import numpy as np from scipy import sparse import utils.codegen_utils as cu P = sparse.triu([[4., 1.], [1., 2.]], format='csc') q = np.ones(2) A = sparse.csc_matrix(np.array([[1., 1.], [1., 0.], [0., 1.], [0., 1.]])) l = np.array([1., 0., 0., -np.inf]) u = np.array([1., 0.7, 0.7, np.inf]) n = P.shape[0] m = A.shape[0] # New data q_new = np.array([2.5, 3.2]) l_new = np.array([0.8, -3.4, -np.inf, 0.5]) u_new = np.array([1.6, 1.0, np.inf, 0.5]) # Generate problem solutions sols_data = {'x_test': np.array([0.3, 0.7]), 'y_test': np.array([-2.9, 0.0, 0.2, 0.0]), 'obj_value_test': 1.88, 'status_test': 'optimal', 'q_new': q_new, 'l_new': l_new, 'u_new': u_new} # Generate problem data cu.generate_problem_data(P, q, A, l, u, 'basic_qp', sols_data)