#include "osqp.h" // OSQP API #include "auxil.h" // Needed for cold_start() #include "cs.h" // CSC data structure #include "util.h" // Utilities for testing #include "minunit.h" // Basic testing script header #include "basic_qp/data.h" static const char* test_basic_qp_solve() { c_int exitflag, tmp_int; c_float tmp_float; csc *tmp_mat, *P_tmp; // Problem settings OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); // Structures OSQPWorkspace *work; // Workspace OSQPData *data; // Data basic_qp_sols_data *sols_data; // Populate data data = generate_problem_basic_qp(); sols_data = generate_problem_basic_qp_sols_data(); // Define Solver settings as default osqp_set_default_settings(settings); settings->max_iter = 2000; settings->alpha = 1.6; settings->polish = 1; settings->scaling = 0; settings->verbose = 1; settings->warm_start = 0; // Setup workspace exitflag = osqp_setup(&work, data, settings); // Setup correct mu_assert("Basic QP test solve: Setup error!", exitflag == 0); // Solve Problem osqp_solve(work); // Compare solver statuses mu_assert("Basic QP test solve: Error in solver status!", work->info->status_val == sols_data->status_test); // Compare primal solutions mu_assert("Basic QP test solve: Error in primal solution!", vec_norm_inf_diff(work->solution->x, sols_data->x_test, data->n) < TESTS_TOL); // Compare dual solutions mu_assert("Basic QP test solve: Error in dual solution!", vec_norm_inf_diff(work->solution->y, sols_data->y_test, data->m) < TESTS_TOL); // Compare objective values mu_assert("Basic QP test solve: Error in objective value!", c_absval(work->info->obj_val - sols_data->obj_value_test) < TESTS_TOL); // Try to set wrong settings mu_assert("Basic QP test solve: Wrong value of rho not caught!", osqp_update_rho(work, -0.1) == 1); mu_assert("Basic QP test solve: Wrong value of max_iter not caught!", osqp_update_max_iter(work, -1) == 1); mu_assert("Basic QP test solve: Wrong value of eps_abs not caught!", osqp_update_eps_abs(work, -1.) == 1); mu_assert("Basic QP test solve: Wrong value of eps_rel not caught!", osqp_update_eps_rel(work, -1.) == 1); mu_assert("Basic QP test solve: Wrong value of eps_prim_inf not caught!", osqp_update_eps_prim_inf(work, -0.1) == 1); mu_assert("Basic QP test solve: Wrong value of eps_dual_inf not caught!", osqp_update_eps_dual_inf(work, -0.1) == 1); mu_assert("Basic QP test solve: Wrong value of alpha not caught!", osqp_update_alpha(work, 2.0) == 1); mu_assert("Basic QP test solve: Wrong value of warm_start not caught!", osqp_update_warm_start(work, -1) == 1); mu_assert("Basic QP test solve: Wrong value of scaled_termination not caught!", osqp_update_scaled_termination(work, 2) == 1); mu_assert("Basic QP test solve: Wrong value of check_termination not caught!", osqp_update_check_termination(work, -1) == 1); mu_assert("Basic QP test solve: Wrong value of delta not caught!", osqp_update_delta(work, 0.) == 1); mu_assert("Basic QP test solve: Wrong value of polish not caught!", osqp_update_polish(work, 2) == 1); mu_assert("Basic QP test solve: Wrong value of polish_refine_iter not caught!", osqp_update_polish_refine_iter(work, -1) == 1); mu_assert("Basic QP test solve: Wrong value of verbose not caught!", osqp_update_verbose(work, 2) == 1); // Clean workspace osqp_cleanup(work); /* ============================= SETUP WITH WRONG SETTINGS ============================= */ // Setup workspace with empty settings exitflag = osqp_setup(&work, data, OSQP_NULL); mu_assert("Basic QP test solve: Setup should result in error due to empty settings", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); // Setup workspace with a wrong number of scaling iterations tmp_int = settings->scaling; settings->scaling = -1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to a negative number of scaling iterations", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->scaling = tmp_int; // Setup workspace with wrong settings->adaptive_rho tmp_int = settings->adaptive_rho; settings->adaptive_rho = 2; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-boolean settings->adaptive_rho", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->adaptive_rho = tmp_int; // Setup workspace with wrong settings->adaptive_rho_interval tmp_int = settings->adaptive_rho_interval; settings->adaptive_rho_interval = -1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to negative settings->adaptive_rho_interval", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->adaptive_rho_interval = tmp_int; #ifdef PROFILING // Setup workspace with wrong settings->adaptive_rho_fraction tmp_float = settings->adaptive_rho_fraction; settings->adaptive_rho_fraction = -1.5; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-positive settings->adaptive_rho_fraction", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->adaptive_rho_fraction = tmp_float; #endif // Setup workspace with wrong settings->adaptive_rho_tolerance tmp_float = settings->adaptive_rho_tolerance; settings->adaptive_rho_tolerance = 0.5; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to wrong settings->adaptive_rho_tolerance", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->adaptive_rho_tolerance = tmp_float; // Setup workspace with wrong settings->polish_refine_iter tmp_int = settings->polish_refine_iter; settings->polish_refine_iter = -3; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to negative settings->polish_refine_iter", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->polish_refine_iter = tmp_int; // Setup workspace with wrong settings->rho tmp_float = settings->rho; settings->rho = 0.0; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-positive settings->rho", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->rho = tmp_float; // Setup workspace with wrong settings->sigma tmp_float = settings->sigma; settings->sigma = -0.1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-positive settings->sigma", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->sigma = tmp_float; // Setup workspace with wrong settings->delta tmp_float = settings->delta; settings->delta = -1.1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-positive settings->delta", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->delta = tmp_float; // Setup workspace with wrong settings->max_iter tmp_int = settings->max_iter; settings->max_iter = 0; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-positive settings->max_iter", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->max_iter = tmp_int; // Setup workspace with wrong settings->eps_abs tmp_float = settings->eps_abs; settings->eps_abs = -1.1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to negative settings->eps_abs", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->eps_abs = tmp_float; // Setup workspace with wrong settings->eps_rel tmp_float = settings->eps_rel; settings->eps_rel = -0.1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to negative settings->eps_rel", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->eps_rel = tmp_float; // Setup workspace with wrong settings->eps_prim_inf tmp_float = settings->eps_prim_inf; settings->eps_prim_inf = -0.1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-positive settings->eps_prim_inf", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->eps_prim_inf = tmp_float; // Setup workspace with wrong settings->eps_dual_inf tmp_float = settings->eps_dual_inf; settings->eps_dual_inf = 0.0; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-positive settings->eps_dual_inf", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->eps_dual_inf = tmp_float; // Setup workspace with wrong settings->alpha tmp_float = settings->alpha; settings->alpha = 2.0; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to wrong settings->alpha", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->alpha = tmp_float; // Setup workspace with wrong settings->linsys_solver tmp_int = settings->linsys_solver; settings->linsys_solver = 5; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to wrong settings->linsys_solver", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->linsys_solver = tmp_int; // Setup workspace with wrong settings->verbose tmp_int = settings->verbose; settings->verbose = 2; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-boolean settings->verbose", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->verbose = tmp_int; // Setup workspace with wrong settings->scaled_termination tmp_int = settings->scaled_termination; settings->scaled_termination = 2; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-boolean