/* # # File : CImg.h # ( C++ header file ) # # Description : The C++ Template Image Processing Toolkit. # This file is the main component of the CImg Library project. # ( http://cimg.eu ) # # Project manager : David Tschumperle. # ( http://tschumperle.users.greyc.fr/ ) # # A complete list of contributors is available in file 'README.txt' # distributed within the CImg package. # # Licenses : This file is 'dual-licensed', you have to choose one # of the two licenses below to apply. # # CeCILL-C # The CeCILL-C license is close to the GNU LGPL. # ( http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html ) # # or CeCILL v2.1 # The CeCILL license is compatible with the GNU GPL. # ( http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html ) # # This software is governed either by the CeCILL or the CeCILL-C license # under French law and abiding by the rules of distribution of free software. # You can use, modify and or redistribute the software under the terms of # the CeCILL or CeCILL-C licenses as circulated by CEA, CNRS and INRIA # at the following URL: "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL and CeCILL-C licenses and that you accept its terms. # */ // Set version number of the library. #ifndef cimg_version #define cimg_version 271 /*----------------------------------------------------------- # # Test and possibly auto-set CImg configuration variables # and include required headers. # # If you find that the default configuration variables are # not adapted to your system, you can override their values # before including the header file "CImg.h" # (use the #define directive). # ------------------------------------------------------------*/ // Include standard C++ headers. // This is the minimal set of required headers to make CImg-based codes compile. #include #include #include #include #include #include #include #include #include #include // Detect/configure OS variables. // // Define 'cimg_OS' to: '0' for an unknown OS (will try to minize library // dependencies). // '1' for a Unix-like OS (Linux, Solaris, BSD, MacOSX, // Irix, ...). '2' for Microsoft Windows. (auto-detection // is performed if 'cimg_OS' is not set by the user). #ifndef cimg_OS #if defined(unix) || defined(__unix) || defined(__unix__) || defined(linux) || \ defined(__linux) || defined(__linux__) || defined(sun) || \ defined(__sun) || defined(BSD) || defined(__OpenBSD__) || \ defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__) || \ defined(sgi) || defined(__sgi) || defined(__MACOSX__) || \ defined(__APPLE__) || defined(__CYGWIN__) #define cimg_OS 1 #elif defined(_MSC_VER) || defined(WIN32) || defined(_WIN32) || \ defined(__WIN32__) || defined(WIN64) || defined(_WIN64) || \ defined(__WIN64__) #define cimg_OS 2 #else #define cimg_OS 0 #endif #elif !(cimg_OS == 0 || cimg_OS == 1 || cimg_OS == 2) #error CImg Library: Invalid configuration variable 'cimg_OS'. #error (correct values are '0 = unknown OS', '1 = Unix-like OS', '2 = Microsoft Windows'). #endif #ifndef cimg_date #define cimg_date __DATE__ #endif #ifndef cimg_time #define cimg_time __TIME__ #endif // Disable silly warnings on some Microsoft VC++ compilers. #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4127) #pragma warning(disable : 4244) #pragma warning(disable : 4311) #pragma warning(disable : 4312) #pragma warning(disable : 4319) #pragma warning(disable : 4512) #pragma warning(disable : 4571) #pragma warning(disable : 4640) #pragma warning(disable : 4706) #pragma warning(disable : 4710) #pragma warning(disable : 4800) #pragma warning(disable : 4804) #pragma warning(disable : 4820) #pragma warning(disable : 4996) #ifndef _CRT_SECURE_NO_DEPRECATE #define _CRT_SECURE_NO_DEPRECATE 1 #endif #ifndef _CRT_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS 1 #endif #ifndef _CRT_NONSTDC_NO_DEPRECATE #define _CRT_NONSTDC_NO_DEPRECATE 1 #endif #endif // Define correct string functions for each compiler and OS. #if cimg_OS == 2 && defined(_MSC_VER) #define cimg_sscanf std::sscanf #define cimg_sprintf std::sprintf #define cimg_snprintf cimg::_snprintf #define cimg_vsnprintf cimg::_vsnprintf #else #include #if defined(__MACOSX__) || defined(__APPLE__) #define cimg_sscanf cimg::_sscanf #define cimg_sprintf cimg::_sprintf #define cimg_snprintf cimg::_snprintf #define cimg_vsnprintf cimg::_vsnprintf #else #define cimg_sscanf std::sscanf #define cimg_sprintf std::sprintf #define cimg_snprintf snprintf #define cimg_vsnprintf vsnprintf #endif #endif // Include OS-specific headers. #if cimg_OS == 1 #include #include #include #include #include #include #elif cimg_OS == 2 #ifndef NOMINMAX #define NOMINMAX #endif #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif #include #ifndef _WIN32_IE #define _WIN32_IE 0x0400 #endif #include #include #include #endif // Look for C++11 features. #ifndef cimg_use_cpp11 #if __cplusplus > 201100 #define cimg_use_cpp11 1 #else #define cimg_use_cpp11 0 #endif #endif #if cimg_use_cpp11 == 1 #include #include #endif // Convenient macro to define pragma #ifdef _MSC_VER #define cimg_pragma(x) __pragma(x) #else #define cimg_pragma(x) _Pragma(#x) #endif // Define own types 'cimg_long/ulong' and 'cimg_int64/uint64' to ensure // portability. ( constrained to 'sizeof(cimg_ulong/cimg_long) = sizeof(void*)' // and 'sizeof(cimg_int64/cimg_uint64)=8' ). #if cimg_OS == 2 #define cimg_uint64 unsigned __int64 #define cimg_int64 __int64 #define cimg_ulong UINT_PTR #define cimg_long INT_PTR #ifdef _MSC_VER #define cimg_fuint64 "%I64u" #define cimg_fint64 "%I64d" #else #define cimg_fuint64 "%llu" #define cimg_fint64 "%lld" #endif #else #if UINTPTR_MAX == 0xffffffff || defined(__arm__) || defined(_M_ARM) || \ ((ULONG_MAX) == (UINT_MAX)) #define cimg_uint64 unsigned long long #define cimg_int64 long long #define cimg_fuint64 "%llu" #define cimg_fint64 "%lld" #else #define cimg_uint64 unsigned long #define cimg_int64 long #define cimg_fuint64 "%lu" #define cimg_fint64 "%ld" #endif #if defined(__arm__) || defined(_M_ARM) #define cimg_ulong unsigned long long #define cimg_long long long #else #define cimg_ulong unsigned long #define cimg_long long #endif #endif // Configure filename separator. // // Filename separator is set by default to '/', except for Windows where it is // '\'. #ifndef cimg_file_separator #if cimg_OS == 2 #define cimg_file_separator '\\' #else #define cimg_file_separator '/' #endif #endif // Configure verbosity of output messages. // // Define 'cimg_verbosity' to: '0' to hide library messages (quiet mode). // '1' to output library messages on the console. // '2' to output library messages on a basic dialog // window (default behavior). '3' to do as '1' + add // extra warnings (may slow down the code!). '4' to // do as '2' + add extra warnings (may slow down the // code!). // // Define 'cimg_strict_warnings' to replace warning messages by exception // throwns. // // Define 'cimg_use_vt100' to allow output of color messages on VT100-compatible // terminals. #ifndef cimg_verbosity #if cimg_OS == 2 #define cimg_verbosity 2 #else #define cimg_verbosity 1 #endif #elif !(cimg_verbosity == 0 || cimg_verbosity == 1 || cimg_verbosity == 2 || \ cimg_verbosity == 3 || cimg_verbosity == 4) #error CImg Library: Configuration variable 'cimg_verbosity' is badly defined. #error (should be { 0=quiet | 1=console | 2=dialog | 3=console+warnings | 4=dialog+warnings }). #endif // Configure OpenMP support. // (http://www.openmp.org) // // Define 'cimg_use_openmp' to enable OpenMP support (requires OpenMP 3.0+). // // OpenMP directives are used in many CImg functions to get // advantages of multi-core CPUs. #if !defined(cimg_use_openmp) #ifdef _OPENMP #define cimg_use_openmp 1 #else #define cimg_use_openmp 0 #endif #endif #if cimg_use_openmp != 0 #include #define cimg_pragma_openmp(p) cimg_pragma(omp p) #else #define cimg_pragma_openmp(p) #endif // Configure the 'abort' signal handler (does nothing by default). // A typical signal handler can be defined in your own source like this: // #define cimg_abort_test if (is_abort) throw CImgAbortException("") // // where 'is_abort' is a boolean variable defined somewhere in your code and // reachable in the method. 'cimg_abort_test2' does the same but is called more // often (in inner loops). #if defined(cimg_abort_test) && cimg_use_openmp != 0 // Define abort macros to be used with OpenMP. #ifndef _cimg_abort_init_openmp #define _cimg_abort_init_openmp \ bool _cimg_abort_go_openmp = true; \ cimg::unused(_cimg_abort_go_openmp) #endif #ifndef _cimg_abort_try_openmp #define _cimg_abort_try_openmp \ if (_cimg_abort_go_openmp) try #endif #ifndef _cimg_abort_catch_openmp #define _cimg_abort_catch_openmp \ catch (CImgAbortException&) { \ cimg_pragma(omp atomic) _cimg_abort_go_openmp &= false; \ } #endif #ifdef cimg_abort_test2 #ifndef _cimg_abort_try_openmp2 #define _cimg_abort_try_openmp2 _cimg_abort_try_openmp #endif #ifndef _cimg_abort_catch_openmp2 #define _cimg_abort_catch_openmp2 _cimg_abort_catch_openmp #endif #ifndef _cimg_abort_catch_fill_openmp #define _cimg_abort_catch_fill_openmp \ catch (CImgException & e) { \ cimg_pragma(omp critical(abort)) CImg::string(e._message) \ .move_to(is_error); \ cimg_pragma(omp atomic) _cimg_abort_go_openmp &= false; \ } #endif #endif #endif #ifndef _cimg_abort_init_openmp #define _cimg_abort_init_openmp #endif #ifndef _cimg_abort_try_openmp #define _cimg_abort_try_openmp #endif #ifndef _cimg_abort_catch_openmp #define _cimg_abort_catch_openmp #endif #ifndef _cimg_abort_try_openmp2 #define _cimg_abort_try_openmp2 #endif #ifndef _cimg_abort_catch_openmp2 #define _cimg_abort_catch_openmp2 #endif #ifndef _cimg_abort_catch_fill_openmp #define _cimg_abort_catch_fill_openmp #endif #ifndef cimg_abort_init #define cimg_abort_init #endif #ifndef cimg_abort_test #define cimg_abort_test #endif #ifndef cimg_abort_test2 #define cimg_abort_test2 #endif // Configure display framework. // // Define 'cimg_display' to: '0' to disable display capabilities. // '1' to use the X-Window framework (X11). // '2' to use the Microsoft GDI32 framework. #ifndef cimg_display #if cimg_OS == 0 #define cimg_display 0 #elif cimg_OS == 1 #define cimg_display 1 #elif cimg_OS == 2 #define cimg_display 2 #endif #elif !(cimg_display == 0 || cimg_display == 1 || cimg_display == 2) #error CImg Library: Configuration variable 'cimg_display' is badly defined. #error(should be { 0=none | 1=X-Window (X11) | 2=Microsoft GDI32 }). #endif // Include display-specific headers. #if cimg_display == 1 #include #include #include #include #ifdef cimg_use_xshm #include #include #include #endif #ifdef cimg_use_xrandr #include #endif #endif #ifndef cimg_appname #define cimg_appname "CImg" #endif // Configure OpenCV support. // (http://opencv.willowgarage.com/wiki/) // // Define 'cimg_use_opencv' to enable OpenCV support. // // OpenCV library may be used to access images from cameras // (see method 'CImg::load_camera()'). #ifdef cimg_use_opencv #ifdef True #undef True #define _cimg_redefine_True #endif #ifdef False #undef False #define _cimg_redefine_False #endif #ifdef Status #undef Status #define _cimg_redefine_Status #endif #include #include #if CV_MAJOR_VERSION >= 3 #define _cimg_fourcc cv::VideoWriter::fourcc #define _cimg_cap_prop_frame_width \ cv::VideoCaptureProperties::CAP_PROP_FRAME_WIDTH #define _cimg_cap_prop_frame_height \ cv::VideoCaptureProperties::CAP_PROP_FRAME_HEIGHT #define _cimg_cap_prop_frame_count \ cv::VideoCaptureProperties::CAP_PROP_FRAME_COUNT #else #define _cimg_fourcc CV_FOURCC #define _cimg_cap_prop_frame_width CV_CAP_PROP_FRAME_WIDTH #define _cimg_cap_prop_frame_height CV_CAP_PROP_FRAME_HEIGHT #define _cimg_cap_prop_frame_count CV_CAP_PROP_FRAME_COUNT #endif #endif // Configure LibPNG support. // (http://www.libpng.org) // // Define 'cimg_use_png' to enable LibPNG support. // // PNG library may be used to get a native support of '.png' files. // (see methods 'CImg::{load,save}_png()'. #ifdef cimg_use_png extern "C" { #include "png.h" } #endif // Configure LibJPEG support. // (http://en.wikipedia.org/wiki/Libjpeg) // // Define 'cimg_use_jpeg' to enable LibJPEG support. // // JPEG library may be used to get a native support of '.jpg' files. // (see methods 'CImg::{load,save}_jpeg()'). #ifdef cimg_use_jpeg extern "C" { #include "jpeglib.h" #include "setjmp.h" } #endif // Configure LibTIFF support. // (http://www.libtiff.org) // // Define 'cimg_use_tiff' to enable LibTIFF support. // // TIFF library may be used to get a native support of '.tif' files. // (see methods 'CImg[List]::{load,save}_tiff()'). #ifdef cimg_use_tiff extern "C" { #define uint64 uint64_hack_ #define int64 int64_hack_ #include "tiffio.h" #undef uint64 #undef int64 } #endif // Configure LibMINC2 support. // (http://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_File_Format_Reference) // // Define 'cimg_use_minc2' to enable LibMINC2 support. // // MINC2 library may be used to get a native support of '.mnc' files. // (see methods 'CImg::{load,save}_minc2()'). #ifdef cimg_use_minc2 #include "minc_1_simple.h" #include "minc_1_simple_rw.h" #include "minc_io_simple_volume.h" #endif // Configure Zlib support. // (http://www.zlib.net) // // Define 'cimg_use_zlib' to enable Zlib support. // // Zlib library may be used to allow compressed data in '.cimgz' files // (see methods 'CImg[List]::{load,save}_cimg()'). #ifdef cimg_use_zlib extern "C" { #include "zlib.h" } #endif // Configure libcurl support. // (http://curl.haxx.se/libcurl/) // // Define 'cimg_use_curl' to enable libcurl support. // // Libcurl may be used to get a native support of file downloading from the // network. (see method 'cimg::load_network()'.) #ifdef cimg_use_curl #include "curl/curl.h" #endif // Configure Magick++ support. // (http://www.imagemagick.org/Magick++) // // Define 'cimg_use_magick' to enable Magick++ support. // // Magick++ library may be used to get a native support of various image file // formats. (see methods 'CImg::{load,save}()'). #ifdef cimg_use_magick #include "Magick++.h" #endif // Configure FFTW3 support. // (http://www.fftw.org) // // Define 'cimg_use_fftw3' to enable libFFTW3 support. // // FFTW3 library may be used to efficiently compute the Fast Fourier Transform // of image data, without restriction on the image size. // (see method 'CImg[List]::FFT()'). #ifdef cimg_use_fftw3 extern "C" { #include "fftw3.h" } #endif // Configure LibBoard support. // (http://libboard.sourceforge.net/) // // Define 'cimg_use_board' to enable Board support. // // Board library may be used to draw 3D objects in vector-graphics canvas // that can be saved as '.ps' or '.svg' files afterwards. // (see method 'CImg::draw_object3d()'). #ifdef cimg_use_board #include "Board.h" #endif // Configure OpenEXR support. // (http://www.openexr.com/) // // Define 'cimg_use_openexr' to enable OpenEXR support. // // OpenEXR library may be used to get a native support of '.exr' files. // (see methods 'CImg::{load,save}_exr()'). #ifdef cimg_use_openexr #include "ImfArray.h" #include "ImfChannelList.h" #include "ImfInputFile.h" #include "ImfMatrixAttribute.h" #include "ImfRgbaFile.h" #endif // Configure TinyEXR support. // (https://github.com/syoyo/tinyexr) // // Define 'cimg_use_tinyexr' to enable TinyEXR support. // // TinyEXR is a small, single header-only library to load and save OpenEXR(.exr) // images. #ifdef cimg_use_tinyexr #ifndef TINYEXR_IMPLEMENTATION #define TINYEXR_IMPLEMENTATION #endif #include "tinyexr.h" #endif // Lapack configuration. // (http://www.netlib.org/lapack) // // Define 'cimg_use_lapack' to enable LAPACK support. // // Lapack library may be used in several CImg methods to speed up // matrix computations (eigenvalues, inverse, ...). #ifdef cimg_use_lapack extern "C" { extern void sgetrf_(int*, int*, float*, int*, int*, int*); extern void sgetri_(int*, float*, int*, int*, float*, int*, int*); extern void sgetrs_(char*, int*, int*, float*, int*, int*, float*, int*, int*); extern void sgesvd_(char*, char*, int*, int*, float*, int*, float*, float*, int*, float*, int*, float*, int*, int*); extern void ssyev_(char*, char*, int*, float*, int*, float*, float*, int*, int*); extern void dgetrf_(int*, int*, double*, int*, int*, int*); extern void dgetri_(int*, double*, int*, int*, double*, int*, int*); extern void dgetrs_(char*, int*, int*, double*, int*, int*, double*, int*, int*); extern void dgesvd_(char*, char*, int*, int*, double*, int*, double*, double*, int*, double*, int*, double*, int*, int*); extern void dsyev_(char*, char*, int*, double*, int*, double*, double*, int*, int*); extern void dgels_(char*, int*, int*, int*, double*, int*, double*, int*, double*, int*, int*); extern void sgels_(char*, int*, int*, int*, float*, int*, float*, int*, float*, int*, int*); } #endif // Check if min/max/PI macros are defined. // // CImg does not compile if macros 'min', 'max' or 'PI' are defined, // because it redefines functions min(), max() and const variable PI in the // cimg:: namespace. so it '#undef' these macros if necessary, and restore them // to reasonable values at the end of this file. #ifdef min #undef min #define _cimg_redefine_min #endif #ifdef max #undef max #define _cimg_redefine_max #endif #ifdef PI #undef PI #define _cimg_redefine_PI #endif // Define 'cimg_library' namespace suffix. // // You may want to add a suffix to the 'cimg_library' namespace, for instance if // you need to work with several versions of the library at the same time. #ifdef cimg_namespace_suffix #define __cimg_library_suffixed(s) cimg_library_##s #define _cimg_library_suffixed(s) __cimg_library_suffixed(s) #define cimg_library_suffixed _cimg_library_suffixed(cimg_namespace_suffix) #else #define cimg_library_suffixed cimg_library #endif /*------------------------------------------------------------------------------ # # Define user-friendly macros. # # These CImg macros are prefixed by 'cimg_' and can be used safely in your own # code. They are useful to parse command line options, or to write image loops. # ------------------------------------------------------------------------------*/ // Macros to define program usage, and retrieve command line arguments. #define cimg_usage(usage) \ cimg_library_suffixed::cimg::option((char*)0, argc, argv, (char*)0, usage, \ false) #define cimg_help(str) \ cimg_library_suffixed::cimg::option((char*)0, argc, argv, str, (char*)0) #define cimg_option(name, defaut, usage) \ cimg_library_suffixed::cimg::option(name, argc, argv, defaut, usage) // Macros to define and manipulate local neighborhoods. #define CImg_2x2(I, T) \ T I[4]; \ T& I##cc = I[0]; \ T& I##nc = I[1]; \ T& I##cn = I[2]; \ T& I##nn = I[3]; \ I##cc = I##nc = I##cn = I##nn = 0 #define CImg_3x3(I, T) \ T I[9]; \ T& I##pp = I[0]; \ T& I##cp = I[1]; \ T& I##np = I[2]; \ T& I##pc = I[3]; \ T& I##cc = I[4]; \ T& I##nc = I[5]; \ T& I##pn = I[6]; \ T& I##cn = I[7]; \ T& I##nn = I[8]; \ I##pp = I##cp = I##np = I##pc = I##cc = I##nc = I##pn = I##cn = I##nn = 0 #define CImg_4x4(I, T) \ T I[16]; \ T& I##pp = I[0]; \ T& I##cp = I[1]; \ T& I##np = I[2]; \ T& I##ap = I[3]; \ T& I##pc = I[4]; \ T& I##cc = I[5]; \ T& I##nc = I[6]; \ T& I##ac = I[7]; \ T& I##pn = I[8]; \ T& I##cn = I[9]; \ T& I##nn = I[10]; \ T& I##an = I[11]; \ T& I##pa = I[12]; \ T& I##ca = I[13]; \ T& I##na = I[14]; \ T& I##aa = I[15]; \ I##pp = I##cp = I##np = I##ap = I##pc = I##cc = I##nc = I##ac = I##pn = \ I##cn = I##nn = I##an = I##pa = I##ca = I##na = I##aa = 0 #define CImg_5x5(I, T) \ T I[25]; \ T& I##bb = I[0]; \ T& I##pb = I[1]; \ T& I##cb = I[2]; \ T& I##nb = I[3]; \ T& I##ab = I[4]; \ T& I##bp = I[5]; \ T& I##pp = I[6]; \ T& I##cp = I[7]; \ T& I##np = I[8]; \ T& I##ap = I[9]; \ T& I##bc = I[10]; \ T& I##pc = I[11]; \ T& I##cc = I[12]; \ T& I##nc = I[13]; \ T& I##ac = I[14]; \ T& I##bn = I[15]; \ T& I##pn = I[16]; \ T& I##cn = I[17]; \ T& I##nn = I[18]; \ T& I##an = I[19]; \ T& I##ba = I[20]; \ T& I##pa = I[21]; \ T& I##ca = I[22]; \ T& I##na = I[23]; \ T& I##aa = I[24]; \ I##bb = I##pb = I##cb = I##nb = I##ab = I##bp = I##pp = I##cp = I##np = \ I##ap = I##bc = I##pc = I##cc = I##nc = I##ac = I##bn = I##pn = \ I##cn = I##nn = I##an = I##ba = I##pa = I##ca = I##na = I##aa = 0 #define CImg_2x2x2(I, T) \ T I[8]; \ T& I##ccc = I[0]; \ T& I##ncc = I[1]; \ T& I##cnc = I[2]; \ T& I##nnc = I[3]; \ T& I##ccn = I[4]; \ T& I##ncn = I[5]; \ T& I##cnn = I[6]; \ T& I##nnn = I[7]; \ I##ccc = I##ncc = I##cnc = I##nnc = I##ccn = I##ncn = I##cnn = I##nnn = 0 #define CImg_3x3x3(I, T) \ T I[27]; \ T& I##ppp = I[0]; \ T& I##cpp = I[1]; \ T& I##npp = I[2]; \ T& I##pcp = I[3]; \ T& I##ccp = I[4]; \ T& I##ncp = I[5]; \ T& I##pnp = I[6]; \ T& I##cnp = I[7]; \ T& I##nnp = I[8]; \ T& I##ppc = I[9]; \ T& I##cpc = I[10]; \ T& I##npc = I[11]; \ T& I##pcc = I[12]; \ T& I##ccc = I[13]; \ T& I##ncc = I[14]; \ T& I##pnc = I[15]; \ T& I##cnc = I[16]; \ T& I##nnc = I[17]; \ T& I##ppn = I[18]; \ T& I##cpn = I[19]; \ T& I##npn = I[20]; \ T& I##pcn = I[21]; \ T& I##ccn = I[22]; \ T& I##ncn = I[23]; \ T& I##pnn = I[24]; \ T& I##cnn = I[25]; \ T& I##nnn = I[26]; \ I##ppp = I##cpp = I##npp = I##pcp = I##ccp = I##ncp = I##pnp = I##cnp = \ I##nnp = I##ppc = I##cpc = I##npc = I##pcc = I##ccc = I##ncc = \ I##pnc = I##cnc = I##nnc = I##ppn = I##cpn = I##npn = I##pcn = \ I##ccn = I##ncn = I##pnn = I##cnn = I##nnn = 0 #define cimg_def2x2(img, x, y) \ int _n1##x = x < img.width() - 1 ? x + 1 : img.width() - 1, \ _n1##y = y < img.height() - 1 ? y + 1 : img.height() - 1 #define cimg_def3x3(img, x, y) \ cimg_def2x2(img, x, y); \ int _p1##x = x > 1 ? x - 1 : 0, _p1##y = y > 1 ? y - 1 : 0 #define cimg_def4x4(img, x, y) \ cimg_def3x3(img, x, y); \ int _n2##x = x < img.width() - 2 ? x + 2 : img.width() - 1, \ _n2##y = y < img.height() - 2 ? y + 2 : img.height() - 1 #define cimg_def5x5(img, x, y) \ cimg_def4x4(img, x, y); \ int _p2##x = x > 2 ? x - 2 : 0, _p2##y = y > 2 ? y - 2 : 0 #define cimg_def6x6(img, x, y) \ cimg_def5x5(img, x, y); \ int _n3##x = x < img.width() - 3 ? x + 3 : img.width() - 1, \ _n3##y = y < img.height() - 3 ? y + 3 : img.height() - 1 #define cimg_def7x7(img, x, y) \ cimg_def6x6(img, x, y); \ int _p3##x = x > 3 ? x - 3 : 0, _p3##y = y > 3 ? y - 3 : 0 #define cimg_def8x8(img, x, y) \ cimg_def7x7(img, x, y); \ int _n4##x = x < img.width() - 4 ? x + 4 : img.width() - 1, \ _n4##y = y < img.height() - 4 ? y + 4 : img.height() - 1 #define cimg_def9x9(img, x, y) \ cimg_def8x8(img, x, y); \ int _p4##x = x > 4 ? x - 4 : 0, _p4##y = y > 4 ? y - 4 : 0 #define cimg_def2x2x2(img, x, y, z) \ cimg_def2x2(img, x, y); \ int _n1##z = z < img.depth() - 1 ? z + 1 : img.depth() - 1 #define cimg_def3x3x3(img, x, y, z) \ cimg_def2x2x2(img, x, y, z); \ int _p1##x = x > 1 ? x - 1 : 0, _p1##y = y > 1 ? y - 1 : 0, \ _p1##z = z > 1 ? z - 1 : 0 #define cimg_get2x2(img, x, y, z, c, I, T) \ I[0] = (T)(img)(x, y, z, c), I[1] = (T)(img)(_n1##x, y, z, c), \ I[2] = (T)(img)(x, _n1##y, z, c), I[3] = (T)(img)(_n1##x, _n1##y, z, c) #define cimg_get3x3(img, x, y, z, c, I, T) \ I[0] = (T)(img)(_p1##x, _p1##y, z, c), I[1] = (T)(img)(x, _p1##y, z, c), \ I[2] = (T)(img)(_n1##x, _p1##y, z, c), I[3] = (T)(img)(_p1##x, y, z, c), \ I[4] = (T)(img)(x, y, z, c), I[5] = (T)(img)(_n1##x, y, z, c), \ I[6] = (T)(img)(_p1##x, _n1##y, z, c), I[7] = (T)(img)(x, _n1##y, z, c), \ I[8] = (T)(img)(_n1##x, _n1##y, z, c) #define cimg_get4x4(img, x, y, z, c, I, T) \ I[0] = (T)(img)(_p1##x, _p1##y, z, c), I[1] = (T)(img)(x, _p1##y, z, c), \ I[2] = (T)(img)(_n1##x, _p1##y, z, c), \ I[3] = (T)(img)(_n2##x, _p1##y, z, c), I[4] = (T)(img)(_p1##x, y, z, c), \ I[5] = (T)(img)(x, y, z, c), I[6] = (T)(img)(_n1##x, y, z, c), \ I[7] = (T)(img)(_n2##x, y, z, c), I[8] = (T)(img)(_p1##x, _n1##y, z, c), \ I[9] = (T)(img)(x, _n1##y, z, c), I[10] = (T)(img)(_n1##x, _n1##y, z, c), \ I[11] = (T)(img)(_n2##x, _n1##y, z, c), \ I[12] = (T)(img)(_p1##x, _n2##y, z, c), I[13] = (T)(img)(x, _n2##y, z, c), \ I[14] = (T)(img)(_n1##x, _n2##y, z, c), \ I[15] = (T)(img)(_n2##x, _n2##y, z, c) #define cimg_get5x5(img, x, y, z, c, I, T) \ I[0] = (T)(img)(_p2##x, _p2##y, z, c), \ I[1] = (T)(img)(_p1##x, _p2##y, z, c), I[2] = (T)(img)(x, _p2##y, z, c), \ I[3] = (T)(img)(_n1##x, _p2##y, z, c), \ I[4] = (T)(img)(_n2##x, _p2##y, z, c), \ I[5] = (T)(img)(_p2##x, _p1##y, z, c), \ I[6] = (T)(img)(_p1##x, _p1##y, z, c), I[7] = (T)(img)(x, _p1##y, z, c), \ I[8] = (T)(img)(_n1##x, _p1##y, z, c), \ I[9] = (T)(img)(_n2##x, _p1##y, z, c), I[10] = (T)(img)(_p2##x, y, z, c), \ I[11] = (T)(img)(_p1##x, y, z, c), I[12] = (T)(img)(x, y, z, c), \ I[13] = (T)(img)(_n1##x, y, z, c), I[14] = (T)(img)(_n2##x, y, z, c), \ I[15] = (T)(img)(_p2##x, _n1##y, z, c), \ I[16] = (T)(img)(_p1##x, _n1##y, z, c), I[17] = (T)(img)(x, _n1##y, z, c), \ I[18] = (T)(img)(_n1##x, _n1##y, z, c), \ I[19] = (T)(img)(_n2##x, _n1##y, z, c), \ I[20] = (T)(img)(_p2##x, _n2##y, z, c), \ I[21] = (T)(img)(_p1##x, _n2##y, z, c), I[22] = (T)(img)(x, _n2##y, z, c), \ I[23] = (T)(img)(_n1##x, _n2##y, z, c), \ I[24] = (T)(img)(_n2##x, _n2##y, z, c) #define cimg_get6x6(img, x, y, z, c, I, T) \ I[0] = (T)(img)(_p2##x, _p2##y, z, c), \ I[1] = (T)(img)(_p1##x, _p2##y, z, c), I[2] = (T)(img)(x, _p2##y, z, c), \ I[3] = (T)(img)(_n1##x, _p2##y, z, c), \ I[4] = (T)(img)(_n2##x, _p2##y, z, c), \ I[5] = (T)(img)(_n3##x, _p2##y, z, c), \ I[6] = (T)(img)(_p2##x, _p1##y, z, c), \ I[7] = (T)(img)(_p1##x, _p1##y, z, c), I[8] = (T)(img)(x, _p1##y, z, c), \ I[9] = (T)(img)(_n1##x, _p1##y, z, c), \ I[10] = (T)(img)(_n2##x, _p1##y, z, c), \ I[11] = (T)(img)(_n3##x, _p1##y, z, c), I[12] = (T)(img)(_p2##x, y, z, c), \ I[13] = (T)(img)(_p1##x, y, z, c), I[14] = (T)(img)(x, y, z, c), \ I[15] = (T)(img)(_n1##x, y, z, c), I[16] = (T)(img)(_n2##x, y, z, c), \ I[17] = (T)(img)(_n3##x, y, z, c), I[18] = (T)(img)(_p2##x, _n1##y, z, c), \ I[19] = (T)(img)(_p1##x, _n1##y, z, c), I[20] = (T)(img)(x, _n1##y, z, c), \ I[21] = (T)(img)(_n1##x, _n1##y, z, c), \ I[22] = (T)(img)(_n2##x, _n1##y, z, c), \ I[23] = (T)(img)(_n3##x, _n1##y, z, c), \ I[24] = (T)(img)(_p2##x, _n2##y, z, c), \ I[25] = (T)(img)(_p1##x, _n2##y, z, c), I[26] = (T)(img)(x, _n2##y, z, c), \ I[27] = (T)(img)(_n1##x, _n2##y, z, c), \ I[28] = (T)(img)(_n2##x, _n2##y, z, c), \ I[29] = (T)(img)(_n3##x, _n2##y, z, c), \ I[30] = (T)(img)(_p2##x, _n3##y, z, c), \ I[31] = (T)(img)(_p1##x, _n3##y, z, c), I[32] = (T)(img)(x, _n3##y, z, c), \ I[33] = (T)(img)(_n1##x, _n3##y, z, c), \ I[34] = (T)(img)(_n2##x, _n3##y, z, c), \ I[35] = (T)(img)(_n3##x, _n3##y, z, c) #define cimg_get7x7(img, x, y, z, c, I, T) \ I[0] = (T)(img)(_p3##x, _p3##y, z, c), \ I[1] = (T)(img)(_p2##x, _p3##y, z, c), \ I[2] = (T)(img)(_p1##x, _p3##y, z, c), I[3] = (T)(img)(x, _p3##y, z, c), \ I[4] = (T)(img)(_n1##x, _p3##y, z, c), \ I[5] = (T)(img)(_n2##x, _p3##y, z, c), \ I[6] = (T)(img)(_n3##x, _p3##y, z, c), \ I[7] = (T)(img)(_p3##x, _p2##y, z, c), \ I[8] = (T)(img)(_p2##x, _p2##y, z, c), \ I[9] = (T)(img)(_p1##x, _p2##y, z, c), I[10] = (T)(img)(x, _p2##y, z, c), \ I[11] = (T)(img)(_n1##x, _p2##y, z, c), \ I[12] = (T)(img)(_n2##x, _p2##y, z, c), \ I[13] = (T)(img)(_n3##x, _p2##y, z, c), \ I[14] = (T)(img)(_p3##x, _p1##y, z, c), \ I[15] = (T)(img)(_p2##x, _p1##y, z, c), \ I[16] = (T)(img)(_p1##x, _p1##y, z, c), I[17] = (T)(img)(x, _p1##y, z, c), \ I[18] = (T)(img)(_n1##x, _p1##y, z, c), \ I[19] = (T)(img)(_n2##x, _p1##y, z, c), \ I[20] = (T)(img)(_n3##x, _p1##y, z, c), I[21] = (T)(img)(_p3##x, y, z, c), \ I[22] = (T)(img)(_p2##x, y, z, c), I[23] = (T)(img)(_p1##x, y, z, c), \ I[24] = (T)(img)(x, y, z, c), I[25] = (T)(img)(_n1##x, y, z, c), \ I[26] = (T)(img)(_n2##x, y, z, c), I[27] = (T)(img)(_n3##x, y, z, c), \ I[28] = (T)(img)(_p3##x, _n1##y, z, c), \ I[29] = (T)(img)(_p2##x, _n1##y, z, c), \ I[30] = (T)(img)(_p1##x, _n1##y, z, c), I[31] = (T)(img)(x, _n1##y, z, c), \ I[32] = (T)(img)(_n1##x, _n1##y, z, c), \ I[33] = (T)(img)(_n2##x, _n1##y, z, c), \ I[34] = (T)(img)(_n3##x, _n1##y, z, c), \ I[35] = (T)(img)(_p3##x, _n2##y, z, c), \ I[36] = (T)(img)(_p2##x, _n2##y, z, c), \ I[37] = (T)(img)(_p1##x, _n2##y, z, c), I[38] = (T)(img)(x, _n2##y, z, c), \ I[39] = (T)(img)(_n1##x, _n2##y, z, c), \ I[40] = (T)(img)(_n2##x, _n2##y, z, c), \ I[41] = (T)(img)(_n3##x, _n2##y, z, c), \ I[42] = (T)(img)(_p3##x, _n3##y, z, c), \ I[43] = (T)(img)(_p2##x, _n3##y, z, c), \ I[44] = (T)(img)(_p1##x, _n3##y, z, c), I[45] = (T)(img)(x, _n3##y, z, c), \ I[46] = (T)(img)(_n1##x, _n3##y, z, c), \ I[47] = (T)(img)(_n2##x, _n3##y, z, c), \ I[48] = (T)(img)(_n3##x, _n3##y, z, c) #define cimg_get8x8(img, x, y, z, c, I, T) \ I[0] = (T)(img)(_p3##x, _p3##y, z, c), \ I[1] = (T)(img)(_p2##x, _p3##y, z, c), \ I[2] = (T)(img)(_p1##x, _p3##y, z, c), I[3] = (T)(img)(x, _p3##y, z, c), \ I[4] = (T)(img)(_n1##x, _p3##y, z, c), \ I[5] = (T)(img)(_n2##x, _p3##y, z, c), \ I[6] = (T)(img)(_n3##x, _p3##y, z, c), \ I[7] = (T)(img)(_n4##x, _p3##y, z, c), \ I[8] = (T)(img)(_p3##x, _p2##y, z, c), \ I[9] = (T)(img)(_p2##x, _p2##y, z, c), \ I[10] = (T)(img)(_p1##x, _p2##y, z, c), I[11] = (T)(img)(x, _p2##y, z, c), \ I[12] = (T)(img)(_n1##x, _p2##y, z, c), \ I[13] = (T)(img)(_n2##x, _p2##y, z, c), \ I[14] = (T)(img)(_n3##x, _p2##y, z, c), \ I[15] = (T)(img)(_n4##x, _p2##y, z, c), \ I[16] = (T)(img)(_p3##x, _p1##y, z, c), \ I[17] = (T)(img)(_p2##x, _p1##y, z, c), \ I[18] = (T)(img)(_p1##x, _p1##y, z, c), I[19] = (T)(img)(x, _p1##y, z, c), \ I[20] = (T)(img)(_n1##x, _p1##y, z, c), \ I[21] = (T)(img)(_n2##x, _p1##y, z, c), \ I[22] = (T)(img)(_n3##x, _p1##y, z, c), \ I[23] = (T)(img)(_n4##x, _p1##y, z, c), I[24] = (T)(img)(_p3##x, y, z, c), \ I[25] = (T)(img)(_p2##x, y, z, c), I[26] = (T)(img)(_p1##x, y, z, c), \ I[27] = (T)(img)(x, y, z, c), I[28] = (T)(img)(_n1##x, y, z, c), \ I[29] = (T)(img)(_n2##x, y, z, c), I[30] = (T)(img)(_n3##x, y, z, c), \ I[31] = (T)(img)(_n4##x, y, z, c), I[32] = (T)(img)(_p3##x, _n1##y, z, c), \ I[33] = (T)(img)(_p2##x, _n1##y, z, c), \ I[34] = (T)(img)(_p1##x, _n1##y, z, c), I[35] = (T)(img)(x, _n1##y, z, c), \ I[36] = (T)(img)(_n1##x, _n1##y, z, c), \ I[37] = (T)(img)(_n2##x, _n1##y, z, c), \ I[38] = (T)(img)(_n3##x, _n1##y, z, c), \ I[39] = (T)(img)(_n4##x, _n1##y, z, c), \ I[40] = (T)(img)(_p3##x, _n2##y, z, c), \ I[41] = (T)(img)(_p2##x, _n2##y, z, c), \ I[42] = (T)(img)(_p1##x, _n2##y, z, c), I[43] = (T)(img)(x, _n2##y, z, c), \ I[44] = (T)(img)(_n1##x, _n2##y, z, c), \ I[45] = (T)(img)(_n2##x, _n2##y, z, c), \ I[46] = (T)(img)(_n3##x, _n2##y, z, c), \ I[47] = (T)(img)(_n4##x, _n2##y, z, c), \ I[48] = (T)(img)(_p3##x, _n3##y, z, c), \ I[49] = (T)(img)(_p2##x, _n3##y, z, c), \ I[50] = (T)(img)(_p1##x, _n3##y, z, c), I[51] = (T)(img)(x, _n3##y, z, c), \ I[52] = (T)(img)(_n1##x, _n3##y, z, c), \ I[53] = (T)(img)(_n2##x, _n3##y, z, c), \ I[54] = (T)(img)(_n3##x, _n3##y, z, c), \ I[55] = (T)(img)(_n4##x, _n3##y, z, c), \ I[56] = (T)(img)(_p3##x, _n4##y, z, c), \ I[57] = (T)(img)(_p2##x, _n4##y, z, c), \ I[58] = (T)(img)(_p1##x, _n4##y, z, c), I[59] = (T)(img)(x, _n4##y, z, c), \ I[60] = (T)(img)(_n1##x, _n4##y, z, c), \ I[61] = (T)(img)(_n2##x, _n4##y, z, c), \ I[62] = (T)(img)(_n3##x, _n4##y, z, c), \ I[63] = (T)(img)(_n4##x, _n4##y, z, c); #define cimg_get9x9(img, x, y, z, c, I, T) \ I[0] = (T)(img)(_p4##x, _p4##y, z, c), \ I[1] = (T)(img)(_p3##x, _p4##y, z, c), \ I[2] = (T)(img)(_p2##x, _p4##y, z, c), \ I[3] = (T)(img)(_p1##x, _p4##y, z, c), I[4] = (T)(img)(x, _p4##y, z, c), \ I[5] = (T)(img)(_n1##x, _p4##y, z, c), \ I[6] = (T)(img)(_n2##x, _p4##y, z, c), \ I[7] = (T)(img)(_n3##x, _p4##y, z, c), \ I[8] = (T)(img)(_n4##x, _p4##y, z, c), \ I[9] = (T)(img)(_p4##x, _p3##y, z, c), \ I[10] = (T)(img)(_p3##x, _p3##y, z, c), \ I[11] = (T)(img)(_p2##x, _p3##y, z, c), \ I[12] = (T)(img)(_p1##x, _p3##y, z, c), I[13] = (T)(img)(x, _p3##y, z, c), \ I[14] = (T)(img)(_n1##x, _p3##y, z, c), \ I[15] = (T)(img)(_n2##x, _p3##y, z, c), \ I[16] = (T)(img)(_n3##x, _p3##y, z, c), \ I[17] = (T)(img)(_n4##x, _p3##y, z, c), \ I[18] = (T)(img)(_p4##x, _p2##y, z, c), \ I[19] = (T)(img)(_p3##x, _p2##y, z, c), \ I[20] = (T)(img)(_p2##x, _p2##y, z, c), \ I[21] = (T)(img)(_p1##x, _p2##y, z, c), I[22] = (T)(img)(x, _p2##y, z, c), \ I[23] = (T)(img)(_n1##x, _p2##y, z, c), \ I[24] = (T)(img)(_n2##x, _p2##y, z, c), \ I[25] = (T)(img)(_n3##x, _p2##y, z, c), \ I[26] = (T)(img)(_n4##x, _p2##y, z, c), \ I[27] = (T)(img)(_p4##x, _p1##y, z, c), \ I[28] = (T)(img)(_p3##x, _p1##y, z, c), \ I[29] = (T)(img)(_p2##x, _p1##y, z, c), \ I[30] = (T)(img)(_p1##x, _p1##y, z, c), I[31] = (T)(img)(x, _p1##y, z, c), \ I[32] = (T)(img)(_n1##x, _p1##y, z, c), \ I[33] = (T)(img)(_n2##x, _p1##y, z, c), \ I[34] = (T)(img)(_n3##x, _p1##y, z, c), \ I[35] = (T)(img)(_n4##x, _p1##y, z, c), I[36] = (T)(img)(_p4##x, y, z, c), \ I[37] = (T)(img)(_p3##x, y, z, c), I[38] = (T)(img)(_p2##x, y, z, c), \ I[39] = (T)(img)(_p1##x, y, z, c), I[40] = (T)(img)(x, y, z, c), \ I[41] = (T)(img)(_n1##x, y, z, c), I[42] = (T)(img)(_n2##x, y, z, c), \ I[43] = (T)(img)(_n3##x, y, z, c), I[44] = (T)(img)(_n4##x, y, z, c), \ I[45] = (T)(img)(_p4##x, _n1##y, z, c), \ I[46] = (T)(img)(_p3##x, _n1##y, z, c), \ I[47] = (T)(img)(_p2##x, _n1##y, z, c), \ I[48] = (T)(img)(_p1##x, _n1##y, z, c), I[49] = (T)(img)(x, _n1##y, z, c), \ I[50] = (T)(img)(_n1##x, _n1##y, z, c), \ I[51] = (T)(img)(_n2##x, _n1##y, z, c), \ I[52] = (T)(img)(_n3##x, _n1##y, z, c), \ I[53] = (T)(img)(_n4##x, _n1##y, z, c), \ I[54] = (T)(img)(_p4##x, _n2##y, z, c), \ I[55] = (T)(img)(_p3##x, _n2##y, z, c), \ I[56] = (T)(img)(_p2##x, _n2##y, z, c), \ I[57] = (T)(img)(_p1##x, _n2##y, z, c), I[58] = (T)(img)(x, _n2##y, z, c), \ I[59] = (T)(img)(_n1##x, _n2##y, z, c), \ I[60] = (T)(img)(_n2##x, _n2##y, z, c), \ I[61] = (T)(img)(_n3##x, _n2##y, z, c), \ I[62] = (T)(img)(_n4##x, _n2##y, z, c), \ I[63] = (T)(img)(_p4##x, _n3##y, z, c), \ I[64] = (T)(img)(_p3##x, _n3##y, z, c), \ I[65] = (T)(img)(_p2##x, _n3##y, z, c), \ I[66] = (T)(img)(_p1##x, _n3##y, z, c), I[67] = (T)(img)(x, _n3##y, z, c), \ I[68] = (T)(img)(_n1##x, _n3##y, z, c), \ I[69] = (T)(img)(_n2##x, _n3##y, z, c), \ I[70] = (T)(img)(_n3##x, _n3##y, z, c), \ I[71] = (T)(img)(_n4##x, _n3##y, z, c), \ I[72] = (T)(img)(_p4##x, _n4##y, z, c), \ I[73] = (T)(img)(_p3##x, _n4##y, z, c), \ I[74] = (T)(img)(_p2##x, _n4##y, z, c), \ I[75] = (T)(img)(_p1##x, _n4##y, z, c), I[76] = (T)(img)(x, _n4##y, z, c), \ I[77] = (T)(img)(_n1##x, _n4##y, z, c), \ I[78] = (T)(img)(_n2##x, _n4##y, z, c), \ I[79] = (T)(img)(_n3##x, _n4##y, z, c), \ I[80] = (T)(img)(_n4##x, _n4##y, z, c) #define cimg_get2x2x2(img, x, y, z, c, I, T) \ I[0] = (T)(img)(x, y, z, c), I[1] = (T)(img)(_n1##x, y, z, c), \ I[2] = (T)(img)(x, _n1##y, z, c), I[3] = (T)(img)(_n1##x, _n1##y, z, c), \ I[4] = (T)(img)(x, y, _n1##z, c), I[5] = (T)(img)(_n1##x, y, _n1##z, c), \ I[6] = (T)(img)(x, _n1##y, _n1##z, c), \ I[7] = (T)(img)(_n1##x, _n1##y, _n1##z, c) #define cimg_get3x3x3(img, x, y, z, c, I, T) \ I[0] = (T)(img)(_p1##x, _p1##y, _p1##z, c), \ I[1] = (T)(img)(x, _p1##y, _p1##z, c), \ I[2] = (T)(img)(_n1##x, _p1##y, _p1##z, c), \ I[3] = (T)(img)(_p1##x, y, _p1##z, c), I[4] = (T)(img)(x, y, _p1##z, c), \ I[5] = (T)(img)(_n1##x, y, _p1##z, c), \ I[6] = (T)(img)(_p1##x, _n1##y, _p1##z, c), \ I[7] = (T)(img)(x, _n1##y, _p1##z, c), \ I[8] = (T)(img)(_n1##x, _n1##y, _p1##z, c), \ I[9] = (T)(img)(_p1##x, _p1##y, z, c), I[10] = (T)(img)(x, _p1##y, z, c), \ I[11] = (T)(img)(_n1##x, _p1##y, z, c), I[12] = (T)(img)(_p1##x, y, z, c), \ I[13] = (T)(img)(x, y, z, c), I[14] = (T)(img)(_n1##x, y, z, c), \ I[15] = (T)(img)(_p1##x, _n1##y, z, c), I[16] = (T)(img)(x, _n1##y, z, c), \ I[17] = (T)(img)(_n1##x, _n1##y, z, c), \ I[18] = (T)(img)(_p1##x, _p1##y, _n1##z, c), \ I[19] = (T)(img)(x, _p1##y, _n1##z, c), \ I[20] = (T)(img)(_n1##x, _p1##y, _n1##z, c), \ I[21] = (T)(img)(_p1##x, y, _n1##z, c), I[22] = (T)(img)(x, y, _n1##z, c), \ I[23] = (T)(img)(_n1##x, y, _n1##z, c), \ I[24] = (T)(img)(_p1##x, _n1##y, _n1##z, c), \ I[25] = (T)(img)(x, _n1##y, _n1##z, c), \ I[26] = (T)(img)(_n1##x, _n1##y, _n1##z, c) // Macros to perform various image loops. // // These macros are simpler to use than loops with C++ iterators. #define cimg_for(img, ptrs, T_ptrs) \ for (T_ptrs* ptrs = (img)._data, *_max##ptrs = (img)._data + (img).size(); \ ptrs < _max##ptrs; ++ptrs) #define cimg_rof(img, ptrs, T_ptrs) \ for (T_ptrs* ptrs = (img)._data + (img).size() - 1; ptrs >= (img)._data; \ --ptrs) #define cimg_foroff(img, off) \ for (cimg_ulong off = 0, _max##off = (img).size(); off < _max##off; ++off) #define cimg_rofoff(img, off) \ for (cimg_long off = (cimg_long)((img).size() - 1); off >= 0; --off) #define cimg_for1(bound, i) for (int i = 0; i < (int)(bound); ++i) #define cimg_forX(img, x) cimg_for1((img)._width, x) #define cimg_forY(img, y) cimg_for1((img)._height, y) #define cimg_forZ(img, z) cimg_for1((img)._depth, z) #define cimg_forC(img, c) cimg_for1((img)._spectrum, c) #define cimg_forXY(img, x, y) cimg_forY(img, y) cimg_forX(img, x) #define cimg_forXZ(img, x, z) cimg_forZ(img, z) cimg_forX(img, x) #define cimg_forYZ(img, y, z) cimg_forZ(img, z) cimg_forY(img, y) #define cimg_forXC(img, x, c) cimg_forC(img, c) cimg_forX(img, x) #define cimg_forYC(img, y, c) cimg_forC(img, c) cimg_forY(img, y) #define cimg_forZC(img, z, c) cimg_forC(img, c) cimg_forZ(img, z) #define cimg_forXYZ(img, x, y, z) cimg_forZ(img, z) cimg_forXY(img, x, y) #define cimg_forXYC(img, x, y, c) cimg_forC(img, c) cimg_forXY(img, x, y) #define cimg_forXZC(img, x, z, c) cimg_forC(img, c) cimg_forXZ(img, x, z) #define cimg_forYZC(img, y, z, c) cimg_forC(img, c) cimg_forYZ(img, y, z) #define cimg_forXYZC(img, x, y, z, c) \ cimg_forC(img, c) cimg_forXYZ(img, x, y, z) #define cimg_rof1(bound, i) for (int i = (int)(bound)-1; i >= 0; --i) #define cimg_rofX(img, x) cimg_rof1((img)._width, x) #define cimg_rofY(img, y) cimg_rof1((img)._height, y) #define cimg_rofZ(img, z) cimg_rof1((img)._depth, z) #define cimg_rofC(img, c) cimg_rof1((img)._spectrum, c) #define cimg_rofXY(img, x, y) cimg_rofY(img, y) cimg_rofX(img, x) #define cimg_rofXZ(img, x, z) cimg_rofZ(img, z) cimg_rofX(img, x) #define cimg_rofYZ(img, y, z) cimg_rofZ(img, z) cimg_rofY(img, y) #define cimg_rofXC(img, x, c) cimg_rofC(img, c) cimg_rofX(img, x) #define cimg_rofYC(img, y, c) cimg_rofC(img, c) cimg_rofY(img, y) #define cimg_rofZC(img, z, c) cimg_rofC(img, c) cimg_rofZ(img, z) #define cimg_rofXYZ(img, x, y, z) cimg_rofZ(img, z) cimg_rofXY(img, x, y) #define cimg_rofXYC(img, x, y, c) cimg_rofC(img, c) cimg_rofXY(img, x, y) #define cimg_rofXZC(img, x, z, c) cimg_rofC(img, c) cimg_rofXZ(img, x, z) #define cimg_rofYZC(img, y, z, c) cimg_rofC(img, c) cimg_rofYZ(img, y, z) #define cimg_rofXYZC(img, x, y, z, c) \ cimg_rofC(img, c) cimg_rofXYZ(img, x, y, z) #define cimg_for_in1(bound, i0, i1, i) \ for (int i = (int)(i0) < 0 ? 0 : (int)(i0), \ _max##i = (int)(i1) < (int)(bound) ? (int)(i1) : (int)(bound)-1; \ i <= _max##i; ++i) #define cimg_for_inX(img, x0, x1, x) cimg_for_in1((img)._width, x0, x1, x) #define cimg_for_inY(img, y0, y1, y) cimg_for_in1((img)._height, y0, y1, y) #define cimg_for_inZ(img, z0, z1, z) cimg_for_in1((img)._depth, z0, z1, z) #define cimg_for_inC(img, c0, c1, c) cimg_for_in1((img)._spectrum, c0, c1, c) #define cimg_for_inXY(img, x0, y0, x1, y1, x, y) \ cimg_for_inY(img, y0, y1, y) cimg_for_inX(img, x0, x1, x) #define cimg_for_inXZ(img, x0, z0, x1, z1, x, z) \ cimg_for_inZ(img, z0, z1, z) cimg_for_inX(img, x0, x1, x) #define cimg_for_inXC(img, x0, c0, x1, c1, x, c) \ cimg_for_inC(img, c0, c1, c) cimg_for_inX(img, x0, x1, x) #define cimg_for_inYZ(img, y0, z0, y1, z1, y, z) \ cimg_for_inZ(img, x0, z1, z) cimg_for_inY(img, y0, y1, y) #define cimg_for_inYC(img, y0, c0, y1, c1, y, c) \ cimg_for_inC(img, c0, c1, c) cimg_for_inY(img, y0, y1, y) #define cimg_for_inZC(img, z0, c0, z1, c1, z, c) \ cimg_for_inC(img, c0, c1, c) cimg_for_inZ(img, z0, z1, z) #define cimg_for_inXYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) \ cimg_for_inZ(img, z0, z1, z) cimg_for_inXY(img, x0, y0, x1, y1, x, y) #define cimg_for_inXYC(img, x0, y0, c0, x1, y1, c1, x, y, c) \ cimg_for_inC(img, c0, c1, c) cimg_for_inXY(img, x0, y0, x1, y1, x, y) #define cimg_for_inXZC(img, x0, z0, c0, x1, z1, c1, x, z, c) \ cimg_for_inC(img, c0, c1, c) cimg_for_inXZ(img, x0, z0, x1, z1, x, z) #define cimg_for_inYZC(img, y0, z0, c0, y1, z1, c1, y, z, c) \ cimg_for_inC(img, c0, c1, c) cimg_for_inYZ(img, y0, z0, y1, z1, y, z) #define cimg_for_inXYZC(img, x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) \ cimg_for_inC(img, c0, c1, c) \ cimg_for_inXYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) #define cimg_for_insideX(img, x, n) \ cimg_for_inX(img, n, (img)._width - 1 - (n), x) #define cimg_for_insideY(img, y, n) \ cimg_for_inY(img, n, (img)._height - 1 - (n), y) #define cimg_for_insideZ(img, z, n) \ cimg_for_inZ(img, n, (img)._depth - 1 - (n), z) #define cimg_for_insideC(img, c, n) \ cimg_for_inC(img, n, (img)._spectrum - 1 - (n), c) #define cimg_for_insideXY(img, x, y, n) \ cimg_for_inXY(img, n, n, (img)._width - 1 - (n), (img)._height - 1 - (n), \ x, y) #define cimg_for_insideXYZ(img, x, y, z, n) \ cimg_for_inXYZ(img, n, n, n, (img)._width - 1 - (n), \ (img)._height - 1 - (n), (img)._depth - 1 - (n), x, y, z) #define cimg_for_insideXYZC(img, x, y, z, c, n) \ cimg_for_inXYZ(img, n, n, n, (img)._width - 1 - (n), \ (img)._height - 1 - (n), (img)._depth - 1 - (n), x, y, z) #define cimg_for_out1(boundi, i0, i1, i) \ for (int i = (int)(i0) > 0 ? 0 : (int)(i1) + 1; i < (int)(boundi); \ ++i, i = i == (int)(i0) ? (int)(i1) + 1 : i) #define cimg_for_out2(boundi, boundj, i0, j0, i1, j1, i, j) \ for (int j = 0; j < (int)(boundj); ++j) \ for (int _n1j = (int)(j < (int)(j0) || j > (int)(j1)), \ i = _n1j ? 0 : (int)(i0) > 0 ? 0 : (int)(i1) + 1; \ i < (int)(boundi); \ ++i, i = _n1j ? i : (i == (int)(i0) ? (int)(i1) + 1 : i)) #define cimg_for_out3(boundi, boundj, boundk, i0, j0, k0, i1, j1, k1, i, j, k) \ for (int k = 0; k < (int)(boundk); ++k) \ for (int _n1k = (int)(k < (int)(k0) || k > (int)(k1)), j = 0; \ j < (int)(boundj); ++j) \ for (int _n1j = (int)(j < (int)(j0) || j > (int)(j1)), \ i = _n1j || _n1k ? 0 : (int)(i0) > 0 ? 0 : (int)(i1) + 1; \ i < (int)(boundi); \ ++i, i = _n1j || _n1k ? i \ : (i == (int)(i0) ? (int)(i1) + 1 : i)) #define cimg_for_out4(boundi, boundj, boundk, boundl, i0, j0, k0, l0, i1, j1, \ k1, l1, i, j, k, l) \ for (int l = 0; l < (int)(boundl); ++l) \ for (int _n1l = (int)(l < (int)(l0) || l > (int)(l1)), k = 0; \ k < (int)(boundk); ++k) \ for (int _n1k = (int)(k < (int)(k0) || k > (int)(k1)), j = 0; \ j < (int)(boundj); ++j) \ for (int _n1j = (int)(j < (int)(j0) || j > (int)(j1)), \ i = _n1j || _n1k || _n1l \ ? 0 \ : (int)(i0) > 0 ? 0 : (int)(i1) + 1; \ i < (int)(boundi); \ ++i, i = _n1j || _n1k || _n1l \ ? i \ : (i == (int)(i0) ? (int)(i1) + 1 : i)) #define cimg_for_outX(img, x0, x1, x) cimg_for_out1((img)._width, x0, x1, x) #define cimg_for_outY(img, y0, y1, y) cimg_for_out1((img)._height, y0, y1, y) #define cimg_for_outZ(img, z0, z1, z) cimg_for_out1((img)._depth, z0, z1, z) #define cimg_for_outC(img, c0, c1, c) cimg_for_out1((img)._spectrum, c0, c1, c) #define cimg_for_outXY(img, x0, y0, x1, y1, x, y) \ cimg_for_out2((img)._width, (img)._height, x0, y0, x1, y1, x, y) #define cimg_for_outXZ(img, x0, z0, x1, z1, x, z) \ cimg_for_out2((img)._width, (img)._depth, x0, z0, x1, z1, x, z) #define cimg_for_outXC(img, x0, c0, x1, c1, x, c) \ cimg_for_out2((img)._width, (img)._spectrum, x0, c0, x1, c1, x, c) #define cimg_for_outYZ(img, y0, z0, y1, z1, y, z) \ cimg_for_out2((img)._height, (img)._depth, y0, z0, y1, z1, y, z) #define cimg_for_outYC(img, y0, c0, y1, c1, y, c) \ cimg_for_out2((img)._height, (img)._spectrum, y0, c0, y1, c1, y, c) #define cimg_for_outZC(img, z0, c0, z1, c1, z, c) \ cimg_for_out2((img)._depth, (img)._spectrum, z0, c0, z1, c1, z, c) #define cimg_for_outXYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) \ cimg_for_out3((img)._width, (img)._height, (img)._depth, x0, y0, z0, x1, \ y1, z1, x, y, z) #define cimg_for_outXYC(img, x0, y0, c0, x1, y1, c1, x, y, c) \ cimg_for_out3((img)._width, (img)._height, (img)._spectrum, x0, y0, c0, \ x1, y1, c1, x, y, c) #define cimg_for_outXZC(img, x0, z0, c0, x1, z1, c1, x, z, c) \ cimg_for_out3((img)._width, (img)._depth, (img)._spectrum, x0, z0, c0, x1, \ z1, c1, x, z, c) #define cimg_for_outYZC(img, y0, z0, c0, y1, z1, c1, y, z, c) \ cimg_for_out3((img)._height, (img)._depth, (img)._spectrum, y0, z0, c0, \ y1, z1, c1, y, z, c) #define cimg_for_outXYZC(img, x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) \ cimg_for_out4((img)._width, (img)._height, (img)._depth, (img)._spectrum, \ x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) #define cimg_for_borderX(img, x, n) \ cimg_for_outX(img, n, (img)._width - 1 - (n), x) #define cimg_for_borderY(img, y, n) \ cimg_for_outY(img, n, (img)._height - 1 - (n), y) #define cimg_for_borderZ(img, z, n) \ cimg_for_outZ(img, n, (img)._depth - 1 - (n), z) #define cimg_for_borderC(img, c, n) \ cimg_for_outC(img, n, (img)._spectrum - 1 - (n), c) #define cimg_for_borderXY(img, x, y, n) \ cimg_for_outXY(img, n, n, (img)._width - 1 - (n), (img)._height - 1 - (n), \ x, y) #define cimg_for_borderXYZ(img, x, y, z, n) \ cimg_for_outXYZ(img, n, n, n, (img)._width - 1 - (n), \ (img)._height - 1 - (n), (img)._depth - 1 - (n), x, y, z) #define cimg_for_borderXYZC(img, x, y, z, c, n) \ cimg_for_outXYZC(img, n, n, n, n, (img)._width - 1 - (n), \ (img)._height - 1 - (n), (img)._depth - 1 - (n), \ (img)._spectrum - 1 - (n), x, y, z, c) #define cimg_for_spiralXY(img, x, y) \ for (int x = 0, y = 0, _n1##x = 1, \ _n1##y = (img).width() * (img).height(); \ _n1##y; --_n1##y, \ _n1##x += \ (_n1##x >> 2) - ((!(_n1##x & 3) \ ? --y \ : ((_n1##x & 3) == 1 \ ? (img)._width - 1 - ++x \ : ((_n1##x & 3) == 2 \ ? (img)._height - 1 - ++y \ : --x)))) \ ? 0 \ : 1) #define cimg_for_lineXY(x, y, x0, y0, x1, y1) \ for (int x = (int)(x0), y = (int)(y0), _sx = 1, _sy = 1, _steep = 0, \ _dx = (x1) > (x0) ? (int)(x1) - (int)(x0) \ : (_sx = -1, (int)(x0) - (int)(x1)), \ _dy = (y1) > (y0) ? (int)(y1) - (int)(y0) \ : (_sy = -1, (int)(y0) - (int)(y1)), \ _counter = _dx, \ _err = _dx > _dy ? (_dy >> 1) \ : ((_steep = 1), (_counter = _dy), (_dx >> 1)); \ _counter >= 0; \ --_counter, \ x += _steep \ ? (y += _sy, (_err -= _dx) < 0 ? _err += _dy, _sx : 0) \ : (y += (_err -= _dy) < 0 ? _err += _dx, _sy : 0, _sx)) #define cimg_for2(bound, i) \ for (int i = 0, _n1##i = 1 >= (bound) ? (int)(bound)-1 : 1; \ _n1##i < (int)(bound) || i == --_n1##i; ++i, ++_n1##i) #define cimg_for2X(img, x) cimg_for2((img)._width, x) #define cimg_for2Y(img, y) cimg_for2((img)._height, y) #define cimg_for2Z(img, z) cimg_for2((img)._depth, z) #define cimg_for2C(img, c) cimg_for2((img)._spectrum, c) #define cimg_for2XY(img, x, y) cimg_for2Y(img, y) cimg_for2X(img, x) #define cimg_for2XZ(img, x, z) cimg_for2Z(img, z) cimg_for2X(img, x) #define cimg_for2XC(img, x, c) cimg_for2C(img, c) cimg_for2X(img, x) #define cimg_for2YZ(img, y, z) cimg_for2Z(img, z) cimg_for2Y(img, y) #define cimg_for2YC(img, y, c) cimg_for2C(img, c) cimg_for2Y(img, y) #define cimg_for2ZC(img, z, c) cimg_for2C(img, c) cimg_for2Z(img, z) #define cimg_for2XYZ(img, x, y, z) cimg_for2Z(img, z) cimg_for2XY(img, x, y) #define cimg_for2XZC(img, x, z, c) cimg_for2C(img, c) cimg_for2XZ(img, x, z) #define cimg_for2YZC(img, y, z, c) cimg_for2C(img, c) cimg_for2YZ(img, y, z) #define cimg_for2XYZC(img, x, y, z, c) \ cimg_for2C(img, c) cimg_for2XYZ(img, x, y, z) #define cimg_for_in2(bound, i0, i1, i) \ for (int i = (int)(i0) < 0 ? 0 : (int)(i0), \ _n1##i = i + 1 >= (int)(bound) ? (int)(bound)-1 : i + 1; \ i <= (int)(i1) && (_n1##i < (int)(bound) || i == --_n1##i); \ ++i, ++_n1##i) #define cimg_for_in2X(img, x0, x1, x) cimg_for_in2((img)._width, x0, x1, x) #define cimg_for_in2Y(img, y0, y1, y) cimg_for_in2((img)._height, y0, y1, y) #define cimg_for_in2Z(img, z0, z1, z) cimg_for_in2((img)._depth, z0, z1, z) #define cimg_for_in2C(img, c0, c1, c) cimg_for_in2((img)._spectrum, c0, c1, c) #define cimg_for_in2XY(img, x0, y0, x1, y1, x, y) \ cimg_for_in2Y(img, y0, y1, y) cimg_for_in2X(img, x0, x1, x) #define cimg_for_in2XZ(img, x0, z0, x1, z1, x, z) \ cimg_for_in2Z(img, z0, z1, z) cimg_for_in2X(img, x0, x1, x) #define cimg_for_in2XC(img, x0, c0, x1, c1, x, c) \ cimg_for_in2C(img, c0, c1, c) cimg_for_in2X(img, x0, x1, x) #define cimg_for_in2YZ(img, y0, z0, y1, z1, y, z) \ cimg_for_in2Z(img, z0, z1, z) cimg_for_in2Y(img, y0, y1, y) #define cimg_for_in2YC(img, y0, c0, y1, c1, y, c) \ cimg_for_in2C(img, c0, c1, c) cimg_for_in2Y(img, y0, y1, y) #define cimg_for_in2ZC(img, z0, c0, z1, c1, z, c) \ cimg_for_in2C(img, c0, c1, c) cimg_for_in2Z(img, z0, z1, z) #define cimg_for_in2XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) \ cimg_for_in2Z(img, z0, z1, z) cimg_for_in2XY(img, x0, y0, x1, y1, x, y) #define cimg_for_in2XZC(img, x0, z0, c0, x1, y1, c1, x, z, c) \ cimg_for_in2C(img, c0, c1, c) cimg_for_in2XZ(img, x0, y0, x1, y1, x, z) #define cimg_for_in2YZC(img, y0, z0, c0, y1, z1, c1, y, z, c) \ cimg_for_in2C(img, c0, c1, c) cimg_for_in2YZ(img, y0, z0, y1, z1, y, z) #define cimg_for_in2XYZC(img, x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) \ cimg_for_in2C(img, c0, c1, c) \ cimg_for_in2XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) #define cimg_for3(bound, i) \ for (int i = 0, _p1##i = 0, _n1##i = 1 >= (bound) ? (int)(bound)-1 : 1; \ _n1##i < (int)(bound) || i == --_n1##i; _p1##i = i++, ++_n1##i) #define cimg_for3X(img, x) cimg_for3((img)._width, x) #define cimg_for3Y(img, y) cimg_for3((img)._height, y) #define cimg_for3Z(img, z) cimg_for3((img)._depth, z) #define cimg_for3C(img, c) cimg_for3((img)._spectrum, c) #define cimg_for3XY(img, x, y) cimg_for3Y(img, y) cimg_for3X(img, x) #define cimg_for3XZ(img, x, z) cimg_for3Z(img, z) cimg_for3X(img, x) #define cimg_for3XC(img, x, c) cimg_for3C(img, c) cimg_for3X(img, x) #define cimg_for3YZ(img, y, z) cimg_for3Z(img, z) cimg_for3Y(img, y) #define cimg_for3YC(img, y, c) cimg_for3C(img, c) cimg_for3Y(img, y) #define cimg_for3ZC(img, z, c) cimg_for3C(img, c) cimg_for3Z(img, z) #define cimg_for3XYZ(img, x, y, z) cimg_for3Z(img, z) cimg_for3XY(img, x, y) #define cimg_for3XZC(img, x, z, c) cimg_for3C(img, c) cimg_for3XZ(img, x, z) #define cimg_for3YZC(img, y, z, c) cimg_for3C(img, c) cimg_for3YZ(img, y, z) #define cimg_for3XYZC(img, x, y, z, c) \ cimg_for3C(img, c) cimg_for3XYZ(img, x, y, z) #define cimg_for_in3(bound, i0, i1, i) \ for (int i = (int)(i0) < 0 ? 0 : (int)(i0), \ _p1##i = i - 1 < 0 ? 