Update vectors ============== Consider the following QP .. math:: \begin{array}{ll} \mbox{minimize} & \frac{1}{2} x^T \begin{bmatrix}4 & 1\\ 1 & 2 \end{bmatrix} x + \begin{bmatrix}1 \\ 1\end{bmatrix}^T x \\ \mbox{subject to} & \begin{bmatrix}1 \\ 0 \\ 0\end{bmatrix} \leq \begin{bmatrix} 1 & 1\\ 1 & 0\\ 0 & 1\end{bmatrix} x \leq \begin{bmatrix}1 \\ 0.7 \\ 0.7\end{bmatrix} \end{array} We show below how to setup and solve the problem. Then we update the vectors :math:`q`, :math:`l`, and :math:`u` and solve the updated problem .. math:: \begin{array}{ll} \mbox{minimize} & \frac{1}{2} x^T \begin{bmatrix}4 & 1\\ 1 & 2 \end{bmatrix} x + \begin{bmatrix}2 \\ 3\end{bmatrix}^T x \\ \mbox{subject to} & \begin{bmatrix}2 \\ -1 \\ -1\end{bmatrix} \leq \begin{bmatrix} 1 & 1\\ 1 & 0\\ 0 & 1\end{bmatrix} x \leq \begin{bmatrix}2 \\ 2.5 \\ 2.5\end{bmatrix} \end{array} Python ------ .. code:: python import osqp import numpy as np from scipy import sparse # Define problem data P = sparse.csc_matrix([[4, 1], [1, 2]]) q = np.array([1, 1]) A = sparse.csc_matrix([[1, 1], [1, 0], [0, 1]]) l = np.array([1, 0, 0]) u = np.array([1, 0.7, 0.7]) # Create an OSQP object prob = osqp.OSQP() # Setup workspace prob.setup(P, q, A, l, u) # Solve problem res = prob.solve() # Update problem q_new = np.array([2, 3]) l_new = np.array([2, -1, -1]) u_new = np.array([2, 2.5, 2.5]) prob.update(q=q_new, l=l_new, u=u_new) # Solve updated problem res = prob.solve() Matlab ------ .. code:: matlab % Define problem data P = sparse([4, 1; 1, 2]); q = [1; 1]; A = sparse([1, 1; 1, 0; 0, 1]); l = [1; 0; 0]; u = [1; 0.7; 0.7]; % Create an OSQP object prob = osqp; % Setup workspace prob.setup(P, q, A, l, u); % Solve problem res = prob.solve(); % Update problem q_new = [2; 3]; l_new = [2; -1; -1]; u_new = [2; 2.5; 2.5]; prob.update('q', q_new, 'l', l_new, 'u', u_new); % Solve updated problem res = prob.solve(); Julia ------ .. code:: julia using OSQP using Compat.SparseArrays # Define problem data P = sparse([4. 1.; 1. 2.]) q = [1.; 1.] A = sparse([1. 1.; 1. 0.; 0. 1.]) l = [1.; 0.; 0.] u = [1.; 0.7; 0.7] # Crate OSQP object prob = OSQP.Model() # Setup workspace OSQP.setup!(prob; P=P, q=q, A=A, l=l, u=u) # Solve problem results = OSQP.solve!(prob) # Update problem q_new = [2.; 3.] l_new = [2.; -1.; -1.] u_new = [2.; 2.5; 2.5] OSQP.update!(prob, q=q_new, l=l_new, u=u_new) # Solve updated problem results = OSQP.solve!(prob) R - .. code:: r library(osqp) library(Matrix) # Define problem data P <- Matrix(c(4., 1., 1., 2.), 2, 2, sparse = TRUE) q <- c(1., 1.) A <- Matrix(c(1., 1., 0., 1., 0., 1.), 3, 2, sparse = TRUE) l <- c(1., 0., 0.) u <- c(1., 0.7, 0.7) # Setup workspace model <- osqp(P, q, A, l, u) # Solve problem res <- model$Solve() # Update problem q_new <- c(2., 3.) l_new <- c(2., -1., -1.) u_new <- c(2., 2.5, 2.5) model$Update(q = q_new, l = l_new, u = u_new) # Solve updated problem res <- model$Solve() C - .. code:: c #include "osqp.h" int main(int argc, char **argv) { // Load problem data c_float P_x[3] = {4.0, 1.0, 2.0, }; c_int P_nnz = 3; c_int P_i[3] = {0, 0, 1, }; c_int P_p[3] = {0, 1, 3, }; c_float q[2] = {1.0, 1.0, }; c_float q_new[2] = {2.0, 3.0, }; c_float A_x[4] = {1.0, 1.0, 1.0, 1.0, }; c_int A_nnz = 4; c_int A_i[4] = {0, 1, 0, 2, }; c_int A_p[3] = {0, 2, 4, }; c_float l[3] = {1.0, 0.0, 0.0, }; c_float l_new[3] = {2.0, -1.0, -1.0, }; c_float u[3] = {1.0, 0.7, 0.7, }; c_float u_new[3] = {2.0, 2.5, 2.5, }; c_int n = 2; c_int m = 3; // Exitflag c_int exitflag = 0; // Workspace structures OSQPWorkspace *work; OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); OSQPData *data = (OSQPData *)c_malloc(sizeof(OSQPData)); // Populate data if (data) { data->n = n; data->m = m; data->P = csc_matrix(data->n, data->n, P_nnz, P_x, P_i, P_p); data->q = q; data->A = csc_matrix(data->m, data->n, A_nnz, A_x, A_i, A_p); data->l = l; data->u = u; } // Define solver settings as default if (settings) osqp_set_default_settings(settings); // Setup workspace exitflag = osqp_setup(&work, data, settings); // Solve problem osqp_solve(work); // Update problem osqp_update_lin_cost(work, q_new); osqp_update_bounds(work, l_new, u_new); // Solve updated problem osqp_solve(work); // Cleanup if (data) { if (data->A) c_free(data->A); if (data->P) c_free(data->P); c_free(data); } if (settings) c_free(settings); return exitflag; };