//======================================================================== // // Stream.cc // // Copyright 1996-2003 Glyph & Cog, LLC // //======================================================================== //======================================================================== // // Modified under the Poppler project - http://poppler.freedesktop.org // // All changes made under the Poppler project to this file are licensed // under GPL version 2 or later // // Copyright (C) 2005 Jeff Muizelaar // Copyright (C) 2006-2010, 2012-2014, 2016-2020 Albert Astals Cid // Copyright (C) 2007 Krzysztof Kowalczyk // Copyright (C) 2008 Julien Rebetez // Copyright (C) 2009 Carlos Garcia Campos // Copyright (C) 2009 Glenn Ganz // Copyright (C) 2009 Stefan Thomas // Copyright (C) 2010 Hib Eris // Copyright (C) 2010 Tomas Hoger // Copyright (C) 2011, 2012, 2016, 2020 William Bader // Copyright (C) 2012, 2013, 2020 Thomas Freitag // Copyright (C) 2012 Oliver Sander // Copyright (C) 2012 Fabio D'Urso // Copyright (C) 2012 Even Rouault // Copyright (C) 2013, 2017, 2018 Adrian Johnson // Copyright (C) 2013, 2018 Adam Reichold // Copyright (C) 2013 Pino Toscano // Copyright (C) 2015 Suzuki Toshiya // Copyright (C) 2015 Jason Crain // Copyright (C) 2017 Jose Aliste // Copyright (C) 2017 Kay Dohmann // Copyright (C) 2019 Christian Persch // Copyright (C) 2019 LE GARREC Vincent // Copyright (C) 2019 Volker Krause // Copyright (C) 2019 Alexander Volkov // Copyright (C) 2020 Philipp Knechtges // // To see a description of the changes please see the Changelog file that // came with your tarball or type make ChangeLog if you are building from git // //======================================================================== #include #include #include #include #include #ifdef HAVE_UNISTD_H # include #endif #include #include #include "goo/gmem.h" #include "goo/gfile.h" #include "poppler-config.h" #include "Error.h" #include "Object.h" #include "Lexer.h" #include "GfxState.h" #include "Stream.h" #include "XRef.h" #include "JBIG2Stream.h" #include "Stream-CCITT.h" #include "CachedFile.h" #ifdef HAVE_SPLASH # include "splash/SplashBitmap.h" #endif #ifdef ENABLE_LIBJPEG # include "DCTStream.h" #endif #ifdef ENABLE_ZLIB_UNCOMPRESS # include "FlateStream.h" #endif #ifdef ENABLE_LIBOPENJPEG # include "JPEG2000Stream.h" #else # include "JPXStream.h" #endif #ifdef __DJGPP__ static bool setDJSYSFLAGS = false; #endif //------------------------------------------------------------------------ // Stream (base class) //------------------------------------------------------------------------ Stream::Stream() { ref = 1; } Stream::~Stream() = default; void Stream::close() { } int Stream::getRawChar() { error(errInternal, -1, "Internal: called getRawChar() on non-predictor stream"); return EOF; } int Stream::getChars(int nChars, unsigned char *buffer) { error(errInternal, -1, "Internal: called getChars() on non-predictor stream"); return 0; } void Stream::getRawChars(int nChars, int *buffer) { error(errInternal, -1, "Internal: called getRawChars() on non-predictor stream"); } char *Stream::getLine(char *buf, int size) { int i; int c; if (lookChar() == EOF || size < 0) return nullptr; for (i = 0; i < size - 1; ++i) { c = getChar(); if (c == EOF || c == '\n') break; if (c == '\r') { if ((c = lookChar()) == '\n') getChar(); break; } buf[i] = c; } buf[i] = '\0'; return buf; } GooString *Stream::getPSFilter(int psLevel, const char *indent) { return new GooString(); } Stream *Stream::addFilters(Dict *dict, int recursion) { Object obj, obj2; Object params, params2; Stream *str; int i; str = this; obj = dict->lookup("Filter", recursion); if (obj.isNull()) { obj = dict->lookup("F", recursion); } params = dict->lookup("DecodeParms", recursion); if (params.isNull()) { params = dict->lookup("DP", recursion); } if (obj.isName()) { str = makeFilter(obj.getName(), str, ¶ms, recursion, dict); } else if (obj.isArray()) { for (i = 0; i < obj.arrayGetLength(); ++i) { obj2 = obj.arrayGet(i, recursion); if (params.isArray()) params2 = params.arrayGet(i, recursion); else params2.setToNull(); if (obj2.isName()) { str = makeFilter(obj2.getName(), str, ¶ms2, recursion); } else { error(errSyntaxError, getPos(), "Bad filter name"); str = new EOFStream(str); } } } else if (!obj.isNull()) { error(errSyntaxError, getPos(), "Bad 'Filter' attribute in stream"); } return str; } bool Stream::isEncrypted() const { for (const Stream *str = this; str != nullptr; str = str->getNextStream()) { if (str->getKind() == strCrypt) return true; } return false; } class BaseStreamStream : public Stream { public: BaseStreamStream(Stream *strA) : str(strA) { } ~BaseStreamStream() override; StreamKind getKind() const override { return str->getBaseStream()->getKind(); } void reset() override { str->getBaseStream()->reset(); } int getChar() override { return str->getBaseStream()->getChar(); } int lookChar() override { return str->getBaseStream()->lookChar(); } bool isBinary(bool last = true) override { return str->getBaseStream()->isBinary(); } int getUnfilteredChar() override { return str->getBaseStream()->getUnfilteredChar(); } void unfilteredReset() override { str->getBaseStream()->unfilteredReset(); } Goffset getPos() override { return str->getBaseStream()->getPos(); } void setPos(Goffset pos, int dir) override { str->getBaseStream()->setPos(pos, dir); } BaseStream *getBaseStream() override { return str->getBaseStream()->getBaseStream(); } Stream *getUndecodedStream() override { return str->getBaseStream()->getUndecodedStream(); } Dict *getDict() override { return str->getBaseStream()->getDict(); } Object *getDictObject() override { return str->getBaseStream()->getDictObject(); } private: std::unique_ptr str; }; BaseStreamStream::~BaseStreamStream() = default; Stream *Stream::makeFilter(const char *name, Stream *str, Object *params, int recursion, Dict *dict) { int pred; // parameters int colors; int bits; int early; int encoding; bool endOfLine, byteAlign, endOfBlock, black, damagedRowsBeforeError; int columns, rows; Object obj; if (!strcmp(name, "ASCIIHexDecode") || !strcmp(name, "AHx")) { str = new ASCIIHexStream(str); } else if (!strcmp(name, "ASCII85Decode") || !strcmp(name, "A85")) { str = new ASCII85Stream(str); } else if (!strcmp(name, "LZWDecode") || !strcmp(name, "LZW")) { pred = 1; columns = 1; colors = 1; bits = 8; early = 1; if (params->isDict()) { obj = params->dictLookup("Predictor", recursion); if (obj.isInt()) pred = obj.getInt(); obj = params->dictLookup("Columns", recursion); if (obj.isInt()) columns = obj.getInt(); obj = params->dictLookup("Colors", recursion); if (obj.isInt()) colors = obj.getInt(); obj = params->dictLookup("BitsPerComponent", recursion); if (obj.isInt()) bits = obj.getInt(); obj = params->dictLookup("EarlyChange", recursion); if (obj.isInt()) early = obj.getInt(); } str = new LZWStream(str, pred, columns, colors, bits, early); } else if (!strcmp(name, "RunLengthDecode") || !strcmp(name, "RL")) { str = new RunLengthStream(str); } else if (!strcmp(name, "CCITTFaxDecode") || !strcmp(name, "CCF")) { encoding = 0; endOfLine = false; byteAlign = false; columns = 1728; rows = 0; endOfBlock = true; black = false; damagedRowsBeforeError = false; if (params->isDict()) { obj = params->dictLookup("K", recursion); if (obj.isInt()) { encoding = obj.getInt(); } obj = params->dictLookup("EndOfLine", recursion); if (obj.isBool()) { endOfLine = obj.getBool(); } obj = params->dictLookup("EncodedByteAlign", recursion); if (obj.isBool()) { byteAlign = obj.getBool(); } obj = params->dictLookup("Columns", recursion); if (obj.isInt()) { columns = obj.getInt(); } obj = params->dictLookup("Rows", recursion); if (obj.isInt()) { rows = obj.getInt(); } obj = params->dictLookup("EndOfBlock", recursion); if (obj.isBool()) { endOfBlock = obj.getBool(); } obj = params->dictLookup("BlackIs1", recursion); if (obj.isBool()) { black = obj.getBool(); } obj = params->dictLookup("DamagedRowsBeforeError", recursion); if (obj.isInt()) { damagedRowsBeforeError = obj.getInt(); } } str = new CCITTFaxStream(str, encoding, endOfLine, byteAlign, columns, rows, endOfBlock, black, damagedRowsBeforeError); } else if (!strcmp(name, "DCTDecode") || !strcmp(name, "DCT")) { #ifdef HAVE_DCT_DECODER int colorXform = -1; if (params->isDict()) { obj = params->dictLookup("ColorTransform", recursion); if (obj.isInt()) { colorXform = obj.getInt(); } } str = new DCTStream(str, colorXform, dict, recursion); #else error(errSyntaxError, getPos(), "Unknown filter '{0:s}'", name); str = new EOFStream(str); #endif } else if (!strcmp(name, "FlateDecode") || !strcmp(name, "Fl")) { pred = 1; columns = 1; colors = 1; bits = 8; if (params->isDict()) { obj = params->dictLookup("Predictor", recursion); if (obj.isInt()) pred = obj.getInt(); obj = params->dictLookup("Columns", recursion); if (obj.isInt()) columns = obj.getInt(); obj = params->dictLookup("Colors", recursion); if (obj.isInt()) colors = obj.getInt(); obj = params->dictLookup("BitsPerComponent", recursion); if (obj.isInt()) bits = obj.getInt(); } str = new FlateStream(str, pred, columns, colors, bits); } else if (!strcmp(name, "JBIG2Decode")) { Object globals; if (params->isDict()) { XRef *xref = params->getDict()->getXRef(); obj = params->dictLookupNF("JBIG2Globals").copy(); globals = obj.fetch(xref, recursion); } str = new JBIG2Stream(str, std::move(globals), &obj); } else if (!strcmp(name, "JPXDecode")) { #ifdef HAVE_JPX_DECODER str = new JPXStream(str); #else error(errSyntaxError, getPos(), "Unknown filter '{0:s}'", name); str = new EOFStream(str); #endif } else if (!strcmp(name, "Crypt")) { if (str->getKind() == strCrypt) { str = new BaseStreamStream(str); } else { error(errSyntaxError, getPos(), "Can't revert non decrypt streams"); } } else { error(errSyntaxError, getPos(), "Unknown filter '{0:s}'", name); str = new EOFStream(str); } return str; } //------------------------------------------------------------------------ // OutStream //------------------------------------------------------------------------ OutStream::OutStream() { } OutStream::~OutStream() { } //------------------------------------------------------------------------ // FileOutStream //------------------------------------------------------------------------ FileOutStream::FileOutStream(FILE *fa, Goffset startA) { f = fa; start = startA; } FileOutStream::~FileOutStream() { close(); } void FileOutStream::close() { } Goffset FileOutStream::getPos() { return Gftell(f); } void FileOutStream::put(char c) { fputc(c, f); } void FileOutStream::printf(const char *format, ...) { va_list argptr; va_start(argptr, format); vfprintf(f, format, argptr); va_end(argptr); } //------------------------------------------------------------------------ // BaseStream //------------------------------------------------------------------------ BaseStream::BaseStream(Object &&dictA, Goffset lengthA) { dict = std::move(dictA); length = lengthA; } BaseStream::~BaseStream() { } //------------------------------------------------------------------------ // BaseStream //------------------------------------------------------------------------ BaseSeekInputStream::BaseSeekInputStream(Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA) : BaseStream(std::move(dictA), lengthA), start(startA), limited(limitedA), bufPtr(buf), bufEnd(buf), bufPos(start), savePos(0), saved(false) { } BaseSeekInputStream::~BaseSeekInputStream() { } void BaseSeekInputStream::reset() { savePos = currentPos(); setCurrentPos(start); saved = true; bufPtr = bufEnd = buf; bufPos = start; } void BaseSeekInputStream::close() { if (!saved) return; setCurrentPos(savePos); saved = false; } void BaseSeekInputStream::setPos(Goffset pos, int dir) { if (dir >= 0) { setCurrentPos(pos); bufPos = pos; } else { if (pos > length) pos = length; bufPos = length - pos; setCurrentPos(bufPos); } bufPtr = bufEnd = buf; } void BaseSeekInputStream::moveStart(Goffset delta) { start += delta; bufPtr = bufEnd = buf; bufPos = start; } bool BaseSeekInputStream::fillBuf() { Goffset n; bufPos += bufEnd - buf; bufPtr = bufEnd = buf; if (limited && bufPos >= start + length) { return false; } if (limited && bufPos + seekInputStreamBufSize > start + length) { n = start + length - bufPos; } else { n = seekInputStreamBufSize - (bufPos % seekInputStreamBufSize); } n = read(buf, n); bufEnd = buf + n; if (bufPtr >= bufEnd) { return false; } return true; } int BaseSeekInputStream::getChars(int nChars, unsigned char *buffer) { int n, m; n = 0; while (n < nChars) { if (bufPtr >= bufEnd) { if (!fillBuf()) { break; } } m = (int)(bufEnd - bufPtr); if (m > nChars - n) { m = nChars - n; } memcpy(buffer + n, bufPtr, m); bufPtr += m; n += m; } return n; } //------------------------------------------------------------------------ // FilterStream //------------------------------------------------------------------------ FilterStream::FilterStream(Stream *strA) { str = strA; } FilterStream::~FilterStream() { } void FilterStream::close() { str->close(); } void FilterStream::setPos(Goffset pos, int dir) { error(errInternal, -1, "Internal: called setPos() on FilterStream"); } //------------------------------------------------------------------------ // ImageStream //------------------------------------------------------------------------ ImageStream::ImageStream(Stream *strA, int widthA, int nCompsA, int nBitsA) { int imgLineSize; str = strA; width = widthA; nComps = nCompsA; nBits = nBitsA; nVals = width * nComps; inputLineSize = (nVals * nBits + 7) >> 3; if (nComps <= 0 || nBits <= 0 || nVals > INT_MAX / nBits - 7 || width > INT_MAX / nComps) { inputLineSize = -1; } inputLine = (unsigned char *)gmallocn_checkoverflow(inputLineSize, sizeof(char)); if (nBits == 8) { imgLine = (unsigned char *)inputLine; } else { if (nBits == 1) { imgLineSize = (nVals + 7) & ~7; } else { imgLineSize = nVals; } if (nComps <= 0 || width > INT_MAX / nComps) { imgLineSize = -1; } imgLine = (unsigned char *)gmallocn_checkoverflow(imgLineSize, sizeof(unsigned char)); } imgIdx = nVals; } ImageStream::~ImageStream() { if (imgLine != (unsigned char *)inputLine) { gfree(imgLine); } gfree(inputLine); } void ImageStream::reset() { str->reset(); } void ImageStream::close() { str->close(); } bool ImageStream::getPixel(unsigned char *pix) { int i; if (imgIdx >= nVals) { if (!getLine()) { return false; } imgIdx = 0; } for (i = 0; i < nComps; ++i) { pix[i] = imgLine[imgIdx++]; } return true; } unsigned char *ImageStream::getLine() { if (unlikely(inputLine == nullptr)) { return nullptr; } int readChars = str->doGetChars(inputLineSize, inputLine); if (unlikely(readChars == -1)) { readChars = 0; } for (; readChars < inputLineSize; readChars++) inputLine[readChars] = EOF; if (nBits == 1) { unsigned char *p = inputLine; for (int i = 0; i < nVals; i += 8) { const int c = *p++; imgLine[i + 0] = (unsigned char)((c >> 7) & 1); imgLine[i + 1] = (unsigned char)((c >> 6) & 1); imgLine[i + 2] = (unsigned char)((c >> 5) & 1); imgLine[i + 3] = (unsigned char)((c >> 4) & 1); imgLine[i + 4] = (unsigned char)((c >> 3) & 1); imgLine[i + 5] = (unsigned char)((c >> 2) & 1); imgLine[i + 6] = (unsigned char)((c >> 1) & 1); imgLine[i + 7] = (unsigned char)(c & 1); } } else if (nBits == 8) { // special case: imgLine == inputLine } else if (nBits == 16) { // this is a hack to support 16 bits images, everywhere // we assume a component fits in 8 bits, with this hack // we treat 16 bit images as 8 bit ones until it's fixed correctly. // The hack has another part on GfxImageColorMap::GfxImageColorMap unsigned char *p = inputLine; for (int i = 0; i < nVals; ++i) { imgLine[i] = *p++; p++; } } else { const unsigned long bitMask = (1 << nBits) - 1; unsigned long buf = 0; int bits = 0; unsigned char *p = inputLine; for (int i = 0; i < nVals; ++i) { while (bits < nBits) { buf = (buf << 8) | (*p++ & 0xff); bits += 8; } imgLine[i] = (unsigned char)((buf >> (bits - nBits)) & bitMask); bits -= nBits; } } return imgLine; } void ImageStream::skipLine() { str->doGetChars(inputLineSize, inputLine); } //------------------------------------------------------------------------ // StreamPredictor //------------------------------------------------------------------------ StreamPredictor::StreamPredictor(Stream *strA, int predictorA, int widthA, int nCompsA, int nBitsA) { str = strA; predictor = predictorA; width = widthA; nComps = nCompsA; nBits = nBitsA; predLine = nullptr; ok = false; nVals = width * nComps; if (width <= 0 || nComps <= 0 || nBits <= 0 || nComps > gfxColorMaxComps || nBits > 16 || width >= INT_MAX / nComps || // check for overflow in nVals nVals >= (INT_MAX - 7) / nBits) { // check for overflow in rowBytes return; } pixBytes = (nComps * nBits + 7) >> 3; rowBytes = ((nVals * nBits + 7) >> 3) + pixBytes; predLine = (unsigned char *)gmalloc(rowBytes); memset(predLine, 0, rowBytes); predIdx = rowBytes; ok = true; } StreamPredictor::~StreamPredictor() { gfree(predLine); } int StreamPredictor::lookChar() { if (predIdx >= rowBytes) { if (!getNextLine()) { return EOF; } } return predLine[predIdx]; } int StreamPredictor::getChar() { if (predIdx >= rowBytes) { if (!getNextLine()) { return EOF; } } return predLine[predIdx++]; } int StreamPredictor::getChars(int nChars, unsigned char *buffer) { int n, m; n = 0; while (n < nChars) { if (predIdx >= rowBytes) { if (!getNextLine()) { break; } } m = rowBytes - predIdx; if (m > nChars - n) { m = nChars - n; } memcpy(buffer + n, predLine + predIdx, m); predIdx += m; n += m; } return n; } bool StreamPredictor::getNextLine() { int curPred; unsigned char upLeftBuf[gfxColorMaxComps * 2 + 1]; int left, up, upLeft, p, pa, pb, pc; int c; unsigned long inBuf, outBuf; int inBits, outBits; int i, j, k, kk; // get PNG optimum predictor number if (predictor >= 10) { if ((curPred = str->getRawChar()) == EOF) { return false; } curPred += 10; } else { curPred = predictor; } // read the raw line, apply PNG (byte) predictor int *rawCharLine = new int[rowBytes - pixBytes]; str->getRawChars(rowBytes - pixBytes, rawCharLine); memset(upLeftBuf, 0, pixBytes + 1); for (i = pixBytes; i < rowBytes; ++i) { for (j = pixBytes; j > 0; --j) { upLeftBuf[j] = upLeftBuf[j - 1]; } upLeftBuf[0] = predLine[i]; if ((c = rawCharLine[i - pixBytes]) == EOF) { if (i > pixBytes) { // this ought to return false, but some (broken) PDF files // contain truncated image data, and Adobe apparently reads the // last partial line break; } delete[] rawCharLine; return false; } switch (curPred) { case 11: // PNG sub predLine[i] = predLine[i - pixBytes] + (unsigned char)c; break; case 12: // PNG up predLine[i] = predLine[i] + (unsigned char)c; break; case 13: // PNG average predLine[i] = ((predLine[i - pixBytes] + predLine[i]) >> 1) + (unsigned char)c; break; case 14: // PNG Paeth left = predLine[i - pixBytes]; up = predLine[i]; upLeft = upLeftBuf[pixBytes]; p = left + up - upLeft; if ((pa = p - left) < 0) pa = -pa; if ((pb = p - up) < 0) pb = -pb; if ((pc = p - upLeft) < 0) pc = -pc; if (pa <= pb && pa <= pc) predLine[i] = left + (unsigned char)c; else if (pb <= pc) predLine[i] = up + (unsigned char)c; else predLine[i] = upLeft + (unsigned char)c; break; case 10: // PNG none default: // no predictor or TIFF predictor predLine[i] = (unsigned char)c; break; } } delete[] rawCharLine; // apply TIFF (component) predictor if (predictor == 2) { if (nBits == 1 && nComps == 1) { inBuf = predLine[pixBytes - 1]; for (i = pixBytes; i < rowBytes; ++i) { c = predLine[i] ^ inBuf; c ^= c >> 1; c ^= c >> 2; c ^= c >> 4; inBuf = (c & 1) << 7; predLine[i] = c; } } else if (nBits == 8) { for (i = pixBytes; i < rowBytes; ++i) { predLine[i] += predLine[i - nComps]; } } else { memset(upLeftBuf, 0, nComps + 1); const unsigned long bitMask = (1 << nBits) - 1; inBuf = outBuf = 0; inBits = outBits = 0; j = k = pixBytes; for (i = 0; i < width; ++i) { for (kk = 0; kk < nComps; ++kk) { while (inBits < nBits) { inBuf = (inBuf << 8) | (predLine[j++] & 0xff); inBits += 8; } upLeftBuf[kk] = (unsigned char)((upLeftBuf[kk] + (inBuf >> (inBits - nBits))) & bitMask); inBits -= nBits; outBuf = (outBuf << nBits) | upLeftBuf[kk]; outBits += nBits; if (outBits >= 8) { predLine[k++] = (unsigned char)(outBuf >> (outBits - 8)); outBits -= 8; } } } if (outBits > 0) { predLine[k++] = (unsigned char)((outBuf << (8 - outBits)) + (inBuf & ((1 << (8 - outBits)) - 1))); } } } // reset to start of line predIdx = pixBytes; return true; } //------------------------------------------------------------------------ // FileStream //------------------------------------------------------------------------ FileStream::FileStream(GooFile *fileA, Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA) : BaseStream(std::move(dictA), lengthA) { file = fileA; offset = start = startA; limited = limitedA; length = lengthA; bufPtr = bufEnd = buf; bufPos = start; savePos = 0; saved = false; needsEncryptionOnSave = false; } FileStream::~FileStream() { close(); } BaseStream *FileStream::copy() { return new FileStream(file, start, limited, length, dict.copy()); } Stream *FileStream::makeSubStream(Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA) { return new FileStream(file, startA, limitedA, lengthA, std::move(dictA)); } void FileStream::reset() { savePos = offset; offset = start; saved = true; bufPtr = bufEnd = buf; bufPos = start; } void FileStream::close() { if (saved) { offset = savePos; saved = false; } } bool FileStream::fillBuf() { int n; bufPos += bufEnd - buf; bufPtr = bufEnd = buf; if (limited && bufPos >= start + length) { return false; } if (limited && bufPos + fileStreamBufSize > start + length) { n = start + length - bufPos; } else { n = fileStreamBufSize; } n = file->read(buf, n, offset); if (n == -1) { return false; } offset += n; bufEnd = buf + n; if (bufPtr >= bufEnd) { return false; } return true; } void FileStream::setPos(Goffset pos, int dir) { Goffset size; if (dir >= 0) { offset = bufPos = pos; } else { size = file->size(); if (pos > size) pos = size; offset = size - pos; bufPos = offset; } bufPtr = bufEnd = buf; } void FileStream::moveStart(Goffset delta) { start += delta; bufPtr = bufEnd = buf; bufPos = start; } //------------------------------------------------------------------------ // CachedFileStream //------------------------------------------------------------------------ CachedFileStream::CachedFileStream(CachedFile *ccA, Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA) : BaseStream(std::move(dictA), lengthA) { cc = ccA; start = startA; limited = limitedA; length = lengthA; bufPtr = bufEnd = buf; bufPos = start; savePos = 0; saved = false; } CachedFileStream::~CachedFileStream() { close(); cc->decRefCnt(); } BaseStream *CachedFileStream::copy() { cc->incRefCnt(); return new CachedFileStream(cc, start, limited, length, dict.copy()); } Stream *CachedFileStream::makeSubStream(Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA) { cc->incRefCnt(); return new CachedFileStream(cc, startA, limitedA, lengthA, std::move(dictA)); } void CachedFileStream::reset() { savePos = (unsigned int)cc->tell(); cc->seek(start, SEEK_SET); saved = true; bufPtr = bufEnd = buf; bufPos = start; } void CachedFileStream::close() { if (saved) { cc->seek(savePos, SEEK_SET); saved = false; } } bool CachedFileStream::fillBuf() { int n; bufPos += bufEnd - buf; bufPtr = bufEnd = buf; if (limited && bufPos >= start + length) { return false; } if (limited && bufPos + cachedStreamBufSize > start + length) { n = start + length - bufPos; } else { n = cachedStreamBufSize - (bufPos % cachedStreamBufSize); } n = cc->read(buf, 1, n); bufEnd = buf + n; if (bufPtr >= bufEnd) { return false; } return true; } void CachedFileStream::setPos(Goffset pos, int dir) { unsigned int size; if (dir >= 0) { cc->seek(pos, SEEK_SET); bufPos = pos; } else { cc->seek(0, SEEK_END); size = (unsigned int)cc->tell(); if (pos > size) pos = (unsigned int)size; cc->seek(-(int)pos, SEEK_END); bufPos = (unsigned int)cc->tell(); } bufPtr = bufEnd = buf; } void CachedFileStream::moveStart(Goffset delta) { start += delta; bufPtr = bufEnd = buf; bufPos = start; } MemStream::~MemStream() = default; AutoFreeMemStream::~AutoFreeMemStream() { gfree(buf); } //------------------------------------------------------------------------ // EmbedStream //------------------------------------------------------------------------ EmbedStream::EmbedStream(Stream *strA, Object &&dictA, bool limitedA, Goffset lengthA, bool reusableA) : BaseStream(std::move(dictA), lengthA) { str = strA; limited = limitedA; length = lengthA; reusable = reusableA; record = false; replay = false; start = str->getPos(); if (reusable) { bufData = (unsigned char *)gmalloc(16384); bufMax = 16384; bufLen = 0; record = true; } } EmbedStream::~EmbedStream() { if (reusable) gfree(bufData); } void EmbedStream::reset() { if (str->getPos() != start) { str->reset(); // Might be a FilterStream that does not support str->setPos(start) while (str->getPos() < start) { if (str->getChar() == EOF) { break; } } if (str->getPos() != start) { error(errInternal, -1, "Failed to reset EmbedStream"); } } record = false; replay = false; bufPos = 0; } BaseStream *EmbedStream::copy() { error(errInternal, -1, "Called copy() on EmbedStream"); return nullptr; } Stream *EmbedStream::makeSubStream(Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA) { error(errInternal, -1, "Called makeSubStream() on EmbedStream"); return nullptr; } void EmbedStream::rewind() { record = false; replay = true; bufPos = 0; } void EmbedStream::restore() { replay = false; } Goffset EmbedStream::getPos() { if (replay) return bufPos; else return str->getPos(); } int EmbedStream::getChar() { if (replay) { if (bufPos < bufLen) return bufData[bufPos++]; else return EOF; } else { if (limited && !length) { return EOF; } int c = str->getChar(); --length; if (record) { bufData[bufLen] = c; bufLen++; if (bufLen >= bufMax) { bufMax *= 2; bufData = (unsigned char *)grealloc(bufData, bufMax); } } return c; } } int EmbedStream::lookChar() { if (replay) { if (bufPos < bufLen) return bufData[bufPos]; else return EOF; } else { if (limited && !length) { return EOF; } return str->lookChar(); } } int EmbedStream::getChars(int nChars, unsigned char *buffer) { int len; if (nChars <= 0) { return 0; } if (replay) { if (bufPos >= bufLen) return EOF; len = bufLen - bufPos; if (nChars > len) nChars = len; memcpy(buffer, bufData, nChars); return len; } else { if (limited && length < nChars) { nChars = length; } len = str->doGetChars(nChars, buffer); if (record) { if (bufLen + len >= bufMax) { while (bufLen + len >= bufMax) bufMax *= 2; bufData = (unsigned char *)grealloc(bufData, bufMax); } memcpy(bufData + bufLen, buffer, len); bufLen += len; } } return len; } void EmbedStream::setPos(Goffset pos, int dir) { error(errInternal, -1, "Internal: called setPos() on EmbedStream"); } Goffset EmbedStream::getStart() { error(errInternal, -1, "Internal: called getStart() on EmbedStream"); return 0; } void EmbedStream::moveStart(Goffset delta) { error(errInternal, -1, "Internal: called moveStart() on EmbedStream"); } //------------------------------------------------------------------------ // ASCIIHexStream //------------------------------------------------------------------------ ASCIIHexStream::ASCIIHexStream(Stream *strA) : FilterStream(strA) { buf = EOF; eof = false; } ASCIIHexStream::~ASCIIHexStream() { delete str; } void ASCIIHexStream::reset() { str->reset(); buf = EOF; eof = false; } int ASCIIHexStream::lookChar() { int c1, c2, x; if (buf != EOF) return buf; if (eof) { buf = EOF; return EOF; } do { c1 = str->getChar(); } while (isspace(c1)); if (c1 == '>') { eof = true; buf = EOF; return buf; } do { c2 = str->getChar(); } while (isspace(c2)); if (c2 == '>') { eof = true; c2 = '0'; } if (c1 >= '0' && c1 <= '9') { x = (c1 - '0') << 4; } else if (c1 >= 'A' && c1 <= 'F') { x = (c1 - 'A' + 10) << 4; } else if (c1 >= 'a' && c1 <= 'f') { x = (c1 - 'a' + 10) << 4; } else if (c1 == EOF) { eof = true; x = 0; } else { error(errSyntaxError, getPos(), "Illegal character <{0:02x}> in ASCIIHex stream", c1); x = 0; } if (c2 >= '0' && c2 <= '9') { x += c2 - '0'; } else if (c2 >= 'A' && c2 <= 'F') { x += c2 - 'A' + 10; } else if (c2 >= 'a' && c2 <= 'f') { x += c2 - 'a' + 10; } else if (c2 == EOF) { eof = true; x = 0; } else { error(errSyntaxError, getPos(), "Illegal character <{0:02x}> in ASCIIHex stream", c2); } buf = x & 0xff; return buf; } GooString *ASCIIHexStream::getPSFilter(int psLevel, const char *indent) { GooString *s; if (psLevel < 2) { return nullptr; } if (!