
PBLib – A C++ Toolkit for Encoding

Pseudo-Boolean Constraints into CNF

Peter Steinke
peter.steinke@tu-dresden.de

February 23, 2015

Abstract
Many different encodings for PB constraints into conjunctive normal

form (CNF) have been proposed in the past. The PBLib project starts to
collect and implement these encodings to be able to encode PB constraints
in a very simple, but effective way. The aim is not only to generate as few
clauses as possible, but also using encodings that maintain generalized
arc consistency by unit propagation, to speedup the run time of the SAT
solver, solving the formula.

A major issue of the implementation is a high flexibility for the user.
Consequently it is not required to bring a PB constraint into a certain
normal form. The PBLib automatically normalizes the constraints and
decides which encoder provides the most effective translation.

The user can also define constraints with two comparators (less equal
and greater equal) and each PB constraint can be encoded in an incre-
mental way: After an initial encoding it is possible to add a tighter bound
with only a few additional clauses. This mechanism allows the user to
develop SAT-based solvers for optimization problems with incremental
strengthening and to keep the learned clauses for incremental SAT solver
calls.

1 Implemented Encodings

Table 1 shows the encodings are currently implemented in the PBLib. The label
todo denotes encodings that are planned for the (near) future.

2 Overview

The overview in Figure 1 shows the sequence of encoding a PB constraint. A
PB constraint is given to the PB2CNF class, where the constraint is simplified
and normalized by the PreEncoder. Next PB2CNF selects a suitable encoder
for the simplified constraint. The clauses generated by the encoder are added
to a clauses database and auxiliary variables are provided by an instance of the
AuxVarManager class.

Figure 2 shows the encoding process of an incremental constraint. After this
initial encoding the user can encode a tighter bound with the incremental data
(without calling PB2CNF again), using the information that the initial bound
is already in the clause database.

1

At most one At most K PB

sequential[11]∗ BDD[7, 4]∗∗ BDD
bimander[6] cardinality networks[1] adder networks
commander[8] adder networks[4] watchdog[10]
k-product[3] todo: perfect hashing [12] sorting networks[4]
binary[2] binary merge[9]
pairwaise sequential weight counter[5]
nested
∗ equivalent to BDD, latter and regular encoding
∗∗ equivalent to sequential counter

Table 1: Implemented encodings

PB2CNF PreEncoder

Encoder AuxVarManagerClausedatabase

PB constraint

Simple PB Constraint

Figure 1: Encoding a PB constraint to CNF

PB2CNF PreEncoder

Encoder AuxVarManagerClausedatabase

IncrementalData

Inc. PB constraint

Simple PB Constraint

Figure 2: Encoding an incremental PB constraint to CNF

2

3 Using the PBLib

3.1 Including the PBLib

The following includes are needed for the PBLib:

#include "pb2cnf.h" // encoding interface

Optional includes are:

#include "VectorClauseDatabase.h" // basic clause database

#include "PBParser.h" // parser for opb files

#include "SATSolverClauseDatabase.h"

// a clause database that adds all clauses

// directly to a SAT solver (minisat)

The project has to be linked against the PBLib (libpblib.a or libpblib.so).
Note that PBLib uses the C++11 standard .

3.2 PB Constraints

For an instance of a PB constraint a vector of weighted literals is used:

WeightedLit (int32 t literal, int64 t weight);

In addition to the weighed literals a comparator is needed. This could be less
equal, greater equal or a combination of both.

enum Comparator { LEQ, GEQ, BOTH };

Depending on the comparator one or two bounds are needed:

PBConstraint (vector< WeightedLit > const & literals, Comparator com-
parator, int64 t bound);

PBConstraint (vector< WeightedLit > const & literals, Comparator com-
parator, int64 t less eq, int64 t greater eq);
// in case comparator == BOTH and less_eq != greater_eq

3.3 Incremental PB Constraints

In addition to the PB constraints presented above, the incremental version al-
lows an incremental encoding of a sequence of tighter bounds. Note that an
incremental PB constraint is not a subclass of PB constraint (in the sense of
object-oriented programming).