0 : i - 1, \ _n1##i = i + 1 >= (int)(bound) ? (int)(bound)-1 : i + 1; \ i <= (int)(i1) && (_n1##i < (int)(bound) || i == --_n1##i); \ _p1##i = i++, ++_n1##i) #define cimg_for_in3X(img, x0, x1, x) cimg_for_in3((img)._width, x0, x1, x) #define cimg_for_in3Y(img, y0, y1, y) cimg_for_in3((img)._height, y0, y1, y) #define cimg_for_in3Z(img, z0, z1, z) cimg_for_in3((img)._depth, z0, z1, z) #define cimg_for_in3C(img, c0, c1, c) cimg_for_in3((img)._spectrum, c0, c1, c) #define cimg_for_in3XY(img, x0, y0, x1, y1, x, y) \ cimg_for_in3Y(img, y0, y1, y) cimg_for_in3X(img, x0, x1, x) #define cimg_for_in3XZ(img, x0, z0, x1, z1, x, z) \ cimg_for_in3Z(img, z0, z1, z) cimg_for_in3X(img, x0, x1, x) #define cimg_for_in3XC(img, x0, c0, x1, c1, x, c) \ cimg_for_in3C(img, c0, c1, c) cimg_for_in3X(img, x0, x1, x) #define cimg_for_in3YZ(img, y0, z0, y1, z1, y, z) \ cimg_for_in3Z(img, z0, z1, z) cimg_for_in3Y(img, y0, y1, y) #define cimg_for_in3YC(img, y0, c0, y1, c1, y, c) \ cimg_for_in3C(img, c0, c1, c) cimg_for_in3Y(img, y0, y1, y) #define cimg_for_in3ZC(img, z0, c0, z1, c1, z, c) \ cimg_for_in3C(img, c0, c1, c) cimg_for_in3Z(img, z0, z1, z) #define cimg_for_in3XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) \ cimg_for_in3Z(img, z0, z1, z) cimg_for_in3XY(img, x0, y0, x1, y1, x, y) #define cimg_for_in3XZC(img, x0, z0, c0, x1, y1, c1, x, z, c) \ cimg_for_in3C(img, c0, c1, c) cimg_for_in3XZ(img, x0, y0, x1, y1, x, z) #define cimg_for_in3YZC(img, y0, z0, c0, y1, z1, c1, y, z, c) \ cimg_for_in3C(img, c0, c1, c) cimg_for_in3YZ(img, y0, z0, y1, z1, y, z) #define cimg_for_in3XYZC(img, x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) \ cimg_for_in3C(img, c0, c1, c) \ cimg_for_in3XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) #define cimg_for4(bound, i) \ for (int i = 0, _p1##i = 0, _n1##i = 1 >= (bound) ? (int)(bound)-1 : 1, \ _n2##i = 2 >= (bound) ? (int)(bound)-1 : 2; \ _n2##i < (int)(bound) || _n1##i == --_n2##i || \ i == (_n2##i = --_n1##i); \ _p1##i = i++, ++_n1##i, ++_n2##i) #define cimg_for4X(img, x) cimg_for4((img)._width, x) #define cimg_for4Y(img, y) cimg_for4((img)._height, y) #define cimg_for4Z(img, z) cimg_for4((img)._depth, z) #define cimg_for4C(img, c) cimg_for4((img)._spectrum, c) #define cimg_for4XY(img, x, y) cimg_for4Y(img, y) cimg_for4X(img, x) #define cimg_for4XZ(img, x, z) cimg_for4Z(img, z) cimg_for4X(img, x) #define cimg_for4XC(img, x, c) cimg_for4C(img, c) cimg_for4X(img, x) #define cimg_for4YZ(img, y, z) cimg_for4Z(img, z) cimg_for4Y(img, y) #define cimg_for4YC(img, y, c) cimg_for4C(img, c) cimg_for4Y(img, y) #define cimg_for4ZC(img, z, c) cimg_for4C(img, c) cimg_for4Z(img, z) #define cimg_for4XYZ(img, x, y, z) cimg_for4Z(img, z) cimg_for4XY(img, x, y) #define cimg_for4XZC(img, x, z, c) cimg_for4C(img, c) cimg_for4XZ(img, x, z) #define cimg_for4YZC(img, y, z, c) cimg_for4C(img, c) cimg_for4YZ(img, y, z) #define cimg_for4XYZC(img, x, y, z, c) \ cimg_for4C(img, c) cimg_for4XYZ(img, x, y, z) #define cimg_for_in4(bound, i0, i1, i) \ for (int i = (int)(i0) < 0 ? 0 : (int)(i0), \ _p1##i = i - 1 < 0 ? 0 : i - 1, \ _n1##i = i + 1 >= (int)(bound) ? (int)(bound)-1 : i + 1, \ _n2##i = i + 2 >= (int)(bound) ? (int)(bound)-1 : i + 2; \ i <= (int)(i1) && (_n2##i < (int)(bound) || _n1##i == --_n2##i || \ i == (_n2##i = --_n1##i)); \ _p1##i = i++, ++_n1##i, ++_n2##i) #define cimg_for_in4X(img, x0, x1, x) cimg_for_in4((img)._width, x0, x1, x) #define cimg_for_in4Y(img, y0, y1, y) cimg_for_in4((img)._height, y0, y1, y) #define cimg_for_in4Z(img, z0, z1, z) cimg_for_in4((img)._depth, z0, z1, z) #define cimg_for_in4C(img, c0, c1, c) cimg_for_in4((img)._spectrum, c0, c1, c) #define cimg_for_in4XY(img, x0, y0, x1, y1, x, y) \ cimg_for_in4Y(img, y0, y1, y) cimg_for_in4X(img, x0, x1, x) #define cimg_for_in4XZ(img, x0, z0, x1, z1, x, z) \ cimg_for_in4Z(img, z0, z1, z) cimg_for_in4X(img, x0, x1, x) #define cimg_for_in4XC(img, x0, c0, x1, c1, x, c) \ cimg_for_in4C(img, c0, c1, c) cimg_for_in4X(img, x0, x1, x) #define cimg_for_in4YZ(img, y0, z0, y1, z1, y, z) \ cimg_for_in4Z(img, z0, z1, z) cimg_for_in4Y(img, y0, y1, y) #define cimg_for_in4YC(img, y0, c0, y1, c1, y, c) \ cimg_for_in4C(img, c0, c1, c) cimg_for_in4Y(img, y0, y1, y) #define cimg_for_in4ZC(img, z0, c0, z1, c1, z, c) \ cimg_for_in4C(img, c0, c1, c) cimg_for_in4Z(img, z0, z1, z) #define cimg_for_in4XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) \ cimg_for_in4Z(img, z0, z1, z) cimg_for_in4XY(img, x0, y0, x1, y1, x, y) #define cimg_for_in4XZC(img, x0, z0, c0, x1, y1, c1, x, z, c) \ cimg_for_in4C(img, c0, c1, c) cimg_for_in4XZ(img, x0, y0, x1, y1, x, z) #define cimg_for_in4YZC(img, y0, z0, c0, y1, z1, c1, y, z, c) \ cimg_for_in4C(img, c0, c1, c) cimg_for_in4YZ(img, y0, z0, y1, z1, y, z) #define cimg_for_in4XYZC(img, x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) \ cimg_for_in4C(img, c0, c1, c) \ cimg_for_in4XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) #define cimg_for5(bound, i) \ for (int i = 0, _p2##i = 0, _p1##i = 0, \ _n1##i = 1 >= (bound) ? (int)(bound)-1 : 1, \ _n2##i = 2 >= (bound) ? (int)(bound)-1 : 2; \ _n2##i < (int)(bound) || _n1##i == --_n2##i || \ i == (_n2##i = --_n1##i); \ _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i) #define cimg_for5X(img, x) cimg_for5((img)._width, x) #define cimg_for5Y(img, y) cimg_for5((img)._height, y) #define cimg_for5Z(img, z) cimg_for5((img)._depth, z) #define cimg_for5C(img, c) cimg_for5((img)._spectrum, c) #define cimg_for5XY(img, x, y) cimg_for5Y(img, y) cimg_for5X(img, x) #define cimg_for5XZ(img, x, z) cimg_for5Z(img, z) cimg_for5X(img, x) #define cimg_for5XC(img, x, c) cimg_for5C(img, c) cimg_for5X(img, x) #define cimg_for5YZ(img, y, z) cimg_for5Z(img, z) cimg_for5Y(img, y) #define cimg_for5YC(img, y, c) cimg_for5C(img, c) cimg_for5Y(img, y) #define cimg_for5ZC(img, z, c) cimg_for5C(img, c) cimg_for5Z(img, z) #define cimg_for5XYZ(img, x, y, z) cimg_for5Z(img, z) cimg_for5XY(img, x, y) #define cimg_for5XZC(img, x, z, c) cimg_for5C(img, c) cimg_for5XZ(img, x, z) #define cimg_for5YZC(img, y, z, c) cimg_for5C(img, c) cimg_for5YZ(img, y, z) #define cimg_for5XYZC(img, x, y, z, c) \ cimg_for5C(img, c) cimg_for5XYZ(img, x, y, z) #define cimg_for_in5(bound, i0, i1, i) \ for (int i = (int)(i0) < 0 ? 0 : (int)(i0), \ _p2##i = i - 2 < 0 ? 0 : i - 2, _p1##i = i - 1 < 0 ? 0 : i - 1, \ _n1##i = i + 1 >= (int)(bound) ? (int)(bound)-1 : i + 1, \ _n2##i = i + 2 >= (int)(bound) ? (int)(bound)-1 : i + 2; \ i <= (int)(i1) && (_n2##i < (int)(bound) || _n1##i == --_n2##i || \ i == (_n2##i = --_n1##i)); \ _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i) #define cimg_for_in5X(img, x0, x1, x) cimg_for_in5((img)._width, x0, x1, x) #define cimg_for_in5Y(img, y0, y1, y) cimg_for_in5((img)._height, y0, y1, y) #define cimg_for_in5Z(img, z0, z1, z) cimg_for_in5((img)._depth, z0, z1, z) #define cimg_for_in5C(img, c0, c1, c) cimg_for_in5((img)._spectrum, c0, c1, c) #define cimg_for_in5XY(img, x0, y0, x1, y1, x, y) \ cimg_for_in5Y(img, y0, y1, y) cimg_for_in5X(img, x0, x1, x) #define cimg_for_in5XZ(img, x0, z0, x1, z1, x, z) \ cimg_for_in5Z(img, z0, z1, z) cimg_for_in5X(img, x0, x1, x) #define cimg_for_in5XC(img, x0, c0, x1, c1, x, c) \ cimg_for_in5C(img, c0, c1, c) cimg_for_in5X(img, x0, x1, x) #define cimg_for_in5YZ(img, y0, z0, y1, z1, y, z) \ cimg_for_in5Z(img, z0, z1, z) cimg_for_in5Y(img, y0, y1, y) #define cimg_for_in5YC(img, y0, c0, y1, c1, y, c) \ cimg_for_in5C(img, c0, c1, c) cimg_for_in5Y(img, y0, y1, y) #define cimg_for_in5ZC(img, z0, c0, z1, c1, z, c) \ cimg_for_in5C(img, c0, c1, c) cimg_for_in5Z(img, z0, z1, z) #define cimg_for_in5XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) \ cimg_for_in5Z(img, z0, z1, z) cimg_for_in5XY(img, x0, y0, x1, y1, x, y) #define cimg_for_in5XZC(img, x0, z0, c0, x1, y1, c1, x, z, c) \ cimg_for_in5C(img, c0, c1, c) cimg_for_in5XZ(img, x0, y0, x1, y1, x, z) #define cimg_for_in5YZC(img, y0, z0, c0, y1, z1, c1, y, z, c) \ cimg_for_in5C(img, c0, c1, c) cimg_for_in5YZ(img, y0, z0, y1, z1, y, z) #define cimg_for_in5XYZC(img, x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) \ cimg_for_in5C(img, c0, c1, c) \ cimg_for_in5XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) #define cimg_for6(bound, i) \ for (int i = 0, _p2##i = 0, _p1##i = 0, \ _n1##i = 1 >= (bound) ? (int)(bound)-1 : 1, \ _n2##i = 2 >= (bound) ? (int)(bound)-1 : 2, \ _n3##i = 3 >= (bound) ? (int)(bound)-1 : 3; \ _n3##i < (int)(bound) || _n2##i == --_n3##i || _n1##i == --_n2##i || \ i == (_n3##i = _n2##i = --_n1##i); \ _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i) #define cimg_for6X(img, x) cimg_for6((img)._width, x) #define cimg_for6Y(img, y) cimg_for6((img)._height, y) #define cimg_for6Z(img, z) cimg_for6((img)._depth, z) #define cimg_for6C(img, c) cimg_for6((img)._spectrum, c) #define cimg_for6XY(img, x, y) cimg_for6Y(img, y) cimg_for6X(img, x) #define cimg_for6XZ(img, x, z) cimg_for6Z(img, z) cimg_for6X(img, x) #define cimg_for6XC(img, x, c) cimg_for6C(img, c) cimg_for6X(img, x) #define cimg_for6YZ(img, y, z) cimg_for6Z(img, z) cimg_for6Y(img, y) #define cimg_for6YC(img, y, c) cimg_for6C(img, c) cimg_for6Y(img, y) #define cimg_for6ZC(img, z, c) cimg_for6C(img, c) cimg_for6Z(img, z) #define cimg_for6XYZ(img, x, y, z) cimg_for6Z(img, z) cimg_for6XY(img, x, y) #define cimg_for6XZC(img, x, z, c) cimg_for6C(img, c) cimg_for6XZ(img, x, z) #define cimg_for6YZC(img, y, z, c) cimg_for6C(img, c) cimg_for6YZ(img, y, z) #define cimg_for6XYZC(img, x, y, z, c) \ cimg_for6C(img, c) cimg_for6XYZ(img, x, y, z) #define cimg_for_in6(bound, i0, i1, i) \ for (int i = (int)(i0) < 0 ? 0 : (int)(i0), \ _p2##i = i - 2 < 0 ? 0 : i - 2, _p1##i = i - 1 < 0 ? 0 : i - 1, \ _n1##i = i + 1 >= (int)(bound) ? (int)(bound)-1 : i + 1, \ _n2##i = i + 2 >= (int)(bound) ? (int)(bound)-1 : i + 2, \ _n3##i = i + 3 >= (int)(bound) ? (int)(bound)-1 : i + 3; \ i <= (int)(i1) && \ (_n3##i < (int)(bound) || _n2##i == --_n3##i || _n1##i == --_n2##i || \ i == (_n3##i = _n2##i = --_n1##i)); \ _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i) #define cimg_for_in6X(img, x0, x1, x) cimg_for_in6((img)._width, x0, x1, x) #define cimg_for_in6Y(img, y0, y1, y) cimg_for_in6((img)._height, y0, y1, y) #define cimg_for_in6Z(img, z0, z1, z) cimg_for_in6((img)._depth, z0, z1, z) #define cimg_for_in6C(img, c0, c1, c) cimg_for_in6((img)._spectrum, c0, c1, c) #define cimg_for_in6XY(img, x0, y0, x1, y1, x, y) \ cimg_for_in6Y(img, y0, y1, y) cimg_for_in6X(img, x0, x1, x) #define cimg_for_in6XZ(img, x0, z0, x1, z1, x, z) \ cimg_for_in6Z(img, z0, z1, z) cimg_for_in6X(img, x0, x1, x) #define cimg_for_in6XC(img, x0, c0, x1, c1, x, c) \ cimg_for_in6C(img, c0, c1, c) cimg_for_in6X(img, x0, x1, x) #define cimg_for_in6YZ(img, y0, z0, y1, z1, y, z) \ cimg_for_in6Z(img, z0, z1, z) cimg_for_in6Y(img, y0, y1, y) #define cimg_for_in6YC(img, y0, c0, y1, c1, y, c) \ cimg_for_in6C(img, c0, c1, c) cimg_for_in6Y(img, y0, y1, y) #define cimg_for_in6ZC(img, z0, c0, z1, c1, z, c) \ cimg_for_in6C(img, c0, c1, c) cimg_for_in6Z(img, z0, z1, z) #define cimg_for_in6XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) \ cimg_for_in6Z(img, z0, z1, z) cimg_for_in6XY(img, x0, y0, x1, y1, x, y) #define cimg_for_in6XZC(img, x0, z0, c0, x1, y1, c1, x, z, c) \ cimg_for_in6C(img, c0, c1, c) cimg_for_in6XZ(img, x0, y0, x1, y1, x, z) #define cimg_for_in6YZC(img, y0, z0, c0, y1, z1, c1, y, z, c) \ cimg_for_in6C(img, c0, c1, c) cimg_for_in6YZ(img, y0, z0, y1, z1, y, z) #define cimg_for_in6XYZC(img, x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) \ cimg_for_in6C(img, c0, c1, c) \ cimg_for_in6XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) #define cimg_for7(bound, i) \ for (int i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ _n1##i = 1 >= (bound) ? (int)(bound)-1 : 1, \ _n2##i = 2 >= (bound) ? (int)(bound)-1 : 2, \ _n3##i = 3 >= (bound) ? (int)(bound)-1 : 3; \ _n3##i < (int)(bound) || _n2##i == --_n3##i || _n1##i == --_n2##i || \ i == (_n3##i = _n2##i = --_n1##i); \ _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, \ ++_n3##i) #define cimg_for7X(img, x) cimg_for7((img)._width, x) #define cimg_for7Y(img, y) cimg_for7((img)._height, y) #define cimg_for7Z(img, z) cimg_for7((img)._depth, z) #define cimg_for7C(img, c) cimg_for7((img)._spectrum, c) #define cimg_for7XY(img, x, y) cimg_for7Y(img, y) cimg_for7X(img, x) #define cimg_for7XZ(img, x, z) cimg_for7Z(img, z) cimg_for7X(img, x) #define cimg_for7XC(img, x, c) cimg_for7C(img, c) cimg_for7X(img, x) #define cimg_for7YZ(img, y, z) cimg_for7Z(img, z) cimg_for7Y(img, y) #define cimg_for7YC(img, y, c) cimg_for7C(img, c) cimg_for7Y(img, y) #define cimg_for7ZC(img, z, c) cimg_for7C(img, c) cimg_for7Z(img, z) #define cimg_for7XYZ(img, x, y, z) cimg_for7Z(img, z) cimg_for7XY(img, x, y) #define cimg_for7XZC(img, x, z, c) cimg_for7C(img, c) cimg_for7XZ(img, x, z) #define cimg_for7YZC(img, y, z, c) cimg_for7C(img, c) cimg_for7YZ(img, y, z) #define cimg_for7XYZC(img, x, y, z, c) \ cimg_for7C(img, c) cimg_for7XYZ(img, x, y, z) #define cimg_for_in7(bound, i0, i1, i) \ for (int i = (int)(i0) < 0 ? 0 : (int)(i0), \ _p3##i = i - 3 < 0 ? 0 : i - 3, _p2##i = i - 2 < 0 ? 0 : i - 2, \ _p1##i = i - 1 < 0 ? 0 : i - 1, \ _n1##i = i + 1 >= (int)(bound) ? (int)(bound)-1 : i + 1, \ _n2##i = i + 2 >= (int)(bound) ? (int)(bound)-1 : i + 2, \ _n3##i = i + 3 >= (int)(bound) ? (int)(bound)-1 : i + 3; \ i <= (int)(i1) && \ (_n3##i < (int)(bound) || _n2##i == --_n3##i || _n1##i == --_n2##i || \ i == (_n3##i = _n2##i = --_n1##i)); \ _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, \ ++_n3##i) #define cimg_for_in7X(img, x0, x1, x) cimg_for_in7((img)._width, x0, x1, x) #define cimg_for_in7Y(img, y0, y1, y) cimg_for_in7((img)._height, y0, y1, y) #define cimg_for_in7Z(img, z0, z1, z) cimg_for_in7((img)._depth, z0, z1, z) #define cimg_for_in7C(img, c0, c1, c) cimg_for_in7((img)._spectrum, c0, c1, c) #define cimg_for_in7XY(img, x0, y0, x1, y1, x, y) \ cimg_for_in7Y(img, y0, y1, y) cimg_for_in7X(img, x0, x1, x) #define cimg_for_in7XZ(img, x0, z0, x1, z1, x, z) \ cimg_for_in7Z(img, z0, z1, z) cimg_for_in7X(img, x0, x1, x) #define cimg_for_in7XC(img, x0, c0, x1, c1, x, c) \ cimg_for_in7C(img, c0, c1, c) cimg_for_in7X(img, x0, x1, x) #define cimg_for_in7YZ(img, y0, z0, y1, z1, y, z) \ cimg_for_in7Z(img, z0, z1, z) cimg_for_in7Y(img, y0, y1, y) #define cimg_for_in7YC(img, y0, c0, y1, c1, y, c) \ cimg_for_in7C(img, c0, c1, c) cimg_for_in7Y(img, y0, y1, y) #define cimg_for_in7ZC(img, z0, c0, z1, c1, z, c) \ cimg_for_in7C(img, c0, c1, c) cimg_for_in7Z(img, z0, z1, z) #define cimg_for_in7XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) \ cimg_for_in7Z(img, z0, z1, z) cimg_for_in7XY(img, x0, y0, x1, y1, x, y) #define cimg_for_in7XZC(img, x0, z0, c0, x1, y1, c1, x, z, c) \ cimg_for_in7C(img, c0, c1, c) cimg_for_in7XZ(img, x0, y0, x1, y1, x, z) #define cimg_for_in7YZC(img, y0, z0, c0, y1, z1, c1, y, z, c) \ cimg_for_in7C(img, c0, c1, c) cimg_for_in7YZ(img, y0, z0, y1, z1, y, z) #define cimg_for_in7XYZC(img, x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) \ cimg_for_in7C(img, c0, c1, c) \ cimg_for_in7XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) #define cimg_for8(bound, i) \ for (int i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ _n1##i = 1 >= (bound) ? (int)(bound)-1 : 1, \ _n2##i = 2 >= (bound) ? (int)(bound)-1 : 2, \ _n3##i = 3 >= (bound) ? (int)(bound)-1 : 3, \ _n4##i = 4 >= (bound) ? (int)(bound)-1 : 4; \ _n4##i < (int)(bound) || _n3##i == --_n4##i || _n2##i == --_n3##i || \ _n1##i == --_n2##i || i == (_n4##i = _n3##i = _n2##i = --_n1##i); \ _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, \ ++_n3##i, ++_n4##i) #define cimg_for8X(img, x) cimg_for8((img)._width, x) #define cimg_for8Y(img, y) cimg_for8((img)._height, y) #define cimg_for8Z(img, z) cimg_for8((img)._depth, z) #define cimg_for8C(img, c) cimg_for8((img)._spectrum, c) #define cimg_for8XY(img, x, y) cimg_for8Y(img, y) cimg_for8X(img, x) #define cimg_for8XZ(img, x, z) cimg_for8Z(img, z) cimg_for8X(img, x) #define cimg_for8XC(img, x, c) cimg_for8C(img, c) cimg_for8X(img, x) #define cimg_for8YZ(img, y, z) cimg_for8Z(img, z) cimg_for8Y(img, y) #define cimg_for8YC(img, y, c) cimg_for8C(img, c) cimg_for8Y(img, y) #define cimg_for8ZC(img, z, c) cimg_for8C(img, c) cimg_for8Z(img, z) #define cimg_for8XYZ(img, x, y, z) cimg_for8Z(img, z) cimg_for8XY(img, x, y) #define cimg_for8XZC(img, x, z, c) cimg_for8C(img, c) cimg_for8XZ(img, x, z) #define cimg_for8YZC(img, y, z, c) cimg_for8C(img, c) cimg_for8YZ(img, y, z) #define cimg_for8XYZC(img, x, y, z, c) \ cimg_for8C(img, c) cimg_for8XYZ(img, x, y, z) #define cimg_for_in8(bound, i0, i1, i) \ for (int i = (int)(i0) < 0 ? 0 : (int)(i0), \ _p3##i = i - 3 < 0 ? 0 : i - 3, _p2##i = i - 2 < 0 ? 0 : i - 2, \ _p1##i = i - 1 < 0 ? 0 : i - 1, \ _n1##i = i + 1 >= (int)(bound) ? (int)(bound)-1 : i + 1, \ _n2##i = i + 2 >= (int)(bound) ? (int)(bound)-1 : i + 2, \ _n3##i = i + 3 >= (int)(bound) ? (int)(bound)-1 : i + 3, \ _n4##i = i + 4 >= (int)(bound) ? (int)(bound)-1 : i + 4; \ i <= (int)(i1) && \ (_n4##i < (int)(bound) || _n3##i == --_n4##i || _n2##i == --_n3##i || \ _n1##i == --_n2##i || i == (_n4##i = _n3##i = _n2##i = --_n1##i)); \ _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, \ ++_n3##i, ++_n4##i) #define cimg_for_in8X(img, x0, x1, x) cimg_for_in8((img)._width, x0, x1, x) #define cimg_for_in8Y(img, y0, y1, y) cimg_for_in8((img)._height, y0, y1, y) #define cimg_for_in8Z(img, z0, z1, z) cimg_for_in8((img)._depth, z0, z1, z) #define cimg_for_in8C(img, c0, c1, c) cimg_for_in8((img)._spectrum, c0, c1, c) #define cimg_for_in8XY(img, x0, y0, x1, y1, x, y) \ cimg_for_in8Y(img, y0, y1, y) cimg_for_in8X(img, x0, x1, x) #define cimg_for_in8XZ(img, x0, z0, x1, z1, x, z) \ cimg_for_in8Z(img, z0, z1, z) cimg_for_in8X(img, x0, x1, x) #define cimg_for_in8XC(img, x0, c0, x1, c1, x, c) \ cimg_for_in8C(img, c0, c1, c) cimg_for_in8X(img, x0, x1, x) #define cimg_for_in8YZ(img, y0, z0, y1, z1, y, z) \ cimg_for_in8Z(img, z0, z1, z) cimg_for_in8Y(img, y0, y1, y) #define cimg_for_in8YC(img, y0, c0, y1, c1, y, c) \ cimg_for_in8C(img, c0, c1, c) cimg_for_in8Y(img, y0, y1, y) #define cimg_for_in8ZC(img, z0, c0, z1, c1, z, c) \ cimg_for_in8C(img, c0, c1, c) cimg_for_in8Z(img, z0, z1, z) #define cimg_for_in8XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) \ cimg_for_in8Z(img, z0, z1, z) cimg_for_in8XY(img, x0, y0, x1, y1, x, y) #define cimg_for_in8XZC(img, x0, z0, c0, x1, y1, c1, x, z, c) \ cimg_for_in8C(img, c0, c1, c) cimg_for_in8XZ(img, x0, y0, x1, y1, x, z) #define cimg_for_in8YZC(img, y0, z0, c0, y1, z1, c1, y, z, c) \ cimg_for_in8C(img, c0, c1, c) cimg_for_in8YZ(img, y0, z0, y1, z1, y, z) #define cimg_for_in8XYZC(img, x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) \ cimg_for_in8C(img, c0, c1, c) \ cimg_for_in8XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) #define cimg_for9(bound, i) \ for (int i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ _n1##i = 1 >= (int)(bound) ? (int)(bound)-1 : 1, \ _n2##i = 2 >= (int)(bound) ? (int)(bound)-1 : 2, \ _n3##i = 3 >= (int)(bound) ? (int)(bound)-1 : 3, \ _n4##i = 4 >= (int)(bound) ? (int)(bound)-1 : 4; \ _n4##i < (int)(bound) || _n3##i == --_n4##i || _n2##i == --_n3##i || \ _n1##i == --_n2##i || i == (_n4##i = _n3##i = _n2##i = --_n1##i); \ _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) #define cimg_for9X(img, x) cimg_for9((img)._width, x) #define cimg_for9Y(img, y) cimg_for9((img)._height, y) #define cimg_for9Z(img, z) cimg_for9((img)._depth, z) #define cimg_for9C(img, c) cimg_for9((img)._spectrum, c) #define cimg_for9XY(img, x, y) cimg_for9Y(img, y) cimg_for9X(img, x) #define cimg_for9XZ(img, x, z) cimg_for9Z(img, z) cimg_for9X(img, x) #define cimg_for9XC(img, x, c) cimg_for9C(img, c) cimg_for9X(img, x) #define cimg_for9YZ(img, y, z) cimg_for9Z(img, z) cimg_for9Y(img, y) #define cimg_for9YC(img, y, c) cimg_for9C(img, c) cimg_for9Y(img, y) #define cimg_for9ZC(img, z, c) cimg_for9C(img, c) cimg_for9Z(img, z) #define cimg_for9XYZ(img, x, y, z) cimg_for9Z(img, z) cimg_for9XY(img, x, y) #define cimg_for9XZC(img, x, z, c) cimg_for9C(img, c) cimg_for9XZ(img, x, z) #define cimg_for9YZC(img, y, z, c) cimg_for9C(img, c) cimg_for9YZ(img, y, z) #define cimg_for9XYZC(img, x, y, z, c) \ cimg_for9C(img, c) cimg_for9XYZ(img, x, y, z) #define cimg_for_in9(bound, i0, i1, i) \ for (int i = (int)(i0) < 0 ? 0 : (int)(i0), \ _p4##i = i - 4 < 0 ? 0 : i - 4, _p3##i = i - 3 < 0 ? 0 : i - 3, \ _p2##i = i - 2 < 0 ? 0 : i - 2, _p1##i = i - 1 < 0 ? 0 : i - 1, \ _n1##i = i + 1 >= (int)(bound) ? (int)(bound)-1 : i + 1, \ _n2##i = i + 2 >= (int)(bound) ? (int)(bound)-1 : i + 2, \ _n3##i = i + 3 >= (int)(bound) ? (int)(bound)-1 : i + 3, \ _n4##i = i + 4 >= (int)(bound) ? (int)(bound)-1 : i + 4; \ i <= (int)(i1) && \ (_n4##i < (int)(bound) || _n3##i == --_n4##i || _n2##i == --_n3##i || \ _n1##i == --_n2##i || i == (_n4##i = _n3##i = _n2##i = --_n1##i)); \ _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) #define cimg_for_in9X(img, x0, x1, x) cimg_for_in9((img)._width, x0, x1, x) #define cimg_for_in9Y(img, y0, y1, y) cimg_for_in9((img)._height, y0, y1, y) #define cimg_for_in9Z(img, z0, z1, z) cimg_for_in9((img)._depth, z0, z1, z) #define cimg_for_in9C(img, c0, c1, c) cimg_for_in9((img)._spectrum, c0, c1, c) #define cimg_for_in9XY(img, x0, y0, x1, y1, x, y) \ cimg_for_in9Y(img, y0, y1, y) cimg_for_in9X(img, x0, x1, x) #define cimg_for_in9XZ(img, x0, z0, x1, z1, x, z) \ cimg_for_in9Z(img, z0, z1, z) cimg_for_in9X(img, x0, x1, x) #define cimg_for_in9XC(img, x0, c0, x1, c1, x, c) \ cimg_for_in9C(img, c0, c1, c) cimg_for_in9X(img, x0, x1, x) #define cimg_for_in9YZ(img, y0, z0, y1, z1, y, z) \ cimg_for_in9Z(img, z0, z1, z) cimg_for_in9Y(img, y0, y1, y) #define cimg_for_in9YC(img, y0, c0, y1, c1, y, c) \ cimg_for_in9C(img, c0, c1, c) cimg_for_in9Y(img, y0, y1, y) #define cimg_for_in9ZC(img, z0, c0, z1, c1, z, c) \ cimg_for_in9C(img, c0, c1, c) cimg_for_in9Z(img, z0, z1, z) #define cimg_for_in9XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) \ cimg_for_in9Z(img, z0, z1, z) cimg_for_in9XY(img, x0, y0, x1, y1, x, y) #define cimg_for_in9XZC(img, x0, z0, c0, x1, y1, c1, x, z, c) \ cimg_for_in9C(img, c0, c1, c) cimg_for_in9XZ(img, x0, y0, x1, y1, x, z) #define cimg_for_in9YZC(img, y0, z0, c0, y1, z1, c1, y, z, c) \ cimg_for_in9C(img, c0, c1, c) cimg_for_in9YZ(img, y0, z0, y1, z1, y, z) #define cimg_for_in9XYZC(img, x0, y0, z0, c0, x1, y1, z1, c1, x, y, z, c) \ cimg_for_in9C(img, c0, c1, c) \ cimg_for_in9XYZ(img, x0, y0, z0, x1, y1, z1, x, y, z) #define cimg_for2x2(img, x, y, z, c, I, T) \ cimg_for2( \ (img)._height, \ y) for (int x = 0, \ _n1##x = (int)((I[0] = (T)(img)(0, y, z, c)), \ (I[2] = (T)(img)(0, _n1##y, z, c)), \ 1 >= (img)._width ? (img).width() - 1 : 1); \ (_n1##x < (img).width() && \ ((I[1] = (T)(img)(_n1##x, y, z, c)), \ (I[3] = (T)(img)(_n1##x, _n1##y, z, c)), 1)) || \ x == --_n1##x; \ I[0] = I[1], I[2] = I[3], ++x, ++_n1##x) #define cimg_for_in2x2(img, x0, y0, x1, y1, x, y, z, c, I, T) \ cimg_for_in2( \ (img)._height, y0, y1, \ y) for (int x = (int)(x0) < 0 ? 0 : (int)(x0), \ _n1##x = (int)((I[0] = (T)(img)(x, y, z, c)), \ (I[2] = (T)(img)(x, _n1##y, z, c)), \ x + 1 >= (int)(img)._width ? (img).width() - 1 \ : x + 1); \ x <= (int)(x1) && \ ((_n1##x < (img).width() && \ ((I[1] = (T)(img)(_n1##x, y, z, c)), \ (I[3] = (T)(img)(_n1##x, _n1##y, z, c)), 1)) || \ x == --_n1##x); \ I[0] = I[1], I[2] = I[3], ++x, ++_n1##x) #define cimg_for3x3(img, x, y, z, c, I, T) \ cimg_for3( \ (img)._height, \ y) for (int x = 0, _p1##x = 0, \ _n1##x = (int)((I[0] = I[1] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[3] = I[4] = (T)(img)(0, y, z, c)), \ (I[6] = I[7] = (T)(img)(0, _n1##y, z, c)), \ 1 >= (img)._width ? (img).width() - 1 : 1); \ (_n1##x < (img).width() && \ ((I[2] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[5] = (T)(img)(_n1##x, y, z, c)), \ (I[8] = (T)(img)(_n1##x, _n1##y, z, c)), 1)) || \ x == --_n1##x; \ I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], \ I[6] = I[7], I[7] = I[8], _p1##x = x++, ++_n1##x) #define cimg_for_in3x3(img, x0, y0, x1, y1, x, y, z, c, I, T) \ cimg_for_in3( \ (img)._height, y0, y1, \ y) for (int x = (int)(x0) < 0 ? 0 : (int)(x0), \ _p1##x = x - 1 < 0 ? 0 : x - 1, \ _n1##x = (int)((I[0] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[3] = (T)(img)(_p1##x, y, z, c)), \ (I[6] = (T)(img)(_p1##x, _n1##y, z, c)), \ (I[1] = (T)(img)(x, _p1##y, z, c)), \ (I[4] = (T)(img)(x, y, z, c)), \ (I[7] = (T)(img)(x, _n1##y, z, c)), \ x + 1 >= (int)(img)._width ? (img).width() - 1 \ : x + 1); \ x <= (int)(x1) && \ ((_n1##x < (img).width() && \ ((I[2] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[5] = (T)(img)(_n1##x, y, z, c)), \ (I[8] = (T)(img)(_n1##x, _n1##y, z, c)), 1)) || \ x == --_n1##x); \ I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], \ I[6] = I[7], I[7] = I[8], _p1##x = x++, ++_n1##x) #define cimg_for4x4(img, x, y, z, c, I, T) \ cimg_for4( \ (img)._height, \ y) for (int x = 0, _p1##x = 0, \ _n1##x = 1 >= (img)._width ? (img).width() - 1 : 1, \ _n2##x = (int)((I[0] = I[1] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[4] = I[5] = (T)(img)(0, y, z, c)), \ (I[8] = I[9] = (T)(img)(0, _n1##y, z, c)), \ (I[12] = I[13] = (T)(img)(0, _n2##y, z, c)), \ (I[2] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[6] = (T)(img)(_n1##x, y, z, c)), \ (I[10] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[14] = (T)(img)(_n1##x, _n2##y, z, c)), \ 2 >= (img)._width ? (img).width() - 1 : 2); \ (_n2##x < (img).width() && \ ((I[3] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[7] = (T)(img)(_n2##x, y, z, c)), \ (I[11] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[15] = (T)(img)(_n2##x, _n2##y, z, c)), 1)) || \ _n1##x == --_n2##x || x == (_n2##x = --_n1##x); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[4] = I[5], \ I[5] = I[6], I[6] = I[7], I[8] = I[9], I[9] = I[10], \ I[10] = I[11], I[12] = I[13], I[13] = I[14], I[14] = I[15], \ _p1##x = x++, ++_n1##x, ++_n2##x) #define cimg_for_in4x4(img, x0, y0, x1, y1, x, y, z, c, I, T) \ cimg_for_in4( \ (img)._height, y0, y1, \ y) for (int x = (int)(x0) < 0 ? 0 : (int)(x0), \ _p1##x = x - 1 < 0 ? 