(s = str->getPSFilter(psLevel, indent))) { return nullptr; } s->append(indent)->append("/ASCIIHexDecode filter\n"); return s; } bool ASCIIHexStream::isBinary(bool last) { return str->isBinary(false); } //------------------------------------------------------------------------ // ASCII85Stream //------------------------------------------------------------------------ ASCII85Stream::ASCII85Stream(Stream *strA) : FilterStream(strA) { index = n = 0; eof = false; } ASCII85Stream::~ASCII85Stream() { delete str; } void ASCII85Stream::reset() { str->reset(); index = n = 0; eof = false; } int ASCII85Stream::lookChar() { int k; unsigned long t; if (index >= n) { if (eof) return EOF; index = 0; do { c[0] = str->getChar(); } while (Lexer::isSpace(c[0])); if (c[0] == '~' || c[0] == EOF) { eof = true; n = 0; return EOF; } else if (c[0] == 'z') { b[0] = b[1] = b[2] = b[3] = 0; n = 4; } else { for (k = 1; k < 5; ++k) { do { c[k] = str->getChar(); } while (Lexer::isSpace(c[k])); if (c[k] == '~' || c[k] == EOF) break; } n = k - 1; if (k < 5 && (c[k] == '~' || c[k] == EOF)) { for (++k; k < 5; ++k) c[k] = 0x21 + 84; eof = true; } t = 0; for (k = 0; k < 5; ++k) t = t * 85 + (c[k] - 0x21); for (k = 3; k >= 0; --k) { b[k] = (int)(t & 0xff); t >>= 8; } } } return b[index]; } GooString *ASCII85Stream::getPSFilter(int psLevel, const char *indent) { GooString *s; if (psLevel < 2) { return nullptr; } if (!(s = str->getPSFilter(psLevel, indent))) { return nullptr; } s->append(indent)->append("/ASCII85Decode filter\n"); return s; } bool ASCII85Stream::isBinary(bool last) { return str->isBinary(false); } //------------------------------------------------------------------------ // LZWStream //------------------------------------------------------------------------ LZWStream::LZWStream(Stream *strA, int predictor, int columns, int colors, int bits, int earlyA) : FilterStream(strA) { if (predictor != 1) { pred = new StreamPredictor(this, predictor, columns, colors, bits); if (!pred->isOk()) { delete pred; pred = nullptr; } } else { pred = nullptr; } early = earlyA; eof = false; inputBits = 0; clearTable(); } LZWStream::~LZWStream() { if (pred) { delete pred; } delete str; } int LZWStream::getChar() { if (pred) { return pred->getChar(); } if (eof) { return EOF; } if (seqIndex >= seqLength) { if (!processNextCode()) { return EOF; } } return seqBuf[seqIndex++]; } int LZWStream::lookChar() { if (pred) { return pred->lookChar(); } if (eof) { return EOF; } if (seqIndex >= seqLength) { if (!processNextCode()) { return EOF; } } return seqBuf[seqIndex]; } void LZWStream::getRawChars(int nChars, int *buffer) { for (int i = 0; i < nChars; ++i) buffer[i] = doGetRawChar(); } int LZWStream::getRawChar() { return doGetRawChar(); } int LZWStream::getChars(int nChars, unsigned char *buffer) { int n, m; if (pred) { return pred->getChars(nChars, buffer); } if (eof) { return 0; } n = 0; while (n < nChars) { if (seqIndex >= seqLength) { if (!processNextCode()) { break; } } m = seqLength - seqIndex; if (m > nChars - n) { m = nChars - n; } memcpy(buffer + n, seqBuf + seqIndex, m); seqIndex += m; n += m; } return n; } void LZWStream::reset() { str->reset(); eof = false; inputBits = 0; clearTable(); } bool LZWStream::processNextCode() { int code; int nextLength; int i, j; // check for EOF if (eof) { return false; } // check for eod and clear-table codes start: code = getCode(); if (code == EOF || code == 257) { eof = true; return false; } if (code == 256) { clearTable(); goto start; } // process the next code nextLength = seqLength + 1; if (code < 256) { seqBuf[0] = code; seqLength = 1; } else if (code < nextCode) { seqLength = table[code].length; for (i = seqLength - 1, j = code; i > 0; --i) { seqBuf[i] = table[j].tail; j = table[j].head; } seqBuf[0] = j; } else if (code == nextCode) { seqBuf[seqLength] = newChar; ++seqLength; } else { error(errSyntaxError, getPos(), "Bad LZW stream - unexpected code"); eof = true; return false; } newChar = seqBuf[0]; if (first) { first = false; } else { if (nextCode < 4097) { table[nextCode].length = nextLength; table[nextCode].head = prevCode; table[nextCode].tail = newChar; ++nextCode; } if (nextCode + early == 512) nextBits = 10; else if (nextCode + early == 1024) nextBits = 11; else if (nextCode + early == 2048) nextBits = 12; } prevCode = code; // reset buffer seqIndex = 0; return true; } void LZWStream::clearTable() { nextCode = 258; nextBits = 9; seqIndex = seqLength = 0; first = true; newChar = 0; } int LZWStream::getCode() { int c; int code; while (inputBits < nextBits) { if ((c = str->getChar()) == EOF) return EOF; inputBuf = (inputBuf << 8) | static_cast(c & 0xff); inputBits += 8; } code = static_cast((inputBuf >> (inputBits - nextBits)) & ((1 << nextBits) - 1)); inputBits -= nextBits; return code; } GooString *LZWStream::getPSFilter(int psLevel, const char *indent) { GooString *s; if (psLevel < 2 || pred) { return nullptr; } if (!(s = str->getPSFilter(psLevel, indent))) { return nullptr; } s->append(indent)->append("<< "); if (!early) { s->append("/EarlyChange 0 "); } s->append(">> /LZWDecode filter\n"); return s; } bool LZWStream::isBinary(bool last) { return str->isBinary(true); } //------------------------------------------------------------------------ // RunLengthStream //------------------------------------------------------------------------ RunLengthStream::RunLengthStream(Stream *strA) : FilterStream(strA) { bufPtr = bufEnd = buf; eof = false; } RunLengthStream::~RunLengthStream() { delete str; } void RunLengthStream::reset() { str->reset(); bufPtr = bufEnd = buf; eof = false; } int RunLengthStream::getChars(int nChars, unsigned char *buffer) { int n, m; n = 0; while (n < nChars) { if (bufPtr >= bufEnd) { if (!fillBuf()) { break; } } m = (int)(bufEnd - bufPtr); if (m > nChars - n) { m = nChars - n; } memcpy(buffer + n, bufPtr, m); bufPtr += m; n += m; } return n; } GooString *RunLengthStream::getPSFilter(int psLevel, const char *indent) { GooString *s; if (psLevel < 2) { return nullptr; } if (!(s = str->getPSFilter(psLevel, indent))) { return nullptr; } s->append(indent)->append("/RunLengthDecode filter\n"); return s; } bool RunLengthStream::isBinary(bool last) { return str->isBinary(true); } bool RunLengthStream::fillBuf() { int c; int n, i; if (eof) return false; c = str->getChar(); if (c == 0x80 || c == EOF) { eof = true; return false; } if (c < 0x80) { n = c + 1; for (i = 0; i < n; ++i) buf[i] = (char)str->getChar(); } else { n = 0x101 - c; c = str->getChar(); for (i = 0; i < n; ++i) buf[i] = (char)c; } bufPtr = buf; bufEnd = buf + n; return true; } //------------------------------------------------------------------------ // CCITTFaxStream //------------------------------------------------------------------------ CCITTFaxStream::CCITTFaxStream(Stream *strA, int encodingA, bool endOfLineA, bool byteAlignA, int columnsA, int rowsA, bool endOfBlockA, bool blackA, int damagedRowsBeforeErrorA) : FilterStream(strA) { encoding = encodingA; endOfLine = endOfLineA; byteAlign = byteAlignA; columns = columnsA; damagedRowsBeforeError = damagedRowsBeforeErrorA; if (columns < 1) { columns = 1; } else if (columns > INT_MAX - 2) { columns = INT_MAX - 2; } rows = rowsA; endOfBlock = endOfBlockA; black = blackA; // 0 <= codingLine[0] < codingLine[1] < ... < codingLine[n] = columns // ---> max codingLine size = columns + 1 // refLine has one extra guard entry at the end // ---> max refLine size = columns + 2 codingLine = (int *)gmallocn_checkoverflow(columns + 1, sizeof(int)); refLine = (int *)gmallocn_checkoverflow(columns + 2, sizeof(int)); if (codingLine != nullptr && refLine != nullptr) { eof = false; codingLine[0] = columns; } else { eof = true; } row = 0; nextLine2D = encoding < 0; inputBits = 0; a0i = 0; outputBits = 0; buf = EOF; } CCITTFaxStream::~CCITTFaxStream() { delete str; gfree(refLine); gfree(codingLine); } void CCITTFaxStream::ccittReset(bool unfiltered) { if (unfiltered) str->unfilteredReset(); else str->reset(); row = 0; nextLine2D = encoding < 0; inputBits = 0; a0i = 0; outputBits = 0; buf = EOF; } void CCITTFaxStream::unfilteredReset() { ccittReset(true); } void CCITTFaxStream::reset() { int code1; ccittReset(false); if (codingLine != nullptr && refLine != nullptr) { eof = false; codingLine[0] = columns; } else { eof = true; } // skip any initial zero bits and end-of-line marker, and get the 2D // encoding tag while ((code1 = lookBits(12)) == 0) { eatBits(1); } if (code1 == 0x001) { eatBits(12); endOfLine = true; } if (encoding > 0) { nextLine2D = !lookBits(1); eatBits(1); } } inline void CCITTFaxStream::addPixels(int a1, int blackPixels) { if (a1 > codingLine[a0i]) { if (a1 > columns) { error(errSyntaxError, getPos(), "CCITTFax row is wrong length ({0:d})", a1); err = true; a1 = columns; } if ((a0i & 1) ^ blackPixels) { ++a0i; } codingLine[a0i] = a1; } } inline void CCITTFaxStream::addPixelsNeg(int a1, int blackPixels) { if (a1 > codingLine[a0i]) { if (a1 > columns) { error(errSyntaxError, getPos(), "CCITTFax row is wrong length ({0:d})", a1); err = true; a1 = columns; } if ((a0i & 1) ^ blackPixels) { ++a0i; } codingLine[a0i] = a1; } else if (a1 < codingLine[a0i]) { if (a1 < 0) { error(errSyntaxError, getPos(), "Invalid CCITTFax code"); err = true; a1 = 0; } while (a0i > 0 && a1 <= codingLine[a0i - 1]) { --a0i; } codingLine[a0i] = a1; } } int CCITTFaxStream::lookChar() { int code1, code2, code3; int b1i, blackPixels, i, bits; bool gotEOL; if (buf != EOF) { return buf; } // read the next row if (outputBits == 0) { // if at eof just return EOF if (eof) { return EOF; } err = false; // 2-D encoding if (nextLine2D) { for (i = 0; i < columns && codingLine[i] < columns; ++i) { refLine[i] = codingLine[i]; } for (; i < columns + 2; ++i) { refLine[i] = columns; } codingLine[0] = 0; a0i = 0; b1i = 0; blackPixels = 0; // invariant: // refLine[b1i-1] <= codingLine[a0i] < refLine[b1i] < refLine[b1i+1] // <= columns // exception at left edge: // codingLine[a0i = 0] = refLine[b1i = 0] = 0 is possible // exception at right edge: // refLine[b1i] = refLine[b1i+1] = columns is possible while (codingLine[a0i] < columns && !err) { code1 = getTwoDimCode(); switch (code1) { case twoDimPass: if (likely(b1i + 1 < columns + 2)) { addPixels(refLine[b1i + 1], blackPixels); if (refLine[b1i + 1] < columns) { b1i += 2; } } break; case twoDimHoriz: code1 = code2 = 0; if (blackPixels) { do { code1 += code3 = getBlackCode(); } while (code3 >= 64); do { code2 += code3 = getWhiteCode(); } while (code3 >= 64); } else { do { code1 += code3 = getWhiteCode(); } while (code3 >= 64); do { code2 += code3 = getBlackCode(); } while (code3 >= 64); } addPixels(codingLine[a0i] + code1, blackPixels); if (codingLine[a0i] < columns) { addPixels(codingLine[a0i] + code2, blackPixels ^ 1); } while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) { b1i += 2; if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } } break; case twoDimVertR3: if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } addPixels(refLine[b1i] + 3, blackPixels); blackPixels ^= 1; if (codingLine[a0i] < columns) { ++b1i; while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) { b1i += 2; if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } } } break; case twoDimVertR2: if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } addPixels(refLine[b1i] + 2, blackPixels); blackPixels ^= 1; if (codingLine[a0i] < columns) { ++b1i; while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) { b1i += 2; if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } } } break; case twoDimVertR1: if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } addPixels(refLine[b1i] + 1, blackPixels); blackPixels ^= 1; if (codingLine[a0i] < columns) { ++b1i; while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) { b1i += 2; if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } } } break; case twoDimVert0: if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } addPixels(refLine[b1i], blackPixels); blackPixels ^= 1; if (codingLine[a0i] < columns) { ++b1i; while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) { b1i += 2; if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } } } break; case twoDimVertL3: if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } addPixelsNeg(refLine[b1i] - 3, blackPixels); blackPixels ^= 1; if (codingLine[a0i] < columns) { if (b1i > 0) { --b1i; } else { ++b1i; } while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) { b1i += 2; if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } } } break; case