import numpy as np from scipy import sparse import utils.codegen_utils as cu P = sparse.triu([[11., 0.], [0., 0.]], format='csc') q = np.array([3., 4.]) A = sparse.csc_matrix(np.array([[-1., 0.], [0., -1.], [-1., 3.], [2., 5.], [3., 4]])) l = -np.inf * np.ones(A.shape[0]) u = np.array([0., 0., -15., 100., 80.]) n = P.shape[0] m = A.shape[0] # New data q_new = np.array([1., 1.]) u_new = np.array([-2., 0., -20., 100., 80.]) # Generate problem solutions sols_data = {'x_test': np.array([15., -0.]), 'y_test': np.array([0., 508., 168., 0., 0.]), 'obj_value_test': 1282.5, 'status_test': 'optimal', 'q_new': q_new, 'u_new': u_new, 'x_test_new': np.array([20., -0.]), 'y_test_new': np.array([0., 664., 221., 0., 0.]), 'obj_value_test_new': 2220.0, 'status_test_new': 'optimal'} # Generate problem data cu.generate_problem_data(P, q, A, l, u, 'basic_qp2', sols_data)