500.0; 500.0] let minval: Gene = -500.0; let maxval: Gene = 500.0; // Count individuals in initial population let population_size = 800; // Count of xi in the chromosomes let chromo_count = 5; let intervals = vec![(minval, maxval); chromo_count]; // Make a trait object for goal function (Schwefel function) let goal = GoalFromFunction::new(optlib_testfunc::schwefel); // Make the creator to create initial population. // RandomCreator will fill initial population with individuals with random chromosomes in a // given interval, let creator = creation::vec_float::RandomCreator::new(population_size, intervals.clone()); // Make a trait object for the pairing. // Pairing is algorithm of selection individuals for crossbreeding. // Select random individuals from the population. // let pairing = pairing::RandomPairing::new(); // Tournament method. let families_count = population_size / 2; let rounds_count = 5; let pairing = pairing::Tournament::new(families_count).rounds_count(rounds_count); // Crossbreeding algorithm. // Make a Cross trait object. The bitwise crossing for float genes. let single_cross = cross::FloatCrossExp::new(); let cross = cross::VecCrossAllGenes::new(Box::new(single_cross)); // Make a Mutation trait object. // Use bitwise mutation (change random bits with given probability). let mutation_probability = 15.0; let mutation_gene_count = 3; let single_mutation = mutation::BitwiseMutation::new(mutation_gene_count); let mutation = mutation::VecMutation::new(mutation_probability, Box::new(single_mutation)); // Pre birth. Throw away new chlld chromosomes if their genes do not lies if given intervals. let pre_births: Vec>> = vec![Box::new( pre_birth::vec_float::CheckChromoInterval::new(intervals.clone()), )]; // Stop checker. Stop criterion for genetic algorithm. let change_max_iterations = 200; let change_delta = 1e-7; // Stop algorithm if the value of goal function will become less of 1e-4 or // after 3000 generations (iterations). let stop_checker = stopchecker::CompositeAny::new(vec![ Box::new(stopchecker::Threshold::new(1e-4)), Box::new(stopchecker::GoalNotChange::new( change_max_iterations, change_delta, )), Box::new(stopchecker::MaxIterations::new(3000)), ]); // Make a trait object for selection. Selection is killing the worst individuals. // Kill all individuals if the value of goal function is NaN or Inf. // Kill the worst individuals to population size remained unchanged. let selections: Vec>> = vec![ Box::new(selection::KillFitnessNaN::new()), Box::new(selection::LimitPopulation::new(population_size)), ]; // Make a loggers trait objects let loggers: Vec>> = vec![]; // Construct main optimizer struct let mut optimizer = genetic::GeneticOptimizer::new( Box::new(goal), Box::new(stop_checker), Box::new(creator), Box::new(pairing), Box::new(cross), Box::new(mutation), selections, pre_births, ); optimizer.set_loggers(loggers); // Run genetic algorithm match optimizer.find_min() { None => assert!(false), Some((solution, goal_value)) => { for i in 0..chromo_count { assert!(abs(solution[i] - 421.0) < 0.1); } assert!(abs(goal_value) < 1e-3); } } }