settings->scaled_termination", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->scaled_termination = tmp_int; // Setup workspace with wrong settings->check_termination tmp_int = settings->check_termination; settings->check_termination = -1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-boolean settings->check_termination", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->check_termination = tmp_int; // Setup workspace with wrong settings->warm_start tmp_int = settings->warm_start; settings->warm_start = 5; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-boolean settings->warm_start", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->warm_start = tmp_int; #ifdef PROFILING // Setup workspace with wrong settings->time_limit tmp_float = settings->time_limit; settings->time_limit = -0.2; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to wrong settings->time_limit", exitflag == OSQP_SETTINGS_VALIDATION_ERROR); settings->time_limit = tmp_float; #endif /* ========================= SETUP WITH WRONG DATA ========================= */ // Setup workspace with empty data exitflag = osqp_setup(&work, OSQP_NULL, settings); mu_assert("Basic QP test solve: Setup should result in error due to empty data", exitflag == OSQP_DATA_VALIDATION_ERROR); // Setup workspace with wrong data->m tmp_int = data->m; data->m = data->m - 1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to wrong data->m", exitflag == OSQP_DATA_VALIDATION_ERROR); data->m = tmp_int; // Setup workspace with wrong data->n tmp_int = data->n; data->n = data->n + 1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to wrong data->n", exitflag == OSQP_DATA_VALIDATION_ERROR); // Setup workspace with zero data->n data->n = 0; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to zero data->n", exitflag == OSQP_DATA_VALIDATION_ERROR); data->n = tmp_int; // Setup workspace with wrong P->m tmp_int = data->P->m; data->P->m = data->n + 1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to wrong P->m", exitflag == OSQP_DATA_VALIDATION_ERROR); data->P->m = tmp_int; // Setup workspace with wrong P->n tmp_int = data->P->n; data->P->n = data->n + 1; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to wrong P->n", exitflag == OSQP_DATA_VALIDATION_ERROR); data->P->n = tmp_int; // Setup workspace with non-upper-triangular P tmp_mat = data->P; // Construct non-upper-triangular P P_tmp = (csc*) c_malloc(sizeof(csc)); P_tmp->m = 2; P_tmp->n = 2; P_tmp->nz = -1; P_tmp->nzmax = 4; P_tmp->x = (c_float*) c_malloc(4 * sizeof(c_float)); P_tmp->x[0] = 4.0; P_tmp->x[1] = 1.0; P_tmp->x[2] = 1.0; P_tmp->x[3] = 2.0; P_tmp->i = (c_int*) c_malloc(4 * sizeof(c_int)); P_tmp->i[0] = 0; P_tmp->i[1] = 1; P_tmp->i[2] = 0; P_tmp->i[3] = 1; P_tmp->p = (c_int*) c_malloc((2 + 1) * sizeof(c_int)); P_tmp->p[0] = 0; P_tmp->p[1] = 2; P_tmp->p[2] = 4; data->P = P_tmp; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-triu structure of P", exitflag == OSQP_DATA_VALIDATION_ERROR); data->P = tmp_mat; // Setup workspace with non-consistent bounds data->l[0] = data->u[0] + 1.0; exitflag = osqp_setup(&work, data, settings); mu_assert("Basic QP test solve: Setup should result in error due to non-consistent bounds", exitflag == OSQP_DATA_VALIDATION_ERROR); // Cleanup data clean_problem_basic_qp(data); clean_problem_basic_qp_sols_data(sols_data); // Cleanup c_free(settings); c_free(P_tmp->x); c_free(P_tmp->i); c_free(P_tmp->p); c_free(P_tmp); return 0; } #ifdef ENABLE_MKL_PARDISO static char* test_basic_qp_solve_pardiso() { c_int exitflag; // Problem settings OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); // Structures OSQPWorkspace *work; // Workspace OSQPData *data; // Data basic_qp_sols_data *sols_data; // Populate data data = generate_problem_basic_qp(); sols_data = generate_problem_basic_qp_sols_data(); // Define Solver settings as default osqp_set_default_settings(settings); settings->max_iter = 2000; settings->alpha = 1.6; settings->polish = 1; settings->scaling = 0; settings->verbose = 1; settings->warm_start = 0; settings->linsys_solver = MKL_PARDISO_SOLVER; // Setup workspace exitflag = osqp_setup(&work, data, settings); // Setup correct mu_assert("Basic QP test solve Pardiso: Setup error!", exitflag == 0); // Solve Problem