-- -- RANDOM -- Test random() and allies -- -- Tests in this file may have a small probability of failure, -- since we are dealing with randomness. Try to keep the failure -- risk for any one test case under 1e-9. -- -- There should be no duplicates in 1000 random() values. -- (Assuming 52 random bits in the float8 results, we could -- take as many as 3000 values and still have less than 1e-9 chance -- of failure, per https://en.wikipedia.org/wiki/Birthday_problem) SELECT r, count(*) FROM (SELECT random() r FROM generate_series(1, 1000)) ss GROUP BY r HAVING count(*) > 1; -- The range should be [0, 1). We can expect that at least one out of 2000 -- random values is in the lowest or highest 1% of the range with failure -- probability less than about 1e-9. SELECT count(*) FILTER (WHERE r < 0 OR r >= 1) AS out_of_range, (count(*) FILTER (WHERE r < 0.01)) > 0 AS has_small, (count(*) FILTER (WHERE r > 0.99)) > 0 AS has_large FROM (SELECT random() r FROM generate_series(1, 2000)) ss; -- Check for uniform distribution using the Kolmogorov-Smirnov test. CREATE FUNCTION ks_test_uniform_random() RETURNS boolean AS $$ DECLARE n int := 1000; -- Number of samples c float8 := 1.94947; -- Critical value for 99.9% confidence ok boolean; BEGIN ok := ( WITH samples AS ( SELECT random() r FROM generate_series(1, n) ORDER BY 1 ), indexed_samples AS ( SELECT (row_number() OVER())-1.0 i, r FROM samples ) SELECT max(abs(i/n-r)) < c / sqrt(n) FROM indexed_samples ); RETURN ok; END $$ LANGUAGE plpgsql; -- As written, ks_test_uniform_random() returns true about 99.9% -- of the time. To get down to a roughly 1e-9 test failure rate, -- just run it 3 times and accept if any one of them passes. SELECT ks_test_uniform_random() OR ks_test_uniform_random() OR ks_test_uniform_random() AS uniform; -- now test random_normal() -- As above, there should be no duplicates in 1000 random_normal() values. SELECT r, count(*) FROM (SELECT random_normal() r FROM generate_series(1, 1000)) ss GROUP BY r HAVING count(*) > 1; -- ... unless we force the range (standard deviation) to zero. -- This is a good place to check that the mean input does something, too. SELECT r, count(*) FROM (SELECT random_normal(10, 0) r FROM generate_series(1, 100)) ss GROUP BY r; SELECT r, count(*) FROM (SELECT random_normal(-10, 0) r FROM generate_series(1, 100)) ss GROUP BY r; -- Check standard normal distribution using the Kolmogorov-Smirnov test. CREATE FUNCTION ks_test_normal_random() RETURNS boolean AS $$ DECLARE n int := 1000; -- Number of samples c float8 := 1.94947; -- Critical value for 99.9% confidence ok boolean; BEGIN ok := ( WITH samples AS ( SELECT random_normal() r FROM generate_series(1, n) ORDER BY 1 ), indexed_samples AS ( SELECT (row_number() OVER())-1.0 i, r FROM samples ) SELECT max(abs((1+erf(r/sqrt(2)))/2 - i/n)) < c / sqrt(n) FROM indexed_samples ); RETURN ok; END $$ LANGUAGE plpgsql; -- As above, ks_test_normal_random() returns true about 99.9% -- of the time, so try it 3 times and accept if any test passes. SELECT ks_test_normal_random() OR ks_test_normal_random() OR ks_test_normal_random() AS standard_normal; -- Test random(min, max) -- invalid range bounds SELECT random(1, 0); SELECT random(1000000000001, 1000000000000); SELECT random(-2.0, -3.0); SELECT random('NaN'::numeric, 10); SELECT random('-Inf'::numeric, 0); SELECT random(0, 'NaN'::numeric); SELECT random(0, 'Inf'::numeric); -- empty range is OK SELECT random(101, 101); SELECT random(1000000000001, 1000000000001); SELECT random(3.14, 3.14); -- There should be no triple duplicates in 1000 full-range 32-bit random() -- values. (Each of the C(1000, 3) choices of triplets from the 1000 values -- has a probability of 1/(2^32)^2 of being a triple duplicate, so the -- average number of triple duplicates is 1000 * 999 * 998 / 6 / 2^64, which -- is roughly 9e-12.) SELECT r, count(*) FROM (SELECT random(-2147483648, 2147483647) r FROM generate_series(1, 1000)) ss GROUP BY r HAVING count(*) > 2; -- There should be no duplicates in 1000 full-range 64-bit random() values. SELECT r, count(*) FROM (SELECT random_normal(-9223372036854775808, 9223372036854775807) r FROM generate_series(1, 1000)) ss GROUP BY r HAVING count(*) > 1; -- There should be no duplicates in 1000 15-digit random() numeric values. SELECT r, count(*) FROM (SELECT random_normal(0, 1 - 1e-15) r FROM generate_series(1, 1000)) ss GROUP BY r HAVING count(*) > 1; -- Expect at least one out of 2000 random values to be in the lowest and -- highest 1% of the range. SELECT (count(*) FILTER (WHERE r < -2104533975)) > 0 AS has_small, (count(*) FILTER (WHERE r > 2104533974)) > 0 AS has_large