use ndarray::{ArrayD, Axis}; use ort::{CUDAExecutionProvider, Session, Value}; use ort_batcher::batcher::Batcher; use std::time::Duration; fn main() -> ort::Result<()> { tracing_subscriber::fmt::init(); ort::init() .with_execution_providers([CUDAExecutionProvider::default().build()]) .commit()?; let session = Session::builder()? .with_intra_threads(1)? .with_model_from_memory(include_bytes!("../tests/model.onnx"))?; { let start = std::time::Instant::now(); // 128 threads // 256 inferences each // sequential std::thread::scope(|s| { for _ in 0..128 { let session = &session; let input = ArrayD::::zeros(vec![7, 8, 9]); s.spawn(move || { for _ in 0..256 { let value = Value::from_array(input.clone().insert_axis(Axis(0))).unwrap(); let _output = session.run([value]).unwrap()[0] .extract_tensor::() .unwrap() .view() .index_axis(Axis(0), 0) .to_owned(); } }); } }); println!("sequential: {:?}", start.elapsed()); } let max_batch_size = 32; let max_wait_time = Duration::from_millis(10); let batcher = Batcher::spawn(session, max_batch_size, max_wait_time); { let start = std::time::Instant::now(); // 128 threads // 256 inferences each // batched std::thread::scope(|s| { for _ in 0..128 { let batcher = &batcher; let input = ArrayD::::zeros(vec![7, 8, 9]); s.spawn(move || { for _ in 0..256 { let _output = batcher.run(vec![input.clone()]).unwrap(); } }); } }); println!("batched: {:?}", start.elapsed()); } Ok(()) }