Lasso ===== Lasso is a well known technique for sparse linear regression. It is obtained by adding an :math:`\ell_1` regularization term in the objective, .. math:: \begin{array}{ll} \mbox{minimize} & \frac{1}{2} \| Ax - b \|_2^2 + \gamma \| x \|_1 \end{array} where :math:`x \in \mathbf{R}^{n}` is the vector of parameters, :math:`A \in \mathbf{R}^{m \times n}` is the data matrix, and :math:`\gamma > 0` is the weighting parameter. The problem has the following equivalent form, .. math:: \begin{array}{ll} \mbox{minimize} & \frac{1}{2} y^T y + \gamma \boldsymbol{1}^T t \\ \mbox{subject to} & y = Ax - b \\ & -t \le x \le t \end{array} In order to get a good trade-off between sparsity of the solution and quality of the linear fit, we solve the problem for varying weighting parameter :math:`\gamma`. Since :math:`\gamma` enters only in the linear part of the objective function, we can reuse the matrix factorization and enable warm starting to reduce the computation time. Python ------ .. code:: python import osqp import numpy as np import scipy as sp from scipy import sparse # Generate problem data sp.random.seed(1) n = 10 m = 1000 Ad = sparse.random(m, n, density=0.5) x_true = np.multiply((np.random.rand(n) > 0.8).astype(float), np.random.randn(n)) / np.sqrt(n) b = Ad.dot(x_true) + 0.5*np.random.randn(m) gammas = np.linspace(1, 10, 11) # Auxiliary data In = sparse.eye(n) Im = sparse.eye(m) On = sparse.csc_matrix((n, n)) Onm = sparse.csc_matrix((n, m)) # OSQP data P = sparse.block_diag([On, sparse.eye(m), On], format='csc') q = np.zeros(2*n + m) A = sparse.vstack([sparse.hstack([Ad, -Im, Onm.T]), sparse.hstack([In, Onm, -In]), sparse.hstack([In, Onm, In])], format='csc') l = np.hstack([b, -np.inf * np.ones(n), np.zeros(n)]) u = np.hstack([b, np.zeros(n), np.inf * np.ones(n)]) # Create an OSQP object prob = osqp.OSQP() # Setup workspace prob.setup(P, q, A, l, u, warm_start=True) # Solve problem for different values of gamma parameter for gamma in gammas: # Update linear cost q_new = np.hstack([np.zeros(n+m), gamma*np.ones(n)]) prob.update(q=q_new) # Solve res = prob.solve() Matlab ------ .. code:: matlab % Generate problem data rng(1) n = 10; m = 1000; Ad = sprandn(m, n, 0.5); x_true = (randn(n, 1) > 0.8) .* randn(n, 1) / sqrt(n); b = Ad * x_true + 0.5 * randn(m, 1); gammas = linspace(1, 10, 11); % OSQP data P = blkdiag(sparse(n, n), speye(m), sparse(n, n)); q = zeros(2*n+m, 1); A = [Ad, -speye(m), sparse(m,n); speye(n), sparse(n, m), -speye(n); speye(n), sparse(n, m), speye(n);]; l = [b; -inf*ones(n, 1); zeros(n, 1)]; u = [b; zeros(n, 1); inf*ones(n, 1)]; % Create an OSQP object prob = osqp; % Setup workspace prob.setup(P, q, A, l, u, 'warm_start', true); % Solve problem for different values of gamma parameter for i = 1 : length(gammas) % Update linear cost gamma = gammas(i); q_new = [zeros(n+m,1); gamma*ones(n,1)]; prob.update('q', q_new); % Solve res = prob.solve(); end CVXPY ----- .. code:: python from cvxpy import * import numpy as np import scipy as sp from scipy import sparse # Generate problem data sp.random.seed(1) n = 10 m = 1000 A = sparse.random(m, n, density=0.5) x_true = np.multiply((np.random.rand(n) > 0.8).astype(float), np.random.randn(n)) / np.sqrt(n) b = A.dot(x_true) + 0.5*np.random.randn(m) gammas = np.linspace(1, 10, 11) # Define problem x = Variable(n) gamma = Parameter(nonneg=True) objective = 0.5*sum_squares(A*x - b) + gamma*norm1(x) prob = Problem(Minimize(objective)) # Solve problem for different values of gamma parameter for gamma_val in gammas: gamma.value = gamma_val prob.solve(solver=OSQP, warm_start=True) YALMIP ------ .. code:: matlab % Generate problem data rng(1) n = 10; m = 1000; A = sprandn(m, n, 0.5); x_true = (randn(n, 1) > 0.8) .* randn(n, 1) / sqrt(n); b = A * x_true + 0.5 * randn(m, 1); gammas = linspace(1, 10, 11); % Define problem x = sdpvar(n, 1); gamma = sdpvar; objective = 0.5*norm(A*x - b)^2 + gamma*norm(x,1); % Solve with OSQP options = sdpsettings('solver', 'osqp'); x_opt = optimizer([], objective, options, gamma, x); % Solve problem for different values of gamma parameter for i = 1 : length(gammas) x_opt(gammas(i)); end