! Purpose ! ======= ! ! SKTF2 computes the factorization of a skew-symmetric matrix A ! using the Parlett-Reid algorithm: ! ! P*A*P^T = U*T*U^T or P*A*P^T = L*T*L^T ! ! where U (or L) unit upper (lower) triangular matrix (^T denotes ! the transpose), T is a skew-symmetric tridiagonal matrix and P ! is a permutation matrix. In addition to being unit triangular, ! U(1:n-1,n)=0 and L(2:n,1)=0. ! Instead of a full tridiagonalization, SKTF2 can also compute a ! partial tridiagonal form for computing the Pfaffian. ! ! This is the unblocked version of the algorithm. ! ! ========= ! ! SUBROUTINE SKTF2( A, IPIV, UPLO, MODE, INFO) ! (), INTENT(INOUT) :: A(:,:) ! INTEGER, INTENT(OUT) :: IPIV(:) ! CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO, MODE ! INTEGER, INTENT(OUT), OPTIONAL :: INFO ! ! where ! ::= REAL | COMPLEX ! ::= KIND(1.0) | KIND(1.0D0) ! ! ! Arguments ! ========= ! ! A (input/output) REAL or COMPLEX array, ! shape (:,:), size(A,1) == size(A,2) >= 0. ! If MODE = 'P', then size(A,1) and size(A,2) must be even. ! On entry, the symmetric matrix A. ! If UPLO = 'U', the leading n-by-n upper triangular part ! of A contains the upper triangular part of the matrix A, ! and the strictly lower triangular part of A is not referenced. ! If UPLO = 'L', the leading n-by-n lower triangular part ! of A contains the lower triangular part of the matrix A, ! and the strictly upper triangular part of A is not referenced. ! On exit, the tridiagonal matrix T and the multipliers used ! to obtain the factor U or L (see below for further details). ! ! IPIV (output) INTEGER array, dimension (N) ! Information about the permutation matrix P: row and column ! i are interchanged with IPIV(i). If UPLO = 'U', those ! interchanges are done in the order i = N ... 1, if UPLO = 'L' ! in the order i = 1 ... N. ! ! UPLO Optional (input) CHARACTER*1 ! If UPLO is present, it specifies whether the upper or lower ! triangular part of the skew-symmetric matrix A is stored: ! = 'U': Upper triangular ! = 'L': Lower triangular ! Otherwise, UPLO = 'U' is assumed. ! ! MODE Optional (input) CHARACTER*1 ! If MODE is present, then: ! = 'N': A is fully tridiagonalized ! = 'P': A is partially tridiagonalized for Pfaffian computation ! (details see below) ! otherwise MODE = 'N' is assumed ! ! INFO Optional (output) INTEGER ! If INFO is present: ! = 0: successful exit ! < 0: if INFO = -k, the k-th argument had an illegal value ! > 0: if INFO = k, the off-diagonal entry in the k-th row ! (UPLO = 'U') or k-th column (UPLO = 'L') ! is exactly zero. ! Otherwise, if INFO is not present and < 0, the program stops with ! an error message. ! ! Further Details ! =============== ! ! The normal use for SKTF2 is to compute the U T U^T or L T L^T ! decomposition of a skew-symmetric matrix with pivoting. This mode ! is chosen by setting MODE = 'N' ("normal" mode). The other ! use of SKTF2 is the computation the Pfaffian of a skew-symmetric matrix, ! which only requires a partial computation of T, this mode is chosen ! by setting MODE = 'P' ("Pfaffian" mode). ! ! Normal mode (MODE = 'N'): ! ======================== ! ! If UPLO = 'U', the U*T*U^T decomposition of A is computed. U is a ! upper triangular unit matrix with the additional constraint ! U(1:n-1,n) = 0, and T a tridiagonal matrix. The upper diagonal ! of T is stored on exit in A(i,i+1) for