
1 Pratt Parsing

1.1 Language:

t ::= a (atom)
| � (operator)

� ::= i�j (infix operator)
| �i (prefix operator)
| i� (suffix operator)

state ::= t
⌈
�

⌉
t (parse expression)

| t
⌊
�

⌋
t (parse suffix)

?�j is shorthand for i�j or �j

i�? is shorthand for i�j or i�

1.2 Evaluation:

• The inital state for a token stream t is
⌈ ⌉

t.

• The final state is t′
⌊ ⌋

, where t′ is the original tokens rearranged in
RPN.

1. t′
⌈
�

⌉
a t → t′ a

⌊
�

⌋
t

2. t′
⌈
�

⌉
�i t → t′

⌈
� �i

⌉
t

3. t′
⌊
� ?�i

⌋
j�? t → t′ ?�i

⌊
�

⌋
j�? t if i < j

4. t′
⌊
� ?�i

⌋
j�k t → t′

⌈
� ?�i j�k

⌉
t if i > j

5. t′
⌊
� ?�i

⌋
j� t → t′ j�

⌊
� ?�i

⌋
t if i > j

6. t′
⌊ ⌋

i�j t → t′
⌈

i�j

⌉
t

7. t′
⌊ ⌋

i� t → t′ i�
⌊ ⌋

t

8. t′
⌊
� �

⌋
→ t′ �

⌊
�

⌋
1.3 Derivations of some of the rules:

Rule 2. A prefix should act as if it were an atom followed by an infix operator
with maximally low (tight) left precedence. Thus:

1



t′
⌈
�

⌉
�i t

≈ t′
⌈
�

⌉
a 0�i t

→1 t′ a
⌊
�

⌋
0�i t

→4 t′ a
⌊
� 0�i

⌋
t

≈ t′
⌊
� �i

⌋
t

Rule 5. A suffix should act as if it were an infix operator with maximally low
(tight) right precedence, followed by an atom. Thus:

t′
⌊
� ?�i

⌋
j� t

≈ t′
⌊
� ?�i

⌋
j�0 a t

→4 t′
⌈
� ?�i j�0

⌉
a t

→1 t′ a
⌊
� ?�i j�0

⌋
t

→3 t′ a j�0

⌊
� ?�i

⌋
t

≈ t′ j�
⌊
� ?�i

⌋
t

Rule 6. The bottom of the operator stack should act as if it contains a max-
imally high precedence (weakly binding) operator. Thus:

t′
⌊ ⌋

i�j t ≈ t′
⌊
�∞

⌋
i�j t →4 t′

⌈
�∞ i�j

⌉
t ≈ t′

⌈
i�j

⌉
t

Rule 7. Similar to the previous rule.

t′
⌊ ⌋

i� t ≈ t′
⌊
�∞

⌋
i� t →5 t′ i�

⌊
�∞

⌋
t ≈ t′ i�

⌊ ⌋
t

Rule 8. The end of the token stream should act as if it contains a maximally
high precedence (weakly binding) operator. Thus:

t′
⌊
� �

⌋
≈ t′

⌊
� �

⌋
∞� →3 t′ �

⌊
�

⌋
∞� ≈ t′ �

⌊
�

⌋
1.4 Error Cases

To handle potentially malformed inputs gracefully, introduce a special atom
called M (for ”missing”), and a special operator J (for ”juxtaposition”). Insert
M and J as required to make the expression well-formed. For example, 1+
would turn into 1 + M , and 1 2 would turn into 1 J 2.

Using these special tokens, we can ”fill out” the rest of the parsing cases, so
that every expression parses.

9. t′
⌈
�

⌉
i�? t → t′

⌈
�

⌉
M i�? t

10. t′
⌈
�

⌉
→ t′

⌊
�

⌋
M

11. t′
⌊
�

⌋
a t → t′

⌊
�

⌋
J a t

12. t′
⌊
�

⌋
�i t → t′

⌊
�

⌋
J �i t

(You can check that rules 1-12 now cover all cases; parsing never ”gets stuck”.)

2