0 : x - 1, \ _n1##x = \ x + 1 >= (int)(img)._width ? (img).width() - 1 : x + 1, \ _n2##x = (int)((I[0] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[4] = (T)(img)(_p1##x, y, z, c)), \ (I[8] = (T)(img)(_p1##x, _n1##y, z, c)), \ (I[12] = (T)(img)(_p1##x, _n2##y, z, c)), \ (I[1] = (T)(img)(x, _p1##y, z, c)), \ (I[5] = (T)(img)(x, y, z, c)), \ (I[9] = (T)(img)(x, _n1##y, z, c)), \ (I[13] = (T)(img)(x, _n2##y, z, c)), \ (I[2] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[6] = (T)(img)(_n1##x, y, z, c)), \ (I[10] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[14] = (T)(img)(_n1##x, _n2##y, z, c)), \ x + 2 >= (int)(img)._width ? (img).width() - 1 \ : x + 2); \ x <= (int)(x1) && \ ((_n2##x < (img).width() && \ ((I[3] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[7] = (T)(img)(_n2##x, y, z, c)), \ (I[11] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[15] = (T)(img)(_n2##x, _n2##y, z, c)), 1)) || \ _n1##x == --_n2##x || x == (_n2##x = --_n1##x)); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[4] = I[5], \ I[5] = I[6], I[6] = I[7], I[8] = I[9], I[9] = I[10], \ I[10] = I[11], I[12] = I[13], I[13] = I[14], I[14] = I[15], \ _p1##x = x++, ++_n1##x, ++_n2##x) #define cimg_for5x5(img, x, y, z, c, I, T) \ cimg_for5( \ (img)._height, \ y) for (int x = 0, _p2##x = 0, _p1##x = 0, \ _n1##x = 1 >= (img)._width ? (img).width() - 1 : 1, \ _n2##x = \ (int)((I[0] = I[1] = I[2] = \ (T)(img)(_p2##x, _p2##y, z, c)), \ (I[5] = I[6] = I[7] = (T)(img)(0, _p1##y, z, c)), \ (I[10] = I[11] = I[12] = (T)(img)(0, y, z, c)), \ (I[15] = I[16] = I[17] = (T)(img)(0, _n1##y, z, c)), \ (I[20] = I[21] = I[22] = (T)(img)(0, _n2##y, z, c)), \ (I[3] = (T)(img)(_n1##x, _p2##y, z, c)), \ (I[8] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[13] = (T)(img)(_n1##x, y, z, c)), \ (I[18] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[23] = (T)(img)(_n1##x, _n2##y, z, c)), \ 2 >= (img)._width ? (img).width() - 1 : 2); \ (_n2##x < (img).width() && \ ((I[4] = (T)(img)(_n2##x, _p2##y, z, c)), \ (I[9] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[14] = (T)(img)(_n2##x, y, z, c)), \ (I[19] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[24] = (T)(img)(_n2##x, _n2##y, z, c)), 1)) || \ _n1##x == --_n2##x || x == (_n2##x = --_n1##x); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \ I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x) #define cimg_for_in5x5(img, x0, y0, x1, y1, x, y, z, c, I, T) \ cimg_for_in5( \ (img)._height, y0, y1, \ y) for (int x = (int)(x0) < 0 ? 0 : (int)(x0), \ _p2##x = x - 2 < 0 ? 0 : x - 2, \ _p1##x = x - 1 < 0 ? 0 : x - 1, \ _n1##x = \ x + 1 >= (int)(img)._width ? (img).width() - 1 : x + 1, \ _n2##x = (int)((I[0] = (T)(img)(_p2##x, _p2##y, z, c)), \ (I[5] = (T)(img)(_p2##x, _p1##y, z, c)), \ (I[10] = (T)(img)(_p2##x, y, z, c)), \ (I[15] = (T)(img)(_p2##x, _n1##y, z, c)), \ (I[20] = (T)(img)(_p2##x, _n2##y, z, c)), \ (I[1] = (T)(img)(_p1##x, _p2##y, z, c)), \ (I[6] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[11] = (T)(img)(_p1##x, y, z, c)), \ (I[16] = (T)(img)(_p1##x, _n1##y, z, c)), \ (I[21] = (T)(img)(_p1##x, _n2##y, z, c)), \ (I[2] = (T)(img)(x, _p2##y, z, c)), \ (I[7] = (T)(img)(x, _p1##y, z, c)), \ (I[12] = (T)(img)(x, y, z, c)), \ (I[17] = (T)(img)(x, _n1##y, z, c)), \ (I[22] = (T)(img)(x, _n2##y, z, c)), \ (I[3] = (T)(img)(_n1##x, _p2##y, z, c)), \ (I[8] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[13] = (T)(img)(_n1##x, y, z, c)), \ (I[18] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[23] = (T)(img)(_n1##x, _n2##y, z, c)), \ x + 2 >= (int)(img)._width ? (img).width() - 1 \ : x + 2); \ x <= (int)(x1) && \ ((_n2##x < (img).width() && \ ((I[4] = (T)(img)(_n2##x, _p2##y, z, c)), \ (I[9] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[14] = (T)(img)(_n2##x, y, z, c)), \ (I[19] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[24] = (T)(img)(_n2##x, _n2##y, z, c)), 1)) || \ _n1##x == --_n2##x || x == (_n2##x = --_n1##x)); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \ I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x) #define cimg_for6x6(img, x, y, z, c, I, T) \ cimg_for6( \ (img)._height, \ y) for (int x = 0, _p2##x = 0, _p1##x = 0, \ _n1##x = 1 >= (img)._width ? (img).width() - 1 : 1, \ _n2##x = 2 >= (img)._width ? (img).width() - 1 : 2, \ _n3##x = \ (int)((I[0] = I[1] = I[2] = \ (T)(img)(_p2##x, _p2##y, z, c)), \ (I[6] = I[7] = I[8] = (T)(img)(0, _p1##y, z, c)), \ (I[12] = I[13] = I[14] = (T)(img)(0, y, z, c)), \ (I[18] = I[19] = I[20] = (T)(img)(0, _n1##y, z, c)), \ (I[24] = I[25] = I[26] = (T)(img)(0, _n2##y, z, c)), \ (I[30] = I[31] = I[32] = (T)(img)(0, _n3##y, z, c)), \ (I[3] = (T)(img)(_n1##x, _p2##y, z, c)), \ (I[9] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[15] = (T)(img)(_n1##x, y, z, c)), \ (I[21] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[27] = (T)(img)(_n1##x, _n2##y, z, c)), \ (I[33] = (T)(img)(_n1##x, _n3##y, z, c)), \ (I[4] = (T)(img)(_n2##x, _p2##y, z, c)), \ (I[10] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[16] = (T)(img)(_n2##x, y, z, c)), \ (I[22] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[28] = (T)(img)(_n2##x, _n2##y, z, c)), \ (I[34] = (T)(img)(_n2##x, _n3##y, z, c)), \ 3 >= (img)._width ? (img).width() - 1 : 3); \ (_n3##x < (img).width() && \ ((I[5] = (T)(img)(_n3##x, _p2##y, z, c)), \ (I[11] = (T)(img)(_n3##x, _p1##y, z, c)), \ (I[17] = (T)(img)(_n3##x, y, z, c)), \ (I[23] = (T)(img)(_n3##x, _n1##y, z, c)), \ (I[29] = (T)(img)(_n3##x, _n2##y, z, c)), \ (I[35] = (T)(img)(_n3##x, _n3##y, z, c)), 1)) || \ _n2##x == --_n3##x || _n1##x == --_n2##x || \ x == (_n3##x = _n2##x = --_n1##x); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ I[4] = I[5], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ I[9] = I[10], I[10] = I[11], I[12] = I[13], I[13] = I[14], \ I[14] = I[15], I[15] = I[16], I[16] = I[17], I[18] = I[19], \ I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], \ I[28] = I[29], I[30] = I[31], I[31] = I[32], I[32] = I[33], \ I[33] = I[34], I[34] = I[35], _p2##x = _p1##x, _p1##x = x++, \ ++_n1##x, ++_n2##x, ++_n3##x) #define cimg_for_in6x6(img, x0, y0, x1, y1, x, y, z, c, I, T) \ cimg_for_in6( \ (img)._height, y0, y1, \ y) for (int x = (int)(x0) < 0 ? 0 : (int)x0, \ _p2##x = x - 2 < 0 ? 0 : x - 2, \ _p1##x = x - 1 < 0 ? 0 : x - 1, \ _n1##x = \ x + 1 >= (int)(img)._width ? (img).width() - 1 : x + 1, \ _n2##x = \ x + 2 >= (int)(img)._width ? (img).width() - 1 : x + 2, \ _n3##x = (int)((I[0] = (T)(img)(_p2##x, _p2##y, z, c)), \ (I[6] = (T)(img)(_p2##x, _p1##y, z, c)), \ (I[12] = (T)(img)(_p2##x, y, z, c)), \ (I[18] = (T)(img)(_p2##x, _n1##y, z, c)), \ (I[24] = (T)(img)(_p2##x, _n2##y, z, c)), \ (I[30] = (T)(img)(_p2##x, _n3##y, z, c)), \ (I[1] = (T)(img)(_p1##x, _p2##y, z, c)), \ (I[7] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[13] = (T)(img)(_p1##x, y, z, c)), \ (I[19] = (T)(img)(_p1##x, _n1##y, z, c)), \ (I[25] = (T)(img)(_p1##x, _n2##y, z, c)), \ (I[31] = (T)(img)(_p1##x, _n3##y, z, c)), \ (I[2] = (T)(img)(x, _p2##y, z, c)), \ (I[8] = (T)(img)(x, _p1##y, z, c)), \ (I[14] = (T)(img)(x, y, z, c)), \ (I[20] = (T)(img)(x, _n1##y, z, c)), \ (I[26] = (T)(img)(x, _n2##y, z, c)), \ (I[32] = (T)(img)(x, _n3##y, z, c)), \ (I[3] = (T)(img)(_n1##x, _p2##y, z, c)), \ (I[9] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[15] = (T)(img)(_n1##x, y, z, c)), \ (I[21] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[27] = (T)(img)(_n1##x, _n2##y, z, c)), \ (I[33] = (T)(img)(_n1##x, _n3##y, z, c)), \ (I[4] = (T)(img)(_n2##x, _p2##y, z, c)), \ (I[10] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[16] = (T)(img)(_n2##x, y, z, c)), \ (I[22] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[28] = (T)(img)(_n2##x, _n2##y, z, c)), \ (I[34] = (T)(img)(_n2##x, _n3##y, z, c)), \ x + 3 >= (int)(img)._width ? (img).width() - 1 \ : x + 3); \ x <= (int)(x1) && \ ((_n3##x < (img).width() && \ ((I[5] = (T)(img)(_n3##x, _p2##y, z, c)), \ (I[11] = (T)(img)(_n3##x, _p1##y, z, c)), \ (I[17] = (T)(img)(_n3##x, y, z, c)), \ (I[23] = (T)(img)(_n3##x, _n1##y, z, c)), \ (I[29] = (T)(img)(_n3##x, _n2##y, z, c)), \ (I[35] = (T)(img)(_n3##x, _n3##y, z, c)), 1)) || \ _n2##x == --_n3##x || _n1##x == --_n2##x || \ x == (_n3##x = _n2##x = --_n1##x)); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ I[4] = I[5], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ I[9] = I[10], I[10] = I[11], I[12] = I[13], I[13] = I[14], \ I[14] = I[15], I[15] = I[16], I[16] = I[17], I[18] = I[19], \ I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], \ I[28] = I[29], I[30] = I[31], I[31] = I[32], I[32] = I[33], \ I[33] = I[34], I[34] = I[35], _p2##x = _p1##x, _p1##x = x++, \ ++_n1##x, ++_n2##x, ++_n3##x) #define cimg_for7x7(img, x, y, z, c, I, T) \ cimg_for7( \ (img)._height, \ y) for (int x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ _n1##x = 1 >= (img)._width ? (img).width() - 1 : 1, \ _n2##x = 2 >= (img)._width ? (img).width() - 1 : 2, \ _n3##x = (int)((I[0] = I[1] = I[2] = I[3] = \ (T)(img)(_p3##x, _p3##y, z, c)), \ (I[7] = I[8] = I[9] = I[10] = \ (T)(img)(0, _p2##y, z, c)), \ (I[14] = I[15] = I[16] = I[17] = \ (T)(img)(0, _p1##y, z, c)), \ (I[21] = I[22] = I[23] = I[24] = \ (T)(img)(0, y, z, c)), \ (I[28] = I[29] = I[30] = I[31] = \ (T)(img)(0, _n1##y, z, c)), \ (I[35] = I[36] = I[37] = I[38] = \ (T)(img)(0, _n2##y, z, c)), \ (I[42] = I[43] = I[44] = I[45] = \ (T)(img)(0, _n3##y, z, c)), \ (I[4] = (T)(img)(_n1##x, _p3##y, z, c)), \ (I[11] = (T)(img)(_n1##x, _p2##y, z, c)), \ (I[18] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[25] = (T)(img)(_n1##x, y, z, c)), \ (I[32] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[39] = (T)(img)(_n1##x, _n2##y, z, c)), \ (I[46] = (T)(img)(_n1##x, _n3##y, z, c)), \ (I[5] = (T)(img)(_n2##x, _p3##y, z, c)), \ (I[12] = (T)(img)(_n2##x, _p2##y, z, c)), \ (I[19] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[26] = (T)(img)(_n2##x, y, z, c)), \ (I[33] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[40] = (T)(img)(_n2##x, _n2##y, z, c)), \ (I[47] = (T)(img)(_n2##x, _n3##y, z, c)), \ 3 >= (img)._width ? (img).width() - 1 : 3); \ (_n3##x < (img).width() && \ ((I[6] = (T)(img)(_n3##x, _p3##y, z, c)), \ (I[13] = (T)(img)(_n3##x, _p2##y, z, c)), \ (I[20] = (T)(img)(_n3##x, _p1##y, z, c)), \ (I[27] = (T)(img)(_n3##x, y, z, c)), \ (I[34] = (T)(img)(_n3##x, _n1##y, z, c)), \ (I[41] = (T)(img)(_n3##x, _n2##y, z, c)), \ (I[48] = (T)(img)(_n3##x, _n3##y, z, c)), 1)) || \ _n2##x == --_n3##x || _n1##x == --_n2##x || \ x == (_n3##x = _n2##x = --_n1##x); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ I[4] = I[5], I[5] = I[6], I[7] = I[8], I[8] = I[9], \ I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], \ I[18] = I[19], I[19] = I[20], I[21] = I[22], I[22] = I[23], \ I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \ I[32] = I[33], I[33] = I[34], I[35] = I[36], I[36] = I[37], \ I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], \ I[46] = I[47], I[47] = I[48], _p3##x = _p2##x, \ _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) #define cimg_for_in7x7(img, x0, y0, x1, y1, x, y, z, c, I, T) \ cimg_for_in7( \ (img)._height, y0, y1, \ y) for (int x = (int)(x0) < 0 ? 0 : (int)(x0), \ _p3##x = x - 3 < 0 ? 0 : x - 3, \ _p2##x = x - 2 < 0 ? 0 : x - 2, \ _p1##x = x - 1 < 0 ? 0 : x - 1, \ _n1##x = \ x + 1 >= (int)(img)._width ? (img).width() - 1 : x + 1, \ _n2##x = \ x + 2 >= (int)(img)._width ? (img).width() - 1 : x + 2, \ _n3##x = (int)((I[0] = (T)(img)(_p3##x, _p3##y, z, c)), \ (I[7] = (T)(img)(_p3##x, _p2##y, z, c)), \ (I[14] = (T)(img)(_p3##x, _p1##y, z, c)), \ (I[21] = (T)(img)(_p3##x, y, z, c)), \ (I[28] = (T)(img)(_p3##x, _n1##y, z, c)), \ (I[35] = (T)(img)(_p3##x, _n2##y, z, c)), \ (I[42] = (T)(img)(_p3##x, _n3##y, z, c)), \ (I[1] = (T)(img)(_p2##x, _p3##y, z, c)), \ (I[8] = (T)(img)(_p2##x, _p2##y, z, c)), \ (I[15] = (T)(img)(_p2##x, _p1##y, z, c)), \ (I[22] = (T)(img)(_p2##x, y, z, c)), \ (I[29] = (T)(img)(_p2##x, _n1##y, z, c)), \ (I[36] = (T)(img)(_p2##x, _n2##y, z, c)), \ (I[43] = (T)(img)(_p2##x, _n3##y, z, c)), \ (I[2] = (T)(img)(_p1##x, _p3##y, z, c)), \ (I[9] = (T)(img)(_p1##x, _p2##y, z, c)), \ (I[16] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[23] = (T)(img)(_p1##x, y, z, c)), \ (I[30] = (T)(img)(_p1##x, _n1##y, z, c)), \ (I[37] = (T)(img)(_p1##x, _n2##y, z, c)), \ (I[44] = (T)(img)(_p1##x, _n3##y, z, c)), \ (I[3] = (T)(img)(x, _p3##y, z, c)), \ (I[10] = (T)(img)(x, _p2##y, z, c)), \ (I[17] = (T)(img)(x, _p1##y, z, c)), \ (I[24] = (T)(img)(x, y, z, c)), \ (I[31] = (T)(img)(x, _n1##y, z, c)), \ (I[38] = (T)(img)(x, _n2##y, z, c)), \ (I[45] = (T)(img)(x, _n3##y, z, c)), \ (I[4] = (T)(img)(_n1##x, _p3##y, z, c)), \ (I[11] = (T)(img)(_n1##x, _p2##y, z, c)), \ (I[18] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[25] = (T)(img)(_n1##x, y, z, c)), \ (I[32] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[39] = (T)(img)(_n1##x, _n2##y, z, c)), \ (I[46] = (T)(img)(_n1##x, _n3##y, z, c)), \ (I[5] = (T)(img)(_n2##x, _p3##y, z, c)), \ (I[12] = (T)(img)(_n2##x, _p2##y, z, c)), \ (I[19] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[26] = (T)(img)(_n2##x, y, z, c)), \ (I[33] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[40] = (T)(img)(_n2##x, _n2##y, z, c)), \ (I[47] = (T)(img)(_n2##x, _n3##y, z, c)), \ x + 3 >= (int)(img)._width ? (img).width() - 1 \ : x + 3); \ x <= (int)(x1) && \ ((_n3##x < (img).width() && \ ((I[6] = (T)(img)(_n3##x, _p3##y, z, c)), \ (I[13] = (T)(img)(_n3##x, _p2##y, z, c)), \ (I[20] = (T)(img)(_n3##x, _p1##y, z, c)), \ (I[27] = (T)(img)(_n3##x, y, z, c)), \ (I[34] = (T)(img)(_n3##x, _n1##y, z, c)), \ (I[41] = (T)(img)(_n3##x, _n2##y, z, c)), \ (I[48] = (T)(img)(_n3##x, _n3##y, z, c)), 1)) || \ _n2##x == --_n3##x || _n1##x == --_n2##x || \ x == (_n3##x = _n2##x = --_n1##x)); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ I[4] = I[5], I[5] = I[6], I[7] = I[8], I[8] = I[9], \ I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], \ I[18] = I[19], I[19] = I[20], I[21] = I[22], I[22] = I[23], \ I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \ I[32] = I[33], I[33] = I[34], I[35] = I[36], I[36] = I[37], \ I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], \ I[46] = I[47], I[47] = I[48], _p3##x = _p2##x, \ _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) #define cimg_for8x8(img, x, y, z, c, I, T) \ cimg_for8( \ (img)._height, \ y) for (int x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ _n1##x = 1 >= ((img)._width) ? (img).width() - 1 : 1, \ _n2##x = 2 >= ((img)._width) ? (img).width() - 1 : 2, \ _n3##x = 3 >= ((img)._width) ? (img).width() - 1 : 3, \ _n4##x = (int)((I[0] = I[1] = I[2] = I[3] = \ (T)(img)(_p3##x, _p3##y, z, c)), \ (I[8] = I[9] = I[10] = I[11] = \ (T)(img)(0, _p2##y, z, c)), \ (I[16] = I[17] = I[18] = I[19] = \ (T)(img)(0, _p1##y, z, c)), \ (I[24] = I[25] = I[26] = I[27] = \ (T)(img)(0, y, z, c)), \ (I[32] = I[33] = I[34] = I[35] = \ (T)(img)(0, _n1##y, z, c)), \ (I[40] = I[41] = I[42] = I[43] = \ (T)(img)(0, _n2##y, z, c)), \ (I[48] = I[49] = I[50] = I[51] = \ (T)(img)(0, _n3##y, z, c)), \ (I[56] = I[57] = I[58] = I[59] = \ (T)(img)(0, _n4##y, z, c)), \ (I[4] = (T)(img)(_n1##x, _p3##y, z, c)), \ (I[12] = (T)(img)(_n1##x, _p2##y, z, c)), \ (I[20] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[28] = (T)(img)(_n1##x, y, z, c)), \ (I[36] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[44] = (T)(img)(_n1##x, _n2##y, z, c)), \ (I[52] = (T)(img)(_n1##x, _n3##y, z, c)), \ (I[60] = (T)(img)(_n1##x, _n4##y, z, c)), \ (I[5] = (T)(img)(_n2##x, _p3##y, z, c)), \ (I[13] = (T)(img)(_n2##x, _p2##y, z, c)), \ (I[21] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[29] = (T)(img)(_n2##x, y, z, c)), \ (I[37] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[45] = (T)(img)(_n2##x, _n2##y, z, c)), \ (I[53] = (T)(img)(_n2##x, _n3##y, z, c)), \ (I[61] = (T)(img)(_n2##x, _n4##y, z, c)), \ (I[6] = (T)(img)(_n3##x, _p3##y, z, c)), \ (I[14] = (T)(img)(_n3##x, _p2##y, z, c)), \ (I[22] = (T)(img)(_n3##x, _p1##y, z, c)), \ (I[30] = (T)(img)(_n3##x, y, z, c)), \ (I[38] = (T)(img)(_n3##x, _n1##y, z, c)), \ (I[46] = (T)(img)(_n3##x, _n2##y, z, c)), \ (I[54] = (T)(img)(_n3##x, _n3##y, z, c)), \ (I[62] = (T)(img)(_n3##x, _n4##y, z, c)), \ 4 >= ((img)._width) ? (img).width() - 1 : 4); \ (_n4##x < (img).width() && \ ((I[7] = (T)(img)(_n4##x, _p3##y, z, c)), \ (I[15] = (T)(img)(_n4##x, _p2##y, z, c)), \ (I[23] = (T)(img)(_n4##x, _p1##y, z, c)), \ (I[31] = (T)(img)(_n4##x, y, z, c)), \ (I[39] = (T)(img)(_n4##x, _n1##y, z, c)), \ (I[47] = (T)(img)(_n4##x, _n2##y, z, c)), \ (I[55] = (T)(img)(_n4##x, _n3##y, z, c)), \ (I[63] = (T)(img)(_n4##x, _n4##y, z, c)), 1)) || \ _n3##x == --_n4##x || _n2##x == --_n3##x || \ _n1##x == --_n2##x || \ x == (_n4##x = _n3##x = _n2##x = --_n1##x); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ I[4] = I[5], I[5] = I[6], I[6] = I[7], I[8] = I[9], \ I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ I[13] = I[14], I[14] = I[15], I[16] = I[17], I[17] = I[18], \ I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \ I[22] = I[23], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], \ I[36] = I[37], I[37] = I[38], I[38] = I[39], I[40] = I[41], \ I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], \ I[45] = I[46], I[46] = I[47], I[48] = I[49], I[49] = I[50], \ I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \ I[54] = I[55], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \ _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, \ ++_n2##x, ++_n3##x, ++_n4##x) #define cimg_for_in8x8(img, x0, y0, x1, y1, x, y, z, c, I, T) \ cimg_for_in8( \ (img)._height, y0, y1, \ y) for (int x = (int)(x0) < 0 ? 0 : (int)(x0), \ _p3##x = x - 3 < 0 ? 0 : x - 3, \ _p2##x = x - 2 < 0 ? 0 : x - 2, \ _p1##x = x - 1 < 0 ? 0 : x - 1, \ _n1##x = x + 1 >= (img).width() ? (img).width() - 1 : x + 1, \ _n2##x = x + 2 >= (img).width() ? (img).width() - 1 : x + 2, \ _n3##x = x + 3 >= (img).width() ? (img).width() - 1 : x + 3, \ _n4##x = \ (int)((I[0] = (T)(img)(_p3##x, _p3##y, z, c)), \ (I[8] = (T)(img)(_p3##x, _p2##y, z, c)), \ (I[16] = (T)(img)(_p3##x, _p1##y, z, c)), \ (I[24] = (T)(img)(_p3##x, y, z, c)), \ (I[32] = (T)(img)(_p3##x, _n1##y, z, c)), \ (I[40] = (T)(img)(_p3##x, _n2##y, z, c)), \ (I[48] = (T)(img)(_p3##x, _n3##y, z, c)), \ (I[56] = (T)(img)(_p3##x, _n4##y, z, c)), \ (I[1] = (T)(img)(_p2##x, _p3##y, z, c)), \ (I[9] = (T)(img)(_p2##x, _p2##y, z, c)), \ (I[17] = (T)(img)(_p2##x, _p1##y, z, c)), \ (I[25] = (T)(img)(_p2##x, y, z, c)), \ (I[33] = (T)(img)(_p2##x, _n1##y, z, c)), \ (I[41] = (T)(img)(_p2##x, _n2##y, z, c)), \ (I[49] = (T)(img)(_p2##x, _n3##y, z, c)), \ (I[57] = (T)(img)(_p2##x, _n4##y, z, c)), \ (I[2] = (T)(img)(_p1##x, _p3##y, z, c)), \ (I[10] = (T)(img)(_p1##x, _p2##y, z, c)), \ (I[18] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[26] = (T)(img)(_p1##x, y, z, c)), \ (I[34] = (T)(img)(_p1##x, _n1##y, z, c)), \ (I[42] = (T)(img)(_p1##x, _n2##y, z, c)), \ (I[50] = (T)(img)(_p1##x, _n3##y, z, c)), \ (I[58] = (T)(img)(_p1##x, _n4##y, z, c)), \ (I[3] = (T)(img)(x, _p3##y, z, c)), \ (I[11] = (T)(img)(x, _p2##y, z, c)), \ (I[19] = (T)(img)(x, _p1##y, z, c)), \ (I[27] = (T)(img)(x, y, z, c)), \ (I[35] = (T)(img)(x, _n1##y, z, c)), \ (I[43] = (T)(img)(x, _n2##y, z, c)), \ (I[51] = (T)(img)(x, _n3##y, z, c)), \ (I[59] = (T)(img)(x, _n4##y, z, c)), \ (I[4] = (T)(img)(_n1##x, _p3##y, z, c)), \ (I[12] = (T)(img)(_n1##x, _p2##y, z, c)), \ (I[20] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[28] = (T)(img)(_n1##x, y, z, c)), \ (I[36] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[44] = (T)(img)(_n1##x, _n2##y, z, c)), \ (I[52] = (T)(img)(_n1##x, _n3##y, z, c)), \ (I[60] = (T)(img)(_n1##x, _n4##y, z, c)), \ (I[5] = (T)(img)(_n2##x, _p3##y, z, c)), \ (I[13] = (T)(img)(_n2##x, _p2##y, z, c)), \ (I[21] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[29] = (T)(img)(_n2##x, y, z, c)), \ (I[37] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[45] = (T)(img)(_n2##x, _n2##y, z, c)), \ (I[53] = (T)(img)(_n2##x, _n3##y, z, c)), \ (I[61] = (T)(img)(_n2##x, _n4##y, z, c)), \ (I[6] = (T)(img)(_n3##x, _p3##y, z, c)), \ (I[14] = (T)(img)(_n3##x, _p2##y, z, c)), \ (I[22] = (T)(img)(_n3##x, _p1##y, z, c)), \ (I[30] = (T)(img)(_n3##x, y, z, c)), \ (I[38] = (T)(img)(_n3##x, _n1##y, z, c)), \ (I[46] = (T)(img)(_n3##x, _n2##y, z, c)), \ (I[54] = (T)(img)(_n3##x, _n3##y, z, c)), \ (I[62] = (T)(img)(_n3##x, _n4##y, z, c)), \ x + 4 >= (img).width() ? (img).width() - 1 : x + 4); \ x <= (int)(x1) && \ ((_n4##x < (img).width() && \ ((I[7] = (T)(img)(_n4##x, _p3##y, z, c)), \ (I[15] = (T)(img)(_n4##x, _p2##y, z, c)), \ (I[23] = (T)(img)(_n4##x, _p1##y, z, c)), \ (I[31] = (T)(img)(_n4##x, y, z, c)), \ (I[39] = (T)(img)(_n4##x, _n1##y, z, c)), \ (I[47] = (T)(img)(_n4##x, _n2##y, z, c)), \ (I[55] = (T)(img)(_n4##x, _n3##y, z, c)), \ (I[63] = (T)(img)(_n4##x, _n4##y, z, c)), 1)) || \ _n3##x == --_n4##x || _n2##x == --_n3##x || \ _n1##x == --_n2##x || \ x == (_n4##x = _n3##x = _n2##x = --_n1##x)); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ I[4] = I[5], I[5] = I[6], I[6] = I[7], I[8] = I[9], \ I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ I[13] = I[14], I[14] = I[15], I[16] = I[17], I[17] = I[18], \ I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \ I[22] = I[23], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], \ I[36] = I[37], I[37] = I[38], I[38] = I[39], I[40] = I[41], \ I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], \ I[45] = I[46], I[46] = I[47], I[48] = I[49], I[49] = I[50], \ I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \ I[54] = I[55], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \ _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, \ ++_n2##x, ++_n3##x, ++_n4##x) #define cimg_for9x9(img, x, y, z, c, I, T) \ cimg_for9( \ (img)._height, \ y) for (int x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ _n1##x = 1 >= ((img)._width) ? (img).width() - 1 : 1, \ _n2##x = 2 >= ((img)._width) ? (img).width() - 1 : 2, \ _n3##x = 3 >= ((img)._width) ? (img).width() - 1 : 3, \ _n4##x = (int)((I[0] = I[1] = I[2] = I[3] = I[4] = \ (T)(img)(_p4##x, _p4##y, z, c)), \ (I[9] = I[10] = I[11] = I[12] = I[13] = \ (T)(img)(0, _p3##y, z, c)), \ (I[18] = I[19] = I[20] = I[21] = I[22] = \ (T)(img)(0, _p2##y, z, c)), \ (I[27] = I[28] = I[29] = I[30] = I[31] = \ (T)(img)(0, _p1##y, z, c)), \ (I[36] = I[37] = I[38] = I[39] = I[40] = \ (T)(img)(0, y, z, c)), \ (I[45] = I[46] = I[47] = I[48] = I[49] = \ (T)(img)(0, _n1##y, z, c)), \ (I[54] = I[55] = I[56] = I[57] = I[58] = \ (T)(img)(0, _n2##y, z, c)), \ (I[63] = I[64] = I[65] = I[66] = I[67] = \ (T)(img)(0, _n3##y, z, c)), \ (I[72] = I[73] = I[74] = I[75] = I[76] = \ (T)(img)(0, _n4##y, z, c)), \ (I[5] = (T)(img)(_n1##x, _p4##y, z, c)), \ (I[14] = (T)(img)(_n1##x, _p3##y, z, c)), \ (I[23] = (T)(img)(_n1##x, _p2##y, z, c)), \ (I[32] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[41] = (T)(img)(_n1##x, y, z, c)), \ (I[50] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[59] = (T)(img)(_n1##x, _n2##y, z, c)), \ (I[68] = (T)(img)(_n1##x, _n3##y, z, c)), \ (I[77] = (T)(img)(_n1##x, _n4##y, z, c)), \ (I[6] = (T)(img)(_n2##x, _p4##y, z, c)), \ (I[15] = (T)(img)(_n2##x, _p3##y, z, c)), \ (I[24] = (T)(img)(_n2##x, _p2##y, z, c)), \ (I[33] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[42] = (T)(img)(_n2##x, y, z, c)), \ (I[51] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[60] = (T)(img)(_n2##x, _n2##y, z, c)), \ (I[69] = (T)(img)(_n2##x, _n3##y, z, c)), \ (I[78] = (T)(img)(_n2##x, _n4##y, z, c)), \ (I[7] = (T)(img)(_n3##x, _p4##y, z, c)), \ (I[16] = (T)(img)(_n3##x, _p3##y, z, c)), \ (I[25] = (T)(img)(_n3##x, _p2##y, z, c)), \ (I[34] = (T)(img)(_n3##x, _p1##y, z, c)), \ (I[43] = (T)(img)(_n3##x, y, z, c)), \ (I[52] = (T)(img)(_n3##x, _n1##y, z, c)), \ (I[61] = (T)(img)(_n3##x, _n2##y, z, c)), \ (I[70] = (T)(img)(_n3##x, _n3##y, z, c)), \ (I[79] = (T)(img)(_n3##x, _n4##y, z, c)), \ 4 >= ((img)._width) ? (img).width() - 1 : 4); \ (_n4##x < (img).width() && \ ((I[8] = (T)(img)(_n4##x, _p4##y, z, c)), \ (I[17] = (T)(img)(_n4##x, _p3##y, z, c)), \ (I[26] = (T)(img)(_n4##x, _p2##y, z, c)), \ (I[35] = (T)(img)(_n4##x, _p1##y, z, c)), \ (I[44] = (T)(img)(_n4##x, y, z, c)), \ (I[53] = (T)(img)(_n4##x, _n1##y, z, c)), \ (I[62] = (T)(img)(_n4##x, _n2##y, z, c)), \ (I[71] = (T)(img)(_n4##x, _n3##y, z, c)), \ (I[80] = (T)(img)(_n4##x, _n4##y, z, c)), 1)) || \ _n3##x == --_n4##x || _n2##x == --_n3##x || \ _n1##x == --_n2##x || \ x == (_n4##x = _n3##x = _n2##x = --_n1##x); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], \ I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \ I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \ I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], \ I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], \ I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \ I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \ I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \ I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], \ I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \ I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], \ I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \ I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], \ _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, \ _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) #define cimg_for_in9x9(img, x0, y0, x1, y1, x, y, z, c, I, T) \ cimg_for_in9( \ (img)._height, y0, y1, \ y) for (int x = (int)(x0) < 0 ? 0 : (int)(x0), \ _p4##x = x - 4 < 0 ? 0 : x - 4, \ _p3##x = x - 3 < 0 ? 0 : x - 3, \ _p2##x = x - 2 < 0 ? 0 : x - 2, \ _p1##x = x - 1 < 0 ? 