i = 1 .. n-1. The column ! U(1:i-1, i) is stored in A(1:i-1,i+1). ! ! If UPLO = 'L', the L*T*L^T decomposition of A is computed. L is a ! lower triangular unit matrix with the additional constraint ! L(2:n,1) = 0, and T a tridiagonal matrix. The lower diagonal ! of T is stored on exit in A(i+1,i) for i = 1 .. n-1. The column ! L(i+1:n, i) is stored in A(i+1:n,i-1). ! ! The contents of A on exit are illustrated by the following examples ! with n = 5: ! ! if UPLO = 'U': if UPLO = 'L': ! ! ( 0 e u2 u3 u4 ) ( 0 ) ! ( 0 e u3 u4 ) ( e 0 ) ! ( 0 e u4 ) ( l2 e 0 ) ! ( 0 e ) ( l2 l3 e 0 ) ! ( 0 ) ( l2 l3 l4 e 0 ) ! ! where e denotes the off-diagonal elements of T, and ui (li) ! denotes an element of the i-th column of U (L). ! ! Pfaffian mode (MODE = 'P'): ! ========================== ! ! For computing the Pfaffian, it is enough to bring A into a partial ! tridiagonal form. In particular, assuming n even, it is enough to ! bring A into a form with A(i,j) = A(j,i) = 0 for i > j+1 with j odd ! (this is computed if UPLO = 'L'), or A(i,j) = A(j,i) = 0 for ! i > j-1 with j even (this is computed if UPLO = 'U'). Note that ! only the off-diagonal entries in the odd columns (if UPLO = 'L') ! or in the even columns (if UPLU = 'U') are properly computed by SKTF2. ! ! If UPLO = 'U', the U*pT*U^T decomposition of A is computed. U is a ! upper triangular unit matrix with the additional constraint ! U(1:i-1,i) = 0 for even i, and pT a partially tridiagonal matrix. ! The entries in the odd rows of the upper diagonal of pT are stored ! on exit in A(i,i+1) for i odd. The column U(1:i-1, i) for odd i ! is stored in A(1:i-1,i+1). ! ! If UPLO = 'L', the L*pT*L^T decomposition of A is computed. L is a ! lower triangular unit matrix with the additional constraint ! L(i+1:n,i) = 0 for odd i, and pT a partially tridiagonal matrix. ! The entries in odd columns in the lower diagonal of pT are stored ! on exit in A(i+1,i) for i odd. The column L(i+1:n, i) for i odd ! is stored in A(i+1:n,i-1). ! ! The contents of A on exit are illustrated by the following examples ! with n = 6: ! ! if UPLO = 'U': if UPLO = 'L': ! ! ( 0 e x u3 x u5 ) ( 0 ) ! ( 0 x u3 x u5 ) ( e 0 ) ! ( 0 e x u5 ) ( l2 x 0 ) ! ( 0 x u5 ) ( l2 x e 0 ) ! ( 0 e ) ( l2 x l4 x 0 ) ! ( 0 ) ( l2 x l4 x e 0 ) ! ! where e denotes the off-diagonal elements of T, ui (li) ! denotes an element of the i-th column of U (L), and x denotes an ! element not computed by SKTF2. ! ! ===================================================================== ! SUBROUTINE SSKTF2_F95( A, IPIV, UPLO, MODE, INFO ) USE PFAPACK_PREC, ONLY: precision => singleprec USE PFAPACK_MESSAGE, ONLY: MESSAGE USE F77_PFAPACK, ONLY: SKTF2 IMPLICIT NONE REAL(precision), INTENT(INOUT) :: A(:,:) INTEGER, INTENT(OUT) :: IPIV(:) CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO, MODE INTEGER, INTENT(OUT), OPTIONAL :: INFO CHARACTER(LEN=1) :: LUPLO, LMODE INTEGER :: N, LDA, LINFO LOGICAL LSAME EXTERNAL LSAME ! Figure out array sizes and set defaults LINFO = 0 N = SIZE(A,1) LDA = MAX(1,N) IF( PRESENT(UPLO) ) THEN LUPLO = UPLO ELSE LUPLO = 'U' END IF IF( PRESENT(MODE) ) THEN LMODE = MODE ELSE LMODE = 'N' END IF ! Test the arguments IF( SIZE(A,2) /= N .OR. N<0 ) THEN LINFO = -1 ELSE IF( SIZE(IPIV) /= N ) THEN LINFO = -2 ELSE IF( .NOT.LSAME(LUPLO,'U') .AND. .NOT.LSAME(LUPLO,'L') ) THEN LINFO = -3 ELSE