// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include #include #include #include #include #include #include "db/db_impl/db_impl.h" #include "db/dbformat.h" #include "db/job_context.h" #include "db/version_set.h" #include "db/write_batch_internal.h" #include "env/mock_env.h" #include "file/filename.h" #include "monitoring/statistics_impl.h" #include "monitoring/thread_status_util.h" #include "port/stack_trace.h" #include "rocksdb/cache.h" #include "rocksdb/compaction_filter.h" #include "rocksdb/convenience.h" #include "rocksdb/db.h" #include "rocksdb/env.h" #include "rocksdb/experimental.h" #include "rocksdb/filter_policy.h" #include "rocksdb/options.h" #include "rocksdb/perf_context.h" #include "rocksdb/slice.h" #include "rocksdb/slice_transform.h" #include "rocksdb/table.h" #include "rocksdb/table_properties.h" #include "rocksdb/thread_status.h" #include "rocksdb/utilities/checkpoint.h" #include "rocksdb/utilities/write_batch_with_index.h" #include "table/block_based/block_based_table_factory.h" #include "table/mock_table.h" #include "table/plain/plain_table_factory.h" #include "test_util/sync_point.h" #include "test_util/testharness.h" #include "test_util/testutil.h" #include "util/cast_util.h" #include "util/compression.h" #include "util/hash.h" #include "util/mutexlock.h" #include "util/rate_limiter_impl.h" #include "util/string_util.h" #include "utilities/merge_operators.h" #if !defined(IOS_CROSS_COMPILE) namespace ROCKSDB_NAMESPACE { static std::string RandomString(Random* rnd, int len, double ratio) { std::string r; test::CompressibleString(rnd, ratio, len, &r); return r; } std::string Key(uint64_t key, int length) { const int kBufSize = 1000; char buf[kBufSize]; if (length > kBufSize) { length = kBufSize; } snprintf(buf, kBufSize, "%0*" PRIu64, length, key); return std::string(buf); } class CompactionJobStatsTest : public testing::Test, public testing::WithParamInterface { public: std::string dbname_; std::string alternative_wal_dir_; Env* env_; DB* db_; std::vector handles_; uint32_t max_subcompactions_; Options last_options_; CompactionJobStatsTest() : env_(Env::Default()) { env_->SetBackgroundThreads(1, Env::LOW); env_->SetBackgroundThreads(1, Env::HIGH); dbname_ = test::PerThreadDBPath("compaction_job_stats_test"); alternative_wal_dir_ = dbname_ + "/wal"; Options options; options.create_if_missing = true; max_subcompactions_ = GetParam(); options.max_subcompactions = max_subcompactions_; auto delete_options = options; delete_options.wal_dir = alternative_wal_dir_; EXPECT_OK(DestroyDB(dbname_, delete_options)); // Destroy it for not alternative WAL dir is used. EXPECT_OK(DestroyDB(dbname_, options)); db_ = nullptr; Reopen(options); } ~CompactionJobStatsTest() override { ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing(); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({}); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks(); Close(); Options options; options.db_paths.emplace_back(dbname_, 0); options.db_paths.emplace_back(dbname_ + "_2", 0); options.db_paths.emplace_back(dbname_ + "_3", 0); options.db_paths.emplace_back(dbname_ + "_4", 0); EXPECT_OK(DestroyDB(dbname_, options)); } // Required if inheriting from testing::WithParamInterface<> static void SetUpTestCase() {} static void TearDownTestCase() {} DBImpl* dbfull() { return static_cast_with_check(db_); } void CreateColumnFamilies(const std::vector& cfs, const Options& options) { ColumnFamilyOptions cf_opts(options); size_t cfi = handles_.size(); handles_.resize(cfi + cfs.size()); for (const auto& cf : cfs) { ASSERT_OK(db_->CreateColumnFamily(cf_opts, cf, &handles_[cfi++])); } } void CreateAndReopenWithCF(const std::vector& cfs, const Options& options) { CreateColumnFamilies(cfs, options); std::vector cfs_plus_default = cfs; cfs_plus_default.insert(cfs_plus_default.begin(), kDefaultColumnFamilyName); ReopenWithColumnFamilies(cfs_plus_default, options); } void