import numpy as np from scipy import sparse import utils.codegen_utils as cu P = sparse.triu([[2., 5.], [5., 1.]], format='csc') q = np.array([3., 4.]) A = sparse.csc_matrix([[-1., 0.], [0., -1.], [-1., 3.], [2., 5.], [3., 4]]) l = -np.inf * np.ones(A.shape[0]) u = np.array([0., 0., -15., 100., 80.]) sols_data = {'sigma_new': 5} # Generate problem data cu.generate_problem_data(P, q, A, l, u, 'non_cvx', sols_data)