IF( .NOT.LSAME(LMODE,'N') .AND. .NOT.LSAME(LMODE,'P') ) THEN LINFO = -4 ELSE IF( N>0 ) THEN CALL SKTF2( LUPLO, LMODE, N, A, LDA, IPIV, LINFO ) END IF CALL MESSAGE(LINFO, "SKTF2", INFO) END SUBROUTINE SSKTF2_F95 SUBROUTINE DSKTF2_F95( A, IPIV, UPLO, MODE, INFO ) USE PFAPACK_PREC, ONLY: precision => doubleprec USE PFAPACK_MESSAGE, ONLY: MESSAGE USE F77_PFAPACK, ONLY: SKTF2 IMPLICIT NONE REAL(precision), INTENT(INOUT) :: A(:,:) INTEGER, INTENT(OUT) :: IPIV(:) CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO, MODE INTEGER, INTENT(OUT), OPTIONAL :: INFO CHARACTER(LEN=1) :: LUPLO, LMODE INTEGER :: N, LDA, LINFO LOGICAL LSAME EXTERNAL LSAME ! Figure out array sizes and set defaults LINFO = 0 N = SIZE(A,1) LDA = MAX(1,N) IF( PRESENT(UPLO) ) THEN LUPLO = UPLO ELSE LUPLO = 'U' END IF IF( PRESENT(MODE) ) THEN LMODE = MODE ELSE LMODE = 'N' END IF ! Test the arguments IF( SIZE(A,2) /= N .OR. N<0 ) THEN LINFO = -1 ELSE IF( SIZE(IPIV) /= N ) THEN LINFO = -2 ELSE IF( .NOT.LSAME(LUPLO,'U') .AND. .NOT.LSAME(LUPLO,'L') ) THEN LINFO = -3 ELSE IF( .NOT.LSAME(LMODE,'N') .AND. .NOT.LSAME(LMODE,'P') ) THEN LINFO = -4 ELSE IF( N>0 ) THEN CALL SKTF2( LUPLO, LMODE, N, A, LDA, IPIV, LINFO ) END IF CALL MESSAGE(LINFO, "SKTF2", INFO) END SUBROUTINE DSKTF2_F95 SUBROUTINE CSKTF2_F95( A, IPIV, UPLO, MODE, INFO ) USE PFAPACK_PREC, ONLY: precision => singleprec USE PFAPACK_MESSAGE, ONLY: MESSAGE USE F77_PFAPACK, ONLY: SKTF2 IMPLICIT NONE COMPLEX(precision), INTENT(INOUT) :: A(:,:) INTEGER, INTENT(OUT) :: IPIV(:) CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO, MODE INTEGER, INTENT(OUT), OPTIONAL :: INFO CHARACTER(LEN=1) :: LUPLO, LMODE INTEGER :: N, LDA, LINFO LOGICAL LSAME EXTERNAL LSAME ! Figure out array sizes and set defaults LINFO = 0 N = SIZE(A,1) LDA = MAX(1,N) IF( PRESENT(UPLO) ) THEN LUPLO = UPLO ELSE LUPLO = 'U' END IF IF( PRESENT(MODE) ) THEN LMODE = MODE ELSE LMODE = 'N' END IF ! Test the arguments IF( SIZE(A,2) /= N .OR. N<0 ) THEN LINFO = -1 ELSE IF( SIZE(IPIV) /= N ) THEN LINFO = -2 ELSE IF( .NOT.LSAME(LUPLO,'U') .AND. .NOT.LSAME(LUPLO,'L') ) THEN LINFO = -3 ELSE IF( .NOT.LSAME(LMODE,'N') .AND. .NOT.LSAME(LMODE,'P') ) THEN LINFO = -4 ELSE IF( N>0 ) THEN CALL SKTF2( LUPLO, LMODE, N, A, LDA, IPIV, LINFO ) END IF CALL MESSAGE(LINFO, "SKTF2", INFO) END SUBROUTINE CSKTF2_F95 SUBROUTINE ZSKTF2_F95( A, IPIV, UPLO, MODE, INFO ) USE PFAPACK_PREC, ONLY: precision => doubleprec USE PFAPACK_MESSAGE, ONLY: MESSAGE USE F77_PFAPACK, ONLY: SKTF2 IMPLICIT NONE COMPLEX(precision), INTENT(INOUT) :: A(:,:) INTEGER, INTENT(OUT) :: IPIV(:) CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO, MODE INTEGER, INTENT(OUT), OPTIONAL :: INFO CHARACTER(LEN=1) :: LUPLO, LMODE INTEGER :: N, LDA, LINFO LOGICAL LSAME EXTERNAL LSAME ! Figure out array sizes and set defaults LINFO = 0 N = SIZE(A,1) LDA = MAX(1,N) IF( PRESENT(UPLO) ) THEN LUPLO = UPLO ELSE LUPLO = 'U' END IF IF( PRESENT(MODE) ) THEN LMODE = MODE ELSE LMODE = 'N' END IF ! Test the arguments IF( SIZE(A,2) /= N .OR. N<0 ) THEN LINFO = -1 ELSE IF( SIZE(IPIV) /= N ) THEN LINFO = -2 ELSE IF( .NOT.LSAME(LUPLO,'U') .AND. .NOT.LSAME(LUPLO,'L') ) THEN LINFO = -3 ELSE IF( .NOT.LSAME(LMODE,'N') .AND. .NOT.LSAME(LMODE,'P') ) THEN LINFO = -4 ELSE IF( N>0 ) THEN CALL SKTF2( LUPLO, LMODE, N, A, LDA, IPIV, LINFO ) END IF CALL MESSAGE(LINFO, "SKTF2", INFO) END SUBROUTINE ZSKTF2_F95