0 : x - 1, \ _n1##x = x + 1 >= (img).width() ? (img).width() - 1 : x + 1, \ _n2##x = x + 2 >= (img).width() ? (img).width() - 1 : x + 2, \ _n3##x = x + 3 >= (img).width() ? (img).width() - 1 : x + 3, \ _n4##x = \ (int)((I[0] = (T)(img)(_p4##x, _p4##y, z, c)), \ (I[9] = (T)(img)(_p4##x, _p3##y, z, c)), \ (I[18] = (T)(img)(_p4##x, _p2##y, z, c)), \ (I[27] = (T)(img)(_p4##x, _p1##y, z, c)), \ (I[36] = (T)(img)(_p4##x, y, z, c)), \ (I[45] = (T)(img)(_p4##x, _n1##y, z, c)), \ (I[54] = (T)(img)(_p4##x, _n2##y, z, c)), \ (I[63] = (T)(img)(_p4##x, _n3##y, z, c)), \ (I[72] = (T)(img)(_p4##x, _n4##y, z, c)), \ (I[1] = (T)(img)(_p3##x, _p4##y, z, c)), \ (I[10] = (T)(img)(_p3##x, _p3##y, z, c)), \ (I[19] = (T)(img)(_p3##x, _p2##y, z, c)), \ (I[28] = (T)(img)(_p3##x, _p1##y, z, c)), \ (I[37] = (T)(img)(_p3##x, y, z, c)), \ (I[46] = (T)(img)(_p3##x, _n1##y, z, c)), \ (I[55] = (T)(img)(_p3##x, _n2##y, z, c)), \ (I[64] = (T)(img)(_p3##x, _n3##y, z, c)), \ (I[73] = (T)(img)(_p3##x, _n4##y, z, c)), \ (I[2] = (T)(img)(_p2##x, _p4##y, z, c)), \ (I[11] = (T)(img)(_p2##x, _p3##y, z, c)), \ (I[20] = (T)(img)(_p2##x, _p2##y, z, c)), \ (I[29] = (T)(img)(_p2##x, _p1##y, z, c)), \ (I[38] = (T)(img)(_p2##x, y, z, c)), \ (I[47] = (T)(img)(_p2##x, _n1##y, z, c)), \ (I[56] = (T)(img)(_p2##x, _n2##y, z, c)), \ (I[65] = (T)(img)(_p2##x, _n3##y, z, c)), \ (I[74] = (T)(img)(_p2##x, _n4##y, z, c)), \ (I[3] = (T)(img)(_p1##x, _p4##y, z, c)), \ (I[12] = (T)(img)(_p1##x, _p3##y, z, c)), \ (I[21] = (T)(img)(_p1##x, _p2##y, z, c)), \ (I[30] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[39] = (T)(img)(_p1##x, y, z, c)), \ (I[48] = (T)(img)(_p1##x, _n1##y, z, c)), \ (I[57] = (T)(img)(_p1##x, _n2##y, z, c)), \ (I[66] = (T)(img)(_p1##x, _n3##y, z, c)), \ (I[75] = (T)(img)(_p1##x, _n4##y, z, c)), \ (I[4] = (T)(img)(x, _p4##y, z, c)), \ (I[13] = (T)(img)(x, _p3##y, z, c)), \ (I[22] = (T)(img)(x, _p2##y, z, c)), \ (I[31] = (T)(img)(x, _p1##y, z, c)), \ (I[40] = (T)(img)(x, y, z, c)), \ (I[49] = (T)(img)(x, _n1##y, z, c)), \ (I[58] = (T)(img)(x, _n2##y, z, c)), \ (I[67] = (T)(img)(x, _n3##y, z, c)), \ (I[76] = (T)(img)(x, _n4##y, z, c)), \ (I[5] = (T)(img)(_n1##x, _p4##y, z, c)), \ (I[14] = (T)(img)(_n1##x, _p3##y, z, c)), \ (I[23] = (T)(img)(_n1##x, _p2##y, z, c)), \ (I[32] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[41] = (T)(img)(_n1##x, y, z, c)), \ (I[50] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[59] = (T)(img)(_n1##x, _n2##y, z, c)), \ (I[68] = (T)(img)(_n1##x, _n3##y, z, c)), \ (I[77] = (T)(img)(_n1##x, _n4##y, z, c)), \ (I[6] = (T)(img)(_n2##x, _p4##y, z, c)), \ (I[15] = (T)(img)(_n2##x, _p3##y, z, c)), \ (I[24] = (T)(img)(_n2##x, _p2##y, z, c)), \ (I[33] = (T)(img)(_n2##x, _p1##y, z, c)), \ (I[42] = (T)(img)(_n2##x, y, z, c)), \ (I[51] = (T)(img)(_n2##x, _n1##y, z, c)), \ (I[60] = (T)(img)(_n2##x, _n2##y, z, c)), \ (I[69] = (T)(img)(_n2##x, _n3##y, z, c)), \ (I[78] = (T)(img)(_n2##x, _n4##y, z, c)), \ (I[7] = (T)(img)(_n3##x, _p4##y, z, c)), \ (I[16] = (T)(img)(_n3##x, _p3##y, z, c)), \ (I[25] = (T)(img)(_n3##x, _p2##y, z, c)), \ (I[34] = (T)(img)(_n3##x, _p1##y, z, c)), \ (I[43] = (T)(img)(_n3##x, y, z, c)), \ (I[52] = (T)(img)(_n3##x, _n1##y, z, c)), \ (I[61] = (T)(img)(_n3##x, _n2##y, z, c)), \ (I[70] = (T)(img)(_n3##x, _n3##y, z, c)), \ (I[79] = (T)(img)(_n3##x, _n4##y, z, c)), \ x + 4 >= (img).width() ? (img).width() - 1 : x + 4); \ x <= (int)(x1) && \ ((_n4##x < (img).width() && \ ((I[8] = (T)(img)(_n4##x, _p4##y, z, c)), \ (I[17] = (T)(img)(_n4##x, _p3##y, z, c)), \ (I[26] = (T)(img)(_n4##x, _p2##y, z, c)), \ (I[35] = (T)(img)(_n4##x, _p1##y, z, c)), \ (I[44] = (T)(img)(_n4##x, y, z, c)), \ (I[53] = (T)(img)(_n4##x, _n1##y, z, c)), \ (I[62] = (T)(img)(_n4##x, _n2##y, z, c)), \ (I[71] = (T)(img)(_n4##x, _n3##y, z, c)), \ (I[80] = (T)(img)(_n4##x, _n4##y, z, c)), 1)) || \ _n3##x == --_n4##x || _n2##x == --_n3##x || \ _n1##x == --_n2##x || \ x == (_n4##x = _n3##x = _n2##x = --_n1##x)); \ I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], \ I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \ I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \ I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], \ I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], \ I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \ I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \ I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \ I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], \ I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \ I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], \ I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \ I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], \ _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, \ _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) #define cimg_for2x2x2(img, x, y, z, c, I, T) \ cimg_for2((img)._depth, z) cimg_for2( \ (img)._height, \ y) for (int x = 0, \ _n1##x = (int)((I[0] = (T)(img)(0, y, z, c)), \ (I[2] = (T)(img)(0, _n1##y, z, c)), \ (I[4] = (T)(img)(0, y, _n1##z, c)), \ (I[6] = (T)(img)(0, _n1##y, _n1##z, c)), \ 1 >= (img)._width ? (img).width() - 1 : 1); \ (_n1##x < (img).width() && \ ((I[1] = (T)(img)(_n1##x, y, z, c)), \ (I[3] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[5] = (T)(img)(_n1##x, y, _n1##z, c)), \ (I[7] = (T)(img)(_n1##x, _n1##y, _n1##z, c)), 1)) || \ x == --_n1##x; \ I[0] = I[1], I[2] = I[3], I[4] = I[5], I[6] = I[7], ++x, \ ++_n1##x) #define cimg_for_in2x2x2(img, x0, y0, z0, x1, y1, z1, x, y, z, c, I, T) \ cimg_for_in2((img)._depth, z0, z1, z) cimg_for_in2( \ (img)._height, y0, y1, \ y) for (int x = (int)(x0) < 0 ? 0 : (int)(x0), \ _n1##x = (int)((I[0] = (T)(img)(x, y, z, c)), \ (I[2] = (T)(img)(x, _n1##y, z, c)), \ (I[4] = (T)(img)(x, y, _n1##z, c)), \ (I[6] = (T)(img)(x, _n1##y, _n1##z, c)), \ x + 1 >= (int)(img)._width ? (img).width() - 1 \ : x + 1); \ x <= (int)(x1) && \ ((_n1##x < (img).width() && \ ((I[1] = (T)(img)(_n1##x, y, z, c)), \ (I[3] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[5] = (T)(img)(_n1##x, y, _n1##z, c)), \ (I[7] = (T)(img)(_n1##x, _n1##y, _n1##z, c)), 1)) || \ x == --_n1##x); \ I[0] = I[1], I[2] = I[3], I[4] = I[5], I[6] = I[7], ++x, \ ++_n1##x) #define cimg_for3x3x3(img, x, y, z, c, I, T) \ cimg_for3((img)._depth, z) cimg_for3( \ (img)._height, \ y) for (int x = 0, _p1##x = 0, \ _n1##x = \ (int)((I[0] = I[1] = (T)(img)(_p1##x, _p1##y, _p1##z, c)), \ (I[3] = I[4] = (T)(img)(0, y, _p1##z, c)), \ (I[6] = I[7] = (T)(img)(0, _n1##y, _p1##z, c)), \ (I[9] = I[10] = (T)(img)(0, _p1##y, z, c)), \ (I[12] = I[13] = (T)(img)(0, y, z, c)), \ (I[15] = I[16] = (T)(img)(0, _n1##y, z, c)), \ (I[18] = I[19] = (T)(img)(0, _p1##y, _n1##z, c)), \ (I[21] = I[22] = (T)(img)(0, y, _n1##z, c)), \ (I[24] = I[25] = (T)(img)(0, _n1##y, _n1##z, c)), \ 1 >= (img)._width ? (img).width() - 1 : 1); \ (_n1##x < (img).width() && \ ((I[2] = (T)(img)(_n1##x, _p1##y, _p1##z, c)), \ (I[5] = (T)(img)(_n1##x, y, _p1##z, c)), \ (I[8] = (T)(img)(_n1##x, _n1##y, _p1##z, c)), \ (I[11] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[14] = (T)(img)(_n1##x, y, z, c)), \ (I[17] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[20] = (T)(img)(_n1##x, _p1##y, _n1##z, c)), \ (I[23] = (T)(img)(_n1##x, y, _n1##z, c)), \ (I[26] = (T)(img)(_n1##x, _n1##y, _n1##z, c)), 1)) || \ x == --_n1##x; \ I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], \ I[6] = I[7], I[7] = I[8], I[9] = I[10], I[10] = I[11], \ I[12] = I[13], I[13] = I[14], I[15] = I[16], I[16] = I[17], \ I[18] = I[19], I[19] = I[20], I[21] = I[22], I[22] = I[23], \ I[24] = I[25], I[25] = I[26], _p1##x = x++, ++_n1##x) #define cimg_for_in3x3x3(img, x0, y0, z0, x1, y1, z1, x, y, z, c, I, T) \ cimg_for_in3((img)._depth, z0, z1, z) cimg_for_in3( \ (img)._height, y0, y1, \ y) for (int x = (int)(x0) < 0 ? 0 : (int)(x0), \ _p1##x = x - 1 < 0 ? 0 : x - 1, \ _n1##x = (int)((I[0] = (T)(img)(_p1##x, _p1##y, _p1##z, c)), \ (I[3] = (T)(img)(_p1##x, y, _p1##z, c)), \ (I[6] = (T)(img)(_p1##x, _n1##y, _p1##z, c)), \ (I[9] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[12] = (T)(img)(_p1##x, y, z, c)), \ (I[15] = (T)(img)(_p1##x, _n1##y, z, c)), \ (I[18] = (T)(img)(_p1##x, _p1##y, _n1##z, c)), \ (I[21] = (T)(img)(_p1##x, y, _n1##z, c)), \ (I[24] = (T)(img)(_p1##x, _n1##y, _n1##z, c)), \ (I[1] = (T)(img)(x, _p1##y, _p1##z, c)), \ (I[4] = (T)(img)(x, y, _p1##z, c)), \ (I[7] = (T)(img)(x, _n1##y, _p1##z, c)), \ (I[10] = (T)(img)(x, _p1##y, z, c)), \ (I[13] = (T)(img)(x, y, z, c)), \ (I[16] = (T)(img)(x, _n1##y, z, c)), \ (I[19] = (T)(img)(x, _p1##y, _n1##z, c)), \ (I[22] = (T)(img)(x, y, _n1##z, c)), \ (I[25] = (T)(img)(x, _n1##y, _n1##z, c)), \ x + 1 >= (int)(img)._width ? (img).width() - 1 \ : x + 1); \ x <= (int)(x1) && \ ((_n1##x < (img).width() && \ ((I[2] = (T)(img)(_n1##x, _p1##y, _p1##z, c)), \ (I[5] = (T)(img)(_n1##x, y, _p1##z, c)), \ (I[8] = (T)(img)(_n1##x, _n1##y, _p1##z, c)), \ (I[11] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[14] = (T)(img)(_n1##x, y, z, c)), \ (I[17] = (T)(img)(_n1##x, _n1##y, z, c)), \ (I[20] = (T)(img)(_n1##x, _p1##y, _n1##z, c)), \ (I[23] = (T)(img)(_n1##x, y, _n1##z, c)), \ (I[26] = (T)(img)(_n1##x, _n1##y, _n1##z, c)), 1)) || \ x == --_n1##x); \ I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], \ I[6] = I[7], I[7] = I[8], I[9] = I[10], I[10] = I[11], \ I[12] = I[13], I[13] = I[14], I[15] = I[16], I[16] = I[17], \ I[18] = I[19], I[19] = I[20], I[21] = I[22], I[22] = I[23], \ I[24] = I[25], I[25] = I[26], _p1##x = x++, ++_n1##x) #define cimglist_for(list, l) for (int l = 0; l < (int)(list)._width; ++l) #define cimglist_for_in(list, l0, l1, l) \ for (int l = (int)(l0) < 0 ? 0 : (int)(l0), \ _max##l = (unsigned int)l1 < (list)._width \ ? (int)(l1) \ : (int)(list)._width - 1; \ l <= _max##l; ++l) #define cimglist_apply(list, fn) cimglist_for(list, __##fn)(list)[__##fn].fn // Macros used to display error messages when exceptions are thrown. // You should not use these macros is your own code. #define _cimgdisplay_instance "[instance(%u,%u,%u,%c%s%c)] CImgDisplay::" #define cimgdisplay_instance \ _width, _height, _normalization, _title ? '\"' : '[', \ _title ? _title : "untitled", _title ? '\"' : ']' #define _cimg_instance "[instance(%u,%u,%u,%u,%p,%sshared)] CImg<%s>::" #define cimg_instance \ _width, _height, _depth, _spectrum, _data, _is_shared ? "" : "non-", \ pixel_type() #define _cimglist_instance "[instance(%u,%u,%p)] CImgList<%s>::" #define cimglist_instance _width, _allocated_width, _data, pixel_type() /*------------------------------------------------ # # # Define cimg_library:: namespace # # -------------------------------------------------*/ //! Contains all classes and functions of the \CImg library. /** This namespace is defined to avoid functions and class names collisions that could happen with the inclusion of other C++ header files. Anyway, it should not happen often and you should reasonnably start most of your \CImg-based programs with \code #include "CImg.h" using namespace cimg_library; \endcode to simplify the declaration of \CImg Library objects afterwards. **/ namespace cimg_library_suffixed { // Declare the four classes of the CImg Library. template struct CImg; template struct CImgList; struct CImgDisplay; struct CImgException; // Declare cimg:: namespace. // This is an uncomplete namespace definition here. It only contains some // necessary stuff to ensure a correct declaration order of the classes and // functions defined afterwards. namespace cimg { // Define Ascii sequences for colored terminal output. #ifdef cimg_use_vt100 static const char t_normal[] = {0x1b, '[', '0', ';', '0', ';', '0', 'm', 0}; static const char t_black[] = {0x1b, '[', '0', ';', '3', '0', ';', '5', '9', 'm', 0}; static const char t_red[] = {0x1b, '[', '0', ';', '3', '1', ';', '5', '9', 'm', 0}; static const char t_green[] = {0x1b, '[', '0', ';', '3', '2', ';', '5', '9', 'm', 0}; static const char t_yellow[] = {0x1b, '[', '0', ';', '3', '3', ';', '5', '9', 'm', 0}; static const char t_blue[] = {0x1b, '[', '0', ';', '3', '4', ';', '5', '9', 'm', 0}; static const char t_magenta[] = {0x1b, '[', '0', ';', '3', '5', ';', '5', '9', 'm', 0}; static const char t_cyan[] = {0x1b, '[', '0', ';', '3', '6', ';', '5', '9', 'm', 0}; static const char t_white[] = {0x1b, '[', '0', ';', '3', '7', ';', '5', '9', 'm', 0}; static const char t_bold[] = {0x1b, '[', '1', 'm', 0}; static const char t_underscore[] = {0x1b, '[', '4', 'm', 0}; #else static const char t_normal[] = {0}; static const char *const t_black = cimg::t_normal, *const t_red = cimg::t_normal, *const t_green = cimg::t_normal, *const t_yellow = cimg::t_normal, *const t_blue = cimg::t_normal, *const t_magenta = cimg::t_normal, *const t_cyan = cimg::t_normal, *const t_white = cimg::t_normal, *const t_bold = cimg::t_normal, *const t_underscore = cimg::t_normal; #endif inline std::FILE* output(std::FILE* file = 0); inline void info(); //! Avoid warning messages due to unused parameters. Do nothing actually. template inline void unused(const T&, ...) {} // [internal] Lock/unlock a mutex for managing concurrent threads. // 'lock_mode' can be { 0=unlock | 1=lock | 2=trylock }. // 'n' can be in [0,31] but mutex range [0,15] is reserved by CImg. inline int mutex(const unsigned int n, const int lock_mode = 1); inline unsigned int& exception_mode(const unsigned int value, const bool is_set) { static unsigned int mode = cimg_verbosity; if (is_set) { cimg::mutex(0); mode = value < 4 ? value : 4; cimg::mutex(0, 0); } return mode; } // Functions to return standard streams 'stdin', 'stdout' and 'stderr'. inline FILE* _stdin(const bool throw_exception = true); inline FILE* _stdout(const bool throw_exception = true); inline FILE* _stderr(const bool throw_exception = true); // Mandatory because Microsoft's _snprintf() and _vsnprintf() do not add the // '\0' character at the end of the string. #if cimg_OS == 2 && defined(_MSC_VER) inline int _snprintf(char* const s, const size_t size, const char* const format, ...) { va_list ap; va_start(ap, format); const int result = _vsnprintf(s, size, format, ap); va_end(ap); return result; } inline int _vsnprintf(char* const s, const size_t size, const char* const format, va_list ap) { int result = -1; cimg::mutex(6); if (size) result = _vsnprintf_s(s, size, _TRUNCATE, format, ap); if (result == -1) result = _vscprintf(format, ap); cimg::mutex(6, 0); return result; } // Mutex-protected version of sscanf, sprintf and snprintf. // Used only MacOSX, as it seems those functions are not re-entrant on MacOSX. #elif defined(__MACOSX__) || defined(__APPLE__) inline int _sscanf(const char* const s, const char* const format, ...) { cimg::mutex(6); va_list args; va_start(args, format); const int result = std::vsscanf(s, format, args); va_end(args); cimg::mutex(6, 0); return result; } inline int _sprintf(char* const s, const char* const format, ...) { cimg::mutex(6); va_list args; va_start(args, format); const int result = std::vsprintf(s, format, args); va_end(args); cimg::mutex(6, 0); return result; } inline int _snprintf(char* const s, const size_t n, const char* const format, ...) { cimg::mutex(6); va_list args; va_start(args, format); const int result = std::vsnprintf(s, n, format, args); va_end(args); cimg::mutex(6, 0); return result; } inline int _vsnprintf(char* const s, const size_t size, const char* format, va_list ap) { cimg::mutex(6); const int result = std::vsnprintf(s, size, format, ap); cimg::mutex(6, 0); return result; } #endif //! Set current \CImg exception mode. /** The way error messages are handled by \CImg can be changed dynamically, using this function. \param mode Desired exception mode. Possible values are: - \c 0: Hide library messages (quiet mode). - \c 1: Print library messages on the console. - \c 2: Display library messages on a dialog window. - \c 3: Do as \c 1 + add extra debug warnings (slow down the code!). - \c 4: Do as \c 2 + add extra debug warnings (slow down the code!). **/ inline unsigned int& exception_mode(const unsigned int mode) { return exception_mode(mode, true); } //! Return current \CImg exception mode. /** \note By default, return the value of configuration macro \c cimg_verbosity **/ inline unsigned int& exception_mode() { return exception_mode(0, false); } inline unsigned int openmp_mode(const unsigned int value, const bool is_set) { static unsigned int mode = 2; if (is_set) { cimg::mutex(0); mode = value < 2 ? value : 2; cimg::mutex(0, 0); } return mode; } //! Set current \CImg openmp mode. /** The way openmp-based methods are handled by \CImg can be changed dynamically, using this function. \param mode Desired openmp mode. Possible values are: - \c 0: Never parallelize. - \c 1: Always parallelize. - \c 2: Adaptive parallelization mode (default behavior). **/ inline unsigned int openmp_mode(const unsigned int mode) { return openmp_mode(mode, true); } //! Return current \CImg openmp mode. inline unsigned int openmp_mode() { return openmp_mode(0, false); } #ifndef cimg_openmp_sizefactor #define cimg_openmp_sizefactor 1 #endif #define cimg_openmp_if(cond) \ if ((cimg::openmp_mode() == 1 || (cimg::openmp_mode() > 1 && (cond)))) #define cimg_openmp_if_size(size, min_size) \ cimg_openmp_if((size) >= (cimg_openmp_sizefactor) * (min_size)) #ifdef _MSC_VER // Disable 'collapse()' directive for MSVC (supports only OpenMP 2.0). #define cimg_openmp_collapse(k) #else #define cimg_openmp_collapse(k) collapse(k) #endif #if cimg_OS == 2 // Disable parallelization of simple loops on Windows, due to noticed // performance drop. #define cimg_openmp_for(instance, expr, min_size) \ cimg_rof((instance), ptr, T)* ptr = (T)(expr); #else #define cimg_openmp_for(instance, expr, min_size) \ cimg_pragma_openmp(parallel for cimg_openmp_if_size((instance).size(),min_size)) \ cimg_rof((instance),ptr,T) *ptr = (T)(expr); #endif // Display a simple dialog box, and wait for the user's response. inline int dialog(const char* const title, const char* const msg, const char* const button1_label = "OK", const char* const button2_label = 0, const char* const button3_label = 0, const char* const button4_label = 0, const char* const button5_label = 0, const char* const button6_label = 0, const bool centering = false); // Evaluate math expression. inline double eval(const char* const expression, const double x = 0, const double y = 0, const double z = 0, const double c = 0); } // namespace cimg /*--------------------------------------- # # Define the CImgException structures # --------------------------------------*/ //! Instances of \c CImgException are thrown when errors are encountered in a //! \CImg function call. /** \par Overview CImgException is the base class of all exceptions thrown by \CImg (except \b CImgAbortException). CImgException is never thrown itself. Derived classes that specify the type of errord are thrown instead. These classes can be: - \b CImgAbortException: Thrown when a computationally-intensive function is aborted by an external signal. This is the only \c non-derived exception class. - \b CImgArgumentException: Thrown when one argument of a called \CImg function is invalid. This is probably one of the most thrown exception by \CImg. For instance, the following example throws a \c CImgArgumentException: \code CImg img(100,100,1,3); // Define a 100x100 color image with float-valued pixels img.mirror('e'); // Try to mirror image along the (non-existing) 'e'-axis \endcode - \b CImgDisplayException: Thrown when something went wrong during the display of images in CImgDisplay instances. - \b CImgInstanceException: Thrown when an instance associated to a called \CImg method does not fit the function requirements. For instance, the following example throws a \c CImgInstanceException: \code const CImg img; // Define an empty image const float value = img.at(0); // Try to read first pixel value (does not exist) \endcode - \b CImgIOException: Thrown when an error occured when trying to load or save image files. This happens when trying to read files that do not exist or with invalid formats. For instance, the following example throws a \c CImgIOException: \code const CImg img("missing_file.jpg"); // Try to load a file that does not exist \endcode - \b CImgWarningException: Thrown only if configuration macro \c cimg_strict_warnings is set, and when a \CImg function has to display a warning message (see cimg::warn()). It is not recommended to throw CImgException instances by yourself, since they are expected to be thrown only by \CImg. When an error occurs in a library function call, \CImg may display error messages on the screen or on the standard output, depending on the current \CImg exception mode. The \CImg exception mode can be get and set by functions cimg::exception_mode() and cimg::exception_mode(unsigned int). \par Exceptions handling In all cases, when an error occurs in \CImg, an instance of the corresponding exception class is thrown. This may lead the program to break (this is the default behavior), but you can bypass this behavior by handling the exceptions by yourself, using a usual try { ... } catch () { ... } bloc, as in the following example: \code #define "CImg.h" using namespace cimg_library; int main() { cimg::exception_mode(0); // Enable quiet exception mode try { ... // Here, do what you want to stress CImg } catch (CImgException& e) { // You succeeded: something went wrong! std::fprintf(stderr,"CImg Library Error: %s",e.what()); // Display your custom error message ... // Do what you want now to save the ship! } } \endcode **/ struct CImgException : public std::exception { #define _cimg_exception_err(etype, disp_flag) \ std::va_list ap, ap2; \ va_start(ap, format); \ va_start(ap2, format); \ int size = cimg_vsnprintf(0, 0, format, ap2); \ if (size++ >= 0) { \ delete[] _message; \ _message = new char[size]; \ cimg_vsnprintf(_message, size, format, ap); \ if (cimg::exception_mode()) { \ std::fprintf(cimg::output(), "\n%s[CImg] *** %s ***%s %s\n", \ cimg::t_red, etype, cimg::t_normal, _message); \ if (cimg_display && disp_flag && !(cimg::exception_mode() % 2)) \ try { \ cimg::dialog(etype, _message, "Abort"); \ } catch (CImgException&) { \ } \ if (cimg::exception_mode() >= 3) \ cimg_library_suffixed::cimg::info(); \ } \ } \ va_end(ap); \ va_end(ap2); char* _message; CImgException() { _message = new char[1]; *_message = 0; } CImgException(const char* const format, ...) : _message(0) { _cimg_exception_err("CImgException", true); } CImgException(const CImgException& e) : std::exception(e) { const size_t size = std::strlen(e._message); _message = new char[size + 1]; std::strncpy(_message, e._message, size); _message[size] = 0; } ~CImgException() throw() { delete[] _message; } CImgException& operator=(const CImgException& e) { const size_t size = std::strlen(e._message); _message = new char[size + 1]; std::strncpy(_message, e._message, size); _message[size] = 0; return *this; } //! Return a C-string containing the error message associated to the thrown //! exception. const char* what() const throw() { return _message; } }; // struct CImgException { ... // The CImgAbortException class is used to throw an exception when // a computationally-intensive function has been aborted by an external signal. struct CImgAbortException : public std::exception { char* _message; CImgAbortException() { _message = new char[1]; *_message = 0; } CImgAbortException(const char* const format, ...) : _message(0) { _cimg_exception_err("CImgAbortException", true); } CImgAbortException(const CImgAbortException& e) : std::exception(e) { const size_t size = std::strlen(e._message); _message = new char[size + 1]; std::strncpy(_message, e._message, size); _message[size] = 0; } ~CImgAbortException() throw() { delete[] _message; } CImgAbortException& operator=(const CImgAbortException& e) { const size_t size = std::strlen(e._message); _message = new char[size + 1]; std::strncpy(_message, e._message, size); _message[size] = 0; return *this; } //! Return a C-string containing the error message associated to the thrown //! exception. const char* what() const throw() { return _message; } }; // struct CImgAbortException { ... // The CImgArgumentException class is used to throw an exception related // to invalid arguments encountered in a library function call. struct CImgArgumentException : public CImgException { CImgArgumentException(const char* const format, ...) { _cimg_exception_err("CImgArgumentException", true); } }; // struct CImgArgumentException { ... // The CImgDisplayException class is used to throw an exception related // to display problems encountered in a library function call. struct CImgDisplayException : public CImgException { CImgDisplayException(const char* const format, ...) { _cimg_exception_err("CImgDisplayException", false); } }; // struct CImgDisplayException { ... // The CImgInstanceException class is used to throw an exception related // to an invalid instance encountered in a library function call. struct CImgInstanceException : public CImgException { CImgInstanceException(const char* const format, ...) { _cimg_exception_err("CImgInstanceException", true); } }; // struct CImgInstanceException { ... // The CImgIOException class is used to throw an exception related // to input/output file problems encountered in a library function call. struct CImgIOException : public CImgException { CImgIOException(const char* const format, ...) { _cimg_exception_err("CImgIOException", true); } }; // struct CImgIOException { ... // The CImgWarningException class is used to throw an exception for warnings // encountered in a library function call. struct CImgWarningException : public CImgException { CImgWarningException(const char* const format, ...) { _cimg_exception_err("CImgWarningException", false); } }; // struct CImgWarningException { ... /*------------------------------------- # # Define cimg:: namespace # -----------------------------------*/ //! Contains \a low-level functions and variables of the \CImg Library. /** Most of the functions and variables within this namespace are used by the \CImg library for low-level operations. You may use them to access specific const values or environment variables internally used by \CImg. \warning Never write using namespace cimg_library::cimg; in your source code. Lot of functions in the cimg:: namespace have the same names as standard C functions that may be defined in the global namespace ::. **/ namespace cimg { // Define traits that will be used to determine the best data type to work in // CImg functions. // template struct type { static const char* string() { static const char* s[] = { "unknown", "unknown8", "unknown16", "unknown24", "unknown32", "unknown40", "unknown48", "unknown56", "unknown64", "unknown72", "unknown80", "unknown88", "unknown96", "unknown104", "unknown112", "unknown120", "unknown128"}; return s[(sizeof(T) < 17) ? sizeof(T) : 0]; } static bool is_float() { return false; } static bool is_inf(const T) { return false; } static bool is_nan(const T) { return false; } static T min() { return ~max(); } static T max() { return (T)1 << (8 * sizeof(T) - 1); } static T inf() { return max(); } static T cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (T)val; } static const char* format() { return "%s"; } static const char* format_s() { return "%s"; } static const char* format(const T& val) { static const char* const s = "unknown"; cimg::unused(val); return s; } }; template <> struct type { static const char* string() { static const char* const s = "bool"; return s; } static bool is_float() { return false; } static bool is_inf(const bool) { return false; } static bool is_nan(const bool) { return false; } static bool min() { return false; } static bool max() { return true; } static bool inf() { return max(); } static bool is_inf() { return false; } static bool cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (bool)val; } static const char* format() { return "%s"; } static const char* format_s() { return "%s"; } static const char* format(const bool val) { static const char* s[] = {"false", "true"}; return s[val ? 