After the initial encoding of an incremental PB constraint incPbConstraint,
it is possible to encode new (tighter) bounds with the methods:

incPbConstraint.encodeNewGeq (int64 t newGeq, ClauseDatabase & for-
mula, AuxVarManager & auxVars);

incPbConstraint.encodeNewLeq (int64 t newLeq, ClauseDatabase & for-
mula, AuxVarManager & auxVars);

The clause database formula has to contain the initial encoding of incPbCon-
straint.

3

3.4 Clause Database

The clause database is a container class for clauses – the CNF formula. Every
implementation of this class provides the following methods:

addClause (vector<int32 t> const & clause);

The PBLib contains one default implementation of this class: VectorClause-
Database. Every clause that is added is saved into a vector of clauses.

3.5 Auxiliary Variable Manager

The Auxiliary Variable Manager, returns fresh variables to the encoder. There-
for it is initialized with the first fresh variable. Hence it is assumed that all
variables in the original constraints are smaller than this first fresh variable.

AuxVarManager (int32 t first free variable);

Every getVariable call returns the successor variable of the last returned vari-
able. With the method int32 t getBiggestReturnedAuxVar() the biggest
returned variable can be obtained. Hence every variable between this (includ-
ing) number and first free variable (probably) occurs in some clause database.

3.6 Encoding PB constraints into CNF

The class PB2CNF is the main interface to encode an (incremental) PB con-
straint.

PB2CNF(PBConfig & config);

Where config is a configuration object explained in the next subsection. If config
is omitted the default configuration will be used.

For a simple interface you can now use one og the following methods:

int32_t encodeLeq

(

vector< int32_t >& weights,

vector< int32_t >& literals,

int64_t leq,

vector< vector< int32_t > >& formula,

int32_t firstAuxiliaryVariable

);

int32_t encodeGeq(...);

int32_t encodeBoth(...);

Where the return values is the last used auxiliary variable. Hence the next
integer value is the next free variable.

For a more sophisticated interface you should use the ClauseDatabase and
the AuxVarManager. Besides the constraint, a clause database and an auxiliary
variable manager is needed to encode a PB constraint with the encode method:

encode(PBConstraint const & pbconstraint, ClauseDatabase & formula, Aux-
VarManager & auxVars);

encodeIncInital(IncPBConstraint & incPbconstraint, ClauseDatabase & for-
mula, AuxVarManager & auxVars);

4

3.7 Configuration

An instance of the PBConfig class contains the configuration for all options in
the PBLib. Since PBConfig is a shared pointer you have to initialize it in the
following way:

PBConfig config = make_shared<PBConfigClass>();

The following options (with the given default values) are currently available:

PB2CNF_PB_Encoder pb_encoder = PB_ENCODER::BEST;

PB2CNF_AMK_Encoder amk_encoder = AMK_ENCODER::BEST;

PB2CNF_AMO_Encoder amo_encoder = AMO_ENCODER::BEST;

BIMANDER_M_IS bimander_m_is = BIMANDER_M_IS::N_HALF;

int bimander_m = 3;

int k_product_minimum_lit_count_for_splitting = 10;

int k_product_k = 2;

int commander_encoding_k = 3;

int64_t MAX_CLAUSES_PER_CONSTRAINT = 1000000;

bool use_formula_cache = false;

bool print_used_encodings = false;

bool check_for_dup_literals = false;

bool use_real_robdds = true;

bool use_watch_dog_encoding_in_binary_merger = false;

enum PB2CNF_AMO_Encoder {BEST, NESTED, BDD,

BIMANDER, COMMANDER,

KPRODUCT, BINARY, PAIRWISE};

enum PB2CNF_AMK_Encoder {BEST, BDD, CARD};

enum PB2CNF_PB_Encoder {BEST, BDD, SWC, SORTINGNETWORKS,

ADDER, BINARY_MERGE};

enum BIMANDER_M_IS {N_HALF, N_SQRT, FIXED};

Note that if the maximum number of clauses per constraint is (approxi-
mately) exceeded, the adder encoding is used as a fallback.