twoDimVertL2: if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } addPixelsNeg(refLine[b1i] - 2, blackPixels); blackPixels ^= 1; if (codingLine[a0i] < columns) { if (b1i > 0) { --b1i; } else { ++b1i; } while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) { b1i += 2; if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } } } break; case twoDimVertL1: if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } addPixelsNeg(refLine[b1i] - 1, blackPixels); blackPixels ^= 1; if (codingLine[a0i] < columns) { if (b1i > 0) { --b1i; } else { ++b1i; } while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) { b1i += 2; if (unlikely(b1i > columns + 1)) { error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); err = true; break; } } } break; case EOF: addPixels(columns, 0); eof = true; break; default: error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1); addPixels(columns, 0); err = true; break; } } // 1-D encoding } else { codingLine[0] = 0; a0i = 0; blackPixels = 0; while (codingLine[a0i] < columns) { code1 = 0; if (blackPixels) { do { code1 += code3 = getBlackCode(); } while (code3 >= 64); } else { do { code1 += code3 = getWhiteCode(); } while (code3 >= 64); } addPixels(codingLine[a0i] + code1, blackPixels); blackPixels ^= 1; } } // check for end-of-line marker, skipping over any extra zero bits // (if EncodedByteAlign is true and EndOfLine is false, there can // be "false" EOL markers -- i.e., if the last n unused bits in // row i are set to zero, and the first 11-n bits in row i+1 // happen to be zero -- so we don't look for EOL markers in this // case) gotEOL = false; if (!endOfBlock && row == rows - 1) { eof = true; } else if (endOfLine || !byteAlign) { code1 = lookBits(12); if (endOfLine) { while (code1 != EOF && code1 != 0x001) { eatBits(1); code1 = lookBits(12); } } else { while (code1 == 0) { eatBits(1); code1 = lookBits(12); } } if (code1 == 0x001) { eatBits(12); gotEOL = true; } } // byte-align the row // (Adobe apparently doesn't do byte alignment after EOL markers // -- I've seen CCITT image data streams in two different formats, // both with the byteAlign flag set: // 1. xx:x0:01:yy:yy // 2. xx:00:1y:yy:yy // where xx is the previous line, yy is the next line, and colons // separate bytes.) if (byteAlign && !gotEOL) { inputBits &= ~7; } // check for end of stream if (lookBits(1) == EOF) { eof = true; } // get 2D encoding tag if (!eof && encoding > 0) { nextLine2D = !lookBits(1); eatBits(1); } // check for end-of-block marker if (endOfBlock && !endOfLine && byteAlign) { // in this case, we didn't check for an EOL code above, so we // need to check here code1 = lookBits(24); if (code1 == 0x001001) { eatBits(12); gotEOL = true; } } if (endOfBlock && gotEOL) { code1 = lookBits(12); if (code1 == 0x001) { eatBits(12); if (encoding > 0) { lookBits(1); eatBits(1); } if (encoding >= 0) { for (i = 0; i < 4; ++i) { code1 = lookBits(12); if (code1 != 0x001) { error(errSyntaxError, getPos(), "Bad RTC code in CCITTFax stream"); } eatBits(12); if (encoding > 0) { lookBits(1); eatBits(1); } } } eof = true; } // look for an end-of-line marker after an error -- we only do // this if we know the stream contains end-of-line markers because // the "just plow on" technique tends to work better otherwise } else if (err && endOfLine) { while (true) { code1 = lookBits(13); if (code1 == EOF) { eof = true; return EOF; } if ((code1 >> 1) == 0x001) { break; } eatBits(1); } eatBits(12); if (encoding > 0) { eatBits(1); nextLine2D = !(code1 & 1); } } // set up for output if (codingLine[0] > 0) { outputBits = codingLine[a0i = 0]; } else { outputBits = codingLine[a0i = 1]; } ++row; } // get a byte if (outputBits >= 8) { buf = (a0i & 1) ? 0x00 : 0xff; outputBits -= 8; if (outputBits == 0 && codingLine[a0i] < columns) { ++a0i; outputBits = codingLine[a0i] - codingLine[a0i - 1]; } } else { bits = 8; buf = 0; do { if (outputBits > bits) { buf <<= bits; if (!(a0i & 1)) { buf |= 0xff >> (8 - bits); } outputBits -= bits; bits = 0; } else { buf <<= outputBits; if (!(a0i & 1)) { buf |= 0xff >> (8 - outputBits); } bits -= outputBits; outputBits = 0; if (codingLine[a0i] < columns) { ++a0i; if (unlikely(a0i > columns)) { error(errSyntaxError, getPos(), "Bad bits {0:04x} in CCITTFax stream", bits); err = true; break; } outputBits = codingLine[a0i] - codingLine[a0i - 1]; } else if (bits > 0) { buf <<= bits; bits = 0; } } } while (bits); } if (black) { buf ^= 0xff; } return buf; } short CCITTFaxStream::getTwoDimCode() { int code; const CCITTCode *p; int n; code = 0; // make gcc happy if (endOfBlock) { if ((code = lookBits(7)) != EOF) { p = &twoDimTab1[code]; if (p->bits > 0) { eatBits(p->bits); return p->n; } } } else { for (n = 1; n <= 7; ++n) { if ((code = lookBits(n)) == EOF) { break; } if (n < 7) { code <<= 7 - n; } p = &twoDimTab1[code]; if (p->bits == n) { eatBits(n); return p->n; } } } error(errSyntaxError, getPos(), "Bad two dim code ({0:04x}) in CCITTFax stream", code); return EOF; } short CCITTFaxStream::getWhiteCode() { short code; const CCITTCode *p; int n; code = 0; // make gcc happy if (endOfBlock) { code = lookBits(12); if (code == EOF) { return 1; } if ((code >> 5) == 0) { p = &whiteTab1[code]; } else { p = &whiteTab2[code >> 3]; } if (p->bits > 0) { eatBits(p->bits); return p->n; } } else { for (n = 1; n <= 9; ++n) { code = lookBits(n); if (code == EOF) { return 1; } if (n < 9) { code <<= 9 - n; } p = &whiteTab2[code]; if (p->bits == n) { eatBits(n); return p->n; } } for (n = 11; n <= 12; ++n) { code = lookBits(n); if (code == EOF) { return 1; } if (n < 12) { code <<= 12 - n; } p = &whiteTab1[code]; if (p->bits == n) { eatBits(n); return p->n; } } } error(errSyntaxError, getPos(), "Bad white code ({0:04x}) in CCITTFax stream", code); // eat a bit and return a positive number so that the caller doesn't // go into an infinite loop eatBits(1); return 1; } short CCITTFaxStream::getBlackCode() { short code; const CCITTCode *p; int n; code = 0; // make gcc happy if (endOfBlock) { code = lookBits(13); if (code == EOF) { return 1; } if ((code >> 7) == 0) { p = &blackTab1[code]; } else if ((code >> 9) == 0 && (code >> 7) != 0) { p = &blackTab2[(code >> 1) - 64]; } else { p = &blackTab3[code >> 7]; } if (p->bits > 0) { eatBits(p->bits); return p->n; } } else { for (n = 2; n <= 6; ++n) { code = lookBits(n); if (code == EOF) { return 1; } if (n < 6) { code <<= 6 - n; } p = &blackTab3[code]; if (p->bits == n) { eatBits(n); return p->n; } } for (n = 7; n <= 12; ++n) { code = lookBits(n); if (code == EOF) { return 1; } if (n < 12) { code <<= 12 - n; } if (code >= 64) { p = &blackTab2[code - 64]; if (p->bits == n) { eatBits(n); return p->n; } } } for (n = 10; n <= 13; ++n) { code = lookBits(n); if (code == EOF) { return 1; } if (n < 13) { code <<= 13 - n; } p = &blackTab1[code]; if (p->bits == n) { eatBits(n); return p->n; } } } error(errSyntaxError, getPos(), "Bad black code ({0:04x}) in CCITTFax stream", code); // eat a bit and return a positive number so that the caller doesn't // go into an infinite loop eatBits(1); return 1; } short CCITTFaxStream::lookBits(int n) { int c; while (inputBits < n) { if ((c = str->getChar()) == EOF) { if (inputBits == 0) { return EOF; } // near the end of the stream, the caller may ask for more bits // than are available, but there may still be a valid code in // however many bits are available -- we need to return correct // data in this case return (inputBuf << (n - inputBits)) & (0xffffffff >> (32 - n)); } inputBuf = (inputBuf << 8) + c; inputBits += 8; } return (inputBuf >> (inputBits - n)) & (0xffffffff >> (32 - n)); } GooString *CCITTFaxStream::getPSFilter(int psLevel, const char *indent) { GooString *s; char s1[50]; if (psLevel < 2) { return nullptr; } if (!(s = str->getPSFilter(psLevel, indent))) { return nullptr; } s->append(indent)->append("<< "); if (encoding != 0) { sprintf(s1, "/K %d ", encoding); s->append(s1); } if (endOfLine) { s->append("/EndOfLine true "); } if (byteAlign) { s->append("/EncodedByteAlign true "); } sprintf(s1, "/Columns %d ", columns); s->append(s1); if (rows != 0) { sprintf(s1, "/Rows %d ", rows); s->append(s1); } if (!endOfBlock) { s->append("/EndOfBlock false "); } if (black) { s->append("/BlackIs1 true "); } s->append(">> /CCITTFaxDecode filter\n"); return s; } bool CCITTFaxStream::isBinary(bool last) { return str->isBinary(true); } #ifndef ENABLE_LIBJPEG //------------------------------------------------------------------------ // DCTStream //------------------------------------------------------------------------ // IDCT constants (20.12 fixed point format) # define dctCos1 4017 // cos(pi/16) # define dctSin1 799 // sin(pi/16) # define dctCos3 3406 // cos(3*pi/16) # define dctSin3 2276 // sin(3*pi/16) # define dctCos6 1567 // cos(6*pi/16) # define dctSin6 3784 // sin(6*pi/16) # define dctSqrt2 5793 // sqrt(2) # define dctSqrt1d2 2896 // sqrt(2) / 2 // color conversion parameters (16.16 fixed point format) # define dctCrToR 91881 // 1.4020 # define dctCbToG -22553 // -0.3441363 # define dctCrToG -46802 // -0.71413636 # define dctCbToB 116130 // 1.772 // clip [-256,511] --> [0,255] # define dctClipOffset 256 # define dctClipLength 768 static unsigned char dctClip[dctClipLength]; static int dctClipInit = 0; // zig zag decode map static const int dctZigZag[64] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 }; DCTStream::DCTStream(Stream *strA, int colorXformA, Dict *dict, int recursion) : FilterStream(strA) { int i, j; colorXform = colorXformA; progressive = interleaved = false; width = height = 0; mcuWidth = mcuHeight = 0; numComps = 0; comp = 0; x = y = dy = 0; for (i = 0; i < 4; ++i) { for (j = 0; j < 32; ++j) { rowBuf[i][j] = nullptr; } frameBuf[i] = nullptr; } if (!dctClipInit) { for (i = -256; i < 0; ++i) dctClip[dctClipOffset + i] = 0; for (i = 0; i < 256; ++i) dctClip[dctClipOffset + i] = i; for (i = 256; i < 512; ++i) dctClip[dctClipOffset + i] = 255; dctClipInit = 1; } } DCTStream::~DCTStream() { close(); delete str; } void DCTStream::dctReset(bool unfiltered) { if (unfiltered) str->unfilteredReset(); else str->reset(); progressive = interleaved = false; width = height = 0; numComps = 0; numQuantTables = 0; numDCHuffTables = 0; numACHuffTables = 0; gotJFIFMarker = false; gotAdobeMarker = false; restartInterval = 0; } void DCTStream::unfilteredReset() { dctReset(true); } void DCTStream::reset() { int i, j; dctReset(false); if (!readHeader()) { y = height; return; } // compute MCU size if (numComps == 1) { compInfo[0].hSample = compInfo[0].vSample = 1; } mcuWidth = compInfo[0].hSample; mcuHeight = compInfo[0].vSample; for (i = 1; i < numComps; ++i) { if (compInfo[i].hSample > mcuWidth) { mcuWidth = compInfo[i].hSample; } if (compInfo[i].vSample > mcuHeight) { mcuHeight = compInfo[i].vSample; } } mcuWidth *= 8; mcuHeight *= 8; // figure out color transform if (colorXform == -1) { if (numComps == 3) { if (gotJFIFMarker) { colorXform = 1; } else if (compInfo[0].id == 82 && compInfo[1].id == 71 && compInfo[2].id == 66) { // ASCII "RGB" colorXform = 0; } else { colorXform = 1; } } else { colorXform = 0; } } if (progressive || !interleaved) { // allocate a buffer for the whole image bufWidth = ((width + mcuWidth - 1) / mcuWidth) * mcuWidth; bufHeight = ((height + mcuHeight - 1) / mcuHeight) * mcuHeight; if (bufWidth <= 0 || bufHeight <= 0 || bufWidth > INT_MAX / bufWidth / (int)sizeof(int)) { error(errSyntaxError, getPos(), "Invalid image size in DCT stream"); y = height; return; } for (i = 0; i < numComps; ++i) { frameBuf[i] = (int *)gmallocn(bufWidth * bufHeight, sizeof(int)); memset(frameBuf[i], 0, bufWidth * bufHeight * sizeof(int)); } // read the image data do { restartMarker = 0xd0; restart(); readScan(); } while (readHeader()); // decode decodeImage(); // initialize counters comp = 0; x = 0; y = 0; } else { // allocate a buffer for one row of MCUs bufWidth = ((width + mcuWidth - 1) / mcuWidth) * mcuWidth; for (i = 0; i < numComps; ++i) { for (j = 0; j < mcuHeight; ++j) { rowBuf[i][j] = (unsigned char *)gmallocn(bufWidth, sizeof(unsigned char)); } } // initialize counters comp = 0; x = 0; y = 0; dy = mcuHeight; restartMarker = 0xd0; restart(); } } void DCTStream::close() { int i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 32; ++j) { gfree(rowBuf[i][j]); rowBuf[i][j] = nullptr; } gfree(frameBuf[i]); frameBuf[i] = nullptr; } FilterStream::close(); } int DCTStream::getChar() { int c; if (y >= height) { return EOF; } if (progressive || !interleaved) { c = frameBuf[comp][y * bufWidth + x]; if (++comp == numComps) { comp = 0; if (++x == width) { x = 0; ++y; } } } else { if (dy >= mcuHeight) { if (!readMCURow()) { y = height; return EOF; } comp = 0; x = 0; dy = 0; } c = rowBuf[comp][dy][x]; if (++comp == numComps) { comp = 0; if (++x == width) { x = 0; ++y; ++dy; if (y == height) { readTrailer(); } } } } return c; } int DCTStream::lookChar() { if (y >= height) { return EOF; } if (progressive || !interleaved) { return frameBuf[comp][y * bufWidth + x]; } else { if (dy >= mcuHeight) { if (!readMCURow()) { y = height; return EOF; } comp = 0; x = 0; dy = 0; } return rowBuf[comp][dy][x]; } } void DCTStream::restart() { int i; inputBits = 0; restartCtr = restartInterval; for (i = 0; i < numComps; ++i) { compInfo[i].prevDC = 0; } eobRun = 0; } // Read one row of MCUs from a sequential JPEG stream. bool DCTStream::readMCURow() { int data1[64]; unsigned char data2[64]; unsigned char *p1, *p2; int pY, pCb, pCr, pR, pG, pB; int h, v, horiz, vert, hSub, vSub; int x1, x2, y2, x3, y3, x4, y4, x5, y5, cc, i; int c; for (x1 = 0; x1 < width; x1 += mcuWidth) { // deal with restart marker if (restartInterval > 0 && restartCtr == 