ReopenWithColumnFamilies(const std::vector& cfs, const std::vector& options) { ASSERT_OK(TryReopenWithColumnFamilies(cfs, options)); } void ReopenWithColumnFamilies(const std::vector& cfs, const Options& options) { ASSERT_OK(TryReopenWithColumnFamilies(cfs, options)); } Status TryReopenWithColumnFamilies(const std::vector& cfs, const std::vector& options) { Close(); EXPECT_EQ(cfs.size(), options.size()); std::vector column_families; for (size_t i = 0; i < cfs.size(); ++i) { column_families.emplace_back(cfs[i], options[i]); } DBOptions db_opts = DBOptions(options[0]); return DB::Open(db_opts, dbname_, column_families, &handles_, &db_); } Status TryReopenWithColumnFamilies(const std::vector& cfs, const Options& options) { Close(); std::vector v_opts(cfs.size(), options); return TryReopenWithColumnFamilies(cfs, v_opts); } void Reopen(const Options& options) { ASSERT_OK(TryReopen(options)); } void Close() { for (auto h : handles_) { delete h; } handles_.clear(); delete db_; db_ = nullptr; } void DestroyAndReopen(const Options& options) { // Destroy using last options Destroy(last_options_); ASSERT_OK(TryReopen(options)); } void Destroy(const Options& options) { Close(); ASSERT_OK(DestroyDB(dbname_, options)); } Status ReadOnlyReopen(const Options& options) { return DB::OpenForReadOnly(options, dbname_, &db_); } Status TryReopen(const Options& options) { Close(); last_options_ = options; return DB::Open(options, dbname_, &db_); } Status Flush(int cf = 0) { if (cf == 0) { return db_->Flush(FlushOptions()); } else { return db_->Flush(FlushOptions(), handles_[cf]); } } Status Put(const Slice& k, const Slice& v, WriteOptions wo = WriteOptions()) { return db_->Put(wo, k, v); } Status Put(int cf, const Slice& k, const Slice& v, WriteOptions wo = WriteOptions()) { return db_->Put(wo, handles_[cf], k, v); } Status Delete(const std::string& k) { return db_->Delete(WriteOptions(), k); } Status Delete(int cf, const std::string& k) { return db_->Delete(WriteOptions(), handles_[cf], k); } std::string Get(const std::string& k, const Snapshot* snapshot = nullptr) { ReadOptions options; options.verify_checksums = true; options.snapshot = snapshot; std::string result; Status s = db_->Get(options, k, &result); if (s.IsNotFound()) { result = "NOT_FOUND"; } else if (!s.ok()) { result = s.ToString(); } return result; } std::string Get(int cf, const std::string& k, const Snapshot* snapshot = nullptr) { ReadOptions options; options.verify_checksums = true; options.snapshot = snapshot; std::string result; Status s = db_->Get(options, handles_[cf], k, &result); if (s.IsNotFound()) { result = "NOT_FOUND"; } else if (!s.ok()) { result = s.ToString(); } return result; } int NumTableFilesAtLevel(int level, int cf = 0) { std::string property; if (cf == 0) { // default cfd EXPECT_TRUE(db_->GetProperty( "rocksdb.num-files-at-level" + std::to_string(level), &property)); } else { EXPECT_TRUE(db_->GetProperty( handles_[cf], "rocksdb.num-files-at-level" + std::to_string(level), &property)); } return atoi(property.c_str()); } // Return spread of files per level std::string FilesPerLevel(int cf = 0) { int num_levels = (cf == 0) ? db_->NumberLevels() : db_->NumberLevels(handles_[1]); std::string result; size_t last_non_zero_offset = 0; for (int level = 0; level < num_levels; level++) { int f = NumTableFilesAtLevel(level, cf); char buf[100]; snprintf(buf, sizeof(buf), "%s%d", (level ? "," : ""), f); result += buf; if (f > 0) { last_non_zero_offset = result.size(); } } result.resize(last_non_zero_offset); return result; } Status Size(uint64_t* size, const Slice& start, const Slice& limit, int cf = 0) { Range r(start, limit); if (cf == 0) { return db_->GetApproximateSizes(&r, 1, size); } else { return db_->GetApproximateSizes(handles_[1], &r, 1, size); } } void Compact(int cf, const Slice& start, const Slice& limit, uint32_t target_path_id) { CompactRangeOptions