osqp_solve(work); // Compare solver statuses mu_assert("Basic QP test solve Pardiso: Error in solver status!", work->info->status_val == sols_data->status_test); // Compare primal solutions mu_assert("Basic QP test solve Pardiso: Error in primal solution!", vec_norm_inf_diff(work->solution->x, sols_data->x_test, data->n) < TESTS_TOL); // Compare dual solutions mu_assert("Basic QP test solve Pardiso: Error in dual solution!", vec_norm_inf_diff(work->solution->y, sols_data->y_test, data->m) < TESTS_TOL); // Compare objective values mu_assert("Basic QP test solve Pardiso: Error in objective value!", c_absval(work->info->obj_val - sols_data->obj_value_test) < TESTS_TOL); // Clean workspace osqp_cleanup(work); // Cleanup data clean_problem_basic_qp(data); clean_problem_basic_qp_sols_data(sols_data); // Cleanup c_free(settings); return 0; } #endif static const char* test_basic_qp_update() { c_int exitflag; // Problem settings OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); // Structures OSQPWorkspace *work; // Workspace OSQPData *data; // Data basic_qp_sols_data *sols_data; // Populate data data = generate_problem_basic_qp(); sols_data = generate_problem_basic_qp_sols_data(); // Define Solver settings as default osqp_set_default_settings(settings); settings->max_iter = 200; settings->alpha = 1.6; settings->polish = 1; settings->scaling = 0; settings->verbose = 1; settings->warm_start = 0; // Setup workspace exitflag = osqp_setup(&work, data, settings); // Setup correct mu_assert("Basic QP test update: Setup error!", exitflag == 0); // ==================================================================== // Update data // ==================================================================== // Update linear cost osqp_update_lin_cost(work, sols_data->q_new); mu_assert("Basic QP test update: Error in updating linear cost!", vec_norm_inf_diff(work->data->q, sols_data->q_new, data->n) < TESTS_TOL); // UPDATE BOUND // Try to update with non-consistent values mu_assert("Basic QP test update: Error in bounds update ordering not caught!", osqp_update_bounds(work, sols_data->u_new, sols_data->l_new) == 1); // Now update with correct values mu_assert("Basic QP test update: Error in bounds update ordering!", osqp_update_bounds(work, sols_data->l_new, sols_data->u_new) == 0); mu_assert("Basic QP test update: Error in bounds update, lower bound!", vec_norm_inf_diff(work->data->l, sols_data->l_new, data->m) < TESTS_TOL); mu_assert("Basic QP test update: Error in bounds update, upper bound!", vec_norm_inf_diff(work->data->u, sols_data->u_new, data->m) < TESTS_TOL); // Return original values osqp_update_bounds(work, data->l, data->u); // UPDATE LOWER BOUND // Try to update with non-consistent values mu_assert( "Basic QP test update: Error in lower bound update ordering not caught!", osqp_update_lower_bound(work, sols_data->u_new) == 1); // Now update with correct values mu_assert("Basic QP test update: Error in lower bound update ordering!", osqp_update_lower_bound(work, sols_data->l_new) == 0); mu_assert("Basic QP test update: Error in updating lower bound!", vec_norm_inf_diff(work->data->l, sols_data->l_new, data->m) < TESTS_TOL); // Return original values osqp_update_lower_bound(work, data->l); // UPDATE UPPER BOUND // Try to update with non-consistent values mu_assert( "Basic QP test update: Error in upper bound update: ordering not caught!", osqp_update_upper_bound(work, sols_data->l_new) == 1); // Now update with correct values mu_assert("Basic QP test update: Error in upper bound update: ordering!", osqp_update_upper_bound(work, sols_data->u_new) == 0); mu_assert("Basic QP test update: Error in updating upper bound!", vec_norm_inf_diff(work->data->u, sols_data->u_new, data->m) < TESTS_TOL); // Clean workspace osqp_cleanup(work); // Cleanup data clean_problem_basic_qp(data); clean_problem_basic_qp_sols_data(sols_data); // Cleanup c_free(settings); return 0; } static const char* test_basic_qp_check_termination() { c_int exitflag; // Problem settings OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); // Structures OSQPWorkspace *work; // Workspace OSQPData *data; // Data basic_qp_sols_data *sols_data; // Populate data data = generate_problem_basic_qp(); sols_data = generate_problem_basic_qp_sols_data(); // Define