0) { c = readMarker(); if (c != restartMarker) { error(errSyntaxError, getPos(), "Bad DCT data: incorrect restart marker"); return false; } if (++restartMarker == 0xd8) restartMarker = 0xd0; restart(); } // read one MCU for (cc = 0; cc < numComps; ++cc) { h = compInfo[cc].hSample; v = compInfo[cc].vSample; horiz = mcuWidth / h; vert = mcuHeight / v; hSub = horiz / 8; vSub = vert / 8; for (y2 = 0; y2 < mcuHeight; y2 += vert) { for (x2 = 0; x2 < mcuWidth; x2 += horiz) { if (unlikely(scanInfo.dcHuffTable[cc] >= 4) || unlikely(scanInfo.acHuffTable[cc] >= 4)) { return false; } if (!readDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]], &acHuffTables[scanInfo.acHuffTable[cc]], &compInfo[cc].prevDC, data1)) { return false; } transformDataUnit(quantTables[compInfo[cc].quantTable], data1, data2); if (hSub == 1 && vSub == 1) { for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) { p1 = &rowBuf[cc][y2 + y3][x1 + x2]; p1[0] = data2[i]; p1[1] = data2[i + 1]; p1[2] = data2[i + 2]; p1[3] = data2[i + 3]; p1[4] = data2[i + 4]; p1[5] = data2[i + 5]; p1[6] = data2[i + 6]; p1[7] = data2[i + 7]; } } else if (hSub == 2 && vSub == 2) { for (y3 = 0, i = 0; y3 < 16; y3 += 2, i += 8) { p1 = &rowBuf[cc][y2 + y3][x1 + x2]; p2 = &rowBuf[cc][y2 + y3 + 1][x1 + x2]; p1[0] = p1[1] = p2[0] = p2[1] = data2[i]; p1[2] = p1[3] = p2[2] = p2[3] = data2[i + 1]; p1[4] = p1[5] = p2[4] = p2[5] = data2[i + 2]; p1[6] = p1[7] = p2[6] = p2[7] = data2[i + 3]; p1[8] = p1[9] = p2[8] = p2[9] = data2[i + 4]; p1[10] = p1[11] = p2[10] = p2[11] = data2[i + 5]; p1[12] = p1[13] = p2[12] = p2[13] = data2[i + 6]; p1[14] = p1[15] = p2[14] = p2[15] = data2[i + 7]; } } else { i = 0; for (y3 = 0, y4 = 0; y3 < 8; ++y3, y4 += vSub) { for (x3 = 0, x4 = 0; x3 < 8; ++x3, x4 += hSub) { for (y5 = 0; y5 < vSub; ++y5) for (x5 = 0; x5 < hSub; ++x5) rowBuf[cc][y2 + y4 + y5][x1 + x2 + x4 + x5] = data2[i]; ++i; } } } } } } --restartCtr; // color space conversion if (colorXform) { // convert YCbCr to RGB if (numComps == 3) { for (y2 = 0; y2 < mcuHeight; ++y2) { for (x2 = 0; x2 < mcuWidth; ++x2) { pY = rowBuf[0][y2][x1 + x2]; pCb = rowBuf[1][y2][x1 + x2] - 128; pCr = rowBuf[2][y2][x1 + x2] - 128; pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16; rowBuf[0][y2][x1 + x2] = dctClip[dctClipOffset + pR]; pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16; rowBuf[1][y2][x1 + x2] = dctClip[dctClipOffset + pG]; pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16; rowBuf[2][y2][x1 + x2] = dctClip[dctClipOffset + pB]; } } // convert YCbCrK to CMYK (K is passed through unchanged) } else if (numComps == 4) { for (y2 = 0; y2 < mcuHeight; ++y2) { for (x2 = 0; x2 < mcuWidth; ++x2) { pY = rowBuf[0][y2][x1 + x2]; pCb = rowBuf[1][y2][x1 + x2] - 128; pCr = rowBuf[2][y2][x1 + x2] - 128; pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16; rowBuf[0][y2][x1 + x2] = 255 - dctClip[dctClipOffset + pR]; pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16; rowBuf[1][y2][x1 + x2] = 255 - dctClip[dctClipOffset + pG]; pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16; rowBuf[2][y2][x1 + x2] = 255 - dctClip[dctClipOffset + pB]; } } } } } return true; } // Read one scan from a progressive or non-interleaved JPEG stream. void DCTStream::readScan() { int data[64]; int x1, y1, dx1, dy1, x2, y2, y3, cc, i; int h, v, horiz, vert, vSub; int *p1; int c; if (scanInfo.numComps == 1) { for (cc = 0; cc < numComps; ++cc) { if (scanInfo.comp[cc]) { break; } } dx1 = mcuWidth / compInfo[cc].hSample; dy1 = mcuHeight / compInfo[cc].vSample; } else { dx1 = mcuWidth; dy1 = mcuHeight; } for (y1 = 0; y1 < height; y1 += dy1) { for (x1 = 0; x1 < width; x1 += dx1) { // deal with restart marker if (restartInterval > 0 && restartCtr == 0) { c = readMarker(); if (c != restartMarker) { error(errSyntaxError, getPos(), "Bad DCT data: incorrect restart marker"); return; } if (++restartMarker == 0xd8) { restartMarker = 0xd0; } restart(); } // read one MCU for (cc = 0; cc < numComps; ++cc) { if (!scanInfo.comp[cc]) { continue; } h = compInfo[cc].hSample; v = compInfo[cc].vSample; horiz = mcuWidth / h; vert = mcuHeight / v; vSub = vert / 8; for (y2 = 0; y2 < dy1; y2 += vert) { for (x2 = 0; x2 < dx1; x2 += horiz) { // pull out the current values p1 = &frameBuf[cc][(y1 + y2) * bufWidth + (x1 + x2)]; for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) { data[i] = p1[0]; data[i + 1] = p1[1]; data[i + 2] = p1[2]; data[i + 3] = p1[3]; data[i + 4] = p1[4]; data[i + 5] = p1[5]; data[i + 6] = p1[6]; data[i + 7] = p1[7]; p1 += bufWidth * vSub; } // read one data unit if (progressive) { if (!readProgressiveDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]], &acHuffTables[scanInfo.acHuffTable[cc]], &compInfo[cc].prevDC, data)) { return; } } else { if (!readDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]], &acHuffTables[scanInfo.acHuffTable[cc]], &compInfo[cc].prevDC, data)) { return; } } // add the data unit into frameBuf p1 = &frameBuf[cc][(y1 + y2) * bufWidth + (x1 + x2)]; for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) { p1[0] = data[i]; p1[1] = data[i + 1]; p1[2] = data[i + 2]; p1[3] = data[i + 3]; p1[4] = data[i + 4]; p1[5] = data[i + 5]; p1[6] = data[i + 6]; p1[7] = data[i + 7]; p1 += bufWidth * vSub; } } } } --restartCtr; } } } // Read one data unit from a sequential JPEG stream. bool DCTStream::readDataUnit(DCTHuffTable *dcHuffTable, DCTHuffTable *acHuffTable, int *prevDC, int data[64]) { int run, size, amp; int c; int i, j; if ((size = readHuffSym(dcHuffTable)) == 9999) { return false; } if (size > 0) { if ((amp = readAmp(size)) == 9999) { return false; } } else { amp = 0; } data[0] = *prevDC += amp; for (i = 1; i < 64; ++i) { data[i] = 0; } i = 1; while (i < 64) { run = 0; while ((c = readHuffSym(acHuffTable)) == 0xf0 && run < 0x30) { run += 0x10; } if (c == 9999) { return false; } if (c == 0x00) { break; } else { run += (c >> 4) & 0x0f; size = c & 0x0f; amp = readAmp(size); if (amp == 9999) { return false; } i += run; if (i < 64) { j = dctZigZag[i++]; data[j] = amp; } } } return true; } // Read one data unit from a sequential JPEG stream. bool DCTStream::readProgressiveDataUnit(DCTHuffTable *dcHuffTable, DCTHuffTable *acHuffTable, int *prevDC, int data[64]) { int run, size, amp, bit, c; int i, j, k; // get the DC coefficient i = scanInfo.firstCoeff; if (i == 0) { if (scanInfo.ah == 0) { if ((size = readHuffSym(dcHuffTable)) == 9999) { return false; } if (size > 0) { if ((amp = readAmp(size)) == 9999) { return false; } } else { amp = 0; } data[0] += (*prevDC += amp) << scanInfo.al; } else { if ((bit = readBit()) == 9999) { return false; } data[0] += bit << scanInfo.al; } ++i; } if (scanInfo.lastCoeff == 0) { return true; } // check for an EOB run if (eobRun > 0) { while (i <= scanInfo.lastCoeff) { j = dctZigZag[i++]; if (data[j] != 0) { if ((bit = readBit()) == EOF) { return false; } if (bit) { data[j] += 1 << scanInfo.al; } } } --eobRun; return true; } // read the AC coefficients while (i <= scanInfo.lastCoeff) { if ((c = readHuffSym(acHuffTable)) == 9999) { return false; } // ZRL if (c == 0xf0) { k = 0; while (k < 16 && i <= scanInfo.lastCoeff) { j = dctZigZag[i++]; if (data[j] == 0) { ++k; } else { if ((bit = readBit()) == EOF) { return false; } if (bit) { data[j] += 1 << scanInfo.al; } } } // EOB run } else if ((c & 0x0f) == 0x00) { j = c >> 4; eobRun = 0; for (k = 0; k < j; ++k) { if ((bit = readBit()) == EOF) { return false; } eobRun = (eobRun << 1) | bit; } eobRun += 1 << j; while (i <= scanInfo.lastCoeff) { j = dctZigZag[i++]; if (data[j] != 0) { if ((bit = readBit()) == EOF) { return false; } if (bit) { data[j] += 1 << scanInfo.al; } } } --eobRun; break; // zero run and one AC coefficient } else { run = (c >> 4) & 0x0f; size = c & 0x0f; if ((amp = readAmp(size)) == 9999) { return false; } j = 0; // make gcc happy for (k = 0; k <= run && i <= scanInfo.lastCoeff; ++k) { j = dctZigZag[i++]; while (data[j] != 0 && i <= scanInfo.lastCoeff) { if ((bit = readBit()) == EOF) { return false; } if (bit) { data[j] += 1 << scanInfo.al; } j = dctZigZag[i++]; } } data[j] = amp << scanInfo.al; } } return true; } // Decode a progressive JPEG image. void DCTStream::decodeImage() { int dataIn[64]; unsigned char dataOut[64]; unsigned short *quantTable; int pY, pCb, pCr, pR, pG, pB; int x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, cc, i; int h, v, horiz, vert, hSub, vSub; int *p0, *p1, *p2; for (y1 = 0; y1 < bufHeight; y1 += mcuHeight) { for (x1 = 0; x1 < bufWidth; x1 += mcuWidth) { for (cc = 0; cc < numComps; ++cc) { quantTable = quantTables[compInfo[cc].quantTable]; h = compInfo[cc].hSample; v = compInfo[cc].vSample; horiz = mcuWidth / h; vert = mcuHeight / v; hSub = horiz / 8; vSub = vert / 8; for (y2 = 0; y2 < mcuHeight; y2 += vert) { for (x2 = 0; x2 < mcuWidth; x2 += horiz) { // pull out the coded data unit p1 = &frameBuf[cc][(y1 + y2) * bufWidth + (x1 + x2)]; for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) { dataIn[i] = p1[0]; dataIn[i + 1] = p1[1]; dataIn[i + 2] = p1[2]; dataIn[i + 3] = p1[3]; dataIn[i + 4] = p1[4]; dataIn[i + 5] = p1[5]; dataIn[i + 6] = p1[6]; dataIn[i + 7] = p1[7]; p1 += bufWidth * vSub; } // transform transformDataUnit(quantTable, dataIn, dataOut); // store back into frameBuf, doing replication for // subsampled components p1 = &frameBuf[cc][(y1 + y2) * bufWidth + (x1 + x2)]; if (hSub == 1 && vSub == 1) { for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) { p1[0] = dataOut[i] & 0xff; p1[1] = dataOut[i + 1] & 0xff; p1[2] = dataOut[i + 2] & 0xff; p1[3] = dataOut[i + 3] & 0xff; p1[4] = dataOut[i + 4] & 0xff; p1[5] = dataOut[i + 5] & 0xff; p1[6] = dataOut[i + 6] & 0xff; p1[7] = dataOut[i + 7] & 0xff; p1 += bufWidth; } } else if (hSub == 2 && vSub == 2) { p2 = p1 + bufWidth; for (y3 = 0, i = 0; y3 < 16; y3 += 2, i += 8) { p1[0] = p1[1] = p2[0] = p2[1] = dataOut[i] & 0xff; p1[2] = p1[3] = p2[2] = p2[3] = dataOut[i + 1] & 0xff; p1[4] = p1[5] = p2[4] = p2[5] = dataOut[i + 2] & 0xff; p1[6] = p1[7] = p2[6] = p2[7] = dataOut[i + 3] & 0xff; p1[8] = p1[9] = p2[8] = p2[9] = dataOut[i + 4] & 0xff; p1[10] = p1[11] = p2[10] = p2[11] = dataOut[i + 5] & 0xff; p1[12] = p1[13] = p2[12] = p2[13] = dataOut[i + 6] & 0xff; p1[14] = p1[15] = p2[14] = p2[15] = dataOut[i + 7] & 0xff; p1 += bufWidth * 2; p2 += bufWidth * 2; } } else { i = 0; for (y3 = 0, y4 = 0; y3 < 8; ++y3, y4 += vSub) { for (x3 = 0, x4 = 0; x3 < 8; ++x3, x4 += hSub) { p2 = p1 + x4; for (y5 = 0; y5 < vSub; ++y5) { for (x5 = 0; x5 < hSub; ++x5) { p2[x5] = dataOut[i] & 0xff; } p2 += bufWidth; } ++i; } p1 += bufWidth * vSub; } } } } } // color space conversion if (colorXform) { // convert YCbCr to RGB if (numComps == 3) { for (y2 = 0; y2 < mcuHeight; ++y2) { p0 = &frameBuf[0][(y1 + y2) * bufWidth + x1]; p1 = &frameBuf[1][(y1 + y2) * bufWidth + x1]; p2 = &frameBuf[2][(y1 + y2) * bufWidth + x1]; for (x2 = 0; x2 < mcuWidth; ++x2) { pY = *p0; pCb = *p1 - 128; pCr = *p2 - 128; pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16; *p0++ = dctClip[dctClipOffset + pR]; pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16; *p1++ = dctClip[dctClipOffset + pG]; pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16; *p2++ = dctClip[dctClipOffset + pB]; } } // convert YCbCrK to CMYK (K is passed through unchanged) } else if (numComps == 4) { for (y2 = 0; y2 < mcuHeight; ++y2) { p0 = &frameBuf[0][(y1 + y2) * bufWidth + x1]; p1 = &frameBuf[1][(y1 + y2) * bufWidth + x1]; p2 = &frameBuf[2][(y1 + y2) * bufWidth + x1]; for (x2 = 0; x2 < mcuWidth; ++x2) { pY = *p0; pCb = *p1 - 128; pCr = *p2 - 128; pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16; *p0++ = 255 - dctClip[dctClipOffset + pR]; pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16; *p1++ = 255 - dctClip[dctClipOffset + pG]; pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16; *p2++ = 255 - dctClip[dctClipOffset + pB]; } } } } } } } // Transform one data unit -- this performs the dequantization and // IDCT steps. This IDCT algorithm is taken from: // Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz, // "Practical Fast 1-D DCT Algorithms with 11 Multiplications", // IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989, // 988-991. // The stage numbers mentioned in the comments refer to Figure 1 in this // paper. void DCTStream::transformDataUnit(unsigned short *quantTable, int dataIn[64], unsigned char dataOut[64]) { int v0, v1, v2, v3, v4, v5, v6, v7, t; int *p; int i; // dequant for (i = 0; i < 64; ++i) { dataIn[i] *= quantTable[i]; } // inverse DCT on rows for (i = 0; i < 64; i += 8) { p = dataIn + i; // check for all-zero AC coefficients if (p[1] == 0 && p[2] == 0 && p[3] == 0 && p[4] == 0 && p[5] == 0 && p[6] == 0 && p[7] == 0) { t = (dctSqrt2 * p[0] + 512) >> 10; p[0] = t; p[1] = t; p[2] = t; p[3] = t; p[4] = t; p[5] = t; p[6] = t; p[7] = t; continue; } // stage 4 v0 = (dctSqrt2 * p[0] + 128) >> 8; v1 = (dctSqrt2 * p[4] + 128) >> 8; v2 = p[2]; v3 = p[6]; v4 = (dctSqrt1d2 * (p[1] - p[7]) + 128) >> 8; v7 = (dctSqrt1d2 * (p[1] + p[7]) + 128) >> 8; v5 = p[3] << 4; v6 = p[5] << 4; // stage 3 t = (v0 - v1 + 1) >> 1; v0 = (v0 + v1 + 1) >> 1; v1 = t; t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8; v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8; v3 = t; t = (v4 - v6 + 1) >> 1; v4 = (v4 + v6 + 1) >> 1; v6 = t; t = (v7 + v5 + 1) >> 1; v5 = (v7 - v5 + 1) >> 1; v7 = t; // stage 2 t = (v0 - v3 + 1) >> 1; v0 = (v0 + v3 + 1) >> 1; v3 = t; t = (v1 - v2 + 1) >> 1; v1 = (v1 + v2 + 1) >> 1; v2 = t; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p[0] = v0 + v7; p[7] = v0 - v7; p[1] = v1 + v6; p[6] = v1 - v6; p[2] = v2 + v5; p[5] = v2 - v5; p[3] = v3 + v4; p[4] = v3 - v4; } // inverse DCT on columns for (i = 0; i < 8; ++i) { p = dataIn + i; // check for all-zero AC coefficients if (p[1 * 8] == 0 && p[2 * 8] == 0 && p[3 * 8] == 0 && p[4 * 8] == 0 && p[5 * 8] == 0 && p[6 * 8] == 0 && p[7 * 8] == 0) { t = (dctSqrt2 * dataIn[i + 0] + 8192) >> 14; p[0 * 8] = t; p[1 * 8] = t; p[2 * 8] = t; p[3 * 8] = t; p[4 * 8] = t; p[5 * 8] = t; p[6 * 8] = t; p[7 * 8] = t; continue; } // stage 4 v0 = (dctSqrt2 * p[0 * 8] + 2048) >> 12; v1 = (dctSqrt2 * p[4 * 8] + 2048) >> 12; v2 = p[2 * 8]; v3 = p[6 * 8]; v4 = (dctSqrt1d2 * (p[1 * 8] - p[7 * 8]) + 2048) >> 12; v7 = (dctSqrt1d2 * (p[1 * 8] + p[7 * 8]) + 2048) >> 12; v5 = p[3 * 8]; v6 = p[5 * 8]; // stage 3 t = (v0 - v1 + 1) >> 1; v0 = (v0 + v1 + 1) >> 1; v1 = t; t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12; v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12; v3 = t; t = (v4 - v6 + 1) >> 1; v4 = (v4 + v6 + 1) >> 1; v6 = t; t = (v7 + v5 + 1) >> 1; v5 = (v7 - v5 + 1) >> 1; v7 = t; // stage 2 t = (v0 - v3 + 1) >> 1; v0 = (v0 + v3 + 1) >> 1; v3 = t; t = (v1 - v2 + 1) >> 1; v1 = (v1 + v2 + 1) >> 1; v2 = t; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p[0 * 8] = v0 + v7; p[7 * 8] = v0 - v7; p[1 * 8] = v1 + v6; p[6 * 8] = v1 - v6; p[2 * 8] = v2 + v5; p[5 * 8] = v2 - v5; p[3 * 8] = v3 + v4; p[4 * 8] = v3 - v4; } // convert to 8-bit integers for (i = 0; i < 64; ++i) { const int ix = dctClipOffset + 128 + ((dataIn[i] + 8) >> 4); if (unlikely(ix < 0 || ix >= dctClipLength)) { dataOut[i] = 0; } else { dataOut[i] = dctClip[ix]; } } } int DCTStream::readHuffSym(DCTHuffTable *table) { unsigned short code; int bit; int codeBits; code = 0; codeBits = 0; do { // add a bit to the code if ((bit = readBit()) == EOF) { return 9999; } code = (code << 1) + bit; ++codeBits; // look up code if (code < table->firstCode[codeBits]) { break; } if (code - table->firstCode[codeBits] < table->numCodes[codeBits]) { code -= table->firstCode[codeBits]; return table->sym[table->firstSym[codeBits] + code]; } } while (codeBits < 16); error(errSyntaxError, getPos(), "Bad Huffman code in DCT stream"); return 9999; } int DCTStream::readAmp(int size) { int amp, bit; int bits; amp = 0; for (bits = 0; bits < size; ++bits) { if ((bit = readBit()) == EOF) return 9999; amp = (amp << 1) + bit; } if (amp < (1 << (size - 1))) amp -= (1 << size) - 1; return amp; } int DCTStream::readBit() { int bit; int c, c2; if (inputBits == 0) { if ((c = str->getChar()) == EOF) return EOF; if (c == 0xff) { do { c2 = str->getChar(); } while (c2 == 0xff); if (c2 != 0x00) { error(errSyntaxError, getPos(), "Bad DCT data: missing 00 after ff"); return EOF; } } inputBuf = c; inputBits = 8; } bit = (inputBuf >> (inputBits - 1)) & 1; --inputBits; return bit; } bool DCTStream::readHeader() { bool doScan; int n; int c = 0; int i; // read headers doScan = false; while (!doScan) { c = readMarker(); switch (c) { case 0xc0: // SOF0 (sequential) case 0xc1: // SOF1 (extended sequential) if (!readBaselineSOF()) { return false; } break; case 0xc2: // SOF2 (progressive) if (!readProgressiveSOF()) { return false; } break; case 0xc4: // DHT if (!readHuffmanTables()) { return false; } break; case 0xd8: // SOI break; case 0xd9: // EOI return false; case 0xda: // SOS if (!readScanInfo()) { return false; } doScan = true; break; case 0xdb: // DQT if (!readQuantTables()) { return false; } break; case 0xdd: // DRI if (!readRestartInterval()) { return false; } break; case 0xe0: // APP0 if (!readJFIFMarker()) { return false; } break; case 0xee: // APP14 if (!readAdobeMarker()) { return false; } break; case EOF: error(errSyntaxError, getPos(), "Bad DCT header"); return false; default: // skip APPn / COM / etc. if (c >= 0xe0) { n = read16() - 2; for (i = 0; i < n; ++i) { str->getChar(); } } else { error(errSyntaxError, getPos(), "Unknown DCT marker <{0:02x}>", c); return false; } break; } } return true; } bool DCTStream::readBaselineSOF() { int length; int prec; int i; int c; length = read16(); prec = str->getChar(); height = read16(); width = read16(); numComps = str->getChar(); if (numComps <= 0 || numComps > 4) { error(errSyntaxError, getPos(), "Bad number of components in DCT stream"); numComps = 0; return false; } if (prec != 8) { error(errSyntaxError, getPos(), "Bad DCT precision {0:d}", prec); return false; } for (i = 0; i < numComps; ++i) { compInfo[i].id = str->getChar(); c = str->getChar(); compInfo[i].hSample = (c >> 4) & 0x0f; compInfo[i].vSample = c & 0x0f; compInfo[i].quantTable = str->getChar(); if (compInfo[i].hSample < 1 || compInfo[i].hSample > 4 || compInfo[i].vSample < 1 || compInfo[i].vSample > 4) { error(errSyntaxError, getPos(), "Bad DCT sampling factor"); return false; } if (compInfo[i].quantTable < 0 || compInfo[i].quantTable > 3) { error(errSyntaxError, getPos(), "Bad DCT quant table selector"); return false; } } progressive = false; return true; } bool DCTStream::readProgressiveSOF() { int length; int prec; int i; int c; length = read16(); prec = str->getChar(); height = read16(); width = read16(); numComps = str->getChar(); if (numComps <= 0 || numComps > 4) { error(errSyntaxError, getPos(), "Bad number of components in DCT stream"); numComps = 0; return false; } if (prec != 8) { error(errSyntaxError, getPos(), "Bad DCT precision {0:d}", prec); return false; } for (i = 0; i < numComps; ++i) { compInfo[i].id = str->getChar(); c = str->getChar(); compInfo[i].hSample = (c >> 4) & 0x0f; compInfo[i].vSample = c & 0x0f; compInfo[i].quantTable = str->getChar(); if (compInfo[i].hSample < 1 || compInfo[i].hSample > 4 || compInfo[i].vSample < 1 || compInfo[i].vSample > 4) { error(errSyntaxError, getPos(), "Bad DCT sampling factor"); return false; } if (compInfo[i].quantTable < 0 || compInfo[i].quantTable > 3) { error(errSyntaxError, getPos(), "Bad DCT quant table selector"); return false; } } progressive = true; return true; } bool DCTStream::readScanInfo() { int length; int id, c; int i, j; length = read16() - 2; scanInfo.numComps = str->getChar(); if (scanInfo.numComps <= 0 || scanInfo.numComps > 4) { error(errSyntaxError, getPos(), "Bad number of components in DCT stream"); scanInfo.numComps = 0; return false; } --length; if (length != 2 * scanInfo.numComps + 3) { error(errSyntaxError, getPos(), "Bad DCT scan info block"); return false; } interleaved = scanInfo.numComps == numComps; for (j = 0; j < numComps; ++j) { scanInfo.comp[j] = false; scanInfo.dcHuffTable[j] = 0; scanInfo.acHuffTable[j] = 0; } for (i = 0; i < scanInfo.numComps; ++i) { id = str->getChar(); // some (broken) DCT streams reuse ID numbers, but at least they // keep the components in order, so we check compInfo[i] first to // work around the problem if (id == compInfo[i].id) { j = i; } else { for (j = 0; j < numComps; ++j) { if (id == compInfo[j].id) { break; } } if (j == numComps) { error(errSyntaxError, getPos(), "Bad DCT component ID in scan info block"); return false; } } scanInfo.comp[j] = true; c = str->getChar(); scanInfo.dcHuffTable[j] = (c >> 4) & 0x0f; scanInfo.acHuffTable[j] = c & 0x0f; } scanInfo.firstCoeff = str->getChar(); scanInfo.lastCoeff = str->getChar(); if (scanInfo.firstCoeff < 0 || scanInfo.lastCoeff > 63 || scanInfo.firstCoeff > scanInfo.lastCoeff) { error(errSyntaxError, getPos(), "Bad DCT coefficient numbers in scan info block"); return false; } c = str->getChar(); scanInfo.ah = (c >> 4) & 0x0f; scanInfo.al = c & 0x0f; return true; } bool DCTStream::readQuantTables() { int length, prec, i, index; length = read16() - 2; while (length > 0) { index = str->getChar(); prec = (index >> 4) & 0x0f; index &= 0x0f; if (prec > 1 || index >= 4) { error(errSyntaxError, getPos(), "Bad DCT quantization table"); return false; } if (index == numQuantTables) { numQuantTables = index + 1; } for (i = 0; i < 64; ++i) { if (prec) { quantTables[index][dctZigZag[i]] = read16(); } else { quantTables[index][dctZigZag[i]] = str->getChar(); } } if (prec) { length -= 129; } else { length -= 65; } } return true; } bool DCTStream::readHuffmanTables() { DCTHuffTable *tbl; int length; int index; unsigned short code; unsigned char sym; int i; int c; length = read16() - 2; while (length > 0) { index = str->getChar(); --length; if ((index & 0x0f) >= 4) { error(errSyntaxError, getPos(), "Bad DCT Huffman table"); return false; } if (index & 0x10) { index &= 0x0f; if (index >= numACHuffTables) numACHuffTables = index + 1; tbl = &acHuffTables[index]; } else { index &= 0x0f; if (index >= numDCHuffTables) numDCHuffTables = index + 1; tbl = &dcHuffTables[index]; } sym = 0; code = 0; for (i = 1; i <= 16; ++i) { c = str->getChar(); tbl->firstSym[i] = sym; tbl->firstCode[i] = code; tbl->numCodes[i] = c; sym += c; code = (code + c) << 1; } length -= 16; for (i = 0; i < sym; ++i) tbl->sym[i] = str->getChar(); length -= sym; } return true; } bool DCTStream::readRestartInterval() { int length; length = read16(); if (length != 4) { error(errSyntaxError, getPos(), "Bad DCT restart interval"); return false; } restartInterval = read16(); return true; } bool DCTStream::readJFIFMarker() { int length, i; char buf[5]; int c; length = read16(); length -= 2; if (length >= 5) { for (i = 0; i < 5; ++i) { if ((c = str->getChar()) == EOF) { error(errSyntaxError, getPos(), "Bad DCT APP0 marker"); return false; } buf[i] = c; } length -= 5; if (!memcmp(buf, "JFIF\0", 5)) { gotJFIFMarker = true; } } while (length > 0) { if (str->getChar() == EOF) { error(errSyntaxError, getPos(), "Bad DCT APP0 marker"); return false; } --length; } return true; } bool DCTStream::readAdobeMarker() { int length, i; char buf[12]; int c; length = read16(); if (length < 14) { goto err; } for (i = 0; i < 12; ++i) { if ((c = str->getChar()) == EOF) { goto err; } buf[i] = c; } if (strncmp(buf, "Adobe", 5)) { goto err; } colorXform = buf[11]; gotAdobeMarker = true; for (i = 14; i < length; ++i) { if (str->getChar() == EOF) { goto err; } } return true; err: error(errSyntaxError, getPos(), "Bad DCT Adobe APP14 marker"); return false; } bool DCTStream::readTrailer() { int c; c = readMarker(); if (c != 0xd9) { // EOI error(errSyntaxError, getPos(), "Bad DCT trailer"); return false; } return true; } int DCTStream::readMarker() { int c; do { do { c = str->getChar(); } while (c != 0xff && c != EOF); while (c == 0xff) { c = str->getChar(); } } while (c == 0x00); return c; } int DCTStream::read16() { int c1, c2; if ((c1 = str->getChar()) == EOF) return EOF; if ((c2 = str->getChar()) == EOF) return EOF; return (c1 << 8) + c2; } GooString *DCTStream::getPSFilter(int psLevel, const char *indent) { GooString *s; if (psLevel < 2) { return nullptr; } if (!(s = str->getPSFilter(psLevel, indent))) { return nullptr; } s->append(indent)->append("<< >> /DCTDecode filter\n"); return s; } bool DCTStream::isBinary(bool last) { return str->isBinary(true); } #endif #ifndef ENABLE_ZLIB_UNCOMPRESS //------------------------------------------------------------------------ // FlateStream //------------------------------------------------------------------------ const int FlateStream::codeLenCodeMap[flateMaxCodeLenCodes] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; const FlateDecode FlateStream::lengthDecode[flateMaxLitCodes - 257] = { { 0, 3 }, { 0, 4 }, { 0, 5 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 }, { 0, 10 }, { 1, 11 }, { 1, 13 }, { 1, 15 }, { 1, 17 }, { 2, 19 }, { 2, 23 }, { 2, 27 }, { 2, 31 }, { 3, 35 }, { 3, 43 }, { 3, 51 }, { 3, 59 }, { 4, 67 }, { 4, 83 }, { 4, 99 }, { 4, 115 }, { 5, 131 }, { 5, 163 }, { 5, 195 }, { 5, 227 }, { 0, 258 }, { 0, 258 }, { 0, 258 } }; const FlateDecode FlateStream::distDecode[flateMaxDistCodes] = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 0, 4 }, { 1, 5 }, { 1, 7 }, { 2, 9 }, { 2, 13 }, { 3, 17 }, { 3, 25 }, { 4, 33 }, { 4, 49 }, { 5, 65 }, { 5, 97 }, { 6, 129 }, { 6, 193 }, { 7, 257 }, { 7, 385 }, { 8, 513 }, { 8, 769 }, { 9, 1025 }, { 9, 1537 }, { 10, 2049 }, { 10, 3073 }, { 11, 4097 }, { 11, 6145 }, { 12, 8193 }, { 12, 12289 }, { 13, 16385 }, { 13, 24577 } }; static const FlateCode flateFixedLitCodeTabCodes[512] = { { 7, 0x0100 }, { 8, 0x0050 }, { 8, 0x0010 }, { 8, 0x0118 }, { 7, 0x0110 }, { 8, 0x0070 }, { 8, 0x0030 }, { 9, 0x00c0 }, { 7, 0x0108 }, { 8, 0x0060 }, { 8, 0x0020 }, { 9, 0x00a0 }, { 8, 0x0000 }, { 8, 0x0080 }, { 8, 0x0040 }, { 9, 0x00e0 }, { 7, 0x0104 }, { 8, 0x0058 }, { 8, 0x0018 }, { 9, 0x0090 }, { 7, 0x0114 }, { 8, 0x0078 }, { 8, 0x0038 }, { 9, 0x00d0 }, { 7, 0x010c }, { 8, 0x0068 }, { 8, 0x0028 }, { 9, 0x00b0 }, { 8, 0x0008 }, { 8, 0x0088 }, { 8, 0x0048 }, { 9, 0x00f0 }, { 7, 0x0102 }, { 8, 0x0054 }, { 8, 0x0014 }, { 8, 0x011c }, { 7, 0x0112 }, { 8, 0x0074 }, { 8, 0x0034 }, { 9, 0x00c8 }, { 7, 0x010a }, { 8, 0x0064 }, { 8, 0x0024 }, { 9, 0x00a8 }, { 8, 0x0004 }, { 8, 0x0084 }, { 8, 0x0044 }, { 9, 0x00e8 }, { 7, 0x0106 }, { 8, 0x005c }, { 8, 0x001c }, { 9, 0x0098 }, { 7, 0x0116 }, { 8, 0x007c }, { 8, 0x003c }, { 9, 0x00d8 }, { 7, 0x010e }, { 8, 0x006c }, { 8, 0x002c }, { 9, 0x00b8 }, { 8, 0x000c }, { 8, 0x008c }, { 8, 0x004c }, { 9, 0x00f8 }, { 7, 0x0101 }, { 8, 0x0052 }, { 8, 0x0012 }, { 8, 0x011a }, { 7, 0x0111 }, { 8, 0x0072 }, { 8, 0x0032 }, { 9, 0x00c4 }, { 7, 0x0109 }, { 8, 0x0062 }, { 8, 0x0022 }, { 9, 0x00a4 }, { 8, 0x0002 }, { 8, 0x0082 }, { 8, 0x0042 }, { 9, 0x00e4 }, { 7, 0x0105 }, { 8, 0x005a }, { 8, 0x001a }, { 9, 0x0094 }, { 7, 0x0115 }, { 8, 0x007a }, { 8, 0x003a }, { 9, 0x00d4 }, { 7, 0x010d }, { 8, 0x006a }, { 8, 0x002a }, { 9, 0x00b4 }, { 8, 0x000a }, { 8, 0x008a }, { 8, 0x004a }, { 9, 0x00f4 }, { 7, 0x0103 }, { 8, 0x0056 }, { 8, 0x0016 }, { 8, 0x011e }, { 7, 0x0113 }, { 8, 0x0076 }, { 8, 0x0036 }, { 9, 0x00cc }, { 7, 0x010b }, { 8, 0x0066 }, { 8, 0x0026 }, { 9, 0x00ac }, { 8, 0x0006 }, { 8, 0x0086 }, { 8, 0x0046 }, { 9, 0x00ec }, { 7, 0x0107 }, { 8, 0x005e }, { 8, 0x001e }, { 9, 0x009c }, { 7, 0x0117 }, { 8, 0x007e }, { 8, 0x003e }, { 9, 0x00dc }, { 7, 0x010f }, { 8, 0x006e }, { 8, 0x002e }, { 9, 0x00bc }, { 8, 0x000e }, { 8, 0x008e }, { 8, 0x004e }, { 9, 0x00fc }, { 7, 0x0100 }, { 8, 0x0051 }, { 8, 0x0011 }, { 8, 0x0119 }, { 7, 0x0110 }, { 8, 0x0071 }, { 8, 0x0031 }, { 9, 0x00c2 }, { 7, 0x0108 }, { 8, 0x0061 }, { 8, 0x0021 }, { 9, 0x00a2 }, { 8, 0x0001 }, { 8, 0x0081 }, { 8, 0x0041 }, { 9, 0x00e2 }, { 7, 0x0104 }, { 8, 0x0059 }, { 8, 0x0019 }, { 9, 0x0092 }, { 7, 0x0114 }, { 8, 0x0079 }, { 8, 0x0039 }, { 9, 0x00d2 }, { 7, 0x010c }, { 8, 0x0069 }, { 8, 0x0029 }, { 9, 0x00b2 }, { 8, 0x0009 }, { 8, 0x0089 }, { 8, 0x0049 }, { 9, 0x00f2 }, { 7, 0x0102 }, { 8, 0x0055 }, { 8, 0x0015 }, { 8, 0x011d }, { 7, 0x0112 }, { 8, 0x0075 }, { 8, 0x0035 }, { 9, 0x00ca }, { 7, 0x010a }, { 8, 0x0065 }, { 8, 0x0025 }, { 9, 0x00aa }, { 8, 0x0005 }, { 8, 0x0085 }, { 8, 0x0045 }, { 9, 0x00ea }, { 7, 0x0106 }, { 8, 0x005d }, { 8, 0x001d }, { 9, 0x009a }, { 7, 0x0116 }, { 8, 0x007d }, { 8, 0x003d }, { 9, 0x00da }, { 7, 0x010e }, { 8, 0x006d }, { 8, 0x002d }, { 9, 0x00ba }, { 8, 0x000d }, { 8, 0x008d }, { 8, 0x004d }, { 9, 0x00fa }, { 7, 0x0101 }, { 8, 0x0053 }, { 8, 0x0013 }, { 8, 0x011b }, { 7, 0x0111 }, { 8, 0x0073 }, { 8, 0x0033 }, { 9, 0x00c6 }, { 7, 0x0109 }, { 8, 0x0063 }, { 8, 0x0023 }, { 9, 0x00a6 }, { 8, 0x0003 }, { 8, 0x0083 }, { 8, 0x0043 }, { 9, 0x00e6 }, { 7, 0x0105 }, { 8, 0x005b }, { 8, 0x001b }, { 9, 0x0096 }, { 7, 0x0115 }, { 8, 0x007b }, { 8, 0x003b }, { 9, 0x00d6 }, { 7, 0x010d }, { 8, 0x006b }, { 8, 0x002b }, { 9, 0x00b6 }, { 8, 0x000b }, { 8, 0x008b }, { 8, 0x004b }, { 9, 0x00f6 }, { 7, 0x0103 }, { 8, 0x0057 }, { 8, 0x0017 }, { 8, 0x011f }, { 7, 0x0113 }, { 8, 0x0077 }, { 8, 0x0037 }, { 9, 0x00ce }, { 7, 0x010b }, { 8, 0x0067 }, { 8, 0x0027 }, { 9, 0x00ae }, { 8, 0x0007 }, { 8, 0x0087 }, { 8, 0x0047 }, { 9, 0x00ee }, { 7, 0x0107 }, { 8, 0x005f }, { 8, 0x001f }, { 9, 0x009e }, { 7, 0x0117 }, { 8, 0x007f }, { 8, 0x003f }, { 9, 0x00de }, { 7, 0x010f }, { 8, 0x006f }, { 8, 0x002f }, { 9, 0x00be }, { 8, 0x000f }, { 8, 0x008f }, { 8, 0x004f }, { 9, 0x00fe }, { 7, 0x0100 }, { 8, 0x0050 }, { 8, 0x0010 }, { 8, 0x0118 }, { 7, 0x0110 }, { 8, 0x0070 }, { 8, 0x0030 }, { 9, 0x00c1 }, { 7, 0x0108 }, { 8, 0x0060 }, { 8, 0x0020 }, { 9, 0x00a1 }, { 8, 0x0000 }, { 8, 0x0080 }, { 8, 0x0040 }, { 9, 0x00e1 }, { 7, 0x0104 }, { 8, 0x0058 }, { 8, 0x0018 }, { 9, 0x0091 }, { 7, 0x0114 }, { 8, 0x0078 }, { 8, 0x0038 }, { 9, 0x00d1 }, { 7, 0x010c }, { 8, 0x0068 }, { 8, 0x0028 }, { 9, 0x00b1 }, { 8, 0x0008 }, { 8, 0x0088 }, { 8, 0x0048 }, { 9, 0x00f1 }, { 7, 0x0102 }, { 8, 0x0054 }, { 8, 0x0014 }, { 8, 0x011c }, { 7, 0x0112 }, { 8, 0x0074 }, { 8, 0x0034 }, { 9, 0x00c9 }, { 7, 0x010a }, { 8, 0x0064 }, { 8, 0x0024 }, { 9, 0x00a9 }, { 8, 0x0004 }, { 8, 0x0084 }, { 8, 0x0044 }, { 9, 0x00e9 }, { 7, 0x0106 }, { 8, 0x005c }, { 8, 0x001c }, { 9, 0x0099 }, { 7, 0x0116 }, { 8, 0x007c }, { 8, 0x003c }, { 9, 0x00d9 }, { 7, 0x010e }, { 8, 0x006c }, { 8, 0x002c }, { 9, 0x00b9 }, { 8, 0x000c }, { 8, 0x008c }, { 8, 0x004c }, { 9, 0x00f9 }, { 7, 0x0101 }, { 8, 0x0052 }, { 8, 0x0012 }, { 8, 0x011a }, { 7, 0x0111 }, { 8, 0x0072 }, { 8, 0x0032 }, { 9, 0x00c5 }, { 7, 0x0109 }, { 8, 0x0062 }, { 8, 0x0022 }, { 9, 0x00a5 }, { 8, 0x0002 }, { 8, 0x0082 }, { 8, 0x0042 }, { 9, 0x00e5 }, { 7, 0x0105 }, { 8, 0x005a }, { 8, 0x001a }, { 9, 0x0095 }, { 7, 0x0115 }, { 8, 0x007a }, { 8, 0x003a }, { 9, 0x00d5 }, { 7, 0x010d }, { 8, 0x006a }, { 8, 0x002a }, { 9, 0x00b5 }, { 8, 0x000a }, { 8, 0x008a }, { 8, 0x004a }, { 9, 0x00f5 }, { 7, 0x0103 }, { 8, 0x0056 }, { 8, 0x0016 }, { 8, 0x011e }, { 7, 0x0113 }, { 8, 0x0076 }, { 8, 0x0036 }, { 9, 0x00cd }, { 7, 0x010b }, { 8, 0x0066 }, { 8, 0x0026 }, { 9, 0x00ad }, { 8, 0x0006 }, { 8, 0x0086 }, { 8, 0x0046 }, { 9, 0x00ed }, { 7, 0x0107 }, { 8, 0x005e }, { 8, 0x001e }, { 9, 0x009d }, { 7, 0x0117 }, { 8, 0x007e }, { 8, 0x003e }, { 9, 0x00dd }, { 7, 0x010f }, { 8, 0x006e }, { 8, 0x002e }, { 9, 0x00bd }, { 8, 0x000e }, { 8, 0x008e }, { 8, 0x004e }, { 9, 0x00fd }, { 7, 0x0100 }, { 8, 0x0051 }, { 8, 0x0011 }, { 8, 0x0119 }, { 7, 0x0110 }, { 8, 0x0071 }, { 8, 0x0031 }, { 9, 0x00c3 }, { 7, 0x0108 }, { 8, 0x0061 }, { 8, 0x0021 }, { 9, 0x00a3 }, { 8, 0x0001 }, { 8, 0x0081 }, { 8, 0x0041 }, { 9, 0x00e3 }, { 7, 0x0104 }, { 8, 0x0059 }, { 8, 0x0019 }, { 9, 0x0093 }, { 7, 0x0114 }, { 8, 0x0079 }, { 8, 0x0039 }, { 9, 0x00d3 }, { 7, 0x010c }, { 8, 0x0069 }, { 8, 0x0029 }, { 9, 0x00b3 }, { 8, 0x0009 }, { 8, 0x0089 }, { 8, 0x0049 }, { 9, 0x00f3 }, { 7, 0x0102 }, { 8, 0x0055 }, { 8, 0x0015 }, { 8, 0x011d }, { 7, 0x0112 }, { 8, 0x0075 }, { 8, 0x0035 }, { 9, 0x00cb }, { 7, 0x010a }, { 8, 0x0065 }, { 8, 0x0025 }, { 9, 0x00ab }, { 8, 0x0005 }, { 8, 0x0085 }, { 8, 0x0045 }, { 9, 0x00eb }, { 7, 0x0106 }, { 8, 0x005d }, { 8, 0x001d }, { 9, 0x009b }, { 7, 0x0116 }, { 8, 0x007d }, { 8, 0x003d }, { 9, 0x00db }, { 7, 0x010e }, { 8, 0x006d }, { 8, 0x002d }, { 9, 0x00bb }, { 8, 0x000d }, { 8, 0x008d }, { 8, 0x004d }, { 9, 0x00fb }, { 7, 0x0101 }, { 8, 0x0053 }, { 8, 0x0013 }, { 8, 0x011b }, { 7, 0x0111 }, { 8, 0x0073 }, { 8, 0x0033 }, { 9, 0x00c7 }, { 7, 0x0109 }, { 8, 0x0063 }, { 8, 0x0023 }, { 9, 0x00a7 }, { 8, 0x0003 }, { 8, 0x0083 }, { 8, 0x0043 }, { 9, 0x00e7 }, { 7, 0x0105 }, { 8, 0x005b }, { 8, 0x001b }, { 9, 0x0097 }, { 7, 0x0115 }, { 8, 0x007b }, { 8, 0x003b }, { 9, 0x00d7 }, { 7, 0x010d }, { 8, 0x006b }, { 8, 0x002b }, { 9, 0x00b7 }, { 8, 0x000b }, { 8, 0x008b }, { 8, 0x004b }, { 9, 0x00f7 }, { 7, 0x0103 }, { 8, 0x0057 }, { 8, 0x0017 }, { 8, 0x011f }, { 7, 0x0113 }, { 8, 0x0077 }, { 8, 0x0037 }, { 9, 0x00cf }, { 7, 0x010b }, { 8, 0x0067 }, { 8, 0x0027 }, { 9, 0x00af }, { 8, 0x0007 }, { 8, 0x0087 }, { 8, 0x0047 }, { 9, 0x00ef }, { 7, 0x0107 }, { 8, 0x005f }, { 8, 0x001f }, { 9, 0x009f }, { 7, 0x0117 }, { 8, 0x007f }, { 8, 0x003f }, { 9, 0x00df }, { 7, 0x010f }, { 8, 0x006f }, { 8, 0x002f }, { 9, 0x00bf }, { 8, 0x000f }, { 8, 0x008f }, { 8, 0x004f }, { 9, 0x00ff } }; FlateHuffmanTab FlateStream::fixedLitCodeTab = { flateFixedLitCodeTabCodes, 9 }; static const FlateCode flateFixedDistCodeTabCodes[32] = { { 5, 0x0000 }, { 5, 0x0010 }, { 5, 0x0008 }, { 5, 0x0018 }, { 5, 0x0004 }, { 5, 0x0014 }, { 5, 0x000c }, { 5, 0x001c }, { 5, 0x0002 }, { 5, 0x0012 }, { 5, 0x000a }, { 5, 0x001a }, { 5, 0x0006 }, { 5, 0x0016 }, { 5, 0x000e }, { 0, 0x0000 }, { 5, 0x0001 }, { 5, 0x0011 }, { 5, 0x0009 }, { 5, 0x0019 }, { 5, 0x0005 }, { 5, 0x0015 }, { 5, 0x000d }, { 5, 0x001d }, { 5, 0x0003 }, { 5, 0x0013 }, { 5, 0x000b }, { 5, 0x001b }, { 5, 0x0007 }, { 5, 0x0017 }, { 5, 0x000f }, { 0, 0x0000 } }; FlateHuffmanTab FlateStream::fixedDistCodeTab = { flateFixedDistCodeTabCodes, 5 }; FlateStream::FlateStream(Stream *strA, int predictor, int columns, int colors, int bits) : FilterStream(strA) { if (predictor != 1) { pred = new StreamPredictor(this, predictor, columns, colors, bits); if (!pred->isOk()) { delete pred; pred = nullptr; } } else { pred = nullptr; } litCodeTab.codes = nullptr; distCodeTab.codes = nullptr; memset(buf, 0, flateWindow); } FlateStream::~FlateStream() { if (litCodeTab.codes != fixedLitCodeTab.codes) { gfree(const_cast(litCodeTab.codes)); } if (distCodeTab.codes != fixedDistCodeTab.codes) { gfree(const_cast(distCodeTab.codes)); } if (pred) { delete pred; } delete str; } void FlateStream::flateReset(bool unfiltered) { if (unfiltered) str->unfilteredReset(); else str->reset(); index = 0; remain = 0; codeBuf = 0; codeSize = 0; compressedBlock = false; endOfBlock = true; eof = true; } void FlateStream::unfilteredReset() { flateReset(true); } void FlateStream::reset() { int cmf, flg; flateReset(false); // read header //~ need to look at window size? endOfBlock = eof = true; cmf = str->getChar(); flg = str->getChar(); if (cmf == EOF || flg == EOF) return; if ((cmf & 0x0f) != 0x08) { error(errSyntaxError, getPos(), "Unknown compression method in flate stream"); return; } if ((((cmf << 8) + flg) % 31) != 0) { error(errSyntaxError, getPos(), "Bad FCHECK in flate stream"); return; } if (flg & 0x20) { error(errSyntaxError, getPos(), "FDICT bit set in flate stream"); return; } eof = false; } int FlateStream::getChar() { if (pred) { return pred->getChar(); } return doGetRawChar(); } int FlateStream::getChars(int nChars, unsigned char *buffer) { if (pred) { return pred->getChars(nChars, buffer); } else { for (int i = 0; i < nChars; ++i) { const int c = doGetRawChar(); if (likely(c != EOF)) buffer[i] = c; else return i; } return nChars; } } int FlateStream::lookChar() { int c; if (pred) { return pred->lookChar(); } while (remain == 0) { if (endOfBlock && eof) return EOF; readSome(); } c = buf[index]; return c; } void FlateStream::getRawChars(int nChars, int *buffer) { for (int i = 0; i < nChars; ++i) buffer[i] = doGetRawChar(); } int FlateStream::getRawChar() { return doGetRawChar(); } GooString *FlateStream::getPSFilter(int psLevel, const char *indent) { GooString *s; if (psLevel < 3 || pred) { return nullptr; } if (!(s = str->getPSFilter(psLevel, indent))) { return nullptr; } s->append(indent)->append("<< >> /FlateDecode filter\n"); return s; } bool FlateStream::isBinary(bool last) { return str->isBinary(true); } void FlateStream::readSome() { int code1, code2; int len, dist; int i, j, k; int c; if (endOfBlock) { if (!startBlock()) return; } if (compressedBlock) { if ((code1 = getHuffmanCodeWord(&litCodeTab)) == EOF) goto err; if (code1 < 256) { buf[index] = code1; remain = 1; } else if (code1 == 256) { endOfBlock = true; remain = 0; } else { code1 -= 257; code2 = lengthDecode[code1].bits; if (code2 > 0 && (code2 = getCodeWord(code2)) == EOF) goto err; len = lengthDecode[code1].first + code2; if ((code1 = getHuffmanCodeWord(&distCodeTab)) == EOF) goto err; code2 = distDecode[code1].bits; if (code2 > 0 && (code2 = getCodeWord(code2)) == EOF) goto err; dist = distDecode[code1].first + code2; i = index; j = (index - dist) & flateMask; for (k = 0; k < len; ++k) { buf[i] = buf[j]; i = (i + 1) & flateMask; j = (j + 1) & flateMask; } remain = len; } } else { len = (blockLen < flateWindow) ? blockLen : flateWindow; for (i = 0, j = index; i < len; ++i, j = (j + 1) & flateMask) { if ((c = str->getChar()) == EOF) { endOfBlock = eof = true; break; } buf[j] = c & 0xff; } remain = i; blockLen -= len; if (blockLen == 0) endOfBlock = true; } return; err: error(errSyntaxError, getPos(), "Unexpected end of file in flate stream"); endOfBlock = eof = true; remain = 0; } bool FlateStream::startBlock() { int blockHdr; int c; int check; // free the code tables from the previous block if (litCodeTab.codes != fixedLitCodeTab.codes) { gfree(const_cast(litCodeTab.codes)); } litCodeTab.codes = nullptr; if (distCodeTab.codes != fixedDistCodeTab.codes) { gfree(const_cast(distCodeTab.codes)); } distCodeTab.codes = nullptr; // read block header blockHdr = getCodeWord(3); if (blockHdr & 1) eof = true; blockHdr >>= 1; // uncompressed block if (blockHdr == 0) { compressedBlock = false; if ((c = str->getChar()) == EOF) goto err; blockLen = c & 0xff; if ((c = str->getChar()) == EOF) goto err; blockLen |= (c & 0xff) << 8; if ((c = str->getChar()) == EOF) goto err; check = c & 0xff; if ((c = str->getChar()) == EOF) goto err; check |= (c & 0xff) << 8; if (check != (~blockLen & 0xffff)) error(errSyntaxError, getPos(), "Bad uncompressed block length in flate stream"); codeBuf = 0; codeSize = 0; // compressed block with fixed codes } else if (blockHdr == 1) { compressedBlock = true; loadFixedCodes(); // compressed block with dynamic codes } else if (blockHdr == 2) { compressedBlock = true; if (!readDynamicCodes()) { goto err; } // unknown block type } else { goto err; } endOfBlock = false; return true; err: error(errSyntaxError, getPos(), "Bad block header in flate stream"); endOfBlock = eof = true; return false; } void FlateStream::loadFixedCodes() { litCodeTab.codes = fixedLitCodeTab.codes; litCodeTab.maxLen = fixedLitCodeTab.maxLen; distCodeTab.codes = fixedDistCodeTab.codes; distCodeTab.maxLen = fixedDistCodeTab.maxLen; } bool FlateStream::readDynamicCodes() { int numCodeLenCodes; int numLitCodes; int numDistCodes; int codeLenCodeLengths[flateMaxCodeLenCodes]; FlateHuffmanTab codeLenCodeTab; int len, repeat, code; int i; codeLenCodeTab.codes = nullptr; // read lengths if ((numLitCodes = getCodeWord(5)) == EOF) { goto err; } numLitCodes += 257; if ((numDistCodes = getCodeWord(5)) == EOF) { goto err; } numDistCodes += 1; if ((numCodeLenCodes = getCodeWord(4)) == EOF) { goto err; } numCodeLenCodes += 4; if (numLitCodes > flateMaxLitCodes || numDistCodes > flateMaxDistCodes || numCodeLenCodes > flateMaxCodeLenCodes) { goto err; } // build the code length code table for (i = 0; i < flateMaxCodeLenCodes; ++i) { codeLenCodeLengths[i] = 0; } for (i = 0; i < numCodeLenCodes; ++i) { if ((codeLenCodeLengths[codeLenCodeMap[i]] = getCodeWord(3)) == -1) { goto err; } } codeLenCodeTab.codes = compHuffmanCodes(codeLenCodeLengths, flateMaxCodeLenCodes, &codeLenCodeTab.maxLen); // build the literal and distance code tables len = 0; repeat = 0; i = 0; while (i < numLitCodes + numDistCodes) { if ((code = getHuffmanCodeWord(&codeLenCodeTab)) == EOF) { goto err; } if (code == 16) { if ((repeat = getCodeWord(2)) == EOF) { goto err; } repeat += 3; if (i + repeat > numLitCodes + numDistCodes) { goto err; } for (; repeat > 0; --repeat) { codeLengths[i++] = len; } } else if (code == 17) { if ((repeat = getCodeWord(3)) == EOF) { goto err; } repeat += 3; if (i + repeat > numLitCodes + numDistCodes) { goto err; } len = 0; for (; repeat > 0; --repeat) { codeLengths[i++] = 0; } } else if (code == 18) { if ((repeat = getCodeWord(7)) == EOF) { goto err; } repeat += 11; if (i + repeat > numLitCodes + numDistCodes) { goto err; } len = 0; for (; repeat > 0; --repeat) { codeLengths[i++] = 0; } } else { codeLengths[i++] = len = code; } } litCodeTab.codes = compHuffmanCodes(codeLengths, numLitCodes, &litCodeTab.maxLen); distCodeTab.codes = compHuffmanCodes(codeLengths + numLitCodes, numDistCodes, &distCodeTab.maxLen); gfree(const_cast(codeLenCodeTab.codes)); return true; err: error(errSyntaxError, getPos(), "Bad dynamic code table in flate stream"); gfree(const_cast(codeLenCodeTab.codes)); return false; } // Convert an array of lengths, in value order, into a // Huffman code lookup table. FlateCode *FlateStream::compHuffmanCodes(const int *lengths, int n, int *maxLen) { int len, code, code2, skip, val, i, t; // find max code length *maxLen = 0; for (val = 0; val < n; ++val) { if (lengths[val] > *maxLen) { *maxLen = lengths[val]; } } // allocate the table const int tabSize = 1 << *maxLen; FlateCode *codes = (FlateCode *)gmallocn(tabSize, sizeof(FlateCode)); // clear the table for (i = 0; i < tabSize; ++i) { codes[i].len = 0; codes[i].val = 0; } // build the table for (len = 1, code = 0, skip = 2; len <= *maxLen; ++len, code <<= 1, skip <<= 1) { for (val = 0; val < n; ++val) { if (lengths[val] == len) { // bit-reverse the code code2 = 0; t = code; for (i = 0; i < len; ++i) { code2 = (code2 << 1) | (t & 1); t >>= 1; } // fill in the table entries for (i = code2; i < tabSize; i += skip) { codes[i].len = (unsigned short)len; codes[i].val = (unsigned short)val; } ++code; } } } return codes; } int FlateStream::getHuffmanCodeWord(FlateHuffmanTab *tab) { const FlateCode *code; int c; while (codeSize < tab->maxLen) { if ((c = str->getChar()) == EOF) { break; } codeBuf |= (c & 0xff) << codeSize; codeSize += 8; } code = &tab->codes[codeBuf & ((1 << tab->maxLen) - 1)]; if (codeSize == 0 || codeSize < code->len || code->len == 0) { return EOF; } codeBuf >>= code->len; codeSize -= code->len; return (int)code->val; } int FlateStream::getCodeWord(int bits) { int c; while (codeSize < bits) { if ((c = str->getChar()) == EOF) return EOF; codeBuf |= (c & 0xff) << codeSize; codeSize += 8; } c = codeBuf & ((1 << bits) - 1); codeBuf >>= bits; codeSize -= bits; return c; } #endif //------------------------------------------------------------------------ // EOFStream //------------------------------------------------------------------------ EOFStream::EOFStream(Stream *strA) : FilterStream(strA) { } EOFStream::~EOFStream() { delete str; } //------------------------------------------------------------------------ // BufStream //------------------------------------------------------------------------ BufStream::BufStream(Stream *strA, int bufSizeA) : FilterStream(strA) { bufSize = bufSizeA; buf = (int *)gmallocn(bufSize, sizeof(int)); } BufStream::~BufStream() { gfree(buf); delete str; } void BufStream::reset() { int i; str->reset(); for (i = 0; i < bufSize; ++i) { buf[i] = str->getChar(); } } int BufStream::getChar() { int c, i; c = buf[0]; for (i = 1; i < bufSize; ++i) { buf[i - 1] = buf[i]; } buf[bufSize - 1] = str->getChar(); return c; } int BufStream::lookChar() { return buf[0]; } int BufStream::lookChar(int idx) { return buf[idx]; } bool BufStream::isBinary(bool last) { return str->isBinary(true); } //------------------------------------------------------------------------ // FixedLengthEncoder //------------------------------------------------------------------------ FixedLengthEncoder::FixedLengthEncoder(Stream *strA, int lengthA) : FilterStream(strA) { length = lengthA; count = 0; } FixedLengthEncoder::~FixedLengthEncoder() { if (str->isEncoder()) delete str; } void FixedLengthEncoder::reset() { str->reset(); count = 0; } int FixedLengthEncoder::getChar() { if (length >= 0 && count >= length) return EOF; ++count; return str->getChar(); } int FixedLengthEncoder::lookChar() { if (length >= 0 && count >= length) return EOF; return str->getChar(); } bool FixedLengthEncoder::isBinary(bool last) { return str->isBinary(true); } //------------------------------------------------------------------------ // ASCIIHexEncoder //------------------------------------------------------------------------ ASCIIHexEncoder::ASCIIHexEncoder(Stream *strA) : FilterStream(strA) { bufPtr = bufEnd = buf; lineLen = 0; eof = false; } ASCIIHexEncoder::~ASCIIHexEncoder() { if (str->isEncoder()) { delete str; } } void ASCIIHexEncoder::reset() { str->reset(); bufPtr = bufEnd = buf; lineLen = 0; eof = false; } bool ASCIIHexEncoder::fillBuf() { static const char *hex = "0123456789abcdef"; int c; if (eof) { return false; } bufPtr = bufEnd = buf; if ((c = str->getChar()) == EOF) { *bufEnd++ = '>'; eof = true; } else { if (lineLen >= 64) { *bufEnd++ = '\n'; lineLen = 0; } *bufEnd++ = hex[(c >> 4) & 0x0f]; *bufEnd++ = hex[c & 0x0f]; lineLen += 2; } return true; } //------------------------------------------------------------------------ // ASCII85Encoder //------------------------------------------------------------------------ ASCII85Encoder::ASCII85Encoder(Stream *strA) : FilterStream(strA) { bufPtr = bufEnd = buf; lineLen = 0; eof = false; } ASCII85Encoder::~ASCII85Encoder() { if (str->isEncoder()) delete str; } void ASCII85Encoder::reset() { str->reset(); bufPtr = bufEnd = buf; lineLen = 0; eof = false; } bool ASCII85Encoder::fillBuf() { unsigned int t; char buf1[5]; int c0, c1, c2, c3; int n, i; if (eof) { return false; } c0 = str->getChar(); c1 = str->getChar(); c2 = str->getChar(); c3 = str->getChar(); bufPtr = bufEnd = buf; if (c3 == EOF) { if (c0 == EOF) { n = 0; t = 0; } else { if (c1 == EOF) { n = 1; t = c0 << 24; } else if (c2 == EOF) { n = 2; t = (c0 << 24) | (c1 << 16); } else { n = 3; t = (c0 << 24) | (c1 << 16) | (c2 << 8); } for (i = 4; i >= 0; --i) { buf1[i] = (char)(t % 85 + 0x21); t /= 85; } for (i = 0; i <= n; ++i) { *bufEnd++ = buf1[i]; if (++lineLen == 65) { *bufEnd++ = '\n'; lineLen = 0; } } } *bufEnd++ = '~'; *bufEnd++ = '>'; eof = true; } else { t = (c0 << 24) | (c1 << 16) | (c2 << 8) | c3; if (t == 0) { *bufEnd++ = 'z'; if (++lineLen == 65) { *bufEnd++ = '\n'; lineLen = 0; } } else { for (i = 4; i >= 0; --i) { buf1[i] = (char)(t % 85 + 0x21); t /= 85; } for (i = 0; i <= 4; ++i) { *bufEnd++ = buf1[i]; if (++lineLen == 65) { *bufEnd++ = '\n'; lineLen = 0; } } } } return true; } //------------------------------------------------------------------------ // RunLengthEncoder //------------------------------------------------------------------------ RunLengthEncoder::RunLengthEncoder(Stream *strA) : FilterStream(strA) { bufPtr = bufEnd = nextEnd = buf; eof = false; } RunLengthEncoder::~RunLengthEncoder() { if (str->isEncoder()) delete str; } void RunLengthEncoder::reset() { str->reset(); bufPtr = bufEnd = nextEnd = buf; eof = false; } // // When fillBuf finishes, buf[] looks like this: // +-----+--------------+-----------------+-- // + tag | ... data ... | next 0, 1, or 2 | // +-----+--------------+-----------------+-- // ^ ^ ^ // bufPtr bufEnd nextEnd // bool RunLengthEncoder::fillBuf() { int c, c1, c2; int n; // already hit EOF? if (eof) return false; // grab two bytes if (nextEnd < bufEnd + 1) { if ((c1 = str->getChar()) == EOF) { eof = true; return false; } } else { c1 = bufEnd[0] & 0xff; } if (nextEnd < bufEnd + 2) { if ((c2 = str->getChar()) == EOF) { eof = true; buf[0] = 0; buf[1] = c1; bufPtr = buf; bufEnd = &buf[2]; return true; } } else { c2 = bufEnd[1] & 0xff; } // check for repeat c = 0; // make gcc happy if (c1 == c2) { n = 2; while (n < 128 && (c = str->getChar()) == c1) ++n; buf[0] = (char)(257 - n); buf[1] = c1; bufEnd = &buf[2]; if (c == EOF) { eof = true; } else if (n < 128) { buf[2] = c; nextEnd = &buf[3]; } else { nextEnd = bufEnd; } // get up to 128 chars } else { buf[1] = c1; buf[2] = c2; n = 2; while (n < 128) { if ((c = str->getChar()) == EOF) { eof = true; break; } ++n; buf[n] = c; if (buf[n] == buf[n - 1]) break; } if (buf[n] == buf[n - 1]) { buf[0] = (char)(n - 2 - 1); bufEnd = &buf[n - 1]; nextEnd = &buf[n + 1]; } else { buf[0] = (char)(n - 1); bufEnd = nextEnd = &buf[n + 1]; } } bufPtr = buf; return true; } //------------------------------------------------------------------------ // LZWEncoder //------------------------------------------------------------------------ LZWEncoder::LZWEncoder(Stream *strA) : FilterStream(strA) { inBufLen = 0; outBufLen = 0; } LZWEncoder::~LZWEncoder() { if (str->isEncoder()) { delete str; } } void LZWEncoder::reset() { int i; str->reset(); // initialize code table for (i = 0; i < 256; ++i) { table[i].byte = i; table[i].next = nullptr; table[i].children = nullptr; } nextSeq = 258; codeLen = 9; // initialize input buffer inBufLen = str->doGetChars(sizeof(inBuf), inBuf); // initialize output buffer with a clear-table code outBuf = 256; outBufLen = 9; needEOD = false; } int LZWEncoder::getChar() { int ret; if (inBufLen == 0 && !needEOD && outBufLen == 0) { return EOF; } if (outBufLen < 8 && (inBufLen > 0 || needEOD)) { fillBuf(); } if (outBufLen >= 8) { ret = (outBuf >> (outBufLen - 8)) & 0xff; outBufLen -= 8; } else { ret = (outBuf << (8 - outBufLen)) & 0xff; outBufLen = 0; } return ret; } int LZWEncoder::lookChar() { if (inBufLen == 0 && !needEOD && outBufLen == 0) { return EOF; } if (outBufLen < 8 && (inBufLen > 0 || needEOD)) { fillBuf(); } if (outBufLen >= 8) { return (outBuf >> (outBufLen - 8)) & 0xff; } else { return (outBuf << (8 - outBufLen)) & 0xff; } } // On input, outBufLen < 8. // This function generates, at most, 2 12-bit codes // --> outBufLen < 8 + 12 + 12 = 32 void LZWEncoder::fillBuf() { LZWEncoderNode *p0, *p1; int seqLen, code, i; if (needEOD) { outBuf = (outBuf << codeLen) | 257; outBufLen += codeLen; needEOD = false; return; } // find longest matching sequence (if any) p0 = table + inBuf[0]; seqLen = 1; while (inBufLen > seqLen) { for (p1 = p0->children; p1; p1 = p1->next) { if (p1->byte == inBuf[seqLen]) { break; } } if (!p1) { break; } p0 = p1; ++seqLen; } code = (int)(p0 - table); // generate an output code outBuf = (outBuf << codeLen) | code; outBufLen += codeLen; // update the table table[nextSeq].byte = seqLen < inBufLen ? inBuf[seqLen] : 0; table[nextSeq].children = nullptr; if (table[code].children) { table[nextSeq].next = table[code].children; } else { table[nextSeq].next = nullptr; } table[code].children = table + nextSeq; ++nextSeq; // update the input buffer memmove(inBuf, inBuf + seqLen, inBufLen - seqLen); inBufLen -= seqLen; inBufLen += str->doGetChars(sizeof(inBuf) - inBufLen, inBuf + inBufLen); // increment codeLen; generate clear-table code if (nextSeq == (1 << codeLen)) { ++codeLen; if (codeLen == 13) { outBuf = (outBuf << 12) | 256; outBufLen += 12; for (i = 0; i < 256; ++i) { table[i].next = nullptr; table[i].children = nullptr; } nextSeq = 258; codeLen = 9; } } // generate EOD next time if (inBufLen == 0) { needEOD = true; } } //------------------------------------------------------------------------ // CMYKGrayEncoder //------------------------------------------------------------------------ CMYKGrayEncoder::CMYKGrayEncoder(Stream *strA) : FilterStream(strA) { bufPtr = bufEnd = buf; eof = false; } CMYKGrayEncoder::~CMYKGrayEncoder() { if (str->isEncoder()) delete str; } void CMYKGrayEncoder::reset() { str->reset(); bufPtr = bufEnd = buf; eof = false; } bool CMYKGrayEncoder::fillBuf() { int c0, c1, c2, c3; int i; if (eof) { return false; } c0 = str->getChar(); c1 = str->getChar(); c2 = str->getChar(); c3 = str->getChar(); if (c3 == EOF) { eof = true; return false; } i = (3 * c0 + 6 * c1 + c2) / 10 + c3; if (i > 255) i = 255; bufPtr = bufEnd = buf; *bufEnd++ = (char)i; return true; } //------------------------------------------------------------------------ // RGBGrayEncoder //------------------------------------------------------------------------ RGBGrayEncoder::RGBGrayEncoder(Stream *strA) : FilterStream(strA) { bufPtr = bufEnd = buf; eof = false; } RGBGrayEncoder::~RGBGrayEncoder() { if (str->isEncoder()) delete str; } void RGBGrayEncoder::reset() { str->reset(); bufPtr = bufEnd = buf; eof = false; } bool RGBGrayEncoder::fillBuf() { int c0, c1, c2; int i; if (eof) { return false; } c0 = str->getChar(); c1 = str->getChar(); c2 = str->getChar(); if (c2 == EOF) { eof = true; return false; } i = 255 - (3 * c0 + 6 * c1 + c2) / 10; if (i < 0) i = 0; bufPtr = bufEnd = buf; *bufEnd++ = (char)i; return true; } //------------------------------------------------------------------------ // SplashBitmapCMYKEncoder //------------------------------------------------------------------------ #ifdef HAVE_SPLASH SplashBitmapCMYKEncoder::SplashBitmapCMYKEncoder(SplashBitmap *bitmapA) : bitmap(bitmapA) { width = (size_t)4 * bitmap->getWidth(); height = bitmap->getHeight(); buf.resize(width); bufPtr = width; curLine = height - 1; } SplashBitmapCMYKEncoder::~SplashBitmapCMYKEncoder() { } void SplashBitmapCMYKEncoder::reset() { bufPtr = width; curLine = height - 1; } int SplashBitmapCMYKEncoder::lookChar() { if (bufPtr >= width && !fillBuf()) { return EOF; } return buf[bufPtr]; } int SplashBitmapCMYKEncoder::getChar() { int ret = lookChar(); bufPtr++; return ret; } bool SplashBitmapCMYKEncoder::fillBuf() { if (curLine < 0) { return false; } if (bufPtr < width) { return true; } bitmap->getCMYKLine(curLine, &buf[0]); bufPtr = 0; curLine--; return true; } Goffset SplashBitmapCMYKEncoder::getPos() { return (height - 1 - curLine) * width + bufPtr; } void SplashBitmapCMYKEncoder::setPos(Goffset pos, int dir) { // This code is mostly untested! if (dir < 0) { curLine = pos / width; } else { curLine = height - 1 - pos / width; } bufPtr = width; fillBuf(); if (dir < 0) { bufPtr = width - 1 - pos % width; } else { bufPtr = pos % width; } } #endif