compact_options; compact_options.target_path_id = target_path_id; ASSERT_OK(db_->CompactRange(compact_options, handles_[cf], &start, &limit)); } void Compact(int cf, const Slice& start, const Slice& limit) { ASSERT_OK( db_->CompactRange(CompactRangeOptions(), handles_[cf], &start, &limit)); } void Compact(const Slice& start, const Slice& limit) { ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &start, &limit)); } void TEST_Compact(int level, int cf, const Slice& start, const Slice& limit) { ASSERT_OK(dbfull()->TEST_CompactRange(level, &start, &limit, handles_[cf], true /* disallow trivial move */)); } // Do n memtable compactions, each of which produces an sstable // covering the range [small,large]. void MakeTables(int n, const std::string& small, const std::string& large, int cf = 0) { for (int i = 0; i < n; i++) { ASSERT_OK(Put(cf, small, "begin")); ASSERT_OK(Put(cf, large, "end")); ASSERT_OK(Flush(cf)); } } static void SetDeletionCompactionStats(CompactionJobStats* stats, uint64_t input_deletions, uint64_t expired_deletions, uint64_t records_replaced) { stats->num_input_deletion_records = input_deletions; stats->num_expired_deletion_records = expired_deletions; stats->num_records_replaced = records_replaced; } void MakeTableWithKeyValues(Random* rnd, uint64_t smallest, uint64_t largest, int key_size, int value_size, uint64_t interval, double ratio, int cf = 0) { for (auto key = smallest; key < largest; key += interval) { ASSERT_OK(Put(cf, Slice(Key(key, key_size)), Slice(RandomString(rnd, value_size, ratio)))); } ASSERT_OK(Flush(cf)); } // This function behaves with the implicit understanding that two // rounds of keys are inserted into the database, as per the behavior // of the DeletionStatsTest. void SelectivelyDeleteKeys(uint64_t smallest, uint64_t largest, uint64_t interval, int deletion_interval, int key_size, uint64_t cutoff_key_num, CompactionJobStats* stats, int cf = 0) { // interval needs to be >= 2 so that deletion entries can be inserted // that are intended to not result in an actual key deletion by using // an offset of 1 from another existing key ASSERT_GE(interval, 2); uint64_t ctr = 1; uint32_t deletions_made = 0; uint32_t num_deleted = 0; uint32_t num_expired = 0; for (auto key = smallest; key <= largest; key += interval, ctr++) { if (ctr % deletion_interval == 0) { ASSERT_OK(Delete(cf, Key(key, key_size))); deletions_made++; num_deleted++; if (key > cutoff_key_num) { num_expired++; } } } // Insert some deletions for keys that don't exist that // are both in and out of the key range ASSERT_OK(Delete(cf, Key(smallest + 1, key_size))); deletions_made++; ASSERT_OK(Delete(cf, Key(smallest - 1, key_size))); deletions_made++; num_expired++; ASSERT_OK(Delete(cf, Key(smallest - 9, key_size))); deletions_made++; num_expired++; ASSERT_OK(Flush(cf)); SetDeletionCompactionStats(stats, deletions_made, num_expired, num_deleted); } }; // An EventListener which helps verify the compaction results in // test CompactionJobStatsTest. class CompactionJobStatsChecker : public EventListener { public: CompactionJobStatsChecker() : compression_enabled_(false), verify_next_comp_io_stats_(false) {} size_t NumberOfUnverifiedStats() { return expected_stats_.size(); } void set_verify_next_comp_io_stats(bool v) { verify_next_comp_io_stats_ = v; } // Once a compaction completed, this function will verify the returned // CompactionJobInfo with the oldest CompactionJobInfo added earlier // in "expected_stats_" which has not yet being used for verification. void OnCompactionCompleted(DB* /*db*/, const CompactionJobInfo& ci) override { if (verify_next_comp_io_stats_) { ASSERT_GT(ci.stats.file_write_nanos, 0); ASSERT_GT(ci.stats.file_range_sync_nanos, 0); ASSERT_GT(ci.stats.file_fsync_nanos, 0); ASSERT_GT(ci.stats.file_prepare_write_nanos, 0); verify_next_comp_io_stats_ = false; } std::lock_guard lock(mutex_); if (expected_stats_.size()) { Verify(ci.stats, expected_stats_.front()); expected_stats_.pop(); } } // A helper function which verifies whether two CompactionJobStats // match. The verification of all compaction stats are done by // ASSERT_EQ except for the total input / output bytes, which we // use ASSERT_GE and ASSERT_LE with a reasonable bias --- // 10% in uncompressed case and 20% when compression is used. virtual void Verify(const CompactionJobStats& current_stats, const CompactionJobStats& stats) { // time ASSERT_GT(current_stats.elapsed_micros, 0U); ASSERT_EQ(current_stats.num_input_records, stats.num_input_records); ASSERT_EQ(current_stats.num_input_files, stats.num_input_files); ASSERT_EQ(current_stats.num_input_files_at_output_level, stats.num_input_files_at_output_level); ASSERT_EQ(current_stats.num_output_records, stats.num_output_records); ASSERT_EQ(current_stats.num_output_files, stats.num_output_files); ASSERT_EQ(current_stats.is_full_compaction, stats.is_full_compaction); ASSERT_EQ(current_stats.is_manual_compaction, stats.is_manual_compaction); // file size double kFileSizeBias = compression_enabled_ ? 0.20 : 0.10; ASSERT_GE(current_stats.total_input_bytes * (1.00 + kFileSizeBias), stats.total_input_bytes); ASSERT_LE(current_stats.total_input_bytes, stats.total_input_bytes * (1.00 + kFileSizeBias)); ASSERT_GE(current_stats.total_output_bytes * (1.00 + kFileSizeBias), stats.total_output_bytes); ASSERT_LE(current_stats.total_output_bytes, stats.total_output_bytes * (1.00 + kFileSizeBias)); ASSERT_EQ(current_stats.total_input_raw_key_bytes, stats.total_input_raw_key_bytes); ASSERT_EQ(current_stats.total_input_raw_value_bytes, stats.total_input_raw_value_bytes); ASSERT_EQ(current_stats.num_records_replaced, stats.num_records_replaced); ASSERT_EQ(current_stats.num_corrupt_keys, stats.num_corrupt_keys); ASSERT_EQ(std::string(current_stats.smallest_output_key_prefix), std::string(stats.smallest_output_key_prefix)); ASSERT_EQ(std::string(current_stats.largest_output_key_prefix), std::string(stats.largest_output_key_prefix)); } // Add an expected compaction stats, which will be used to // verify the CompactionJobStats returned by the OnCompactionCompleted() // callback. void AddExpectedStats(const CompactionJobStats& stats) { std::lock_guard lock(mutex_); expected_stats_.push(stats); } void EnableCompression(bool flag) { compression_enabled_ = flag; } bool verify_next_comp_io_stats() const { return verify_next_comp_io_stats_; } private: std::mutex mutex_; std::queue expected_stats_; bool compression_enabled_; bool verify_next_comp_io_stats_; }; // An EventListener which helps verify the compaction statistics in // the test DeletionStatsTest. class CompactionJobDeletionStatsChecker : public CompactionJobStatsChecker { public: // Verifies whether two CompactionJobStats match. void Verify(const CompactionJobStats& current_stats, const CompactionJobStats& stats) override { ASSERT_EQ(current_stats.num_input_deletion_records, stats.num_input_deletion_records); ASSERT_EQ(current_stats.num_expired_deletion_records, stats.num_expired_deletion_records); ASSERT_EQ(current_stats.num_records_replaced, stats.num_records_replaced); ASSERT_EQ(current_stats.num_corrupt_keys, stats.num_corrupt_keys); } }; namespace { uint64_t EstimatedFileSize(uint64_t num_records, size_t key_size, size_t value_size, double compression_ratio = 1.0, size_t block_size = 4096, int bloom_bits_per_key = 10) { const size_t kPerKeyOverhead = 8; const size_t kFooterSize = 512; uint64_t data_size = static_cast( num_records * (key_size + value_size * compression_ratio + kPerKeyOverhead)); return data_size + kFooterSize + num_records * bloom_bits_per_key / 8 // filter block + data_size * (key_size + 8) / block_size; // index block } namespace { void CopyPrefix(const Slice& src, size_t prefix_length, std::string* dst) { assert(prefix_length > 0); size_t length = src.size() > prefix_length ? prefix_length : src.size(); dst->assign(src.data(), length); } } // namespace CompactionJobStats NewManualCompactionJobStats( const std::string& smallest_key, const std::string& largest_key, size_t num_input_files, size_t num_input_files_at_output_level, uint64_t num_input_records, size_t key_size, size_t value_size, size_t num_output_files, uint64_t num_output_records, double compression_ratio, uint64_t num_records_replaced, bool is_full = false, bool is_manual = true) { CompactionJobStats stats; stats.Reset(); stats.num_input_records = num_input_records; stats.num_input_files = num_input_files; stats.num_input_files_at_output_level = num_input_files_at_output_level; stats.num_output_records = num_output_records; stats.num_output_files = num_output_files; stats.total_input_bytes = EstimatedFileSize(num_input_records / num_input_files, key_size, value_size, compression_ratio) * num_input_files; stats.total_output_bytes = EstimatedFileSize(num_output_records / num_output_files, key_size, value_size, compression_ratio) * num_output_files; stats.total_input_raw_key_bytes = num_input_records * (key_size + 8); stats.total_input_raw_value_bytes = num_input_records * value_size; stats.is_full_compaction = is_full; stats.is_manual_compaction = is_manual; stats.num_records_replaced = num_records_replaced; CopyPrefix(smallest_key, CompactionJobStats::kMaxPrefixLength, &stats.smallest_output_key_prefix); CopyPrefix(largest_key, CompactionJobStats::kMaxPrefixLength, &stats.largest_output_key_prefix); return stats; } CompressionType GetAnyCompression() { if (Snappy_Supported()) { return kSnappyCompression; } else if (Zlib_Supported()) { return kZlibCompression; } else if (BZip2_Supported()) { return kBZip2Compression; } else if (LZ4_Supported()) { return kLZ4Compression; } else if (XPRESS_Supported()) { return kXpressCompression; } return kNoCompression; } } // namespace TEST_P(CompactionJobStatsTest, CompactionJobStatsTest) { Random rnd(301); const int kBufSize = 100; char buf[kBufSize]; uint64_t key_base = 100000000l; // Note: key_base must be multiple of num_keys_per_L0_file int num_keys_per_L0_file = 100; const int kTestScale = 8; const int kKeySize = 10; const int kValueSize = 1000; const double kCompressionRatio = 0.5; double compression_ratio = 1.0; uint64_t key_interval = key_base / num_keys_per_L0_file; // Whenever a compaction completes, this listener will try to // verify whether the returned CompactionJobStats matches // what we expect. The expected CompactionJobStats is added // via AddExpectedStats(). auto* stats_checker = new CompactionJobStatsChecker(); Options options; options.level_compaction_dynamic_level_bytes = false; options.listeners.emplace_back(stats_checker); options.create_if_missing = true; // just enough setting to hold off auto-compaction. options.level0_file_num_compaction_trigger = kTestScale + 1; options.num_levels = 3; options.compression = kNoCompression; options.max_subcompactions = max_subcompactions_; options.bytes_per_sync = 512 * 1024; options.report_bg_io_stats = true; for (int test = 0; test < 2; ++test) { DestroyAndReopen(options); CreateAndReopenWithCF({"pikachu"}, options); // 1st Phase: generate "num_L0_files" L0 files. int num_L0_files = 0; for (uint64_t start_key = key_base; start_key <= key_base * kTestScale; start_key += key_base) { MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1, kKeySize, kValueSize, key_interval, compression_ratio, 1); snprintf(buf, kBufSize, "%d", ++num_L0_files); ASSERT_EQ(std::string(buf), FilesPerLevel(1)); } ASSERT_EQ(std::to_string(num_L0_files), FilesPerLevel(1)); // 2nd Phase: perform L0 -> L1 compaction. int L0_compaction_count = 6; int count = 1; std::string smallest_key; std::string largest_key; for (uint64_t start_key = key_base; start_key <= key_base * L0_compaction_count; start_key += key_base, count++) { smallest_key = Key(start_key, 10); largest_key = Key(start_key + key_base - key_interval, 10); stats_checker->AddExpectedStats(NewManualCompactionJobStats( smallest_key, largest_key, 1, 0, num_keys_per_L0_file, kKeySize, kValueSize, 1, num_keys_per_L0_file, compression_ratio, 0)); ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U); TEST_Compact(0, 1, smallest_key, largest_key); snprintf(buf, kBufSize, "%d,%d", num_L0_files - count, count); ASSERT_EQ(std::string(buf), FilesPerLevel(1)); } // compact two files into one in the last L0 -> L1 compaction int num_remaining_L0 = num_L0_files - L0_compaction_count; smallest_key = Key(key_base * (L0_compaction_count + 1), 10); largest_key = Key(key_base * (kTestScale + 1) - key_interval, 10); stats_checker->AddExpectedStats(NewManualCompactionJobStats( smallest_key, largest_key, num_remaining_L0, 0, num_keys_per_L0_file * num_remaining_L0, kKeySize, kValueSize, 1, num_keys_per_L0_file * num_remaining_L0, compression_ratio, 0)); ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U); TEST_Compact(0, 1, smallest_key, largest_key); int num_L1_files = num_L0_files - num_remaining_L0 + 1; num_L0_files = 0; snprintf(buf, kBufSize, "%d,%d", num_L0_files, num_L1_files); ASSERT_EQ(std::string(buf), FilesPerLevel(1)); // 3rd Phase: generate sparse L0 files (wider key-range, same num of keys) int sparseness = 2; for (uint64_t start_key = key_base; start_key <= key_base * kTestScale; start_key += key_base * sparseness) { MakeTableWithKeyValues( &rnd, start_key, start_key + key_base * sparseness - 1, kKeySize, kValueSize, key_base * sparseness / num_keys_per_L0_file, compression_ratio, 1); snprintf(buf, kBufSize, "%d,%d", ++num_L0_files, num_L1_files); ASSERT_EQ(std::string(buf), FilesPerLevel(1)); } // 4th Phase: perform L0 -> L1 compaction again, expect higher write amp // When subcompactions are enabled, the number of output files increases // by 1 because multiple threads are consuming the input and generating // output files without coordinating to see if the output could fit into // a smaller number of files like it does when it runs sequentially int num_output_files = options.max_subcompactions > 1 ? 2 : 1; for (uint64_t start_key = key_base; num_L0_files > 1; start_key += key_base * sparseness) { smallest_key = Key(start_key, 10); largest_key = Key(start_key + key_base * sparseness - key_interval, 10); stats_checker->AddExpectedStats(NewManualCompactionJobStats( smallest_key, largest_key, 3, 2, num_keys_per_L0_file * 3, kKeySize, kValueSize, num_output_files, num_keys_per_L0_file * 2, // 1/3 of the data will be updated. compression_ratio, num_keys_per_L0_file)); ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U); Compact(1, smallest_key, largest_key); if (options.max_subcompactions == 1) { --num_L1_files; } snprintf(buf, kBufSize, "%d,%d", --num_L0_files, num_L1_files); ASSERT_EQ(std::string(buf), FilesPerLevel(1)); } // 5th Phase: Do a full compaction, which involves in two sub-compactions. // Here we expect to have 1 L0 files and 4 L1 files // In the first sub-compaction, we expect L0 compaction. smallest_key = Key(key_base, 10); largest_key = Key(key_base * (kTestScale + 1) - key_interval, 10); stats_checker->AddExpectedStats(NewManualCompactionJobStats( Key(key_base * (kTestScale + 1 - sparseness), 10), largest_key, 2, 1, num_keys_per_L0_file * 3, kKeySize, kValueSize, 1, num_keys_per_L0_file * 2, compression_ratio, num_keys_per_L0_file)); ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U); Compact(1, smallest_key, largest_key); num_L1_files = options.max_subcompactions > 1 ? 