// # Faceted Search With Tweak Score // // This example covers the faceted search functionalities of // tantivy. // // We will : // - define a text field "name" in our schema // - define a facet field "classification" in our schema use std::collections::HashSet; use tantivy::collector::TopDocs; use tantivy::query::BooleanQuery; use tantivy::schema::*; use tantivy::{doc, DocId, Index, Score, SegmentReader}; fn main() -> tantivy::Result<()> { let mut schema_builder = Schema::builder(); let title = schema_builder.add_text_field("title", STORED); let ingredient = schema_builder.add_facet_field("ingredient", FacetOptions::default()); let schema = schema_builder.build(); let index = Index::create_in_ram(schema); let mut index_writer = index.writer(30_000_000)?; index_writer.add_document(doc!( title => "Fried egg", ingredient => Facet::from("/ingredient/egg"), ingredient => Facet::from("/ingredient/oil"), ))?; index_writer.add_document(doc!( title => "Scrambled egg", ingredient => Facet::from("/ingredient/egg"), ingredient => Facet::from("/ingredient/butter"), ingredient => Facet::from("/ingredient/milk"), ingredient => Facet::from("/ingredient/salt"), ))?; index_writer.add_document(doc!( title => "Egg rolls", ingredient => Facet::from("/ingredient/egg"), ingredient => Facet::from("/ingredient/garlic"), ingredient => Facet::from("/ingredient/salt"), ingredient => Facet::from("/ingredient/oil"), ingredient => Facet::from("/ingredient/tortilla-wrap"), ingredient => Facet::from("/ingredient/mushroom"), ))?; index_writer.commit()?; let reader = index.reader()?; let searcher = reader.searcher(); { let facets = vec![ Facet::from("/ingredient/egg"), Facet::from("/ingredient/oil"), Facet::from("/ingredient/garlic"), Facet::from("/ingredient/mushroom"), ]; let query = BooleanQuery::new_multiterms_query( facets .iter() .map(|key| Term::from_facet(ingredient, key)) .collect(), ); let top_docs_by_custom_score = // Call TopDocs with a custom tweak score TopDocs::with_limit(2).tweak_score(move |segment_reader: &SegmentReader| { let ingredient_reader = segment_reader.facet_reader("ingredient").unwrap(); let facet_dict = ingredient_reader.facet_dict(); let query_ords: HashSet = facets .iter() .filter_map(|key| facet_dict.term_ord(key.encoded_str()).unwrap()) .collect(); move |doc: DocId, original_score: Score| { // Update the original score with a tweaked score let missing_ingredients = ingredient_reader .facet_ords(doc) .filter(|ord| !query_ords.contains(ord)) .count(); let tweak = 1.0 / 4_f32.powi(missing_ingredients as i32); original_score * tweak } }); let top_docs = searcher.search(&query, &top_docs_by_custom_score)?; let titles: Vec = top_docs .iter() .map(|(_, doc_id)| { searcher .doc(*doc_id) .unwrap() .get_first(title) .unwrap() .as_text() .unwrap() .to_owned() }) .collect(); assert_eq!(titles, vec!["Fried egg", "Egg rolls"]); } Ok(()) }