FROM (SELECT random(-2147483648, 2147483647) r FROM generate_series(1, 2000)) ss; SELECT count(*) FILTER (WHERE r < -1500000000 OR r > 1500000000) AS out_of_range, (count(*) FILTER (WHERE r < -1470000000)) > 0 AS has_small, (count(*) FILTER (WHERE r > 1470000000)) > 0 AS has_large FROM (SELECT random(-1500000000, 1500000000) r FROM generate_series(1, 2000)) ss; SELECT (count(*) FILTER (WHERE r < -9038904596117680292)) > 0 AS has_small, (count(*) FILTER (WHERE r > 9038904596117680291)) > 0 AS has_large FROM (SELECT random(-9223372036854775808, 9223372036854775807) r FROM generate_series(1, 2000)) ss; SELECT count(*) FILTER (WHERE r < -1500000000000000 OR r > 1500000000000000) AS out_of_range, (count(*) FILTER (WHERE r < -1470000000000000)) > 0 AS has_small, (count(*) FILTER (WHERE r > 1470000000000000)) > 0 AS has_large FROM (SELECT random(-1500000000000000, 1500000000000000) r FROM generate_series(1, 2000)) ss; SELECT count(*) FILTER (WHERE r < -1.5 OR r > 1.5) AS out_of_range, (count(*) FILTER (WHERE r < -1.47)) > 0 AS has_small, (count(*) FILTER (WHERE r > 1.47)) > 0 AS has_large FROM (SELECT random(-1.500000000000000, 1.500000000000000) r FROM generate_series(1, 2000)) ss; -- Every possible value should occur at least once in 2500 random() values -- chosen from a range with 100 distinct values. SELECT min(r), max(r), count(r) FROM ( SELECT DISTINCT random(-50, 49) r FROM generate_series(1, 2500)); SELECT min(r), max(r), count(r) FROM ( SELECT DISTINCT random(123000000000, 123000000099) r FROM generate_series(1, 2500)); SELECT min(r), max(r), count(r) FROM ( SELECT DISTINCT random(-0.5, 0.49) r FROM generate_series(1, 2500)); -- Check for uniform distribution using the Kolmogorov-Smirnov test. CREATE FUNCTION ks_test_uniform_random_int_in_range() RETURNS boolean AS $$ DECLARE n int := 1000; -- Number of samples c float8 := 1.94947; -- Critical value for 99.9% confidence ok boolean; BEGIN ok := ( WITH samples AS ( SELECT random(0, 999999) / 1000000.0 r FROM generate_series(1, n) ORDER BY 1 ), indexed_samples AS ( SELECT (row_number() OVER())-1.0 i, r FROM samples ) SELECT max(abs(i/n-r)) < c / sqrt(n) FROM indexed_samples ); RETURN ok; END $$ LANGUAGE plpgsql; SELECT ks_test_uniform_random_int_in_range() OR ks_test_uniform_random_int_in_range() OR ks_test_uniform_random_int_in_range() AS uniform_int; CREATE FUNCTION ks_test_uniform_random_bigint_in_range() RETURNS boolean AS $$ DECLARE n int := 1000; -- Number of samples c float8 := 1.94947; -- Critical value for 99.9% confidence ok boolean; BEGIN ok := ( WITH samples AS ( SELECT random(0, 999999999999) / 1000000000000.0 r FROM generate_series(1, n) ORDER BY 1 ), indexed_samples AS ( SELECT (row_number() OVER())-1.0 i, r FROM samples ) SELECT max(abs(i/n-r)) < c / sqrt(n) FROM indexed_samples ); RETURN ok; END $$ LANGUAGE plpgsql; SELECT ks_test_uniform_random_bigint_in_range() OR ks_test_uniform_random_bigint_in_range() OR ks_test_uniform_random_bigint_in_range() AS uniform_bigint; CREATE FUNCTION ks_test_uniform_random_numeric_in_range() RETURNS boolean AS $$ DECLARE n int := 1000; -- Number of samples c float8 := 1.94947; -- Critical value for 99.9% confidence ok boolean; BEGIN ok := ( WITH samples AS ( SELECT random(0, 0.999999) r FROM generate_series(1, n) ORDER BY 1 ), indexed_samples AS ( SELECT (row_number() OVER())-1.0 i, r FROM samples ) SELECT max(abs(i/n-r)) < c / sqrt(n) FROM indexed_samples ); RETURN ok; END $$ LANGUAGE plpgsql; SELECT ks_test_uniform_random_numeric_in_range() OR ks_test_uniform_random_numeric_in_range() OR ks_test_uniform_random_numeric_in_range() AS uniform_numeric; -- setseed() should produce a reproducible series of random() values. SELECT setseed(0.5); SELECT random() FROM generate_series(1, 10); -- Likewise for random_normal(); however, since its implementation relies -- on libm functions that have different roundoff behaviors on different -- machines, we have to round off the results a bit to get consistent output. SET extra_float_digits = -1; SELECT random_normal() FROM generate_series(1, 10); SELECT random_normal(mean => 1, stddev => 0.1) r FROM generate_series(1, 10); -- Reproducible random(min, max) values. SELECT random(1, 6) FROM generate_series(1, 10); SELECT random(-2147483648, 2147483647) FROM generate_series(1, 10); SELECT random(-9223372036854775808, 9223372036854775807) FROM generate_series(1, 10); SELECT random(-1e30, 1e30) FROM generate_series(1, 10); SELECT random(-0.4, 0.4) FROM generate_series(1, 10); SELECT random(0, 1 - 1e-30) FROM generate_series(1, 10); SELECT n, random(0, trim_scale(abs(1 - 10.0^(-n)))) FROM generate_series(-20, 20) n;