# Path finding library Beginner in Rust - Feedback highly appreciated! This library will contain standard path finding algorithms and return the resulting path or graph object - [How to use](#how-to-use) * [Create Graph](#create-graph) * [Graph operations](#graph-operations) + [sorted_by_weight_asc](#sorted-by-weight-asc) + [offer_positions](#offer-positions) * [Minimum spanning tree](#minimum-spanning-tree) * [Depth-first search](#depth-first-search) * [Breadth-first search](#breadth-first-search) * [Bidirectional breadth-first search](#bidirectional-breadth-first-search) * [Dijkstra path search](#dijkstra-path-search) * [A* path search](#a--path-search) Table of contents generated with markdown-toc Currently supported: - construct graphs - create minimum spanning tree from graph - find path with depth-first search - find path with breadth-first search - find path with bidirectional breadth-first search - find path with the dijkstra algorithm - find path with the A* algorithm, with heuristic function: - euclidean distance - manhattan distance Download the crate: https://crates.io/search?q=path-finding-lib ## How to use At the moment, we have three major concepts: - Edge - Node - Graph - Position You only need to pass edges to the graph. The nodes are generated automatically. Each pathfinding method will accept a graph, and return a graph that only contains the edges and nodes of the result. Alternatively, you can also create a graph if you provide an adjacency matrix. Edges and nodes will be generated automatically. If you want to use the A* path-finding algorithm, please make sure to provide positional information for each node. ### Create Graph - Create Edge ```rust pub fn your_function() { graph::Edge::from( 0 /* edge index */, 0 /* source node */, 1 /* destination node */, 0.1, /* weight */ ); } ``` - Create Graph from edges ```rust pub fn your_function() { graph::Graph::from(Vec::from([edge1, edge2])); } ``` - Create Graph from adjacency matrix ```rust pub fn your_function() { let mut matrix: &[&[f32]] = &[ &[0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.0, 0.0], &[4.0, 0.0, 8.0, 0.0, 0.0, 0.0, 0.0, 11.0, 0.0], &[0.0, 8.0, 0.0, 7.0, 0.0, 4.0, 0.0, 0.0, 2.0], &[0.0, 0.0, 7.0, 0.0, 9.0, 14.0, 0.0, 0.0, 0.0], &[0.0, 0.0, 0.0, 9.0, 0.0, 10.0, 0.0, 0.0, 0.0], &[0.0, 0.0, 4.0, 14.0, 10.0, 0.0, 2.0, 0.0, 0.0], &[0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 1.0, 6.0], &[8.0, 11.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 7.0], &[0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 6.0, 7.0, 0.0] ]; graph::Graph::from_adjacency_matrix(matrix); } ``` ### Graph operations You may want to get some information or mutate the graph in some way. Therefore, the graph currently supports three functions for convenience operations or to provide data for a heuristic function. #### sorted_by_weight_asc ```rust pub fn your_function() { let edges: Vec = graph.sorted_by_weight_asc(); // will return a vector with edges ascending by weight } ``` #### offer_positions ```rust pub fn your_function() { // provide a hashmap, mapping the node id to a position - used for a* pathfinding heuristics graph.offer_positions(HashMap::from([(1, Position::from(0.1, 0.2, 0.3))])); } ``` ### Minimum spanning tree ```rust pub fn your_function() { let mst_graph = graph::minimum_spanning(graph); } ``` ### Depth-first search ```rust pub fn your_function() { let dfs = path::find( 4 /* source */, 1 /* target */, &graph, Box::from(DepthFirstSearch {}) /* used algorithm */ ); } ``` ### Breadth-first search ```rust pub fn your_function() { let bfs = path::find( 4 /* source */, 1 /* target */, &graph, Box::from(BreadthFirstSearch {}) /* used algorithm */ ); } ``` ### Bidirectional breadth-first search ```rust pub fn your_function() { let bi_bfs = path::find( 4 /* source */, 1 /* target */, &graph, Box::from(BiBreadthFirstSearch {}) /* used algorithm */ ); } ``` ### Dijkstra path search ```rust pub fn your_function() { let dijkstra = path::find( 4 /* source */, 1 /* target */, &graph, Box::from(Dijkstra {}) /* used algorithm */ ); } ``` ### A* path search You can use the A* path-finding algorithm by providing either an existing heuristic function as shown below. Or you provide your own heuristic function. In case you use an existing heuristic function, make sure to provide the positional information for the nodes. ```rust pub fn your_function_with_euclidean_distance() { let a_star = path::find( 4 /* source */, 1 /* target */, &graph, Box::from( AStar { heuristic: Box::from(euclidean_distance) }), /* used algorithm + euclidean distance heuristic function */ ); } ``` ```rust pub fn your_function_with_manhattan_distance() { let a_star = path::find( 4 /* source */, 1 /* target */, &graph, Box::from( AStar { heuristic: Box::from(manhattan_distance) }), /* used algorithm + manhattan distance heuristic function */ ); } ```