Least-squares ============= Consider the following constrained least-squares problem .. math:: \begin{array}{ll} \mbox{minimize} & \frac{1}{2} \|Ax - b\|_2^2 \\ \mbox{subject to} & 0 \leq x \leq 1 \end{array} The problem has the following equivalent form .. math:: \begin{array}{ll} \mbox{minimize} & \frac{1}{2} y^T y \\ \mbox{subject to} & y = A x - b \\ & 0 \le x \le 1 \end{array} Python ------ .. code:: python import osqp import numpy as np import scipy as sp from scipy import sparse # Generate problem data sp.random.seed(1) m = 30 n = 20 Ad = sparse.random(m, n, density=0.7, format='csc') b = np.random.randn(m) # OSQP data P = sparse.block_diag([sparse.csc_matrix((n, n)), sparse.eye(m)], format='csc') q = np.zeros(n+m) A = sparse.vstack([ sparse.hstack([Ad, -sparse.eye(m)]), sparse.hstack([sparse.eye(n), sparse.csc_matrix((n, m))])], format='csc') l = np.hstack([b, np.zeros(n)]) u = np.hstack([b, np.ones(n)]) # Create an OSQP object prob = osqp.OSQP() # Setup workspace prob.setup(P, q, A, l, u) # Solve problem res = prob.solve() Matlab ------ .. code:: matlab % Generate problem data rng(1) m = 30; n = 20; Ad = sprandn(m, n, 0.7); b = randn(m, 1); % OSQP data P = blkdiag(sparse(n, n), speye(m)); q = zeros(n+m, 1); A = [Ad, -speye(m); speye(n), sparse(n, m)]; l = [b; zeros(n, 1)]; u = [b; ones(n, 1)]; % Create an OSQP object prob = osqp; % Setup workspace prob.setup(P, q, A, l, u); % Solve problem res = prob.solve(); CVXPY ----- .. code:: python from cvxpy import * import numpy as np import scipy as sp from scipy import sparse # Generate problem data sp.random.seed(1) m = 30 n = 20 A = sparse.random(m, n, density=0.7, format='csc') b = np.random.randn(m) # Define problem x = Variable(n) objective = 0.5*sum_squares(A*x - b) constraints = [x >= 0, x <= 1] # Solve with OSQP Problem(Minimize(objective), constraints).solve(solver=OSQP) YALMIP ------ .. code:: matlab % Generate data rng(1) m = 30; n = 20; A = sprandn(m, n, 0.7); b = randn(m, 1); % Define problem x = sdpvar(n, 1); objective = 0.5*norm(A*x - b)^2; constraints = [ 0 <= x <= 1]; % Solve with OSQP options = sdpsettings('solver','osqp'); optimize(constraints, objective, options);