7 : 4; char L1_buf[4]; snprintf(L1_buf, sizeof(L1_buf), "0,%d", num_L1_files); std::string L1_files(L1_buf); ASSERT_EQ(L1_files, FilesPerLevel(1)); options.compression = GetAnyCompression(); if (options.compression == kNoCompression) { break; } stats_checker->EnableCompression(true); compression_ratio = kCompressionRatio; for (int i = 0; i < 5; i++) { ASSERT_OK(Put(1, Slice(Key(key_base + i, 10)), Slice(RandomString(&rnd, 512 * 1024, 1)))); } ASSERT_OK(Flush(1)); ASSERT_OK(static_cast_with_check(db_)->TEST_WaitForCompact()); stats_checker->set_verify_next_comp_io_stats(true); std::atomic first_prepare_write(true); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "WritableFileWriter::Append:BeforePrepareWrite", [&](void* /*arg*/) { if (first_prepare_write.load()) { options.env->SleepForMicroseconds(3); first_prepare_write.store(false); } }); std::atomic first_flush(true); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "WritableFileWriter::Flush:BeforeAppend", [&](void* /*arg*/) { if (first_flush.load()) { options.env->SleepForMicroseconds(3); first_flush.store(false); } }); std::atomic first_sync(true); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "WritableFileWriter::SyncInternal:0", [&](void* /*arg*/) { if (first_sync.load()) { options.env->SleepForMicroseconds(3); first_sync.store(false); } }); std::atomic first_range_sync(true); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "WritableFileWriter::RangeSync:0", [&](void* /*arg*/) { if (first_range_sync.load()) { options.env->SleepForMicroseconds(3); first_range_sync.store(false); } }); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); Compact(1, smallest_key, largest_key); ASSERT_TRUE(!stats_checker->verify_next_comp_io_stats()); ASSERT_TRUE(!first_prepare_write.load()); ASSERT_TRUE(!first_flush.load()); ASSERT_TRUE(!first_sync.load()); ASSERT_TRUE(!first_range_sync.load()); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing(); } ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 0U); } TEST_P(CompactionJobStatsTest, DeletionStatsTest) { Random rnd(301); uint64_t key_base = 100000l; // Note: key_base must be multiple of num_keys_per_L0_file int num_keys_per_L0_file = 20; const int kTestScale = 8; // make sure this is even const int kKeySize = 10; const int kValueSize = 100; double compression_ratio = 1.0; uint64_t key_interval = key_base / num_keys_per_L0_file; uint64_t largest_key_num = key_base * (kTestScale + 1) - key_interval; uint64_t cutoff_key_num = key_base * (kTestScale / 2 + 1) - key_interval; const std::string smallest_key = Key(key_base - 10, kKeySize); const std::string largest_key = Key(largest_key_num + 10, kKeySize); // Whenever a compaction completes, this listener will try to // verify whether the returned CompactionJobStats matches // what we expect. auto* stats_checker = new CompactionJobDeletionStatsChecker(); Options options; options.level_compaction_dynamic_level_bytes = false; options.listeners.emplace_back(stats_checker); options.create_if_missing = true; options.level0_file_num_compaction_trigger = kTestScale + 1; options.num_levels = 3; options.compression = kNoCompression; options.max_bytes_for_level_multiplier = 2; options.max_subcompactions = max_subcompactions_; DestroyAndReopen(options); CreateAndReopenWithCF({"pikachu"}, options); // Stage 1: Generate several L0 files and then send them to L2 by // using CompactRangeOptions and CompactRange(). These files will // have a strict subset of the keys from the full key-range for (uint64_t start_key = key_base; start_key <= key_base * kTestScale / 2; start_key += key_base) { MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1, kKeySize, kValueSize, key_interval, compression_ratio, 1); } CompactRangeOptions cr_options; cr_options.change_level = true; cr_options.target_level = 2; ASSERT_OK(db_->CompactRange(cr_options, handles_[1], nullptr, nullptr)); ASSERT_GT(NumTableFilesAtLevel(2, 1), 0); // Stage 2: Generate files including keys from the entire key range for (uint64_t start_key = key_base; start_key <= key_base * kTestScale; start_key += key_base) { MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1, kKeySize, kValueSize, key_interval, compression_ratio, 1); } // Send these L0 files to L1 TEST_Compact(0, 