1 : 0]; } }; template <> struct type { static const char* string() { static const char* const s = "unsigned char"; return s; } static bool is_float() { return false; } static bool is_inf(const unsigned char) { return false; } static bool is_nan(const unsigned char) { return false; } static unsigned char min() { return 0; } static unsigned char max() { return (unsigned char)-1; } static unsigned char inf() { return max(); } static unsigned char cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (unsigned char)val; } static const char* format() { return "%u"; } static const char* format_s() { return "%u"; } static unsigned int format(const unsigned char val) { return (unsigned int)val; } }; #if defined(CHAR_MAX) && CHAR_MAX == 255 template <> struct type { static const char* string() { static const char* const s = "char"; return s; } static bool is_float() { return false; } static bool is_inf(const char) { return false; } static bool is_nan(const char) { return false; } static char min() { return 0; } static char max() { return (char)-1; } static char inf() { return max(); } static char cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (unsigned char)val; } static const char* format() { return "%u"; } static const char* format_s() { return "%u"; } static unsigned int format(const char val) { return (unsigned int)val; } }; #else template <> struct type { static const char* string() { static const char* const s = "char"; return s; } static bool is_float() { return false; } static bool is_inf(const char) { return false; } static bool is_nan(const char) { return false; } static char min() { return ~max(); } static char max() { return (char)((unsigned char)-1 >> 1); } static char inf() { return max(); } static char cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (char)val; } static const char* format() { return "%d"; } static const char* format_s() { return "%d"; } static int format(const char val) { return (int)val; } }; #endif template <> struct type { static const char* string() { static const char* const s = "signed char"; return s; } static bool is_float() { return false; } static bool is_inf(const signed char) { return false; } static bool is_nan(const signed char) { return false; } static signed char min() { return ~max(); } static signed char max() { return (signed char)((unsigned char)-1 >> 1); } static signed char inf() { return max(); } static signed char cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (signed char)val; } static const char* format() { return "%d"; } static const char* format_s() { return "%d"; } static int format(const signed char val) { return (int)val; } }; template <> struct type { static const char* string() { static const char* const s = "unsigned short"; return s; } static bool is_float() { return false; } static bool is_inf(const unsigned short) { return false; } static bool is_nan(const unsigned short) { return false; } static unsigned short min() { return 0; } static unsigned short max() { return (unsigned short)-1; } static unsigned short inf() { return max(); } static unsigned short cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (unsigned short)val; } static const char* format() { return "%u"; } static const char* format_s() { return "%u"; } static unsigned int format(const unsigned short val) { return (unsigned int)val; } }; template <> struct type { static const char* string() { static const char* const s = "short"; return s; } static bool is_float() { return false; } static bool is_inf(const short) { return false; } static bool is_nan(const short) { return false; } static short min() { return ~max(); } static short max() { return (short)((unsigned short)-1 >> 1); } static short inf() { return max(); } static short cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (short)val; } static const char* format() { return "%d"; } static const char* format_s() { return "%d"; } static int format(const short val) { return (int)val; } }; template <> struct type { static const char* string() { static const char* const s = "unsigned int"; return s; } static bool is_float() { return false; } static bool is_inf(const unsigned int) { return false; } static bool is_nan(const unsigned int) { return false; } static unsigned int min() { return 0; } static unsigned int max() { return (unsigned int)-1; } static unsigned int inf() { return max(); } static unsigned int cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (unsigned int)val; } static const char* format() { return "%u"; } static const char* format_s() { return "%u"; } static unsigned int format(const unsigned int val) { return val; } }; template <> struct type { static const char* string() { static const char* const s = "int"; return s; } static bool is_float() { return false; } static bool is_inf(const int) { return false; } static bool is_nan(const int) { return false; } static int min() { return ~max(); } static int max() { return (int)((unsigned int)-1 >> 1); } static int inf() { return max(); } static int cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (int)val; } static const char* format() { return "%d"; } static const char* format_s() { return "%d"; } static int format(const int val) { return val; } }; template <> struct type { static const char* string() { static const char* const s = "unsigned int64"; return s; } static bool is_float() { return false; } static bool is_inf(const cimg_uint64) { return false; } static bool is_nan(const cimg_uint64) { return false; } static cimg_uint64 min() { return 0; } static cimg_uint64 max() { return (cimg_uint64)-1; } static cimg_uint64 inf() { return max(); } static cimg_uint64 cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (cimg_uint64)val; } static const char* format() { return cimg_fuint64; } static const char* format_s() { return cimg_fuint64; } static unsigned long format(const cimg_uint64 val) { return (unsigned long)val; } }; template <> struct type { static const char* string() { static const char* const s = "int64"; return s; } static bool is_float() { return false; } static bool is_inf(const cimg_int64) { return false; } static bool is_nan(const cimg_int64) { return false; } static cimg_int64 min() { return ~max(); } static cimg_int64 max() { return (cimg_int64)((cimg_uint64)-1 >> 1); } static cimg_int64 inf() { return max(); } static cimg_int64 cut(const double val) { return val < (double)min() ? min() : val > (double)max() ? max() : (cimg_int64)val; } static const char* format() { return cimg_fint64; } static const char* format_s() { return cimg_fint64; } static long format(const long val) { return (long)val; } }; template <> struct type { static const char* string() { static const char* const s = "double"; return s; } static bool is_float() { return true; } static bool is_inf(const double val) { #ifdef isinf return (bool)isinf(val); #else return !is_nan(val) && (val < cimg::type::min() || val > cimg::type::max()); #endif } static bool is_nan( const double val) { // Custom version that works with '-ffast-math' if (sizeof(double) == 8) { cimg_uint64 u; std::memcpy(&u, &val, sizeof(double)); return ((unsigned int)(u >> 32) & 0x7fffffff) + ((unsigned int)u != 0) > 0x7ff00000; } #ifdef isnan return (bool)isnan(val); #else return !(val == val); #endif } static double min() { return -DBL_MAX; } static double max() { return DBL_MAX; } static double inf() { #ifdef INFINITY return (double)INFINITY; #else return max() * max(); #endif } static double nan() { #ifdef NAN return (double)NAN; #else const double val_nan = -std::sqrt(-1.); return val_nan; #endif } static double cut(const double val) { return val; } static const char* format() { return "%.17g"; } static const char* format_s() { return "%g"; } static double format(const double val) { return val; } }; template <> struct type { static const char* string() { static const char* const s = "float"; return s; } static bool is_float() { return true; } static bool is_inf(const float val) { #ifdef isinf return (bool)isinf(val); #else return !is_nan(val) && (val < cimg::type::min() || val > cimg::type::max()); #endif } static bool is_nan( const float val) { // Custom version that works with '-ffast-math' if (sizeof(float) == 4) { unsigned int u; std::memcpy(&u, &val, sizeof(float)); return (u & 0x7fffffff) > 0x7f800000; } #ifdef isnan return (bool)isnan(val); #else return !(val == val); #endif } static float min() { return -FLT_MAX; } static float max() { return FLT_MAX; } static float inf() { return (float)cimg::type::inf(); } static float nan() { return (float)cimg::type::nan(); } static float cut(const double val) { return (float)val; } static float cut(const float val) { return (float)val; } static const char* format() { return "%.9g"; } static const char* format_s() { return "%g"; } static double format(const float val) { return (double)val; } }; template <> struct type { static const char* string() { static const char* const s = "long double"; return s; } static bool is_float() { return true; } static bool is_inf(const long double val) { #ifdef isinf return (bool)isinf(val); #else return !is_nan(val) && (val < cimg::type::min() || val > cimg::type::max()); #endif } static bool is_nan(const long double val) { #ifdef isnan return (bool)isnan(val); #else return !(val == val); #endif } static long double min() { return -LDBL_MAX; } static long double max() { return LDBL_MAX; } static long double inf() { return max() * max(); } static long double nan() { const long double val_nan = -std::sqrt(-1.L); return val_nan; } static long double cut(const long double val) { return val; } static const char* format() { return "%.17g"; } static const char* format_s() { return "%g"; } static double format(const long double val) { return (double)val; } }; #ifdef cimg_use_half template <> struct type { static const char* string() { static const char* const s = "half"; return s; } static bool is_float() { return true; } static bool is_inf(const long double val) { #ifdef isinf return (bool)isinf(val); #else return !is_nan(val) && (val < cimg::type::min() || val > cimg::type::max()); #endif } static bool is_nan( const half val) { // Custom version that works with '-ffast-math' if (sizeof(half) == 2) { short u; std::memcpy(&u, &val, sizeof(short)); return (bool)((u & 0x7fff) > 0x7c00); } return cimg::type::is_nan((float)val); } static half min() { return (half)-65504; } static half max() { return (half)65504; } static half inf() { return max() * max(); } static half nan() { const half val_nan = (half)-std::sqrt(-1.); return val_nan; } static half cut(const double val) { return (half)val; } static const char* format() { return "%.9g"; } static const char* format_s() { return "%g"; } static double format(const half val) { return (double)val; } }; #endif template struct superset { typedef T type; }; template <> struct superset { typedef unsigned char type; }; template <> struct superset { typedef char type; }; template <> struct superset { typedef signed char type; }; template <> struct superset { typedef unsigned short type; }; template <> struct superset { typedef short type; }; template <> struct superset { typedef unsigned int type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef cimg_uint64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef short type; }; template <> struct superset { typedef short type; }; template <> struct superset { typedef unsigned short type; }; template <> struct superset { typedef short type; }; template <> struct superset { typedef unsigned int type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef cimg_uint64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef short type; }; template <> struct superset { typedef short type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef short type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef short type; }; template <> struct superset { typedef short type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef short type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef unsigned int type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef cimg_uint64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef int type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_uint64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef cimg_int64 type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef double type; }; template <> struct superset { typedef double type; }; #ifdef cimg_use_half template <> struct superset { typedef float type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef float type; }; template <> struct superset { typedef double type; }; #endif template struct superset2 { typedef typename superset::type>::type type; }; template struct superset3 { typedef typename superset::type>::type type; }; template struct last { typedef t2 type; }; #define _cimg_Tt typename cimg::superset::type #define _cimg_Tfloat typename cimg::superset::type #define _cimg_tfloat typename cimg::superset::type #define _cimg_Ttfloat typename cimg::superset2::type #define _cimg_Ttdouble typename cimg::superset2::type // Define variables used internally by CImg. #if cimg_display == 1 struct X11_info { unsigned int nb_wins; pthread_t* events_thread; pthread_cond_t wait_event; pthread_mutex_t wait_event_mutex; CImgDisplay** wins; Display* display; unsigned int nb_bits; bool is_blue_first; bool is_shm_enabled; bool byte_order; #ifdef cimg_use_xrandr XRRScreenSize* resolutions; Rotation curr_rotation; unsigned int curr_resolution; unsigned int nb_resolutions; #endif X11_info() : nb_wins(0), events_thread(0), display(0), nb_bits(0), is_blue_first(false), is_shm_enabled(false), byte_order(false) { #ifdef __FreeBSD__ XInitThreads(); #endif wins = new CImgDisplay*[1024]; pthread_mutex_init(&wait_event_mutex, 0); pthread_cond_init(&wait_event, 0); #ifdef cimg_use_xrandr resolutions = 0; curr_rotation = 0; curr_resolution = nb_resolutions = 0; #endif } ~X11_info() { delete[] wins; /* if (events_thread) { pthread_cancel(*events_thread); delete events_thread; } if (display) { } // XCloseDisplay(display); } pthread_cond_destroy(&wait_event); pthread_mutex_unlock(&wait_event_mutex); pthread_mutex_destroy(&wait_event_mutex); */ } }; // struct X11_info { ... #if defined(cimg_module) X11_info& X11_attr(); #elif defined(cimg_main) X11_info& X11_attr() { static X11_info val; return val; } #else inline X11_info& X11_attr() { static X11_info val; return val; } #endif #elif cimg_display == 2 struct Win32_info { HANDLE wait_event; Win32_info() { wait_event = CreateEvent(0, FALSE, FALSE, 0); } }; // struct Win32_info { ... #if defined(cimg_module) Win32_info& Win32_attr(); #elif defined(cimg_main) Win32_info& Win32_attr() { static Win32_info val; return val; } #else inline Win32_info& Win32_attr() { static Win32_info val; return val; } #endif #endif #define cimg_lock_display() cimg::mutex(15) #define cimg_unlock_display() cimg::mutex(15, 0) struct Mutex_info { #ifdef _PTHREAD_H pthread_mutex_t mutex[32]; Mutex_info() { for (unsigned int i = 0; i < 32; ++i) pthread_mutex_init(&mutex[i], 0); } void lock(const unsigned int n) { pthread_mutex_lock(&mutex[n]); } void unlock(const unsigned int n) { pthread_mutex_unlock(&mutex[n]); } int trylock(const unsigned int n) { return pthread_mutex_trylock(&mutex[n]); } #elif cimg_OS == 2 HANDLE mutex[32]; Mutex_info() { for (unsigned int i = 0; i < 32; ++i) mutex[i] = CreateMutex(0, FALSE, 0); } void lock(const unsigned int n) { WaitForSingleObject(mutex[n], INFINITE); } void unlock(const unsigned int n) { ReleaseMutex(mutex[n]); } int trylock(const unsigned int) { return 0; } #else Mutex_info() {} void lock(const unsigned int) {} void unlock(const unsigned int) {} int trylock(const unsigned int) { return 0; } #endif }; // struct Mutex_info { ... #if defined(cimg_module) Mutex_info& Mutex_attr(); #elif defined(cimg_main) Mutex_info& Mutex_attr() { static Mutex_info val; return val; } #else inline Mutex_info& Mutex_attr() { static Mutex_info val; return val; } #endif #if defined(cimg_use_magick) struct Magick_info { Magick_info() { Magick::InitializeMagick(""); } }; // struct Magick_info { ... static Magick_info _Magick_info; #endif #if defined(cimg_use_fftw3) struct FFTW3_info { FFTW3_info() { fftw_init_threads(); } }; // struct FFTW3_info { ... static FFTW3_info _FFTW3_info; #endif #if cimg_display == 1 // Define keycodes for X11-based graphical systems. const unsigned int keyESC = XK_Escape; const unsigned int keyF1 = XK_F1; const unsigned int keyF2 = XK_F2; const unsigned int keyF3 = XK_F3; const unsigned int keyF4 = XK_F4; const unsigned int keyF5 = XK_F5; const unsigned int keyF6 = XK_F6; const unsigned int keyF7 = XK_F7; const unsigned int keyF8 = XK_F8; const unsigned int keyF9 = XK_F9; const unsigned int keyF10 = XK_F10; const unsigned int keyF11 = XK_F11; const unsigned int keyF12 = XK_F12; const unsigned int keyPAUSE = XK_Pause; const unsigned int key1 = XK_1; const unsigned int key2 = XK_2; const unsigned int key3 = XK_3; const unsigned int key4 = XK_4; const unsigned int key5 = XK_5; const unsigned int key6 = XK_6; const unsigned int key7 = XK_7; const unsigned int key8 = XK_8; const unsigned int key9 = XK_9; const unsigned int key0 = XK_0; const unsigned int keyBACKSPACE = XK_BackSpace; const unsigned int keyINSERT = XK_Insert; const unsigned int keyHOME = XK_Home; const unsigned int keyPAGEUP = XK_Page_Up; const unsigned int keyTAB = XK_Tab; const unsigned int keyQ = XK_q; const unsigned int keyW = XK_w; const unsigned int keyE = XK_e; const unsigned int keyR = XK_r; const unsigned int keyT = XK_t; const unsigned int keyY = XK_y; const unsigned int keyU = XK_u; const unsigned int keyI = XK_i; const unsigned int keyO = XK_o; const unsigned int keyP = XK_p; const unsigned int keyDELETE = XK_Delete; const unsigned int keyEND = XK_End; const unsigned int keyPAGEDOWN = XK_Page_Down; const unsigned int keyCAPSLOCK = XK_Caps_Lock; const unsigned int keyA = XK_a; const unsigned int keyS = XK_s; const unsigned int keyD = XK_d; const unsigned int keyF = XK_f; const unsigned int keyG = XK_g; const unsigned int keyH = XK_h; const unsigned int keyJ = XK_j; const unsigned int keyK = XK_k; const unsigned int keyL = XK_l; const unsigned int keyENTER = XK_Return; const unsigned int keySHIFTLEFT = XK_Shift_L; const unsigned int keyZ = XK_z; const unsigned int keyX = XK_x; const unsigned int keyC = XK_c; const unsigned int keyV = XK_v; const unsigned int keyB = XK_b; const unsigned int keyN = XK_n; const unsigned int keyM = XK_m; const unsigned int keySHIFTRIGHT = XK_Shift_R; const unsigned int keyARROWUP = XK_Up; const unsigned int keyCTRLLEFT = XK_Control_L; const unsigned int keyAPPLEFT = XK_Super_L; const unsigned int keyALT = XK_Alt_L; const unsigned int keySPACE = XK_space; const unsigned int keyALTGR = XK_Alt_R; const unsigned int keyAPPRIGHT = XK_Super_R; const unsigned int keyMENU = XK_Menu; const unsigned int keyCTRLRIGHT = XK_Control_R; const unsigned int keyARROWLEFT = XK_Left; const unsigned int keyARROWDOWN = XK_Down; const unsigned int keyARROWRIGHT = XK_Right; const unsigned int keyPAD0 = XK_KP_0; const unsigned int keyPAD1 = XK_KP_1; const unsigned int keyPAD2 = XK_KP_2; const unsigned int keyPAD3 = XK_KP_3; const unsigned int keyPAD4 = XK_KP_4; const unsigned int keyPAD5 = XK_KP_5; const unsigned int keyPAD6 = XK_KP_6; const unsigned int keyPAD7 = XK_KP_7; const unsigned int keyPAD8 = XK_KP_8; const unsigned int keyPAD9 = XK_KP_9; const unsigned int keyPADADD = XK_KP_Add; const unsigned int keyPADSUB = XK_KP_Subtract; const unsigned int keyPADMUL = XK_KP_Multiply; const unsigned int keyPADDIV = XK_KP_Divide; #elif cimg_display == 2 // Define keycodes for Windows. const unsigned int keyESC = VK_ESCAPE; const unsigned int keyF1 = VK_F1; const unsigned int keyF2 = VK_F2; const unsigned int keyF3 = VK_F3; const unsigned int keyF4 = VK_F4; const unsigned int keyF5 = VK_F5; const unsigned int keyF6 = VK_F6; const unsigned int keyF7 = VK_F7; const unsigned int keyF8 = VK_F8; const unsigned int keyF9 = VK_F9; const unsigned int keyF10 = VK_F10; const unsigned int keyF11 = VK_F11; const unsigned int keyF12 = VK_F12; const unsigned int keyPAUSE = VK_PAUSE; const unsigned int key1 = '1'; const unsigned int key2 = '2'; const unsigned int key3 = '3'; const unsigned int key4 = '4'; const unsigned int key5 = '5'; const unsigned int key6 = '6'; const unsigned int key7 = '7'; const unsigned int key8 = '8'; const unsigned int key9 = '9'; const unsigned int key0 = '0'; const unsigned int keyBACKSPACE = VK_BACK; const unsigned int keyINSERT = VK_INSERT; const unsigned int keyHOME = VK_HOME; const unsigned int keyPAGEUP = VK_PRIOR; const unsigned int keyTAB = VK_TAB; const unsigned int keyQ = 'Q'; const unsigned int keyW = 'W'; const unsigned int keyE = 'E'; const unsigned int keyR = 'R'; const unsigned int keyT = 'T'; const unsigned int keyY = 'Y'; const unsigned int keyU = 'U'; const unsigned int keyI = 'I'; const unsigned int keyO = 'O'; const unsigned int keyP = 'P'; const unsigned int keyDELETE = VK_DELETE; const unsigned int keyEND = VK_END; const unsigned int keyPAGEDOWN = VK_NEXT; const unsigned int keyCAPSLOCK = VK_CAPITAL; const unsigned int keyA = 'A'; const unsigned int keyS = 'S'; const unsigned int keyD = 'D'; const unsigned int keyF = 'F'; const unsigned int keyG = 'G'; const unsigned int keyH = 'H'; const unsigned int keyJ = 'J'; const unsigned int keyK = 'K'; const unsigned int keyL = 'L'; const unsigned int keyENTER = VK_RETURN; const unsigned int keySHIFTLEFT = VK_SHIFT; const unsigned int keyZ = 'Z'; const unsigned int keyX = 'X'; const unsigned int keyC = 'C'; const unsigned int keyV = 'V'; const unsigned int keyB = 'B'; const unsigned int keyN = 'N'; const unsigned int keyM = 'M'; const unsigned int keySHIFTRIGHT = VK_SHIFT; const unsigned int keyARROWUP = VK_UP; const unsigned int keyCTRLLEFT = VK_CONTROL; const unsigned int keyAPPLEFT = VK_LWIN; const unsigned int keyALT = VK_LMENU; const unsigned int keySPACE = VK_SPACE; const unsigned int keyALTGR = VK_CONTROL; const unsigned int keyAPPRIGHT = VK_RWIN; const unsigned int keyMENU = VK_APPS; const unsigned int keyCTRLRIGHT = VK_CONTROL; const unsigned int keyARROWLEFT = VK_LEFT; const unsigned int keyARROWDOWN = VK_DOWN; const unsigned int keyARROWRIGHT = VK_RIGHT; const unsigned int keyPAD0 = 0x60; const unsigned int keyPAD1 = 0x61; const unsigned int keyPAD2 = 0x62; const unsigned int keyPAD3 = 0x63; const unsigned int keyPAD4 = 0x64; const unsigned int keyPAD5 = 0x65; const unsigned int keyPAD6 = 0x66; const unsigned int keyPAD7 = 0x67; const unsigned int keyPAD8 = 0x68; const unsigned int keyPAD9 = 0x69; const unsigned int keyPADADD = VK_ADD; const unsigned int keyPADSUB = VK_SUBTRACT; const unsigned int keyPADMUL = VK_MULTIPLY; const unsigned int keyPADDIV = VK_DIVIDE; #else // Define random keycodes when no display is available. // (should rarely be used then!). const unsigned int keyESC = 1U; //!< Keycode for the \c ESC key (architecture-dependent) const unsigned int keyF1 = 2U; //!< Keycode for the \c F1 key (architecture-dependent) const unsigned int keyF2 = 3U; //!< Keycode for the \c F2 key (architecture-dependent) const unsigned int keyF3 = 4U; //!< Keycode for the \c F3 key (architecture-dependent) const unsigned int keyF4 = 5U; //!< Keycode for the \c F4 key (architecture-dependent) const unsigned int keyF5 = 6U; //!< Keycode for the \c F5 key (architecture-dependent) const unsigned int keyF6 = 7U; //!< Keycode for the \c F6 key (architecture-dependent) const unsigned int keyF7 = 8U; //!< Keycode for the \c F7 key (architecture-dependent) const unsigned int keyF8 = 9U; //!< Keycode for the \c F8 key (architecture-dependent) const unsigned int keyF9 = 10U; //!< Keycode for the \c F9 key (architecture-dependent) const unsigned int keyF10 = 11U; //!< Keycode for the \c F10 key (architecture-dependent) const unsigned int keyF11 = 12U; //!< Keycode for the \c F11 key (architecture-dependent) const unsigned int keyF12 = 13U; //!< Keycode for the \c F12 key (architecture-dependent) const unsigned int keyPAUSE = 14U; //!< Keycode for the \c PAUSE key (architecture-dependent) const unsigned int key1 = 15U; //!< Keycode for the \c 1 key (architecture-dependent) const unsigned int key2 = 16U; //!< Keycode for the \c 2 key (architecture-dependent) const unsigned int key3 = 17U; //!< Keycode for the \c 3 key (architecture-dependent) const unsigned int key4 = 18U; //!< Keycode for the \c 4 key (architecture-dependent) const unsigned int key5 = 19U; //!< Keycode for the \c 5 key (architecture-dependent) const unsigned int key6 = 20U; //!< Keycode for the \c 6 key (architecture-dependent) const unsigned int key7 = 21U; //!< Keycode for the \c 7 key (architecture-dependent) const unsigned int key8 = 22U; //!