4 PB encoder

The PBLib also includes a PBEncoder which takes an opb input file and trans-
late it into CNF using the PBLib:

usage ./pbencoder inputfile

5 Example PB Solver

The PBLib source code contains also a folder BasicPBSolver with the imple-
mentations of an example PB Solver. It uses minisat 2.2 as a back-end SAT
solver.

usage ./pbsolver inputfile

5

6 PB Fuzzer

Included is also a PB fuzzer. The program generates a random PB constraint
that is solves it with different configuration within the PBLib.

This program helps to find bugs in new or customized implementations of
the PBLib.

usage: ./fuzzer

References

[1] Ignasi Abio, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodriguez-
Carbonell. A parametric approach for smaller and better encodings of
cardinality constraints. In Christian Schulte, editor, Principles and Practice
of Constraint Programming, volume 8124 of Lecture Notes in Computer
Science, pages 80–96. Springer Berlin Heidelberg, 2013.

[2] Anthony J. Doggett Alan M. Frisch, Timothy J. Peugniez and Peter W.
Nightingale. Solving Non-Boolean Satisfiability Problems with Stochastic
Local Search: A Comparison of Encodings. Journal of Automated Reason-
ing, 35, 2005.

[3] Jingchao Chen. A new sat encoding of the at-most-one constraint. In The
Twelfth International Workshop on Constraint Modelling and Reformula-
tion, 2010.

[4] Niklas Een and Niklas Sörensson. Translating pseudo-boolean constraints
into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2,
2006.

[5] Steffen Hölldobler, Norbert Manthey, and Peter Steinke. A Compact En-
coding of Pseudo-Boolean Constraints into SAT. Technical report, 2012.

[6] Steffen Hölldobler and Van-Hau Nguyen. On SAT-Encodings of the At-
Most-One Constraint. In The Twelfth International Workshop on Con-
straint Modelling and Reformulation, 2013.

[7] Albert Oliveras Ignasi Abio, Robert Nieuwenhuis and Enric Rodriguez-
Carbonell. BDDs for Pseudo-Boolean Constraints - Revisited. In Karem A.
Sakallah and Laurent Simon, editors, Theory and Applications of Satisfi-
ability Testing - SAT 2011, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011.

[8] Will Klieber and Gihwon Kwon. Efficient CNF Encoding for Selecting
1 from N Objects. In The fourth Workshop on Constraints in Formal
Verification, 2007.

[9] Norbert Manthey, Tobias Philipp, and Peter Steinke. A more compact
translation of pseudo-Boolean constraints into CNF such that generalized
arc consistency is maintained. In Carsten Lutz and Michael Tielscher,
editors, KI 2014: Advances in Artificial Intelligence, volume 8736 of Lecture
Notes in Computer Science, pages 123–134. Springer Berlin Heidelberg,
2014.

6

[10] Yacine Boufkhad Olivier Bailleux and Olivier Roussel. New Encodings of
Pseudo-Boolean Constraints into CNF. In Oliver Kullmann, editor, Theory
and Applications of Satisfiability Testing - SAT 2009, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2009.

[11] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality
Constraints. In Principles and Practice of Constraint Programming – CP
2005, 2005.

[12] Oded Margalit Yael Ben-Haim, Alexander Ivrii and Arie Matsliah. Perfect
Hashing and CNF Encodings of Cardinality Constraints. In Alessandro
Cimatti and Roberto Sebastiani, editors, Theory and Applications of Satis-
fiability Testing - SAT 2012, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012.

7