1, smallest_key, largest_key); ASSERT_GT(NumTableFilesAtLevel(1, 1), 0); // Add a new record and flush so now there is a L0 file // with a value too (not just deletions from the next step) ASSERT_OK(Put(1, Key(key_base - 6, kKeySize), "test")); ASSERT_OK(Flush(1)); // Stage 3: Generate L0 files with some deletions so now // there are files with the same key range in L0, L1, and L2 int deletion_interval = 3; CompactionJobStats first_compaction_stats; SelectivelyDeleteKeys(key_base, largest_key_num, key_interval, deletion_interval, kKeySize, cutoff_key_num, &first_compaction_stats, 1); stats_checker->AddExpectedStats(first_compaction_stats); // Stage 4: Trigger compaction and verify the stats TEST_Compact(0, 1, smallest_key, largest_key); } namespace { int GetUniversalCompactionInputUnits(uint32_t num_flushes) { uint32_t compaction_input_units; for (compaction_input_units = 1; num_flushes >= compaction_input_units; compaction_input_units *= 2) { if ((num_flushes & compaction_input_units) != 0) { return compaction_input_units > 1 ? compaction_input_units : 0; } } return 0; } } // namespace TEST_P(CompactionJobStatsTest, UniversalCompactionTest) { Random rnd(301); uint64_t key_base = 100000000l; // Note: key_base must be multiple of num_keys_per_L0_file int num_keys_per_table = 100; const uint32_t kTestScale = 6; const int kKeySize = 10; const int kValueSize = 900; double compression_ratio = 1.0; uint64_t key_interval = key_base / num_keys_per_table; auto* stats_checker = new CompactionJobStatsChecker(); Options options; options.listeners.emplace_back(stats_checker); options.create_if_missing = true; options.num_levels = 3; options.compression = kNoCompression; options.level0_file_num_compaction_trigger = 2; options.target_file_size_base = num_keys_per_table * 1000; options.compaction_style = kCompactionStyleUniversal; options.compaction_options_universal.size_ratio = 1; options.compaction_options_universal.max_size_amplification_percent = 1000; options.max_subcompactions = max_subcompactions_; DestroyAndReopen(options); CreateAndReopenWithCF({"pikachu"}, options); // Generates the expected CompactionJobStats for each compaction for (uint32_t num_flushes = 2; num_flushes <= kTestScale; num_flushes++) { // Here we treat one newly flushed file as an unit. // // For example, if a newly flushed file is 100k, and a compaction has // 4 input units, then this compaction inputs 400k. uint32_t num_input_units = GetUniversalCompactionInputUnits(num_flushes); if (num_input_units == 0) { continue; } // A full compaction only happens when the number of flushes equals to // the number of compaction input runs. bool is_full = num_flushes == num_input_units; // The following statement determines the expected smallest key // based on whether it is a full compaction. uint64_t smallest_key = is_full ? key_base : key_base * (num_flushes - 1); stats_checker->AddExpectedStats(NewManualCompactionJobStats( Key(smallest_key, 10), Key(smallest_key + key_base * num_input_units - key_interval, 10), num_input_units, num_input_units > 2 ? num_input_units / 2 : 0, num_keys_per_table * num_input_units, kKeySize, kValueSize, num_input_units, num_keys_per_table * num_input_units, 1.0, 0, is_full, false)); ASSERT_OK(dbfull()->TEST_WaitForCompact()); } ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 3U); for (uint64_t start_key = key_base; start_key <= key_base * kTestScale; start_key += key_base) { MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1, kKeySize, kValueSize, key_interval, compression_ratio, 1); ASSERT_OK(static_cast_with_check(db_)->TEST_WaitForCompact()); } ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 0U); } INSTANTIATE_TEST_CASE_P(CompactionJobStatsTest, CompactionJobStatsTest, ::testing::Values(1, 4)); } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } #else int main(int /*argc*/, char** /*argv*/) { return 0; } #endif // !defined(IOS_CROSS_COMPILE)