< Keycode for the \c 8 key (architecture-dependent) const unsigned int key9 = 23U; //!< Keycode for the \c 9 key (architecture-dependent) const unsigned int key0 = 24U; //!< Keycode for the \c 0 key (architecture-dependent) const unsigned int keyBACKSPACE = 25U; //!< Keycode for the \c BACKSPACE key (architecture-dependent) const unsigned int keyINSERT = 26U; //!< Keycode for the \c INSERT key (architecture-dependent) const unsigned int keyHOME = 27U; //!< Keycode for the \c HOME key (architecture-dependent) const unsigned int keyPAGEUP = 28U; //!< Keycode for the \c PAGEUP key (architecture-dependent) const unsigned int keyTAB = 29U; //!< Keycode for the \c TAB key (architecture-dependent) const unsigned int keyQ = 30U; //!< Keycode for the \c Q key (architecture-dependent) const unsigned int keyW = 31U; //!< Keycode for the \c W key (architecture-dependent) const unsigned int keyE = 32U; //!< Keycode for the \c E key (architecture-dependent) const unsigned int keyR = 33U; //!< Keycode for the \c R key (architecture-dependent) const unsigned int keyT = 34U; //!< Keycode for the \c T key (architecture-dependent) const unsigned int keyY = 35U; //!< Keycode for the \c Y key (architecture-dependent) const unsigned int keyU = 36U; //!< Keycode for the \c U key (architecture-dependent) const unsigned int keyI = 37U; //!< Keycode for the \c I key (architecture-dependent) const unsigned int keyO = 38U; //!< Keycode for the \c O key (architecture-dependent) const unsigned int keyP = 39U; //!< Keycode for the \c P key (architecture-dependent) const unsigned int keyDELETE = 40U; //!< Keycode for the \c DELETE key (architecture-dependent) const unsigned int keyEND = 41U; //!< Keycode for the \c END key (architecture-dependent) const unsigned int keyPAGEDOWN = 42U; //!< Keycode for the \c PAGEDOWN key (architecture-dependent) const unsigned int keyCAPSLOCK = 43U; //!< Keycode for the \c CAPSLOCK key (architecture-dependent) const unsigned int keyA = 44U; //!< Keycode for the \c A key (architecture-dependent) const unsigned int keyS = 45U; //!< Keycode for the \c S key (architecture-dependent) const unsigned int keyD = 46U; //!< Keycode for the \c D key (architecture-dependent) const unsigned int keyF = 47U; //!< Keycode for the \c F key (architecture-dependent) const unsigned int keyG = 48U; //!< Keycode for the \c G key (architecture-dependent) const unsigned int keyH = 49U; //!< Keycode for the \c H key (architecture-dependent) const unsigned int keyJ = 50U; //!< Keycode for the \c J key (architecture-dependent) const unsigned int keyK = 51U; //!< Keycode for the \c K key (architecture-dependent) const unsigned int keyL = 52U; //!< Keycode for the \c L key (architecture-dependent) const unsigned int keyENTER = 53U; //!< Keycode for the \c ENTER key (architecture-dependent) const unsigned int keySHIFTLEFT = 54U; //!< Keycode for the \c SHIFTLEFT key (architecture-dependent) const unsigned int keyZ = 55U; //!< Keycode for the \c Z key (architecture-dependent) const unsigned int keyX = 56U; //!< Keycode for the \c X key (architecture-dependent) const unsigned int keyC = 57U; //!< Keycode for the \c C key (architecture-dependent) const unsigned int keyV = 58U; //!< Keycode for the \c V key (architecture-dependent) const unsigned int keyB = 59U; //!< Keycode for the \c B key (architecture-dependent) const unsigned int keyN = 60U; //!< Keycode for the \c N key (architecture-dependent) const unsigned int keyM = 61U; //!< Keycode for the \c M key (architecture-dependent) const unsigned int keySHIFTRIGHT = 62U; //!< Keycode for the \c SHIFTRIGHT key (architecture-dependent) const unsigned int keyARROWUP = 63U; //!< Keycode for the \c ARROWUP key (architecture-dependent) const unsigned int keyCTRLLEFT = 64U; //!< Keycode for the \c CTRLLEFT key (architecture-dependent) const unsigned int keyAPPLEFT = 65U; //!< Keycode for the \c APPLEFT key (architecture-dependent) const unsigned int keyALT = 66U; //!< Keycode for the \c ALT key (architecture-dependent) const unsigned int keySPACE = 67U; //!< Keycode for the \c SPACE key (architecture-dependent) const unsigned int keyALTGR = 68U; //!< Keycode for the \c ALTGR key (architecture-dependent) const unsigned int keyAPPRIGHT = 69U; //!< Keycode for the \c APPRIGHT key (architecture-dependent) const unsigned int keyMENU = 70U; //!< Keycode for the \c MENU key (architecture-dependent) const unsigned int keyCTRLRIGHT = 71U; //!< Keycode for the \c CTRLRIGHT key (architecture-dependent) const unsigned int keyARROWLEFT = 72U; //!< Keycode for the \c ARROWLEFT key (architecture-dependent) const unsigned int keyARROWDOWN = 73U; //!< Keycode for the \c ARROWDOWN key (architecture-dependent) const unsigned int keyARROWRIGHT = 74U; //!< Keycode for the \c ARROWRIGHT key (architecture-dependent) const unsigned int keyPAD0 = 75U; //!< Keycode for the \c PAD0 key (architecture-dependent) const unsigned int keyPAD1 = 76U; //!< Keycode for the \c PAD1 key (architecture-dependent) const unsigned int keyPAD2 = 77U; //!< Keycode for the \c PAD2 key (architecture-dependent) const unsigned int keyPAD3 = 78U; //!< Keycode for the \c PAD3 key (architecture-dependent) const unsigned int keyPAD4 = 79U; //!< Keycode for the \c PAD4 key (architecture-dependent) const unsigned int keyPAD5 = 80U; //!< Keycode for the \c PAD5 key (architecture-dependent) const unsigned int keyPAD6 = 81U; //!< Keycode for the \c PAD6 key (architecture-dependent) const unsigned int keyPAD7 = 82U; //!< Keycode for the \c PAD7 key (architecture-dependent) const unsigned int keyPAD8 = 83U; //!< Keycode for the \c PAD8 key (architecture-dependent) const unsigned int keyPAD9 = 84U; //!< Keycode for the \c PAD9 key (architecture-dependent) const unsigned int keyPADADD = 85U; //!< Keycode for the \c PADADD key (architecture-dependent) const unsigned int keyPADSUB = 86U; //!< Keycode for the \c PADSUB key (architecture-dependent) const unsigned int keyPADMUL = 87U; //!< Keycode for the \c PADMUL key (architecture-dependent) const unsigned int keyPADDIV = 88U; //!< Keycode for the \c PADDDIV key (architecture-dependent) #endif const double PI = 3.14159265358979323846; //!< Value of the mathematical constant PI // Define a 10x13 binary font (small sans). static const char* const data_font_small[] = { " UwlwnwoyuwHwlwmwcwlwnw[xuwowlwmwoyuwRwlwnxcw Mw " " (wnwnwuwpwuypwuwoy" "ZwnwmwuwowuwmwnwnwuwowuwfwuxnwnwmwuwpwuypwuwZwnwnwtwpwtwow'y Hw cwnw " " >{ jw %xdxZwdw_wexfwYwkw 7yowoyFx=w " "ry qw %wuw " "!xnwkwnwoyuwfwuw[wkwnwcwowrwpwdwuwoxuwpwkwnwoyuwRwkwnwbwpwNyoyoyoyoy;" "wdwnxpxtxowG|!ydwnwuwowtwow" "pxswqxlwnxnxmwDwoyoxnyoymwp{oyq{pyoy>ypwqwpwp{oyqzo{q{" "pzrwrwowlwqwswpwnwqwsxswpypzoyqzozq}swrwrwqwtwswswtxsxswq" "ws}qwnwkwnydwew_wfwdwkwmwowkw(w0wmwmwGwtwdxQw " "swuwnwo{q{pynwp|rwtwtwqydwcwcwcwmwmxgwqwpwnzpwuwpzoyRzoyoyexnynwd" "z\\xnxgxrwsxrwsyswowmwmwmwmwmwmwo}ryp{q{q{q{" "nwmwnwmwozqxswpyoyoyoyoyeyuwswrwrwrwrwrwrwrwrwqwrwmwtwnwmwnwuwpwuyp" "wuwoyZwmwnwuwowuwmwqwkwuwowuwoxnwuxowmwnwuwpwuypwuwZwmwnwuwowuwnwowmwtw\\w" "uwuwqwswqwswqwswqwswEwqwtweypzr~qyIw " "rwswewnwuwowuwozswtwuwqwtwmwnwlwowuwuwowOxpxuxqwuwowswqwswoxpwlwjwqwswqwsw" "y~}P{|k~-{|w~}k{|w~}Ww~|S{|k~X{|v~vv~|Y{|}k~}|Z{|y~" "}y|xy|}w~| s{|}k~}|Z{|l~|V{}p~}\"{|y~}|w{|}w~|V{|}|u{|v~P{}x~} {{}h~} " "N{|~y}y|}x~|S{|v~}|y{|}w~}2{|w~y}x~|g{}x" "~|k{|w~y}x~|g{}x~|kx}|w{|}w~}k{}x~}%{}t~|P{}t~|P{}t~|P{}t~|P{}t~|P{}t~}W{|" "[~}e{}f~}b{}c~|a{}c~|a{}c~|a{}c~|X{}w" "~}M{}w~}M{}w~}M{}w~}Z{|d~}|`{}t~}kv~b{|g~}]{|g~}]{|g~}]{|g~}]{|g~}){|g~|{|" "w~|h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f" "{|v~h{}w~}f{|v~|j{|v~|b{}w~}L{|u~}|w{|}v~|W{|w~|Iw~}Qw~x{}x~|V{}y~}x{}s~|" "X{|v~|wv~}Vx~}v{|x~| D{}x~}I{}w~Q{}x~|" "xw~U{}w~}w{|v~T{|w~|J{|w~Q{|x~}x{|x~|V{|v~vv~|T{}q~}|Wx~|x{}s~T{|w~I{|w~|" "R{|x~}x{}x~|Vx~}x{}s~|X{|v~vv~| Fw~}J{" "|w~|R{|x~}x{|x~}Uv~|w{}w~}Q{|w~|Ww~}Hv~}w{}w~} Pw~}y{|x~}cY~ " "i{}y~|#{|w~}Qm~|`m~}w{|m~|\\{}v~| ;{}`~} -" "{|r~x}t~}$v~}R{}x~}vw~}S{|w~t{|x~}U{|y~|_{|w~}w{}w~|n{}x~}_{|t~w}u~|Q{}x~}" "K{}w~N{}x~}Jx~ +{|w~Xs~y}s~|\\m~}X{}" "f~\\{}g~}R{|s~}\\{|g~}Y{|i~|`{}c~|_{|s~w}s~}]{|s~x}s~ " "hr~}r~|[{|f~}Xs~}Y{}d~|\\{|c~}g{}b~|^{}c~|`{}e~_{|a~|g{" "}w~}hv~|Y{}w~}M{}w~}W{}w~}n{|u~|_{}w~}V{}s~}jr~|h{}s~|lv~c{|p~}q~}^{}f~}_{" "|p~}q~}`{}e~[{}q~}p~dZ~g{|v~h{}w~}h{|" "v~|f{|v~p{|v~m{|t~}m{}w~}m{|v~|m{}v~c{}v~jv~}e\\~]{|w~}Nw~}D{|w~|Sp~| " "ww~|!w~} `{|w~|${}w~}!w~}Cv~Lv~Tw~}Dv~ " " Ov~ !{}w~}Mw~|N{|v~ :{}v~|s{|v~V{|t}|V{|t~s}w~| p{|v~ " "{{|v~|t{|v~|Vs~}W{}c~|_{}d~}c{|d~|W{|v~Y{}^~|iv~" "}r{|v~qv~}f{|p~}q~}${}r~} v{}w~ v{}q~| " "?y~}Ps~x}u~,v~k{}w~|Ww~|Su~}v|}w~X{|v~vv~|Z{}v~}y|wy|}v~}[{|}q{}x~} t{}" "v~}y|wy|}v~}&{}w~|x{|w~}#y|r{}x~}Kw~|R{|w~ {{}p~}v|x~} " "H{}x~|S{}w~t{}w~|3x|x{}x~|h{|x~}j{|}|x{}x~|h{|x~}`{|w~l{" "|w~$s~}Ps~}Ps~}Ps~}Ps~}Pr~W{}[~}g{|c~}c{}c~|a{}c~|a{}c~|a{}c~|X{}w~}M{}w~}" "M{}w~}M{}w~}Z{|b~}a{}s~|lv~c{|p~}q~}_" "{|p~}q~}_{|p~}q~}_{|p~}q~}_{|p~}q~}+{|p~}q~}w~|g{|v~h{}w~}f{|v~h{}w~}f{|v~" "h{}w~}f{|v~h{}w~}e{}v~jv~}a{}w~}Lu~r{" "|v~V{|w~J{}x~}Q{}x~|w{}x~Vx~|w{}u~}Vv|vv|U{}x~}x|}w~ " "Bw~|K{|w~|R{|x~}w{|x~}Vu|vv|S{|w~K{|w~|Qx~}v{}x~Uv|vv|T{|}" "t~}|Tx~|w{|u~|S{}x~}Jw~}Qw~vw~Vx~|w{}u~}Vv|vv| " "Dw~|Kw~|Qw~v{}x~|Vv|vv|Pw~|Vw~}Hv|uv| G{|t}|P{|t}|P{|t}|P{|t}|P{" "|t}|Lw~|xw~c{|[~} iy~}\"u~|S{|l~a{}l~|x{}l~]{}t~ ={|^~} " ".{|u~}|u{|}w~}$v~}R{}x~}vw~}S{}x~}t{}x~}Xy|y}y~y}x" "|cw~}u{}w~o{|w~^u~}t{|}y~|Q{}x~}Kw~|N{|w~|T{}sx~s{} " "4{}x~}Y{}v~}|v{}u~\\m~}X{}v~y}|wy|s~]{}x~}x|v{|}t~}Sr~}\\{" "|v~k|Z{|t~}|v{|y}y~|`h|u~^t~|u{|}u~|^u~}|v{|}v~} " "iv~y|v{|t~]{|o~y}p~|[{|r~|Z{}w~}q|}s~]{|s~}|t{|}u~}g{}w~}r|y" "}q~}_{}w~}h|_{}w~}j|`{|s~}|s{|}t~|g{}w~}hv~|Y{}w~}M{}w~}W{}w~}o{}u~|^{}w~}" "V{}r~k{|r~|h{}r~lv~d{|t~}|uy|s~_{}w~}" "s|y}t~}a{|t~}|uy|s~a{}w~}s|y}s~]{}u~}|ty|}v~dn|}v~}n|g{|v~h{}w~}gv~}f{}w~}" "ov~|n{|t~}mv~|l{}v~|o{|v~|bv~}l{}v~dc" "|u~}]{|w~}N{}w~D{|w~|T{}o~| x{|w~!w~} `{|w~|${}w~ w~} >w~}Dv~ Ov~ " "!{}w~|Mw~|M{}w~ :v~|q{}w~|Xp~}X{}v~|p{|" "}| o{}w~| " "v~|r{|v~W{|r~|X{}v~}i|^{}w~}h|d{|s~}y|xy|}s~}[{|y}u~y}y|]{}w~}h|v~|iv~}r{|" "v~qv~}g{|t~}|uy|s~&{}p" "~} w{}w~ w{}o~| " "@y~}Q{}v~}|u{|}y~,{|w~}m{|w~}Vw~|T{|v~|s{|}~({|w~}|o{|}w~|P{}x~| " "w{|w~}|o{|}w~|(x~}tw~ rw~K{}x" "~|Rw~ {{}o~}w{|x~} " "H{}x~|T{|w~r{}x~}-{}x~|hw~|d{}x~|hw~|_{}x~|mw~|%{|r~|R{|r~|R{|r~|R{|r~|R{|" "r~|R{}r~|Y{|v~|y{|" "v~}h|h{|s~}|t{|}u~}c{}w~}h|`{}w~}h|`{}w~}h|`{}w~}h|W{}w~}M{}w~}M{}w~}M{}w~" "}Z{|v~r|x}q~b{}r~lv~d{|t~}|uy|s~a{|t~" "}|uy|s~a{|t~}|uy|s~a{|t~}|uy|s~a{|t~}|uy|s~-{|t~}|u{|}q~}f{|v~h{}w~}f{|v~" "h{}w~}f{|v~h{}w~}f{|v~h{}w~}dv~}l{}v~`" "{}w~}M{|v~p{}w~|V{}x~}L{}x~}Q{|x~|ux~}Wx~|v{|w~} {{}q~| Aw~|Lw~|Qw~u{}x~| " "y{|x~}Lw~|Q{}x~tx~}#{|}r~}Rx~u{|}y~}|" "Q{}x~}L{}x~}Q{}x~|v{|x~}Wx~|v{}w~} j{|w~L{}x~}Q{}x~|u{}x~ x{}x~}Uw~} " "b{|}p~}|V{|}p~}|V{|}p~}|V{|}p~}|V{|}p~}|" "P{|w~|xx|av~|fv~| j{|y~|#{}t~Sk~|c{|k~}y{|k~}_{|s~} ?{}t~}y| " "u{|u~|p{}y~}$v~}R{}x~}vw~}Sw~|tw~|[{|}m~}|h{" "|w~sw~|p{}x~|_{}v~|q{|}|Q{}x~}L{}w~Lw~}U{}y~|ux~u{|y~}U{|x}| " "`w~|Z{|v~}s{|v~}]w~y}y|{}w~}X{}x~|p{|u~|^y}|n{|u~" "|U{}x~y}w~}\\{|w~}K{|u~}o{}|Mv~|_{}v~}q{|u~_{}v~}r{|v~| " "jy~}|qu~|_{}t~}y|s{|}t~}\\{}w~}w~}Z{}w~}o{|u~}_{|t~|n" "{|}x~}g{}w~}n{|}t~}`{}w~}L{}w~}P{|t~}m{|}w~|g{}w~}hv~|Y{}w~}M{}w~}W{}w~}p{" "}u~|]{}w~}V{}w~}w~|l{}r~|h{}r~|mv~e{|" "u~}|p{|t~`{}w~}q{|}u~|c{|u~}|p{|t~b{}w~}p{}u~|_{|u~|n{|}y~W{|v~|Z{|v~h{}w~" "}g{|v~fv~|o{}w~}n{}x~}w~mv~|kv~}ov~}a" "{|v~|n{|v~|M{}v~}\\{|w~}N{|w~|E{|w~|U{}v~}{|u~| x{|x~}\"w~} `{|w~|$v~ w~} " ">w~}Dv~ Ov~ !v~Lw~|M{}w~| <{|w~" "}p{|w~}Xn~|Zv~ _{|v~ " "!{|w~}p{}w~}X{}w~}w~}W{}v~|M{}w~}R{|t~|p{|t~|_{|}l~}|`{}w~}hv~|iv~}r{|v~" "qv~}h{|u~}|p{|" "t~({}n~} x{}w~ x{}m~| Ay~}R{|v~}p{}+{}w~|nv~Uw~|T{}w~| x{|w~|k{|w~|Q{|x~| " " x{|w~|k{|w~|*{|x~rx~|R{|w}Fw~Kw~|S{}" "x~| {|n~}w{|x~} " "H{}x~|T{}x~}qw~|.{}x~|i{}x~}c{}x~|i{}x~}^{}x~|n{}x~}${}w~}w~}R{}w~}w~}R{}" "w~}w~}R{}w~}w~}R{}w~}w" "~}Rv~|w~}Y{}w~}x{|v~U{|t~|n{|}x~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~" "}M{}w~}Z{|v~n{|}s~c{}r~|mv~e{|u~}|p{|" "t~c{|u~}|p{|t~c{|u~}|p{|t~c{|u~}|p{|t~c{|u~}|p{|t~/" "{|u~}|p{}t~}e{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}d{|v" "~|n{|v~|`{}w~}M{}w~}ow~}U{}x~|N{|w~Px~}t{|x~|Xx|sy| w{}s~| " "@{|w~M{}x~|Q{}x~|tw~ x{}x~}N{}x~|Q{|x~|t{|x~|&{}t~}v" "~} t{}x~|N{|x~}Q{|x~}t{}x~|Xx|sy| g{|x~}N{|x~}Q{|x~}sx~} {{|x~}Tw~} " "d{|j~|Z{|j~|Z{|j~|Z{|j~|Z{|j~|R{|w~Z{}w~}" "g{}w~} Ay|J{}y~#{|s~}Tk~}c{}j~|{}j~_q~| A{}u~} " "q{}v~|n{}~}$v~}R{}x~}vw~}Sw~t{|w~\\{|h~|i{}x~}s{}x~}q{|x~}^" "v~|C{}x~}Lw~}L{}w~V{|v~|wx~w{|v~|V{}w~ " "a{|w~Yv~}q{|v~|^{}y|u{}w~}Xy}|m{|u~M{|v~}V{|w~|}w~}\\{|w~}Ku~|?{|v~^u~o" "{}v~|a{|v~}p{}v~ " "j{~|nv~}`u~}|l{|}u~]v~{v~Z{}w~}mu~_u~}j{|y~}g{}w~}l{|}u~}a{}w~}L{}w~}Q{|u~" "}i{|}y~|g{}w~}hv~|" "Y{}w~}M{}w~}W{}w~}q{}u~|\\{}w~}V{}w~|w~}lw~|v~|h{}q~mv~f{|u~}m{|u~}a{}w~}" "o{}v~}d{|u~}m{|u~}c{}w~}o{|u~_{}v~|j{|" "W{|v~|Z{|v~h{}w~}fv~|h{}v~n{}w~}nw~|w~|o{|v~j{|v~}q{}v~_{}v~nv~}M{|u~[{|w~" "}Mw~}E{|w~|V{}v~}x{|u~| vw~} `{|w~|$" "w~} w~} >w~}Dv~ Ov~ !v~Lw~|M{}w~| <{}w~|ow~}Xm~|[v~ ^v~| " "\"v~|p{|v~Xv~{v~V{}v~|N{}w~}Ru~}l{}u~|b{|g~}" "|b{}w~}hv~|iv~}r{|v~qv~}i{|u~}m{|u~}*{}l~} y{}w~ y{}k~| By~}R{}v~ " "y{|w~}o{|w~}Uw~|T{}w~ x{|x~}g{}x~|R{|x~} y{|" "x~}g{}x~|+{}y~}r{}y~}R{}w~Fx~}M{|}w~ Mm~}w{|x~} " "H{}x~|Tw~p{}x~|.{}x~|j{|w~b{}x~|j{|w~]w~n{|w~#v~{v~Rv~{v~Rv~{v~" "Rv~{v~Rv~{v~S{|w~}{}w~|Zv~|x{|v~Uu~}j{|y~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{" "}w~}M{}w~}M{}w~}Z{|v~k{}t~d{}q~mv~f{|" "u~}m{|u~}e{|u~}m{|u~}e{|u~}m{|u~}e{|u~}m{|u~}e{|u~}m{|u~}1{|u~}m{|u~}e{|v~" "h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w" "~}c{}v~nv~}_{}w~}Mv~n{}w~Tw}N{|x}P{|x}r{|x} F{|}x~}| " "={|x}|O{|x}|Px}|s{|x}| xw|Nw|Pw|rw|'{|v~}|y{|v~} tw}Nw}P{|" "x}rx}| 6w|Nw|Ox|rw| Nw~} " "e{}h~}\\{}h~}\\{}h~}\\{}h~}\\{}h~}S{|w~Z{|v~gv~| " "Ay~}L{|y~}${|q~}V{|j~ci~}|i~|a{}p~|" "Oy|Uw|jw|Vu|Wv|kw|b{}v~} " "p{|v~|l{|}$v~}R{}x~}vw~}T{|x~}t{|x~}]{|g~|i{}x~|s{|w~qw~|^v~B{}x~}M{|w~|L{" "|w~}V{|}" "w~}xx~x{}w~}|U{}w~ " "a{}w~Z{|v~o{}w~}U{}w~}X{|j{}v~|M{}v~Vw~}{}w~}\\{|w~}L{|v~|>v~}_{|v~|nv~}a{" "}v~nv~| \\{}w~}" "b{|u~|h{|}v~|`{|w~}{}w~|[{}w~}m{|v~|a{}v~}gy}g{}w~}j{}u~|b{}w~}L{}w~}Q{}v~" "}f{|~|g{}w~}hv~|Y{}w~}M{}w~}W{}w~}r{}" "u~|[{}w~}V{}w~y|w~m{|w~{v~|h{}w~}v~|nv~f{}v~}ju~|b{}w~}nu~d{}v~}ju~|d{}w~}" "n{}v~|`v~}D{|v~|Z{|v~h{}w~}f{}w~}hv~}" "n{|v~o{|w~{}x~}o{}w~}i{}v~|s{|v~|^v~}p{}v~M{|u~|[{|w~}M{}x~}E{|w~|W{}v~|v{" "|u~| ww~} `{|w~|$w~} w~} >w~}Dv~ " "Ov~ !v~Lw~|M{|w~| <{}w~|ow~}Xy~}w|}t~[v~| _{}w~} " "#{|w~}n{}w~|Z{|w~}{}w~|Vu~|O{}w~}S{}v~}j{}u~c{}d~|c{}w~" "}hv~|iv~}r{|v~qv~}i{}v~}ju~|,{}v~y}w~|v~} {{}w~ {{}v~y}w~|u~| " "Cy~}R{}w~}R{|ey|_{}w~|pv~Tw~|T{}w~ y{|x~}e{}x~|\\" "{|}p~} {{|x~}e{}x~|,{}y~}r{}y~}R{}w~G{}x~|Rq~| N{|m~}w{|x~} " "H{}x~|U{|w~p{|x~}.{}x~|j{}x~|b{}x~|j{}x~|_{|w~|n{}" "x~|${|w~}{}w~|T{|w~}{}w~|T{|w~}{}w~|T{|w~}{}w~|T{|w~}{}w~|T{}w~|{|w~}[{|v~" "w{|v~V{}v~}gy}c{}w~}M{}w~}M{}w~}M{}w~" "}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~j{|u~}e{}w~}v~|nv~f{}v~}ju~|f{}v~}ju~|f{}v~}" "ju~|f{}v~}ju~|f{}v~}ju~|c{}d{}|d{}v~}" "k{}u~|f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}bv~}p{}v~^{}m~y}|Yv~o{|}" "w~ Py~}|u{|v~} 2w~} f{" "}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~T{|w~" "Yv~|i{|v~ A{}x~}M{}y~|$o~|W{|j~ch~}i~}" "b{}n~T{|}t~y}|Zw~}kw~}X{}u~|X{}w~|m{}w~|d{|v~| " "ov~}j{|$v~}R{}x~}vw~}T{}x~}t{}x~}]u~}|{|y~|y{|y}x~|iw~|rw~r{" "}x~}]v~B{}x~}Mv~Jv~T{|}w~|{x~{|w~}|S{}w~ " "aw~}Z{}w~}o{|v~U{}w~}Ev~}M{|v~W{}w~y{}w~}\\{|w~}Lv~}>{|v~|_{|v~m{}w~}" "av~|n{|v~ " "8{|y}6{|~|4{}v~c{|v~}d{|v~`{}w~|{|w~}[{}w~}lv~|b{|v~}e{|g{}w~}i{}u~b{}w~}" "L{}w~}R{|v~}dy|g{}w~}hv~|Y{}" "w~}M{}w~}W{}w~}s{}u~Y{}w~}V{}w~|{w~|nw~}{v~|h{}w~y|v~nv~g{|v~}i{|u~b{}w~}" "n{|v~|f{|v~}i{|u~d{}w~}n{|v~|a{|v~C{|v" "~|Z{|v~h{}w~}f{|v~|j{|v~|mv~|p{|w~{|x~}ov~|hv~}sv~}]{|v~|r{|v~|Mu~|Z{|w~}" "M{|w~E{|w~|X{}v~|t{|u~| xw~} `{|w~|$w" "~} w~} >w~}Dv~ Ov~ !w~}Lw~|M{|w~| {|v~]{|v~m{}w~}b{|w~}l{}w~}W{|v}M{}v~D{}r~}6{|r~}|>{|v~|e{}w~|^{|w~|" "dv~w{|v~\\{}w~}lv~|c{}v~N{}w~}g{}v~|d{" "}w~}L{}w~}S{}v~L{}w~}hv~|Y{}w~}M{}w~}W{}w~}vu~}V{}w~}V{}w~|yw~}pw~}yv~|h{}" "w~|y{}w~}pv~h{}v~e{}v~|d{}w~}mv~}g{}v" "~e{}v~|f{}w~}mv~}a{|v~C{|v~|Z{|v~h{}w~}dv~|l{|v~k{|v~q{|w~x{}x~}q{}w~}e{}" "v~wv~}Y{|v~|v{|v~|N{|v~}W{|w~}L{|w~F{|" "w~|[{}v~l{}v~ " "S{|}k~|Zw~}y{|o~}V{|k~|\\{|o~}y{|w~|\\{|m~}X{}k~}Y{|o~}y{|w~|`w~}y{|o~}Sv~" "Lv~Tw~}o{|v~}Wv~_w~}y{|" "o~|v{|o~|ew~}y{|o~}Y{|}n~}|[w~}y{|o~}Y{|o~}y{|w~|Zw~}y{|r~|[{}j~[{}i~]{|w~" "|m{}w~|b{}w~|k{|w~}i{|w~}q{|u~|q{|w~|" "h{|v~|o{|v~}b{}w~|k{|w~}`d~Uw~}Lw~|M{|w~| " "n{|o~}vw~|av~o{}w~|M{|v~[{|o~}|U{}k~}]w~}y{|o~}_u~|k{|w~}Wu~X{|w~|m{" "}w~|dv~|h{|v~_{}x~}x{}s~}__~|dv~t{}w~t{|w~}\\{}n~}Y{|}e~}f{|`~b{|w~}l{}w~|" "\\v~w{|v~T{|u~R{}w~}U{}v~dv~}i{}u~u{|" "v~u{|u~|g{}w~}hv~|iv~}r{|v~qv~|k{}v~e{}v~|c{~}I{|y~}w{}w~w{|y~}I{}~|U{}w~" "T{}~|k{}~|\\y~}w{}w~w{|y~| v~}P{}k~Z{|" "v~S{|v~}x{|}v~}|y{|v~}^{|w~}u{|w~}Rw~|S{|u~}${}y~|v{}v~}|wy|}y~u{|y~}c{|x~" "}r{|x~}Q{|q{| W{}y~|uw~vy|v~u{|y~}-w~" "|v{|w~Q{}w~K{|w~|I{|w~'{|w~|m{}w~|a{}m~}w{|x~} " "H{}x~|U{|x~}p{|x~}]{|q{|X{}x~|m{|w~_{}x~|m{|w~]{|}w~}q{|w~Pv~|Sv" "~w{|v~Vv~w{|v~Vv~w{|v~Vv~w{|v~Vv~w{|v~W{|v~vv~^{|v~|v{|v~X{}v~J{}w~}M{}w~}" "M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z" "{|v~g{|v~}g{}w~|y{}w~}pv~h{}v~e{}v~|j{}v~e{}v~|j{}v~e{}v~|j{}v~e{}v~|j{}v~" "e{}v~|g{|u~l{}v~}g{}v~kw~}{}v~g{|v~h{" "}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}`{|v~|v{|v~|\\{}w~}s|y}t~}_w~}u{|v~|" "Y{|}k~|Z{|}k~|Z{|}k~|Z{|}k~|Z{|}k~|Z{|" "}k~|d{|}k~|v{|m~}_{|k~|[{|m~}W{|m~}W{|m~}W{|m~}Rv~Lv~Lv~Lv~Q{|}l~\\w~}y{|" "o~}Y{|}n~}|X{|}n~}|X{|}n~}|X{|}n~}|X{|" "}n~}|S{}u~S{|}n~}{|x~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|b{}" "w~|k{|w~}aw~}y{|o~}^{}w~|k{|w~} X{|w~}" "t{}w~t{|w~}f{|w~}h{|w~}f{|w~}yy|p{|}y{|w~}f{|w~}ly|y{|w~}f{|w~}h{|w~}X{}x~" "}X{|v~kv~| Cv~|Lx~&{|i~|Y{|m~}bU~|e{}" "h~\\{|u~}|xy|}u~^w~}kw~}Yr~}X{}w~}ov~d{}w~ lv~| " "lv~}R{}x~}vw~}^{}Z~f{|w~|v{|y~|`w~|s{|w~tw~|[{|v~|D{}x~}Nw~" "}H{}w~|Q{|t~|N{}w~ " "c{|w~|Zv~|lv~|W{}w~}E{}w~}M{}w~}Z{|w~|w{}w~}\\{|w~}N{|v~={}w~}\\v~|nv~|b{}" "w~}l{}v~W{}v~M{}v" "~G{|}p~|6{|o~}@u~e{|w~|\\{}w~e{|w~}v{}w~|]{}w~}m{|v~|cv~}N{}w~}g{|v~}d{}w~" "}L{}w~}Sv~}L{}w~}hv~|Y{}w~}M{}w~}W{}w" "~}x{|u~}U{}w~}V{}w~|y{}w~q{|w~|yv~|h{}w~|y{|v~pv~hv~}e{|v~}d{}w~}mv~}gv~}" "e{|v~}f{}w~}mv~}a{|v~|D{|v~|Z{|v~h{}w~" "}d{}w~}l{}w~}jv~|r{|w~x{|x~}qv~|e{|v~}y{}v~W{}v~vv~}N{|u~V{|w~}Kw~|G{|w~|" "\\{}w~}j{}v~ T{}i~}[w~}{}m~}X{}j~|]{}m" "~}{|w~|]{}j~Y{}k~}Z{}m~}{|w~|`w~}{|l~Tv~Lv~Tw~}p{}v~}Vv~_w~}{|m~|x{|m~|fw~" "}{|m~}[{|j~|\\w~}{}m~}[{}m~}{|w~|Zw~}" "{|q~|\\{}i~[{}i~]{|w~|m{}w~|b{|w~}k{}w~|hw~}q{|u~}q{}w~|g{}v~ov~}a{|w~}k{}" "w~|`d~Uw~}Lw~|M{|w~| Gy|l{|Z{}m~}x{|w" "~`v~p{|v~Kv~Z{|m~|X{}j~}]w~}{|l~`t~|l{}w~|X{|u~}Y{|w~|m{}w~|e{}v~f{}w~}b{|" "v~}y{|q~}`_~|dv~t{}w~t{|w~}^{|k~}[{|c" "~}f{|`~b{}w~}l{}w~}]{|w~}vv~|T{|v~}S{}w~}Uv~}d{}v~j{|u~t{|v~t{|u~g{}w~}hv~" "|iv~}r{|v~r{|v~|kv~}e{|v~}dx~}I{|}v{}" "w~v{|}I{}x~|V{}w~U{}x~|m{}x~|\\{|v{}w~vy| " "{{v~}R{|i~Z{|v~R{|v~}|q~}|v~}\\v~u{}w~Qw~|R{|t~|'{|y~}v{}w~}p{|t{}y~|" "d{}x~|r{|x~}Ry}r{|~ " "X{|y~}tw~sw~|u{}y~|.{|w~}x|}w~|Q{}w~L{|w~|G{|x~}({|w~|m{}w~|a{}m~}w{|x~} " "H{}x~|U{|w~p{|x~}]" "{~|r{|}Y{}x~|mw~|_{}x~|m{}x~|[{|w~|r{}x~|Pv~|T{|w~}v{}w~|X{|w~}v{}w~|X{|w~" "}v{}w~|X{|w~}v{}w~|X{|w~}v{}w~|X{}w~}" "v{}w~}_{}w~}u{|v~Xv~}J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~" "fu~g{}w~|y{|v~pv~hv~}e{|v~}jv~}e{|v~}" "jv~}e{|v~}jv~}e{|v~}jv~}e{|v~}f{|u~n{}v~}fv~}l{}x~}y{|v~|h{|v~h{}w~}f{|v~" "h{}w~}f{|v~h{}w~}f{|v~h{}w~}_{}v~vv~}[" "{}w~}q{|}u~|`w~}uv~W{}i~}[{}i~}[{}i~}[{}i~}[{}i~}[{}i~}e{}i~}x{}k~}a{}j~|" "\\{}j~Y{}j~Y{}j~Y{}j~Sv~Lv~Lv~Lv~R{}j~" "}]w~}{|m~}[{|j~|Z{|j~|Z{|j~|Z{|j~|Z{|j~|T{}u~T{|f~`{|w~|m{}w~|a{|w~|m{}w~|" "a{|w~|m{}w~|a{|w~|m{}w~|b{|w~}k{}w~|a" "w~}{}m~}_{|w~}k{}w~| " "Xw~}s{}w~s{}w~fw~}f{}w~fw~}y{|y~|r{|y~}y{}w~fw~}l{|y~}y{}w~fw~}f{}w~X{}x~}" "Wv~|m{|v~ C{}w~}" "[{|}|o{|y~|&g~|Y{}n~|b{}V~e{|g~}]v~}r{|v~}_w~}kw~}Z{|r~}X{|v~p{|w~}dw~} " " pw|v~l| {{v~}R{}x~}vw~}^{}Z~f{|w~|v" "{|y~|`{}x~}s{|x~}u{}x~}Y{}v~|E{}x~}O{|w~}H{}w~|S{|}r~}|P{}w~ " "c{|w~Yv~|lv~|W{}w~}Ev~|N{|v~|Zw~}v{}w~}\\{|w~}|}v" "~y}|X{}w~}>{|v~|\\{}w~}o{|v~a{}w~}l{}v~W{}v~M{}v~J{|}p~}|2{|}p~}|D{}v~|e{}" "x~}p{|}w~}|vx|uw~|f{}w~|v{|w~}]{}w~}m" "{}v~c{|v~|N{}w~}fv~}d{}w~}L{}w~}T{|v~|L{}w~}hv~|Y{}w~}M{}w~}W{}w~}y{|u~}T{" "}w~}V{}w~|y{|w~|r{}x~}xv~|h{}w~|x{}w~" "}qv~i{|v~|dv~}d{}w~}mv~}h{|v~|dv~}f{}w~}n{|v~|`u~D{|v~|Z{|v~h{}w~}d{|v~m{|" "v~|j{}w~}r{}x~}x{|w~qv~|d{}v~y|v~|Vv~" "}x{}v~Mu~|V{|w~}K{}x~}G{|w~|]{}w~}h{|v~ " "U{}u~v}s~}\\w~}|v~w}t~}Zr~v}v~|^{}t~w}v~}|w~|^{}t~v}t~Zv}v~s}[{}t~w}v~}" "|w~|`w~}|u~x}t~}Uv~Lv~Tw~}q{}v~|Uv~_w~}|v~x}s~y{|v~x}s~fw~}|u~x}t~}]{|s~x}" "s~|]w~}|v~w}t~}]{|t~w}v~}|w~|Zw~}|t~}" "x~|]{}t~u}u~[{|x}v~q}]{|w~|m{}w~|av~kv~g{}w~q{}t~qv~e{}v~q{}v~_v~|m{|v~_d~" "Uw~}Lw~|M{|w~| J{|}v~}r{}v~}|_{}u~w}u" "~|y{}x~}`v~q{|v~}K{}w~|\\{}w~}p~}Z{}s~w}u~}]w~}|u~x}t~}as~m{|v~W{}t~Y{|w~|" "m{}w~|ev~|f{|v~c{|u~}yn~a_~|dv~t{}w~t" "{|w~}_{|t~w}t~}]{|b~}f{|`~b{}w~|l{}w~}]{}w~|v{|w~}S{|v~}T{}w~}Uv~|d{|v~|k{" "}v~|t{|v~s{}v~|h{}w~}hv~|i{}w~}r{|v~r" "{|v~|l{|v~|dv~}ev~}C{}w~C{}v~|W{}w~V{}v~n{|v~|W{}w~ " "sv~}S{|s~}y~x}v~Z{|v~Q{|e~}[{|w~}w{|w~}Qw~|R{}r~|){}y~|w{|w" "~}g{|y~}dw~q{}x~}S{}~}s{}y~ " "X{}y~|tw~s{}x~}u{|y~}-{}p~}P{}w~M{|w~|F{|x~}({|w~|m{}w~|a{}m~}w{|x~} " "H{}x~|Tw~p{}x~" "|]y~}s{|y~Z{}x~|n{|x~}^{}x~|n{|w~Y{|x~}s{|x~}Ov~|T{}w~|v{|w~}X{}w~|v{|w~}" "X{}w~|v{|w~}X{}w~|v{|w~}X{}w~|v{|w~}Xv" "~u{|v~_v~|u{|v~Y{|v~|J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~" "f{}v~g{}w~|x{}w~}qv~i{|v~|dv~}k{|v~|d" "v~}k{|v~|dv~}k{|v~|dv~}k{|v~|dv~}e{|u~p{}v~}f{|v~|m{}w~wv~}h{|v~h{}w~}f{|" "v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}^v~}x{}v" "~Z{}w~}o{}v~}`w~}v{|w~|W{}u~v}s~}\\{}u~v}s~}\\{}u~v}s~}\\{}u~v}s~}\\{}u~v}" "s~}\\{}u~v}s~}f{}u~v}s~}{s~w}t~}cr~v}" "v~|]{}t~v}t~[{}t~v}t~[{}t~v}t~[{}t~v}t~Tv~Lv~Lv~Lv~S{}h~|^w~}|u~x}t~}]{|s~" "x}s~|\\{|s~x}s~|\\{|s~x}s~|\\{|s~x}s~" "|\\{|s~x}s~|U{}u~U{|s~x}q~|`{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~" "|av~|m{|v~`w~}|v~w}t~}_v~|m{|v~ X{|w~" "r{}w~rw~}h{|w~dw~}h{|w~y{|w~|t{|w~}yw~}h{|w~l{|w~}yw~}h{|w~dw~}Y{}x~}W{}w~" "}m{}w~} Xg|}v~s|e{|}x~}o{}y~&{}f~Y{|o" "~}a{|V~f{|e~}_{|w~}p{|v~_w~}kw~}Z{}w~}v~Wv~|q{}w~}e{|w~ pc~} " "{{v~}R{|x}|v{|x}|^{}Z~f{|w~|v{|y~|`{|w~s{}x~}v" "{|w~Wu~|F{|x}|O{}w~|H{|w~}U{|}w~|x~|w~}|R{}w~ " "c{}x~}Yv~|lv~|W{}w~}F{|v~N{|v~}Z{}w~u{}w~}\\{|k~}Z{}w~}x{|}u~y}|" "L{}v~Zv~|pv~}a{|v~l{}v~|X{}v~M{}v~M{|}p~}|,{|}p~}|H{}v~|e{|w~q{|q~}y{}x~|" "v{|x~}fv~tv~]{}w~}n{}v~|c{|v~|N{}w~}f{" "}v~d{}w~}L{}w~}T{}v~|L{}w~}hv~|Y{}w~}M{}w~}W{}w~}{|u~}S{}w~}V{}w~|xw~}rw~|" "xv~|h{}w~|x{|v~|rv~i{|v~|d{}v~d{}w~}n" "{|v~|h{|v~|d{}v~f{}w~}n{}v~|`{}v~}|F{|v~|Z{|v~h{}w~}cv~|n{}v~i{}w~}rw~|ww~" "|s{|v~b{}q~}U{|v~|{|v~|N{}v~|U{|w~}K{" "|w~G{|w~|^{}w~}f{|v~ " "V{}y~}|r{|u~|]r~|u{|u~}\\{}u~}s{|}y~|_{|u~|u{|}s~|_{}v~}|t{}v~}Vw~}T{|u~|" "u{|}s~|`r~|u{|u~|" "Vv~Lv~Tw~}ru~|Tv~_r~|v{|}v~}{w~|u{}v~}gr~|u{|u~|^u~}|v{|}u~]r~|u{|u~|_{|u~" "|u{|}s~|Zr~}|v{|\\v~}|r{|}y~Wv~S{|w~|" "m{}w~|a{}w~|m{|w~}g{}w~|rs~qw~}dv~}s{|v~|_{}w~}m{}w~|Nu~Uw~}Lw~|M{|w~| " "K{}r~u{|r~}a{|v~}|v{}v~yw~|`v~r{|u~|K{|w" "~|]{}w~|xy|}t~}[u~}|s{|}~}]r~|u{|u~|ay|v~|n{}w~|X{|s~|Z{|w~|m{}w~|f{|v~dv~" "|e{|u~}|{|v~y|}v~}bx}u~q}u~x}|dv~t{}w" "~t{|w~}_u~|u{|u~|_{|u~}|v{|}t~v}f{|q}u~p}b{}w~|l{|v~]v~tv~R{}v~}U{}w~}V{|" "v~|cv~}l{|v~}s{|v~s{|v~}h{}w~}hv~|i{}v" "~r{|v~r{|v~|l{|v~|d{}v~fu~|C{}w~C{|u~|X{}w~W{}v~}m{}v~|X{}w~ " "sv~}T{|u~}|yy~}x{|}y~Z{|v~P{|g~}Y{}w~|xv~Pw~|T{|v~" "}u~}*x~v{}w~ex~dw~qw~}U{|x~}t{}x~ " "Xx~sw~s{}x~}tx~,{|r~|O{}w~N{|w~|Dw~({|w~|m{}w~|a{|m~}w{|x~} " "H{}x~|T{}x~}qw~|]" "x~}t{|x~|\\{}x~|nw~]{}x~|nw~|Xw~sw~|Ov~|Tv~tv~Xv~tv~Xv~tv~Xv~tv~Xv~tv~Y{|" "w~}tv~|a{|v~t{|v~Y{|v~|J{}w~}M{}w~}M{}" "w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|x{|v~|rv~i{|v~|d{}v~k{|" "v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{" "}v~d{|u~r{}v~}e{|v~|n{}w~v{}v~h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}" "^{|v~|{|v~|Z{}w~}nu~`w~}v{}w~V{}y~}|r" "{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|g{}" "y~}|r{|o~}|u{|}v~}e{}u~}s{|}y~|^{}v~}|" "t{}v~}]{}v~}|t{}v~}]{}v~}|t{}v~}]{}v~}|t{}v~}Uv~Lv~Lv~Lv~T{}u~}|v{|}v~}^r~" "|u{|u~|^u~}|v{|}u~\\u~}|v{|}u~\\u~}|v" "{|}u~\\u~}|v{|}u~\\u~}|v{|}u~U{}u~Uu~}|u{}u~|_{|w~|m{}w~|a{|w~|m{}w~|a{|w~" "|m{}w~|a{|w~|m{}w~|a{}w~}m{}w~|`r~|u{" "|u~|`{}w~}m{}w~| " "Xw~|r{}w~r{|w~hw~|d{|w~hw~|yu~|v{|u~y{|w~hw~|m{|u~y{|w~hw~|d{|w~Y{}x~}Vv~" "mv~| XZ~}g{}t~oy~}'{}" "e~}Y{}p~_W~|fc~|`v~n{}w~|`w~}kw~}Zv~|}w~|X{}w~}qv~|e{}x~} q{|c~| " "{{v~} y{|x~}t{}x~}]{|w~}v{|y~|_w~|u{|w~|vw" "~|Wt~ p{}w~|H{|v~V{}w~}yx~y{}w~}S{}w~ " "cw~|Z{|v~k{}w~}W{}w~}Fv~}Qy|u~}Z{|w~|u{}w~}\\{|i~|\\v~|y{}p~}|Nv~}Z{|v~|" "s{|v~}`{|v~lu~|X{}v~M{}v~P{|}p~}|b{|Z~}b{|}p~}|L{}v~}d{}x~|r{|n~{}x~|uw~|" "h{}w~}t{}w~|^{}w~}q{|}u~}b{}v~M{}w~}f{" "}v~d{}w~}L{}w~}T{}v~K{}w~}hv~|Y{}w~}M{}w~}W{}w~}|u~}R{}w~}V{}w~|x{|w~s{}w~" "wv~|h{}w~|w{}w~}rv~i{}v~c{}v~d{}w~}n{" "}v~|h{}v~c{}v~f{}w~}o{|u~_{|t~}|H{|v~|Z{|v~h{}w~}c{}v~nv~}i{|v~s{|w~|w{}x~" "}s{}w~}b{|q~S{}v~|v~}N{}v~}T{|w~}K{|w" "~|H{|w~| " "s{}|m{}w~}]t~}q{}v~|^{}v~}ny|_u~q{}t~|`{|v~|q{|v~|Ww~}Tu~q{|t~|`t~}r{|v~}" "Vv~Lv~Tw~}t{|u~Rv~_t~}r{}v~}" "y~}r{}v~gt~}r{|v~}_{}v~|r{|v~}^s~q{}v~_{}v~|r{}t~|Zs~T{|w~}m{|Wv~S{|w~|m{}" "w~|a{|w~}mv~|g{|w~}s{|s~|s{|w~|d{|v~|" "u{|v~}]v~mv~N{}v~Tw~}Lw~|M{|w~| " "L{}p~w{|p~}bv~}s{}w~y|w~_v~wx|}t~}J{|w~}^{}w~r{}u~|]{|v~|Ot~}r{|v~}_{|v~" "nv~W{}s" "~}Z{|w~|m{}w~|f{}w~}d{}w~}eu~}x{|w~|x{}v~|`{|w~}q{|w~}`v~t{}w~t{|w~}`{}v~" "q{}v~_u~}r{|v~}V{|w~}Wv~|l{|v~^{}w~}t{" "}w~|R{}v~}V{}w~}V{|v~bv~}l{|v~|s{|v~r{}v~h{}w~}hv~|i{}v~r{|v~r{}v~k{}v~c{}" "v~gu~|B{}w~B{|u~|Y{}w~X{}v~}k{}v~|Y{}" "w~ " "sv~}Tu~|wy~}u{|Z{|v~O{|u~}|x{|}v~}_{|p~}y{|p~}Ww~|Tw~}y{|t~|,y~}vw~|e{}y~" "dw~|s{}w~}V{|w~}u{}w~ Xy~}sw~s{}x~}" "t{}y~*y}x~}|[m|}w~l|^{}w~C{|x~}({|w~|m{}w~|`m~}w{|x~} " "H{}x~|T{|w~|s{}x~}\\w~}u{|w~|]{}x~|o{}x~}]{}x~|o{}x~}Ww~t" "{}x~}Nv~|U{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~" "|t{|w~}av~}t{|v~Y{}v~I{}w~}M{}w~}M{}w" "~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|w{}w~}rv~i{}v~c{}v~k{}v~" "c{}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~c{|" "u~t{}v~}d{}v~n{|w~|v{|v~h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}]{}v~|" "v~}Y{}w~}n{|v~|aw~}vv~V{}|m{}w~}]{}|m" "{}w~}]{}|m{}w~}]{}|m{}w~}]{}|m{}w~}]{}|m{}w~}g{}|m{}r~|q{|v~|g{}v~}ny|_{|" "v~|q{|v~|_{|v~|q{|v~|_{|v~|q{|v~|_{|v~" "|q{|v~|Vv~Lv~Lv~Lv~U{|v~}q{|v~|_t~}r{|v~}_{}v~|r{|v~}^{}v~|r{|v~}^{}v~|r{|" "v~}^{}v~|r{|v~}^{}v~|r{|v~}V{}u~V{}v~" "|r{|v~}_{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|`v~mv~_s~q{}v~_v~" "mv~ X{|w~q{}w~q{}x~|j{|w~b{}x~|j{|w~wu~" "|x{|u~|x{}x~|j{|w~m{|u~|x{}x~|j{|w~b{}x~|Z{}x~}V{}w~|o{|v~ " "WZ~}gx~}w~|q{}y~|({|c~}_v|{}r~u|d{}X~f{}b~|b{|w~}mw~" "}`w~}kw~}[{|v~{}w~}X{|w~}r{|v~d{}x~| q{}c~ yv~} " "y{}x~}t{}x~}\\v~}w{|y~|_{}w~|vw~}v{|x~}X{|r~ qv~Fv~X{}w~}|x" "x~x{|}w~}U{}w~ " "d{|w~Y{|v~k{}w~}W{}w~}G{}v~|Xm~}Y{}x~}t{}w~}\\{|h~}]v~y|l~}P{|v~|Y{|u~u|}" "v~}_{|v~|n{|u~|X{}v~M{" "}v~R{|o~}|`{|Z~}_{|}p~}|P{}v~}cw~r{|l~}x~|u{|x~|hv~|t{|v~^{}e~}a{}v~M{}w~}" "f{|v~|e{}d~|_{}g~|d{}v~K{}^~|Y{}w~}M{" "}w~}W{}p~|Q{}w~}V{}w~|ww~|tw~}wv~|h{}w~|vv~|sv~i{}v~c{|v~|e{}w~}o{|u~g{}v~" "c{|v~|g{}w~}p{|u~|^{}q~y}|M{|v~|Z{|v~" "h{}w~}c{|v~|p{|v~gv~|t{|w~v{|x~}sv~|a{|s~|Rq~}N{}v~}S{|w~}Jw~}H{|w~| " "bv~|^t~ov~}^v~}P{|v~|p{}u~|`v~|o{|v~Ww~}U" "{|v~o{}u~|`u~}p{|v~Vv~Lv~Tw~}u{|v~}Qv~_u~}pt~}pv~|hu~}p{|v~`{|v~|p{|v~|_t~" "ov~}a{|v~|p{}u~|Zt~S{}w~Gv~S{|w~|m{}w" "~|`v~|o{|v~ev~s{|x~y}x~}s{}w~|c{}v~uv~}\\{}w~|o{|w~}O{}v~|U{|w~}Lw~|M{|w~}" " M{|x~}x|}w~}xv~}x|}x~|d{}v~qw~y}x~}_" "v~x{}q~}I{|w~}_{|w~|q{|u~]{}w~|Nu~}p{|v~^{}w~|p{|w~}X{|q~Z{|w~|m{}w~|fv~|" "d{|v~f{|v~}w{}w~|wu~`{|w~}q{|w~}`v~t{}" "w~t{|w~}a{|v~ov~}a{|v~}p{}v~|W{|w~}Wv~}l|}v~^v~|t{|v~Q{}v~}W{}w~}V{|v~b{}" "w~}l{}v~r{|v~r{}v~|i{}w~}hv~|i{|v~|s{|" "v~r{}v~k{}v~xi~}y{|v~|iu~|A{}w~A{|u~|Z{}w~Y{}v~}i{}v~|Z{}w~ " "sv}|U{}v~|vy~}S{|v~O{|w~}s{|v~_{|o~|{o~}Ww~|U{}x~}v" "{}u~}.