Solver settings as default osqp_set_default_settings(settings); settings->max_iter = 200; settings->alpha = 1.6; settings->polish = 0; settings->scaling = 0; settings->verbose = 1; settings->check_termination = 0; settings->warm_start = 0; // Setup workspace exitflag = osqp_setup(&work, data, settings); // Setup correct mu_assert("Basic QP test solve: Setup error!", exitflag == 0); // Solve Problem osqp_solve(work); // Check if iter == max_iter mu_assert( "Basic QP test check termination: Error in number of iterations taken!", work->info->iter == work->settings->max_iter); // Compare solver statuses mu_assert("Basic QP test check termination: Error in solver status!", work->info->status_val == sols_data->status_test); // Compare primal solutions mu_assert("Basic QP test check termination: Error in primal solution!", vec_norm_inf_diff(work->solution->x, sols_data->x_test, data->n) < TESTS_TOL); // Compare dual solutions // print_vec(work->solution->y, data->m, "y_sol"); // print_vec(sols_data->y_test, data->m, "y_test"); mu_assert("Basic QP test check termination: Error in dual solution!", vec_norm_inf_diff(work->solution->y, sols_data->y_test, data->m) < TESTS_TOL); // Compare objective values mu_assert("Basic QP test check termination: Error in objective value!", c_absval(work->info->obj_val - sols_data->obj_value_test) < TESTS_TOL); // Clean workspace osqp_cleanup(work); // Cleanup data clean_problem_basic_qp(data); clean_problem_basic_qp_sols_data(sols_data); // Cleanup c_free(settings); return 0; } static const char* test_basic_qp_update_rho() { c_int extiflag; // Problem settings OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); // Structures OSQPWorkspace *work; // Workspace OSQPData *data; // Data basic_qp_sols_data *sols_data; // Exitflag c_int exitflag; // rho to use c_float rho; // Define number of iterations to compare c_int n_iter_new_solver, n_iter_update_rho; // Populate data data = generate_problem_basic_qp(); sols_data = generate_problem_basic_qp_sols_data(); // Define Solver settings as default rho = 0.7; osqp_set_default_settings(settings); settings->rho = rho; settings->adaptive_rho = 0; // Disable adaptive rho for this test settings->eps_abs = 5e-05; settings->eps_rel = 5e-05; settings->check_termination = 1; // Setup workspace exitflag = osqp_setup(&work, data, settings); // Setup correct mu_assert("Basic QP test update rho: Setup error!", exitflag == 0); // Solve Problem osqp_solve(work); // Store number of iterations n_iter_new_solver = work->info->iter; // Compare solver statuses mu_assert("Update rho test solve: Error in solver status!", work->info->status_val == sols_data->status_test); // Compare primal solutions mu_assert("Update rho test solve: Error in primal solution!", vec_norm_inf_diff(work->solution->x, sols_data->x_test, data->n)/vec_norm_inf(sols_data->x_test, data->n) < TESTS_TOL); // Compare dual solutions mu_assert("Update rho test solve: Error in dual solution!", vec_norm_inf_diff(work->solution->y, sols_data->y_test, data->m)/vec_norm_inf(sols_data->y_test, data->m) < TESTS_TOL); // Compare objective values mu_assert("Update rho test solve: Error in objective value!", c_absval(work->info->obj_val - sols_data->obj_value_test) < TESTS_TOL); // Clean workspace osqp_cleanup(work); // Create new problem with different rho and update it osqp_set_default_settings(settings); settings->rho = 0.1; settings->adaptive_rho = 0; settings->check_termination = 1; settings->eps_abs = 5e-05; settings->eps_rel = 5e-05; // Setup workspace exitflag = osqp_setup(&work, data, settings); // Setup correct mu_assert("Basic QP test update rho: Setup error!", exitflag == 0); // Update rho exitflag = osqp_update_rho(work, rho); mu_assert("Basic QP test update rho: Error update rho!", exitflag == 0); // Solve Problem osqp_solve(work); // Compare solver statuses mu_assert("Basic QP test update rho: Error in solver status!", work->info->status_val == sols_data->status_test); // Compare primal solutions mu_assert("Basic QP test update rho: Error in primal solution!", vec_norm_inf_diff(work->solution->x, sols_data->x_test, data->n)/vec_norm_inf(sols_data->x_test, data->n) < TESTS_TOL); // Compare dual solutions mu_assert("Basic QP test update rho: Error in dual