SUBROUTINE DLASKTRD( UPLO, MODE, N, NB, A, LDA, E, TAU, W, LDW ) * * -- Written on 10/22/2010 * Michael Wimmer, Universiteit Leiden * Derived from the LAPACK routine ZLATRD (www.netlib.org) * -- LAPACK auxiliary routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO, MODE INTEGER LDA, LDW, N, NB * .. * .. Array Arguments .. DOUBLE PRECISION E( * ) DOUBLE PRECISION A( LDA, * ), TAU( * ), W( LDW, * ) * .. * * Purpose * ======= * * DLASKTRD reduces NB rows and columns of a real skew-symmetric matrix A to * skew-symmetric tridiagonal form by an orthogonal similarity * transformation Q^T * A * Q, and returns the matrices V and W which are * needed to apply the transformation to the unreduced part of A. * * If UPLO = 'U', DLASKTRD reduces the last NB rows and columns of a * matrix, of which the upper triangle is supplied; * if UPLO = 'L', DLASKTRD reduces the first NB rows and columns of a * matrix, of which the lower triangle is supplied. * * Alternatively, the routine can also be used to compute a partial * tridiagonal form * * This is an auxiliary routine called by DSKTRD. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * skew-symmetric matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * MODE (input) CHARACTER*1 * = 'N': A is fully tridiagonalized * = 'P': A is partially tridiagonalized for Pfaffian computation * * N (input) INTEGER * The order of the matrix A. N must be even if MODE = 'P'. * * NB (input) INTEGER * The number of rows and columns to be reduced. * * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) * On entry, the skew-symmetric matrix A. * If UPLO = 'U', the leading n-by-n upper triangular part * of A contains the upper triangular part of the matrix A, * and the strictly lower triangular part of A is not referenced. * If UPLO = 'L', the leading n-by-n lower triangular part * of A contains the lower triangular part of the matrix A, * and the strictly upper triangular part of A is not referenced. * On exit: * if UPLO = 'U', the last NB columns have been reduced to * tridiagonal form, with the diagonal elements overwriting * the diagonal elements of A; the elements above the diagonal * with the array TAU, represent the unitary matrix Q as a * product of elementary reflectors. If MODE = 'P' only the * even columns of the last NB columns contain meaningful values. * if UPLO = 'L', the first NB columns have been reduced to * tridiagonal form, with the diagonal elements overwriting * the diagonal elements of A; the elements below the diagonal * with the array TAU, represent the unitary matrix Q as a * product of elementary reflectors. If MODE = 'P' only the * odd columns of the first NB columns contain meaningful values. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * E (output) DOUBLE PRECISION array, dimension (N-1) * If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal * elements of the last NB columns of the reduced matrix; * if UPLO = 'L', E(1:nb) contains the subdiagonal elements of * the first NB columns of the reduced matrix. * * TAU (output) DOUBLE PRECISION array, dimension (N-1) * The scalar factors of the elementary reflectors, stored in * TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. * See Further Details. * * W (output) DOUBLE PRECISION array, dimension (LDW,NB) * The n-by-nb matrix W required to update the unreduced part * of A. * * LDW (input) INTEGER * The leading dimension of the array W. LDW >= max(1,N). * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, $ ONE = 1.0D+0) * .. * .. Local Scalars .. INTEGER I, NW, NW2, STEP, NPANEL DOUBLE PRECISION ALPHA * .. * .. External Subroutines .. EXTERNAL DGEMV, DSKMV, DLARFG * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions .. INTRINSIC MIN * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.0 ) $ RETURN * IF( LSAME( MODE, 'P' ) ) THEN STEP = 2 ELSE STEP = 1 END IF NPANEL = NB * STEP IF( LSAME( UPLO, 'U' ) ) THEN * * Reduce last NPANEL columns of upper triangle * NW=0 * IW = NB + 1 DO 10 I = N, MAX(N - NPANEL + 1, 2), -1 NW2 = NW - MOD(I,STEP) IF( NW2 .GT. 0 ) THEN * * Update A(1:i,i) * A( I, I ) = ZERO CALL DGEMV( 'No transpose', I, NW2, +ONE, $ A( 1, N-(NW2-1)*STEP ), LDA*STEP, $ W( I, NB-NW2+1 ), LDW, ONE, A( 1, I ), 1 ) CALL DGEMV( 'No transpose', I, NW2, -ONE, $ W( 1, NB-NW2+1 ), LDW, $ A( I, N-(NW2-1)*STEP ), LDA*STEP, $ ONE, A( 1, I ), 1 ) A( I, I ) = ZERO END IF * In the Pfaffian mode, only zero all even columns IF( STEP.EQ.2 .AND. MOD( I, STEP ).EQ.1 ) THEN TAU( I-1 ) = ZERO GOTO 10 END IF IF( I.GT.1 ) THEN * * Generate elementary reflector H(i) to annihilate * A(1:i-2,i) * ALPHA = A( I-1, I ) CALL DLARFG( I-1, ALPHA, A( 1, I ), 1, TAU( I-1 ) ) E( I-1 ) = ALPHA A( I-1, I ) = ONE * * Compute W(1:i-1,i) * CALL DSKMV( 'Upper', I-1, TAU(I-1), A, LDA, $ A( 1, I ), 1, ZERO, W( 1, NB-NW ), 1 ) IF( NW .GT. 0 ) THEN CALL DGEMV( 'Transpose', I-1, NW, ONE, $ W( 1, NB-NW+1 ), LDW, A( 1, I ), 1, ZERO, $ W( I+1, NB-NW ), 1 ) CALL DGEMV( 'No transpose', I-1, NW, TAU(I-1), $ A( 1, N-(NW-1)*STEP ), LDA*STEP, $ W( I+1, NB-NW ), 1, $ ONE, W( 1, NB-NW ), 1) CALL DGEMV( 'Transpose', I-1, NW, ONE, $ A( 1, N-(NW-1)*STEP ), LDA*STEP, $ A( 1, I ), 1, ZERO, W( I+1, NB-NW ), 1 ) CALL DGEMV( 'No transpose', I-1, NW, -TAU(I-1), $ W( 1, NB-NW+1 ), LDW, $ W( I+1, NB-NW ), 1, $ ONE, W( 1, NB-NW ), 1 ) END IF * One more complete entry in W NW = NW + 1 END IF * Note: setting A(I-1,I) back to alpha happens in the calling routine 10 CONTINUE ELSE * * Reduce first NPANEL columns of lower triangle * NW = 0 DO 20 I = 1, MIN(NPANEL, N-1) * * Update A(i:n,i) * NW2 = NW - MOD(I+1,STEP) IF( NW2 .GT. 0 ) THEN A( I, I ) = ZERO CALL DGEMV( 'No transpose', N-I+1, NW2, +ONE, A( I, 1 ), $ LDA*STEP, W( I, 1 ), LDW, ONE, A( I, I ), 1 ) CALL DGEMV( 'No transpose', N-I+1, NW2, -ONE, W( I, 1 ), $ LDW, A( I, 1 ), LDA*STEP, ONE, A( I, I ), 1 ) A( I, I ) = ZERO END IF * In the Pfaffian mode, only zero all odd columns IF( STEP.EQ.2 .AND. MOD( I, STEP ).EQ.0 ) THEN TAU( I ) = ZERO GOTO 20 END IF IF( I.LT.N ) THEN * * Generate elementary reflector H(i) to annihilate * A(i+2:n,i) * ALPHA = A( I+1, I ) CALL DLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1, $ TAU( I ) ) E( I ) = ALPHA A( I+1, I ) = ONE * * Compute W(i+1:n,i) * This is given by tau A^(i)*v^*=tau(A*v^* + VW^T v^* - WV^T v^*) CALL DSKMV( 'Lower', N-I, TAU( I ), $ A( I+1, I+1 ), LDA, $ A( I+1, I ), 1, ZERO, W( I+1, NW+1 ), 1 ) IF( NW .GT. 0 ) THEN CALL DGEMV( 'Transpose', N-I, NW, ONE, $ W( I+1, 1 ), LDW, A( I+1, I ), 1, ZERO, $ W( 1, NW+1 ), 1 ) CALL DGEMV( 'No transpose', N-I, NW, TAU( I ), $ A( I+1, 1 ), LDA*STEP, W( 1, NW+1 ), 1, $ ONE, W( I+1, NW+1 ), 1 ) CALL DGEMV( 'Transpose', N-I, NW, ONE, $ A( I+1, 1 ), LDA*STEP, A( I+1, I ), 1, ZERO, $ W( 1, NW+1 ), 1 ) CALL DGEMV( 'No transpose', N-I, NW, -TAU( I ), $ W( I+1, 1 ), LDW, W( 1, NW+1 ), 1, $ ONE, W( I+1, NW+1 ), 1 ) END IF * One more complete entry in W NW = NW + 1 END IF * 20 CONTINUE END IF * RETURN * * End of DLASKTRD * END