Huber fitting ============= *Huber fitting* or the *robust least-squares problem* performs linear regression under the assumption that there are outliers in the data. The fitting problem is written as .. math:: \begin{array}{ll} \mbox{minimize} & \sum_{i=1}^{m} \phi_{\rm hub}(a_i^T x - b_i), \end{array} with the Huber penalty function :math:`\phi_{\rm hub}:\mathbf{R}\to\mathbf{R}` defined as .. math:: \phi_{\rm hub}(u) = \begin{cases} u^2 & |u| \le 1 \\ (2|u| - 1) & |u| > 1 \end{cases} The problem has the following equivalent form (see `here `_ for more details) .. math:: \begin{array}{ll} \mbox{minimize} & u^T u + 2\,\boldsymbol{1}^T (r+s) \\ \mbox{subject to} & Ax - b - u = r - s \\ & r \ge 0 \\ & s \ge 0 \end{array} Python ------ .. code:: python import osqp import numpy as np import scipy as sp from scipy import sparse # Generate problem data sp.random.seed(1) n = 10 m = 100 Ad = sparse.random(m, n, density=0.5, format='csc') x_true = np.random.randn(n) / np.sqrt(n) ind95 = (np.random.rand(m) < 0.95).astype(float) b = Ad.dot(x_true) + np.multiply(0.5*np.random.randn(m), ind95) \ + np.multiply(10.*np.random.rand(m), 1. - ind95) # OSQP data Im = sparse.eye(m) P = sparse.block_diag([sparse.csc_matrix((n, n)), 2*Im, sparse.csc_matrix((2*m, 2*m))], format='csc') q = np.append(np.zeros(m+n), 2*np.ones(2*m)) A = sparse.bmat([[Ad, -Im, -Im, Im], [None, None, Im, None], [None, None, None, Im]], format='csc') l = np.hstack([b, np.zeros(2*m)]) u = np.hstack([b, np.inf*np.ones(2*m)]) # Create an OSQP object prob = osqp.OSQP() # Setup workspace prob.setup(P, q, A, l, u) # Solve problem res = prob.solve() Matlab ------ .. code:: matlab % Generate problem data rng(1) n = 10; m = 100; Ad = sprandn(m, n, 0.5); x_true = randn(n, 1) / sqrt(n); ind95 = rand(m, 1) > 0.95; b = Ad*x_true + 10*rand(m, 1).*ind95 + 0.5*randn(m, 1).*(1-ind95); % OSQP data Im = speye(m); Om = sparse(m, m); Omn = sparse(m, n); P = blkdiag(sparse(n, n), 2*Im, sparse(2*m, 2*m)); q = [zeros(m + n, 1); 2*ones(2*m, 1)]; A = [Ad, -Im, -Im, Im; Omn, Om, Im, Om; Omn, Om, Om, Im]; l = [b; zeros(2*m, 1)]; u = [b; inf*ones(2*m, 1)]; % Create an OSQP object prob = osqp; % Setup workspace prob.setup(P, q, A, l, u); % Solve problem res = prob.solve(); CVXPY ----- .. code:: python from cvxpy import * import numpy as np import scipy as sp from scipy import sparse # Generate problem data sp.random.seed(1) n = 10 m = 100 A = sparse.random(m, n, density=0.5, format='csc') x_true = np.random.randn(n) / np.sqrt(n) ind95 = (np.random.rand(m) < 0.95).astype(float) b = A.dot(x_true) + np.multiply(0.5*np.random.randn(m), ind95) \ + np.multiply(10.*np.random.rand(m), 1. - ind95) # Define problem x = Variable(n) objective = sum(huber(A*x - b)) # Solve with OSQP Problem(Minimize(objective)).solve(solver=OSQP) YALMIP ------ .. code:: matlab % Generate problem data rng(1) n = 10; m = 100; A = sprandn(m, n, 0.5); x_true = randn(n, 1) / sqrt(n); ind95 = rand(m, 1) > 0.95; b = A*x_true + 10*rand(m, 1).*ind95 + 0.5*randn(m, 1).*(1-ind95); % Define problem x = sdpvar(n, 1); objective = huber(A*x - b); % Solve with OSQP options = sdpsettings('solver', 'osqp'); optimize([], objective, options);