solution!", vec_norm_inf_diff(work->solution->y, sols_data->y_test, data->m)/vec_norm_inf(sols_data->y_test, data->m)< TESTS_TOL); // Compare objective values mu_assert("Basic QP test update rho: Error in objective value!", c_absval(work->info->obj_val - sols_data->obj_value_test) < TESTS_TOL); // Get number of iterations n_iter_update_rho = work->info->iter; // Assert same number of iterations mu_assert("Basic QP test update rho: Error in number of iterations!", n_iter_new_solver == n_iter_update_rho); // Cleanup solver osqp_cleanup(work); // Cleanup data clean_problem_basic_qp(data); clean_problem_basic_qp_sols_data(sols_data); // Cleanup c_free(settings); return 0; } #ifdef PROFILING static const char* test_basic_qp_time_limit() { c_int exitflag; // Problem settings OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); // Structures OSQPWorkspace *work; // Workspace OSQPData *data; // Data basic_qp_sols_data *sols_data; // Populate data data = generate_problem_basic_qp(); sols_data = generate_problem_basic_qp_sols_data(); // Define Solver settings as default osqp_set_default_settings(settings); settings->rho = 20; settings->adaptive_rho = 0; // Check default time limit mu_assert("Basic QP test time limit: Default not correct", settings->time_limit == 0); // Setup workspace exitflag = osqp_setup(&work, data, settings); // Setup correct mu_assert("Basic QP test time limit: Setup error!", exitflag == 0); // Solve Problem osqp_solve(work); // Compare solver statuses mu_assert("Basic QP test time limit: Error in no time limit solver status!", work->info->status_val == sols_data->status_test); // Update time limit # ifdef PRINTING osqp_update_time_limit(work, 1e-5); osqp_update_eps_rel(work, 1e-09); osqp_update_eps_abs(work, 1e-09); # else // Not printing makes the code run a lot faster, so we need to make it work harder // to fail by time limit exceeded osqp_update_time_limit(work, 1e-7); osqp_update_eps_rel(work, 1e-12); osqp_update_eps_abs(work, 1e-12); # endif osqp_update_max_iter(work, (c_int)2e9); osqp_update_check_termination(work, 0); // Solve Problem cold_start(work); osqp_solve(work); // Compare solver statuses mu_assert("Basic QP test time limit: Error in timed out solver status!", work->info->status_val == OSQP_TIME_LIMIT_REACHED); // Cleanup solver osqp_cleanup(work); // Cleanup data clean_problem_basic_qp(data); clean_problem_basic_qp_sols_data(sols_data); // Cleanup c_free(settings); return 0; } #endif // PROFILING static const char* test_basic_qp_warm_start() { c_int exitflag, iter; // Cold started variables c_float x0[2] = { 0.0, 0.0, }; c_float y0[4] = { 0.0, 0.0, 0.0, 0.0, }; // Optimal solution c_float xopt[2] = { 0.3, 0.7, }; c_float yopt[4] = {-2.9, 0.0, 0.2, 0.0, }; // Problem settings OSQPSettings *settings = (OSQPSettings *)c_malloc(sizeof(OSQPSettings)); // Structures OSQPWorkspace *work; // Workspace OSQPData *data; // Data basic_qp_sols_data *sols_data; // Populate data data = generate_problem_basic_qp(); sols_data = generate_problem_basic_qp_sols_data(); // Define Solver settings as default osqp_set_default_settings(settings); settings->check_termination = 1; // Setup workspace exitflag = osqp_setup(&work, data, settings); // Solve Problem osqp_solve(work); iter = work->info->iter; // Cold start and solve again osqp_warm_start(work, x0, y0); osqp_solve(work); // Check if the number of iterations is the same mu_assert("Basic QP test warm start: Cold start error!", work->info->iter == iter); // Warm start from the solution and solve again osqp_warm_start_x(work, xopt); osqp_warm_start_y(work, yopt); osqp_solve(work); // Check that the number of iterations equals 1 mu_assert("Basic QP test warm start: Warm start error!", work->info->iter == 1); // Cleanup solver osqp_cleanup(work); // Cleanup data clean_problem_basic_qp(data); clean_problem_basic_qp_sols_data(sols_data); // Cleanup c_free(settings); return 0; } static const char* test_basic_qp() { mu_run_test(test_basic_qp_solve); #ifdef ENABLE_MKL_PARDISO mu_run_test(test_basic_qp_solve_pardiso); #endif mu_run_test(test_basic_qp_update); mu_run_test(test_basic_qp_check_termination); mu_run_test(test_basic_qp_update_rho); #ifdef PROFILING mu_run_test(test_basic_qp_time_limit); #endif mu_run_test(test_basic_qp_warm_start); return 0; }