{|y~|w{|w~d{|y~|e{}w~t{}v~}W{|v~|v{}w~}cY|8{|y~|sw~sw~|t{|y~| " "`{|Z~}_{}x~}C{|w~}({|w~|m{}w~|`{|n~}w{|x~} " "H{}x~|Sv~|u{}w~|\\{}v~v{|v~|^{}x~|p{|w~\\{}x~|p{|w~W{|x~}u{|w~Mv}|Uv~|t{|" "v~Zv~|t{|v~Zv~|t{|v~Zv~|t{|v~Zv~|t{|v~" "Zv~rv~b{|v~s{|c~l{}v~I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}M{}w~}Z{|v~" "ev~}h{}w~|vv~|sv~i{}v~c{|v~|l{}v~c{|v" "~|l{}v~c{|v~|l{}v~c{|v~|l{}v~c{|v~|c{|u~v{}v~}c{}v~o{|w~|u{|v~|i{|v~h{}w~}" "f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}\\q~" "}X{}w~}mv~}aw~}vv~Ev~|Mv~|Mv~|Mv~|Mv~|Mv~|Ws~|o{}w~}gv~}Ov~|o{|v~_v~|o{|v~" "_v~|o{|v~_v~|o{|v~Vv~Lv~Lv~Lv~Uv~}o{}" "w~}_u~}p{|v~`{|v~|p{|v~|`{|v~|p{|v~|`{|v~|p{|v~|`{|v~|p{|v~|`{|v~|p{|v~|" "Wt|W{|v~|q{}u~|`{|w~|m{}w~|a{|w~|m{}w~|" "a{|w~|m{}w~|a{|w~|m{}w~|`{}w~|o{|w~}_t~ov~}`{}w~|o{|w~} " "X{}x~}q{}w~q{|x~}j{}x~}b{|x~}j{}x~}vu~|yu~|w{|x~}j{}x~}" "mu~|w{|x~}j{}x~}b{|x~}Z{}x~}V{|v~o{}w~} " "WZ~}g{}|yw~}qx~'a~|c{|}t~}k~}|fY~}g{}`~b{|w~|m{}w~`w~}kw~}[{|w~}{|v~Wv~" "r{}w~}dw~| lv~| kv~| yw~|tw~|\\{}v~}|y{|y~|^v~}y|}v~uw~X{|p~ " "rv~Fv~Xw~|vx~v{|w~U{}w~ d{}x~}Y{|v~k{}w~}W{}w" "~}H{|v~}Wo~}|Y{|w~|t{}w~}\\{|v~x}|x}s~}^v~|j~}Q{}w~}V{}l~}]v~}n{}u~}X{}v~" "M{|v}U{|}p~}|]{|Z~}\\{}o~|S{}v~}c{|x~}" "rv~}|w{|}t~|tx~}i{|v~rv~|_{}h~}|_v~}M{}w~}f{|v~|e{}d~|_{}g~|dv~}K{}^~|Y{}" "w~}M{}w~}W{}q~|P{}w~}V{}w~|w{}w~u{|w~|" "wv~|h{}w~|v{}w~}sv~iv~}c{|v~|e{}w~}p{|u~|gv~}c{|v~|g{}w~}sy|}u~}\\{}m~}|Q{" "|v~|Z{|v~h{}w~}bv~}p{}w~}g{}w~}t{}x~}" "v{|w~sv~|`{}u~}Q{|r~|O{|u~R{|w~}J{}w~H{|w~| " "b{|w~}^u~|o{|v~_{}v~Ov~}nu~|a{}w~}m{}w~|Xw~}Uv~|nu~|`u~nv~|Wv~Lv~T" "w~}v{}v~}Pv~_u~o{}u~|p{}w~}hu~nv~|a{}w~}n{}w~}_u~|o{|v~a{}w~}nu~|Zu~|S{}w~" "Gv~S{|w~|m{}w~|`{}w~}o{}w~}e{}w~s{}x~" "}|w~sv~a{}v~w{}v~[{|w~}ov~|P{}v~|T{|w~}Lw~|M{|w~}:{|4x~|v{|w~}{}x~}u{}x~" "dv~}q{}s~|_v~x{}r~}S{|y}~y}|w{|w~}_w~}o" "{|v~}^{}w~Mu~nv~|_{|w~}pv~|X{}w~}v~|[{|w~|m{}w~|g{|v~bv~|g{}v~v{}w~v{|v~|" "a{|w~}q{|w~}`v~t{}w~t{|w~}a{}w~|o{|v~a" "{}v~nv~}W{|w~}W`~_{|v~rv~|Q{}v~|X{}w~}V{|v~b{}w~}lu~r{|v~r{|v~|i{}w~}hv~|" "hv~}s{|v~rv~}kv~}xi~}y{|v~|ju~|@{}w~@{" "|u~|[{}w~Z{}v~}g{}v~|[{}w~ " "Gv~}uy~}S{|v~Ow~}q{|w~|`{|n~}o~}Ww~|Uw~|t{}u~|0{|y~|w{|x~}d{|y~|e{|v~}w|t~" "}X{|v~|vv~" "}c{|Z~}8{|y~|sw~t{}w~s{|y~| " "`{|Z~}`{}x~}M{|~}|v{|}v~'{|w~|m{}w~|_{}o~}w{|x~}Vv}| " "s{}x~|S{|v~}|{y|}w~}Z{}v~|w{|v" "~}_{}x~|pw~|o{}w~m{}x~|p{}x~|vy|}w~y}|g{|w~|u{}x~|o{}w~3{|v~rv~|\\{|v~rv~|" "\\{|v~rv~|\\{|v~rv~|\\{|v~rv~|\\{}w~}" "r{}w~|c{}w~}s{|c~lv~}I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}M{}w~}_{}i~" "}nv~}h{}w~|v{}w~}sv~iv~}c{|v~|lv~}c{|" "v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|b{|u~x{}v~}bv~}p{|w~}t{|v~|i{|v~h{}w~}f{|" "v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}\\{|r~|" "X{}w~}mv~}aw~}v{}w~}F{|w~}M{|w~}M{|w~}M{|w~}M{|w~}M{|w~}W{|u~}m{}w~h{}v~O{" "}w~}m{}w~|a{}w~}m{}w~|a{}w~}m{}w~|a{}" "w~}m{}w~|Wv~Lv~Lv~Lv~V{}v~n{|v~_u~nv~|a{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}" "`{}w~}n{}w~}`{}w~}n{}w~},{}w~}q{}t~}`" "{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|`{|w~}ov~|_u~|o{|v~`{|w~}" "ov~| X{}x~|q{}w~q{|w~j{}x~|b{|w~j{}x~|u" "u~|u~|v{|w~j{}x~|nu~|v{|w~j{}x~|b{|w~Zw~}Uv~|q{|v~ " "VZ~}c{}w~r{|y~}({}`~d{}^~|h{|Z~g{|_~}c{}w~l{|w~`w~}kw~}[{}w~" "|yv~|X{}w~|sv~|dV~} 2v~| k{}w~| " "{{|w~t{|w~Zs~y}y~|^{|o~|v{}x~}rx|e{|v~y}u~n{|w~},{|v~Fv~|Y{|~}tx~t{}~|U{}" "w~ " " dw~|Y{|v~k{}w~}W{}w~}Hu~Vp~}|Y{|w~}s{}w~}\\{|~}|q{}t~|`{|q~}|xy|t~|Rv~|U{" "|}p~|[{}v~|ot~} V{|}p~}|Z{|Z~}Z{|}p~}" "|W{}v~|b{}x~|s{}w~|s{|u~|tw~i{}w~}r{}w~}_{}g~}|`v~}M{}w~}f{|v~|e{}d~|_{}g~" "|dv~}K{}^~|Y{}w~}M{}w~}W{}q~O{}w~}V{}" "w~|w{|w~|v{}w~vv~|h{}w~|uv~|tv~iv~}c{|v~|e{}w~}sy|s~fv~}c{|v~|g{}f~}Z{}k~}" "S{|v~|Z{|v~h{}w~}b{|v~pv~|g{}w~}tw~|u" "w~|u{|v~_{}u~O{}t~|O{|u~|R{|w~}J{|w~|I{|w~| " "aw~}^v~}m{}w~}`v~|P{|v~m{}v~|av~l{|w~}Xw~}V{|v~m{|v~|`v~}n{}w~|Wv~" "Lv~Tw~}w{}v~}Ov~_v~}o{|v~}o{|w~}hv~}n{}w~|av~|n{|v~|`u~mv~|bv~m{}v~|Zv~}R{" "}w~Gv~S{|w~|m{}w~|`{|v~ov~d{}w~|tw~|{" "w~|u{|w~}`v~}y{|v~|Z{}w~|q{|v~P{}v~|Sv~|Lw~|Lv~|W{|y}w~}|iy}5{|y~}sw~|x~}" "s{}y~|f{|v~|ps~^v~x{}q~}|W{|r~|y{|w~}`" "{}w~m{}v~^{}w~Mv~}n{}w~|^{}w~q{|v~Wv~y|w~}[{|w~|m{}w~|g{}v~b{}w~}h{|v~|v{}" "w~u{}w~}a{|w~}q{|w~}`v~t{}w~t{|w~}av~" "mv~|c{|v~|n{|v~W{|w~}W`~_{}w~}r{}w~}Q{|v~}X{}w~}V{|v~b{}w~}lv~}r{|v~r{|v~|" "i{}w~}hv~|h{}v~s{|v~s{|v~|kv~}xi~}y{|" "v~|ku~|?{}w~?{|u~|\\{}w~[{}v~}e{}v~|\\{}w~ " "H{}v~ty~}S{|v~P{|w~o{}w~_s|}r~s|Vw~|V{|w~r{|u~0{|y~v{}x~}d{|y~|d{}o~" "|x~}Y{}v~v{|v~|b{|Z~}8{|y~rw~u}v~|s{|y~| " "`{|Z~}a{}l~|X{|m~|'{|w~|m{}w~|^o~}w{|x~}W{|v~| xm~}W{|n~}X{|v~|vv~}e{}" "n~}v{}x~}o{|v~m{}x~|q{|w~w{|o~|t{|~}y|w{|}v~u{|x~}o{|v~3{}w~}r{}w~}\\{}w~}" "r{}w~}\\{}w~}r{}w~}\\{}w~}r{}w~}\\{}w" "~}r{}w~}\\v~|r{|w~}cv~|s{|c~lv~}I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}" "M{}w~}_{}i~}nv~}h{}w~|uv~|tv~iv~}c{|v" "~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|a{|u~|}v~}av~}pw~}s{|v~|i{|v~h{}" "w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}[" "{}t~|W{}w~}mv~}aw~}v{}v~|Fw~}Lw~}Lw~}Lw~}Lw~}Lw~}Vu~l{|w~|iv~|Ov~l{|w~}av~" "l{|w~}av~l{|w~}av~l{|w~}Wv~Lv~Lv~Lv~V" "v~|mv~|`v~}n{}w~|av~|n{|v~|av~|n{|v~|av~|n{|v~|av~|n{|v~|av~|n{|v~|-v~|r{|" "x~}v~`{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{" "}w~|a{|w~|m{}w~|_{}w~|q{|v~^u~mv~|`{}w~|q{|v~ " "Ww~p{}w~pw~jw~yd|yw~jw~t{|p~|tw~jw~nu~|tw~jw~pv~}qw~Zw~|U{}w~}q{}" "w~} " "F{}w~}W{|w~|s{}y~|){|_~}f{}\\~|h{}\\~|g{}^~c{}w~l{|w~|aw~}kw~}[v~x{}w~}X{|" "w~}t{|v~cV~} 2v~| k{}w~| {{|x~" "}t{|x~}Z{|o~}y|`{|}r~|v{|w~t{}u~}|hv~}y{}u~o{|w~|,{|v~F{}w~|X{|sx~s{|T{}w~" " e{|w~X{|v~k{}w~}W{}w~}Iu~|Vm~|[{}w~" "r{}w~}L{}u~`{|r~|s{|u~S{}v~V{|}m~}|\\u~p{}t~} " "Y{|}p~}|VY|W{|}p~}|[{|v~|aw~rw~}q{|v~|t{}x~iv~q{|v~_{}e~}av~}M{}w" "~}f{|v~|e{}d~|_{}g~|dv~}m{}n~|h{}^~|Y{}w~}M{}w~}W{}q~}P{}w~}V{}w~|vw~}vw~}" "vv~|h{}w~|u{}v~tv~iv~}bv~|e{}e~|fv~}b" "v~|g{}g~}X{|}k~}U{|v~|Z{|v~h{}w~}av~|r{|v~f{|v~u{|w~|u{}x~}u{}w~}`{|t~|O{}" "v~}Nu~|Q{|w~}Iw~}I{|w~| a{}w~^v~|m{|" "w~}a{|v~O{|w~}lv~|b{|w~}kv~Xw~}V{|w~}lv~|`v~|n{|w~}Wv~Lv~Tw~}x{}v~|Nv~_v~|" "nv~|nv~hv~|n{|w~}b{|v~lv~|`v~}m{|w~}c" "{|w~}m{|v~|Zv~|R{}w~|Hv~S{|w~|m{}w~|_{}w~|q{|w~}d{|w~}u{|w~y{}x~|u{|w~|`{|" "v~y|v~}Y{|w~}q{}w~|Q{|v~}S{}v~Kw~|L{}" "w~}Y{|p~}|n{|y~}5{}y~r{|t~qy~}f{}v~ot~}^v~x{}o~}Y{}p~|{|w~|`w~}lv~|_{|w~}" "Nv~|n{|w~}^{|w~|r{}w~|X{}w~}yv~[{|w~|m" "{}w~|gv~}b{}v~h{|v~u{}w~u{|v~a{|w~}q{|w~}`v~t{}w~t{|w~}b{|w~}m{|w~}c{|v~" "lv~|X{|w~}W`~_v~|r{|v~Qu~W{}w~}V{|v~b{}" "w~}lv~}r{|v~qv~|i{}w~}hv~|h{|v~|t{|v~s{}v~jv~}xi~}xv~|lu~[|]{}w~\\\\|u~|]{" "}w~\\{}v~}c|u~|]{}w~ H{}w~}ty~}X{}g~|" "[{}x~}nw~Vs~|Nw~|V{}x~}pv~}1{}y~v{}x~}d{|y~}c{}r~}{|x~}Z{}w~}v{|v~|a{|Z~}" "8{}y~rn~}q{|y~} `{|Z~}a{}l~|X{|o~}|&{|" "w~|m{}w~|]{}q~}w{|x~}W{|v~| " "xm~}V{|}q~|V{|v~|v{}w~}fm~}vw~o{|u~rm~}vw~|w{}n~|u{|m~|uw~|p{|u~3v~q{|v~" "\\v~q{|v~\\" "v~q{|v~\\v~q{|v~\\v~q{|v~]{|v~pv~|e{}w~}r{|c~lv~}I{}d~|`{}d~|`{}d~|`{}d~|" "W{}w~}M{}w~}M{}w~}M{}w~}_{}i~}nv~}h{}w" "~|u{}v~tv~iv~}bv~|lv~}bv~|lv~}bv~|lv~}bv~|lv~}bv~|`{|p~}`v~}q{}x~}qv~|i{|" "v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}" "w~}Z{}v~}V{}w~}mv~}aw~}uu~}G{}w~L{}w~L{}w~L{}w~L{}w~L{}w~V{}w~}kw~}j{|v~O{" "|w~}kv~b{|w~}kv~b{|w~}kv~b{|w~}kv~Wv~" "Lv~Lv~Lv~W{|v~l{}w~}`v~|n{|w~}b{|v~lv~|b{|v~lv~|b{|v~lv~|b{|v~lv~|b{|v~lv~" "|.{|v~r{|w~{}w~|a{|w~|m{}w~|a{|w~|m{}" "w~|a{|w~|m{}w~|a{|w~|m{}w~|_{|w~}q{}w~|^v~}m{|w~}`{|w~}q{}w~| " "Ww~yd~|{w~jw~yd~|{w~jw~s{|r~|sw~jw~ou~|sw~jw~pv~}" "qw~Zw~|U{|v~qv~| " "G{}w~}Uw~}sx~({}^~g{}Z~g]~}f{|_~|cw~}l{|w~|aw~}kw~}\\{|v~x{|v~Wv~t{}w~}cV~" "} 2v~| k{}w~| {{}" "x~}t{}x~}Y{|}m~}`{|}w~}|tw~|v{|q~}j{}v~w{}u~p{}w~|,{|w~}F{}w~|Ox~Z{|Z~} " "t{}x~}X{|v~k{}w~}W{}w~}J{}v~|Ut|}t~}]{" "|w~|r{}w~}K{}v~|a{|s~p{|v~}Tv~}W{}i~}]{}u~|t{|}s~} Z{|q~}| " "e{|}q~}\\v~}`x~}s{}w~ov~|t{}x~|k{|w~}p{}w~|`{}w~}p|}" "t~|cv~}M{}w~}f{|v~|e{}w~}i|^{}w~}l|cv~}m{}n~|h{}w~}h|v~|Y{}w~}M{}w~}W{}w~}" "u~}Q{}w~}V{}w~|v{}w~w{|w~uv~|h{}w~|tv" "~|uv~iv~}c{|v~|e{}f~|ev~}c{|v~|g{}i~}S{|}m~}V{|v~|Z{|v~h{}w~}a{}w~}rv~}ev~" "|v{|w~t{|w~uv~|`r~O{|v~|O{}v~}P{|w~}I" "{}w~I{|w~| " "a{}w~^v~|lv~a{}w~}O{}w~|lv~|b{|w~|k{}w~Xw~}V{}w~|lv~|`v~m{|w~}Wv~Lv~Tw~}" "yu~|Mv~_v~mv~mv~hv~m{|w~}b{" "}w~}l{}w~}`v~|m{|v~c{}w~|lv~|Zv~Q{}v~|Iv~S{|w~|m{}w~|_{|w~}q{}w~|cv~u{}x~}" "y{}x~}u{}w~^{}q~}Wv~qv~Q{|v~}Uy|}v~|K" "w~|L{|u~}|^{|k~}|s{|}x~}5y~}q{}v~|q{}y~f{}w~}o{}u~|^v~ty|}s~[{|u~y}v~y|w~|" "a{|w~}l{}w~}^{}w~|Ov~m{|w~}]w~}rv~Wv~" "|y{}w~}\\{|w~|m{}w~|gv~|b{|v~h{}w~}u{}w~tv~a{|w~}q{|w~}`v~t{}w~t{|w~}b{}w~" "|m{|v~c{}w~}l{}w~}X{|w~}W`~`{|w~}pv~|" "S{}v~|W{}w~}V{|v~bv~}lv~}r{|v~r{|v~|i{}w~}hv~|gu~t{|v~t{|v~}jv~}xh|y{|v~|" "mT~]{}w~]T~|^{}w~]{}U~|^{}w~ Hv~|ty~}X" "{}g~|[w~|nw~|W{}u~}Mw~|V{}w~ov~1{|y~v{}x~}d{|y~|ay}x~y}ww|[{}w~}v{|v~|`{|" "Z~}8{|y~ro~o{|y~| Q{}w~R{}l~|V{|y}v~y}" "|${|w~|m{}w~|\\{|}s~}w{|x~}W{|v~| " "xm~}T{|y}w~}|S{|v~|v{}w~}gm~}w{}x~}oy~y}x~rm~}w{}x~}v{}~}y|w{|v~u{|o~}t{}" "x~}o", "t~^v|V{|w~}p{}w~|^{|w~}p{}w~|^{|w~}p{}w~|^{|w~}p{}w~|^{|w~}p{}w~|^{}w~}p{}" "w~}ev~|r{|v~h|lv~}I{}w~}i|_{}w~}i|_{}" "w~}i|_{}w~}i|V{}w~}M{}w~}M{}w~}M{}w~}_v}u~r}nv~}h{}w~|tv~|uv~iv~}c{|v~|lv~" "}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|" "_{|r~}_v~}r{}w~q{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}" "w~}mv~}aw~}u{|t~|I{}w~L{}w~L{}w~L{}w~" "L{}w~L{}w~V{}w~|kv~j{}w~}O{|w~|k{}w~b{|w~|k{}w~b{|w~|k{}w~b{|w~|k{}w~Wv~" "Lv~Lv~Lv~W{}w~}l{|w~}`v~m{|w~}b{}w~}l{}" "w~}b{}w~}l{}w~}b{}w~}l{}w~}b{}w~}l{}w~}b{}w~}l{}w~}eY|f{}w~}rw~y{|w~}a{|w~" "|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|" "m{}w~|^v~qv~]v~|m{|v~_v~qv~ " "Vw~yd~|{}x~|kw~yd~|{}x~|kw~r{|t~|r{}x~|kw~pu~|r{}x~|kw~pv~}q{}x~|[w~|T{}w~" "|s{|v~ G{" "}v~T{}w~t{|y~}(]~|i{|Y~}h{|_~}d{|a~}bw~}kw~|aw~}kw~}\\{}w~}wv~|Xv~|u{}w~|" "cV~} 2v~| k{}w~| {{w~|tw~|W{|}m~}T{" "}x~}v{|o~}l{|v~|v{}u~q{}w~+{|w~}F{}w~|Ox~Z{|Z~}+m| " "ww~|X{|v~k{}w~}W{}w~}K{}v~}K{|}v~}^w~}q{}w~}Ju~a{|t~|o{}v~U{" "|v~|X{}u~}|wy|u~}]t~}y|{y|}q~} Z{|t~}| " "_{|}t~}\\v~`{|x~}s{}x~}o{|w~|t{}x~|kv~|p{|w~}`{}w~}n{|u~cv~}M{}w~}f{|v~|" "e{}w~}L{}w~}Tv~}m{}n~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}|u~}R{}w~}V{}w~|v{|w~|x{" "}x~}uv~|h{}w~|t{|v~uv~iv~}c{|v~|e{}h~" "}cv~}c{|v~|g{}h~}Qy|y}p~W{|v~|Z{|v~h{}w~}a{|v~s{|v~|e{}w~}v{}x~}t{|w~uv~|" "a{}r~}P{|v~|P{}v~}O{|w~}I{|w~|J{|w~| " "n{|y}l~^v~kv~a{}w~|Ov~|l{}w~|b{}w~|k{}w~|Yw~}Vv~|l{}w~|`v~m{|w~}Wv~Lv~Tw~}" "|u~Kv~_v~mv~mv~hv~m{|w~}b{}w~|l{|v~`v" "~kv~c{}w~|l{}w~|Zv~Pu~}|Kv~S{|w~|m{}w~|^v~qv~b{}w~u{}x~|y{|w~uv~]{}r~V{}w~" "|s{|w~}R{|v~}X{|q~}Jw~|K{|q~}c{}g~}w|" "}u~}5y~}pw~}p{}y~fv~|o{}u~]v~p{|t~\\v~}w{|w~}w~|a{}w~|l{|w~}]{}w~}y|Rv~m{|" "w~}]{}w~s{}w~}X{}w~}x{|v~\\{|w~|m{}w~" "|h{|v~|b{|v~|i{}w~|u{}w~tv~|b{|w~}q{|w~}`v~t{}w~t{|w~}bv~kv~c{}w~|l{|w~}X{" "|w~}Wv~jv~`v~|p{}w~}T{}v~|V{}w~}V{|v~" "|cv~|lv~}r{|v~r{|v~|i{}w~}hv~|g{}v~}u{|v~tu~|jv~}c{|v~|n{|T~]{}w~]T~}^{}w~" "]T~}^{}w~ I{|v~sy~}X{}g~|[w~m{}x~|Vu~" "|#{|w~|p{|w~|2{|y~|w{|x~}d{|y~|3v~}v{}v~|Aw~}8{|y~|sw~x{|w~}p{|y~| Q{}w~ " "p{|w~|m{}w~|Y{|}v~}w{|x~}W{|v~| jv~}" "v{}v~|W{|w~o{}y~{}x~r{}n~}x{|w~uy|rw~|ty|t}|s{|w~o{}y~|}x~^{}w~|Wv~|p{|w~}" "^v~|p{|w~}^v~|p{|w~}^v~|p{|w~}^v~|p{|" "w~}^v~|p{|v~f{|v~q{|v~Yv~}I{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}" "Z{|v~ev~}h{}w~|t{|v~uv~iv~}c{|v~|lv~}" "c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|^{|t~}^v~}s{}w~p{|v~|i{|v~h{}w~}f{|v~" "h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w" "~}n{|v~|aw~}t{}t~}W{|y}l~Y{|y}l~Y{|y}l~Y{|y}l~Y{|y}l~Y{|y}l~c{|y}l~j{}w~j{" "}w~|O{}w~|k{}w~|c{}w~|k{}w~|c{}w~|k{}" "w~|c{}w~|k{}w~|Xv~Lv~Lv~Lv~W{}w~|l{|v~`v~m{|w~}b{}w~|l{|v~b{}w~|l{|v~b{}w~" "|l{|v~b{}w~|l{|v~b{}w~|l{|v~f{|Z~}f{}" "w~|s{}x~|y{|w~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|^{}w~|s{|w~" "}]v~kv~_{}w~|s{|w~} Vw~yd~|{}x~|kw~yd" "~|{}x~|kw~qt~|r{}x~|kw~qu~|q{}x~|kw~pv~}q{}x~|[w~|T{|w~}s{}w~} " "H{|v~|T{|w~|u{}y~({|]~}i{}X~g{|`~b{}b~aw~}kw~}aw" "~}kw~}\\v~|w{}w~}X{}w~}uv~bw~}Z| 5x|v~}p| v{}w~| " "{|w~t{|w~S{|}n~|Vw~uv~|y{|}w~}m{}w~}t{}u~rw~}+{|w~}F{}w~|Ox" "~Z{|Z~},{|m~ " "x{|w~|X{|v~k{}w~}W{}w~}L{}v~}H{}v~}`{}w~p{}w~}J{}v~`t~n{|v~|V{}v~X{}v~}q{}" "v~}^{|j~|v~| Z{|t~| ]{|}" "u~}]{|w~}`{|x~|sw~|o{|w~|t{}x~|l{|v~nv~`{}w~}lv~}dv~}M{}w~}f{|v~|e{}w~}L{}" "w~}Tv~}m{}n~|h{}w~}hv~|Y{}w~}M{}w~}W{" "}w~}{|t~S{}w~}V{}w~|u{}x~}y{|w~|uv~|h{}w~|sv~|vv~iv~}c{|v~|e{}k~}|av~}c{|" "v~|g{}w~}t|y}u~}M{|}s~}X{|v~|Z{|v~h{}w" "~}`v~}t{}v~d{}w~}vw~|sw~|w{|v~a{|v~}v~|Q{|v~|Q{|u~N{|w~}Hw~|J{|w~| " "p{}h~|_v~k{}w~|bv~|Ov~k{}w~|bv~j}v~|Yw~}Vv~" "k{}w~|`w~}m{|w~}Wv~Lv~Tq~}Jv~_w~}mv~mv~hw~}m{|w~}bv~|l{|v~`v~kv~|dv~k{}w~|" "Zv~P{}r~}y|Pv~S{|w~|m{}w~|^{}w~|s{|w~" "}b{|w~|vw~|xw~|w{|w~}\\s~|Uv~sv~|Ru~W{|s~}|Iw~|I{|}t~}d{|u~}w|}g~}5{|y~|p{" "|x~|p{}y~fv~|o{|v~}]v~n{}v~|^{}w~|ts~" "`v~|l{|v~\\{}p~}Xw~}m{|w~}]{|w~|tv~|Xv~|wv~|]{|w~|m{}w~|h{|v~|q{}x~}q{|v~|" "iv~|u{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{" "|w~}bv~kv~|dv~|l{|v~X{|w~}Wv~|l{|v~a{|v~nv~U{|v~}U{}w~}Uv~}d{|v~|l{}v~r{|" "v~r{|v~|i{}w~}hv~|fu~|v{|v~u{}v~}iv~}c" "{|v~|n{|T~]{}w~]T~}^{}w~]T~}^{}w~ " "rw|V{|w~}sy~}X{|w}u~q}Zw~m{}x~|V{}v~\"{|v~ow~|2{|y~|w{|w~d{|y~|4{}w~}v{|v~" "?w~" "}8{|y~|sw~vw~}q{|y~| Q{}w~ p{|w~|m{}w~|Ux~}w{|x~}W{|v~| " "i{}w~|v{|v~Ww~|p{|y~|{}x~`{}x~|j{|x~}bw~|p{|y~}{}x~^{" "}w~|X{|v~nv~_{|v~nv~_{|v~nv~_{|v~nv~_{|v~nv~_{|w~}nv~|g{}w~}q{|v~Yv~}I{}w~" "}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}" "M{}w~}Z{|v~ev~}h{}w~|sv~|vv~iv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{" "|v~|]{}u~|^v~}t{|w~|p{|v~|i{|v~h{}w~}" "f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w~}n{}v~|aw~}s{|s~|[{}h~|\\{}h~|" "\\{}h~|\\{}h~|\\{}h~|\\{}h~|f{}h~j}v~" "jv~|Ov~j}v~|cv~j}v~|cv~j}v~|cv~j}v~|Xv~Lv~Lv~Lv~Wv~|l{|v~`w~}m{|w~}bv~|l{|" "v~bv~|l{|v~bv~|l{|v~bv~|l{|v~bv~|l{|v" "~f{|Z~}fv~|t{}x~|wv~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|]v~sv~" "|]v~kv~|_v~sv~| Vw~yd~|{w~jw~yd~|{w~j" "w~rr~|sw~jw~ru~|pw~jw~pv~}qw~Zw~|Sv~sv~ " "H{|v~|Rw~}uy~}({|]~}i{}X~|g{}b~|a{}d~|aw~}kw~}aw~}kw~}]{|v~v{|v~X{|v~v{" "|w~}b{}x~} pf~ v{|w~ " "{{|w~t{|x~}P{|y~}r~W{}x~|v{}w~u{}w~mv~r{}u~t{|w~|+{|v~F{}w~|Ox~Z{|Z~},{|m~" " x{}w~W{|v~k" "{}w~}W{}w~}M{}v~}F{}v~a{|w~|p{}w~}Iv~|au~}mv~}Vv~|Y{|v~}o{|v~|]{}m~|{v~| " "Z{|r~}| c{|}r~}]{|w~}`{|x~|sw~|nw~|t{}" "x~k{}w~}n{}w~}a{}w~}l{|v~|e{}v~M{}w~}f{}v~d{}w~}L{}w~}T{}v~mr|v~|h{}w~}hv~" "|Y{}w~}M{}w~}W{}w~}y{|t~T{}w~}V{}w~|u" "{|w~y{}w~tv~|h{}w~|s{|v~vv~i{}v~c{|v~|e{}w~}r|]{}v~c{|v~|g{}w~}q{}v~}K{|t~" "|Y{|v~|Z{|v~h{}w~}`{}v~tv~|d{|v~w{|w~" "|s{}x~}w{}w~}av~}{}v~Q{|v~|R{|u~M{|w~}H{}x~}J{|w~| " "r{|f~|_w~}k{}w~|bv~|Ov~k{}w~|b`~|Yw~}Vv~k{}w~|`w~}m{|w~}Wv~" "Lv~Tq~Iv~_w~}mv~mv~hw~}m{|w~}bv~jv~`v~k{}w~|dv~k{}w~|Zw~}O{}o~}|Sv~S{|w~|" "m{}w~|^{|w~}s{}w~|b{|w~}w{|w~w{}x~}w{|" "w~|\\{|u~}T{}w~|u{|w~}Ru~V{|s~}|Iw~|J{|}s~}d{|w~|s{|}k~|3y~}p{|x~}p{}y~fv~" "mv~|]v~m{}v~_{|w~}rt~`v~jv~Z{}r~}Xw~}" "m{|w~}\\w~}u{|w~}X{|w~}v{}w~}]{|w~|m{}w~|h{|v~|q{}x~}pv~|iv~t{}w~t{}w~|b{|" "w~}q{|w~}`v~t{}w~t{|w~}bv~k{}w~|dv~jv" "~X{|w~}W{}w~|l{|v~a{}w~}n{}w~}W{|u~T{}w~}U{}w~}d{}v~k{}v~|s{|v~r{}v~h{}w~}" "hv~|f{|u~|w{|v~v{}u~h{}v~c{|v~|n{|T~]" "{}w~]T~|^{}w~]{}U~}^{}w~ " "s{|w~V{|w~}sy~}S{|v~Pw~|nw~|V{|w~}!{}v~|q{}x~|1y~}vw~|e{}y~ci|]{}w~u{|w~|?" "w~}7y~}sw~v{" "|w~|r{}y~ P{}w~ p{|w~|m{}w~|Ux~}w{|x~}W{|v~| " "Fi|U{|w~|u{}w~X{}x~}p{|y~}y{}x~a{|w~i{|x~}c{}x~}p{|y~}y{}x~^{}w~|" "X{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~|n{}w~}h{" "|v~p{|v~Y{}v~I{}w~}M{}w~}M{}w~}M{}w~}" "D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|s{|v~vv~i{}v~c{|v~|l{}v~c{|v~|l{}" "v~c{|v~|l{}v~c{|v~|l{}v~c{|v~|^{}s~|_" "{}v~u{|w~|o{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w~}o{" "|u~`w~}q{}t~|^{|f~|^{|f~|^{|f~|^{|f~|" "^{|f~|^{|f~|h{|P~jv~|O`~|c`~|c`~|c`~|Xv~Lv~Lv~Lv~Wv~jv~`w~}m{|w~}bv~jv~bv~" "jv~bv~jv~bv~jv~bv~jv~f{|Z~}fv~|u{}x~}" "vv~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|]{}w~|u{|w~}\\v~k{}w~|_" "{}w~|u{|w~} Uw~yq}w~r}yw~jw~yd|yw~jw~" "sp~|tw~jw~su~|ow~jw~pv~}qw~Zw~|S{}w~}u{|w~} " "Hv~|Q{}w~|w{|y~|({|\\~iW~|f{}d~|_e~|`w~}kw~}aw~}kw~|]{}w~}uv~Wv~|w{" "}w~|b{}x~} q{|g~| " "v{|w~({}Z~X{|y~|{|}u~}Y{|w~uw~|tw~}o{|w~}q{}u~u{}w~*{|v~F{}w~|*m|}w~l|,{|" "m~ xw~}W{|v~k{}w" "~}W{}w~}N{}v~}Dv~|bw~}o{}w~}Iv~|au~|m{}w~}W{|v~X{}v~m{}v~\\{|p~}xv~| " "Y{}p~}| i{|}p~}|]{}w~}`{|x~|sw~mw~|t{}x~kv" "~}n|}v~a{}w~}kv~}e{}v~M{}w~}f{}v~d{}w~}L{}w~}T{}v~dv~|h{}w~}hv~|Y{}w~}M{}" "w~}W{}w~}x{|t~U{}w~}V{}w~|tw~|{w~}tv~|" "h{}w~|rv~}wv~i{}v~c{}v~d{}w~}T{}v~c{}v~f{}w~}p{}v~|Ju~}Y{|v~|Z{|v~h{}w~}_" "v~|v{|v~bv~|x{|w~r{}w~wv~|b{}v~xv~}R{|" "v~|Ru~|M{|w~}H{|w~J{|w~| " "s{|q~t}v~|_w~}k{}w~|bv~Nv~k{}w~|b`~|Yw~}Vv~k{}w~|`w~}m{|w~}Wv~Lv~Tp~Jv~_w~" "}mv~mv~hw~}" "m{|w~}bv~jv~`w~}k{}w~|dv~k{}w~|Zw~}N{|m~|Uv~S{|w~|m{}w~|]v~t{|v~`v~w{}x~}" "w{|x~}w{}w~[{|u~|T{|w~}u{}w~|S{}v~|V{|" "x}t~}Jw~|K{|s~y}|d{|y~}n{|}p~}1y~}p{}w~p{}y~fv~mv~\\v~lv~|`{}w~|r{|v~}`v~" "jv~\\{|p~}Xw~}m{|w~}\\{}w~u{}w~|Xv~|v{" "|v~]{|w~|m{}w~|h{|v~p{}w~pv~}iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bw~}" "k{}w~|dv~jv~X{|w~}W{}w~|l{|w~}av~|n{|v" "~Wu~|T{}w~}U{}v~dv~}k{|v~}s{|v~s{|v~}h{}w~}hv~|e{}u~|x{|v~w{}u~|h{}v~c{}v~" "l{|u~}\\|]{}w~][|u~|]{}w~\\{}v~}c|u~}" "]{}w~ " "s{|w~V{|w~}sy~}S{|v~P{}x~}o{|w~`{|a~}+u~|rw~|1y~}v{}w~ex~d{|j~}]{}w~}v{|v~" "|@w~}7y~}sw~u{}w~rx~ P{}w~ p{|" "w~|m{}w~|Ux~}w{|x~} " "w{|j~}V{|v~|v{}w~}Xw~oy~}x{}x~aw~|i{|x~|cw~ox~x{}x~^{}w~|Xv~}n|}v~`v~}n|}" "v~`v~}n|}v~`v~}n|" "}v~`v~}n|}v~a{|b~h{}v~p|}v~Y{}v~I{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}" "M{}w~}Z{|v~f{|v~|h{}w~|rv~}wv~i{}v~c{" "}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~^{}q~|`{}v~v{|w~}n{}v~h{|v~h{}" "w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{" "|v~|V{}w~}p{|u~|`w~}p{|t~}`{|q~t}v~|_{|q~t}v~|_{|q~t}v~|_{|q~t}v~|_{|q~t}" "v~|_{|q~t}v~|i{|q~t}`~|kv~N`~|c`~|c`~|" "c`~|Xv~Lv~Lv~Lv~Wv~jv~`w~}m{|w~}bv~jv~bv~jv~bv~jv~bv~jv~bv~jv~f{|Z~}fv~u{|" "x~}uv~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m" "{}w~|a{|w~|m{}w~|]{|w~}u{}w~|\\w~}k{}w~|_{|w~}u{}w~| " "U{}x~|q{}w~q{|w~j{}x~|b{|w~j{}x~|uu~|u~|v{|w~j{}x~|uu~|o{|" "w~j{}x~|qv}|r{|w~[{|w~|S{|v~uv~| " "TZ~}a{|w~}wx~'{|\\~iW~|ee~|^{|g~}_w~}kw~}aw~}kw~|]v~|u{}w~|X{}w~}wv~|b{|w~" "| " " r{}g~ u{|w~({}Z~X{|y~|w{}v~|Zw~|v{|w~s{|w~o{|w~}p{}u~vw~})v~Fv~| w{}w~ " "x{|m~ y{|w~|Vv~|lv~|W{}w~}O{}v~}C{}w~}" "c{|w~n|}w~}v|N{}w~}au~l{|v~Wv~}Xv~}m{|v~|[{|y}w~y}|x{|v~ " "V{|}p~}|XY|X{|}q~}|Z{}w~}`{|x~|sw~mw~|tw~l{|b~|b{}w~}k" "{}v~e{|v~|N{}w~}fv~}d{}w~}L{}w~}T{|v~|ev~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}w{|" "t~V{}w~}V{}w~|t{}w~|w~|tv~|h{}w~|r{|v~" "wv~i{|v~|d{}v~d{}w~}T{|v~|d{}v~f{}w~}o{}v~J{|u~Y{|v~|Z{|v~h{}w~}_{}w~}v{}" "w~}b{}w~}x{}x~}r{|w~wv~b{|v~|x{|v~|S{|" "v~|S{}v~|L{|w~}Gw~|K{|w~| " "t{|u~}|q{}w~|_v~k{}w~|bv~Nv~k{}w~|b`~|Yw~}Vv~k{}w~|`w~}m{|w~}Wv~Lv~Tw~}|u~" "Kv~_w~}mv~" "mv~hw~}m{|w~}bv~jv~`w~}k{}w~|dv~k{}w~|Zw~}L{|}o~}Vv~S{|w~|m{}w~|]{}w~}u{}" "w~}`{}w~|xw~|w{|w~wv~\\{|s~Sv~uv~S{}v~" "|O{}v~}Kw~|L{|v~}|_{|~|j{|y}x~y}|/" "x~q{|v~}qx~fv~m{}x~}\\v~l{}w~|`v~pv~}`v~jv~]n~}Xw~}m{|w~}\\{|w~|vv~X{|v~t{" "}w~" "|^{|w~|m{}w~|h{|v~p{}w~pv~|iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bw~}k{}" "w~|dv~jv~X{|w~}W{}w~}l{}w~}b{|v~lv~|Y" "{}v~|S{}w~}U{|v~}f{|v~|ju~|t{|v~s{}v~|h{}w~}hv~|dt~}y{|v~y{|t~|g{|v~|d{}v~" "k{|u~|?{}w~>u~|b{|v{}w~[{}v~|e{}v~}\\" "{}w~ " "s{|w~V{|w~}sy~}S{|v~P{|w~o{}x~}`{|a~}+{|u~}|u{|w~0{}y~v{|w~}g{|y~}d{|j~}" "\\{}v~|w{|v~}Aw~}7{}y~sw~tw~}t{|y~" "} P{}w~ p{|w~|m{}w~|Ux~}w{|x~} " "w{|j~}W{|v~|vv~}X{}x~|p{}y~|x{}x~b{}x~}hw~c{}x~}p{}y~|x{}x~^v~X{|b~|b{|b~|" "b{|b" "~|b{|b~|b{|b~|b{}b~}id~Y{|v~|J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}" "w~}Z{|v~f{}v~g{}w~|r{|v~wv~i{|v~|d{}v" "~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~_{}v~}u~|a{|v~|ww~}m{}v~h{|v~" "h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w" "~}Z{|v~|V{}w~}sy|s~_w~}n{}u~|b{|u~}|q{}w~|`{|u~}|q{}w~|`{|u~}|q{}w~|`{|u~}" "|q{}w~|`{|u~}|q{}w~|`{|u~}|q{}w~|j{|u" "~}|q{}a~|kv~N`~|c`~|c`~|c`~|Xv~Lv~Lv~Lv~Wv~jv~`w~}m{|w~}bv~jv~bv~jv~bv~jv~" "bv~jv~bv~jv~.v~v{|w~tv~a{|w~|m{}w~|a{" "|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|\\v~uv~[w~}k{}w~|^v~uv~ " "T{}x~}q{}w~q{|x~}j{}x~}b{|x~}j{}x~}vu~|{|u~|w{|x~}j{}" "x~}vu~|n{|x~}j{}x~}b{|x~}[{|w~Qv~|w{|v~ " "SZ~}`v~x{|y~}'{|]~}iW~|e{|g~}\\{}i~}^w~}kw~}aw~}l{|w~|^{|v~t{|w~}X{|v~x" "{|v~`w~} m{|v~ " "jw|({}Z~X{|y~|v{}w~}[{}x~}u{}x~}s{|w~o{}w~}o{}u~x{|w~|)v~Fv~ v{}w~ " "g{}w~Uv~|lv~|W{}w~}P{}v~" "}B{|v~c{|_~|O{}w~}a{}v~l{|v~X{|v~|Y{|v~|lv~|N{|v~ " "S{|}p~|[{|Z~}[{|}p~}|X{}w~}`{|x~|sw~|nw~|u{|x~}l{}b~}b{}w~}k{" "|v~e{|v~}N{}w~}g{|v~}d{}w~}L{}w~}T{|v~}ev~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}v{|" "t~W{}w~}V{}w~|t{|r~sv~|h{}w~|q{}w~}xv" "~i{|v~}dv~}d{}w~}T{|v~}dv~}f{}w~}nv~}J{}v~Y{|v~|Z{|v~|i{}w~}_{|v~vv~|b{}w~" "}xw~|qw~|y{|v~bv~}v{}v~S{|v~|T{}v~}K{" "|w~}G{}x~}K{|w~| " "tv~}n{}w~|_v~kv~|bv~|Ov~k{}w~|bv~Bw~}Vv~k{}w~|`w~}m{|w~}Wv~Lv~Tw~}{|u~|Mv~" "_w~}mv~mv~hw~}m{|w~" "}bv~|kv~`v~k{}w~|dv~k{}w~|Zw~}Iy|}q~Wv~S{|w~|m{}w~|]{|v~uv~_{|w~|xw~uw~|y{" "|w~}\\r~}T{|w~|w{}w~}T{}v~|M{|v~Kw~|L" "{}w~} " "O{}y~|rt~|s{|y~}fv~|nw~}\\v~l{|w~}`w~}p{}w~|`v~|kv~^u~}|Qw~}m{|w~}[w~}w{}" "w~}X{}w~|t{|w~}^{|w~|m{}w~|h{|v~" "pv~pv~|iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bv~k{}w~|dv~|l{|v~X{|w~}W{|" "w~}l{}w~|b{}w~}l{}w~}Z{|v~}R{}w~}T{}v" "~f{}v~i{|u~t{|v~t{|u~g{}w~}hv~|cr~}v~}s~}f{|v~}dv~}j{|u~|@{}w~?u~|b{}~|w{}" "w~vy~a{}v~|g{}v~}b{}~|w{}w~vy} {{}w~|" "W{|w~}sy~}S{|v~Ow~}q{|w~|`{|a~}){}u~}vw~}0{|y~}v{}w~}p{|t{}y~|d{|j~}[{|v~|" "vv~}Bw~}7{|y~}tw~t{|w~|u{}y~| P{}w~ " "p{|w~|m{}w~|Ux~}w{|x~} " "w{|j~}X{}v~v{|v~}X{|w~p{|y~|w{}x~bw~h{}x~|d{|w~p{|y~}w{}x~^v~X{}b~}b{}b~}" "b{}b~}b{}b~}b{" "}b~}b`~j{}d~Y{|v~}J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~fv~" "}g{}w~|q{}w~}xv~i{|v~}dv~}k{|v~}dv~}k" "{|v~}dv~}k{|v~}dv~}k{|v~}dv~}`{}v~|{|u~|b{|v~}x{}x~}lv~}h{|v~|i{}w~}f{|v~|" "i{}w~}f{|v~|i{}w~}f{|v~|i{}w~}Z{|v~|V" "{}e~|_w~}m{|u~bv~}n{}w~|`v~}n{}w~|`v~}n{}w~|`v~}n{}w~|`v~}n{}w~|`v~}n{}w~|" "jv~}n{}w~Tv~|Ov~Lv~Lv~Lv~Av~Lv~Lv~Lv~" "Wv~|l{|v~`w~}m{|w~}bv~|kv~bv~|kv~bv~|kv~bv~|kv~bv~|kv~.v~vw~|u{|v~a{|w~|m{" "}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}" "w~|\\{|w~|w{}w~}[v~k{}w~|^{|w~|w{}w~} " "T{|w~q{}w~q{}x~|j{|w~b{}x~|j{|w~wu~|x{|u~|x{}x~|j{|w~wu~|m{}x~|j{|w~b{}x~" "|[{|w~Q{|w~}w{}w~} " "SZ~}`{}w~|y{}y~|'{|n~y}~|n~}i{}k~x}k~c{|i~}Z{}j~]w~}kw~}a{}w~l{|w~|^{}w~}" "sv~Wv~|y{}w~}`{}w~|" " mv~| o{}Z~X{|y~|v{|w~}\\{|w~t{}x~|rw~|p{}w~}n{}u~yw~}(v~|Gv~ v{}w~ " "gw~}U{}w~}m{|v~V{}w~}Q{}v~}A{|v~c{|_~" "|O{}w~}a{}v~l{|v~X{}v~X{|v~k{}w~}N{}w~} " "Q{|}p~}|^{|Z~}^{|}p~}|U{}w~}`{|x~}sw~|o{|w~|u{}x~|l`~b{}w~}k{|v~|eu~N{}" "w~}g{}v~|d{}w~}L{}w~}Su~ev~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}u{|t~X{}w~}V{}w~|" "ss~}sv~|h{}w~|q{|v~|yv~hu~e{|v~|d{}w~}" "Su~e{|v~|f{}w~}n{}v~|K{|v~|Z{|v~|Yv~|i{}w~}^v~|x{}v~a{|v~y{|w~|q{}x~}y{}w~" "}c{}v~tv~}T{|v~|U{|v~}J{|w~}G{|w~K{|w" "~| " "u{|v~m{}w~|_v~kv~a{}w~|O{}w~|l{}w~|bv~|Cw~}V{}w~|l{}w~|`w~}m{|w~}Wv~Lv~Tw~" "}y{|u~|Nv~_w~}mv~mv~hw~}m{|w~}bv~" "|l{|v~`v~kv~cv~|l{}w~|Zw~}D{|}u~}Xv~S{|w~|m{}w~|\\{}w~|w{|w~}^w~}y{|w~u{}" "x~}y{}w~|]{}q~|Tv~wv~|U{|v~}K{}w~|Lw~|" "Lv~ " "N{|x~s{}x~{w~|tx~|fv~|o{|v~\\v~l{|w~}a{|w~|p{}w~_{}w~|l{|v~_{}v~|Ow~}m{|w~" "}[{}w~|xv~X{|v~rv~|_{|w~|m{}w~|h{" "|v~|qv~pv~|iv~|u{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~|bv~kv~c{}w~|l{|v~X{|w~" "}Vv~l{}w~|bv~|l{|v~[{|v~}Q{}w~}T{|v~}" "h{|v~|hu~}u{|v~u{|u~|g{}w~}hv~|b{}f~|du~e{|v~|i{|u~|A{}w~@u~|b{}x~|x{}w~" "ww~a{}v~|i{}v~}b{}x~|x{}w~w{}y~} {}w~|W" "{|v~sy~}S{|v~O{|w~}s{}w~}^q|}v~q|'{}t~|{|w~}.x~u{}v~}|wy|}y~tx~/" "{|v~|v{}w~}Cw~}6x~tw~s{}w~ux~ O{}w~ p{|w~|m{}w" "~|Ux~}w{|x~} " "B{}w~}v{|v~|Ww~|q{|y~}v{}x~c{}x~|i{}x~}cw~|q{|y~}v{}x~_{|v~X`~b`~b`~b`~b`~" "c{|`~|kc~Xu~J{}w~}M{}w~" "}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~g{|v~}g{}w~|q{|v~|yv~hu~e{|v~|" "ju~e{|v~|ju~e{|v~|ju~e{|v~|ju~e{|v~|a{}" "v~|x{|u~|bu~y{}w~l{|v~|gv~|i{}w~}ev~|i{}w~}ev~|i{}w~}ev~|i{}w~}Z{|v~|V{}f~" "|^w~}l{|v~|d{|v~m{}w~|a{|v~m{}w~|a{|v" "~m{}w~|a{|v~m{}w~|a{|v~m{}w~|a{|v~m{}w~|k{|v~m{}w~T{}w~|Ov~|Mv~|Mv~|Mv~|" "Bv~Lv~Lv~Lv~W{}w~|l{|v~`w~}m{|w~}bv~|l{" "|v~bv~|l{|v~bv~|l{|v~bv~|l{|v~bv~|l{|v~.v~|x{}x~|t{|v~a{|w~|m{}w~|a{|w~|m{" "}w~|a{|w~|m{}w~|a{|w~|m{}w~|[v~wv~|[v" "~kv~\\v~wv~| " "Sw~|r{}w~r{|w~hw~|d{|w~hw~|yu~|v{|u~y{|w~hw~|yu~|m{|w~hw~|d{|w~Z{|w~Pv~wv~" "| SZ~}_w~}yx~%n~{|~{|o~|" "i{|l~}|}|l~}b{}j~Xk~|]w~}kw~}a{}w~l{}w~]v~|s{}w~|X{}w~}yv~|_w~} mv~} " "g{}x~}t{}x~}O{|y~|uw~}\\{}x~|t{}x~|rw" "~|p{|w~}m{}u~}w~|({}w~|H{|w~} v{}w~ " "h{|w~|U{}w~}m{|v~V{}w~}R{}v~}@{|v~c{|_~|Ov~|a{|v~l{}w~}Xv~}X{|v~k{}w~}Nv~|" " N{|}p~}|a{|Z~}a{|}p~}|R{|w}|_x~}s{}x~}o{}w~|v{|w~l{}`~|c{}w~}k{|v~|e{}v~|" "O{}w~}gu~c{}w~}L{}w~}S{}v~|fv~|h{}w~}" "hv~|Y{}w~}M{}w~}W{}w~}t{|t~Y{}w~}V{}w~|s{}t~rv~|h{}w~|p{}w~}yv~h{}v~|f{}v~" "c{}w~}S{}v~|f{}v~e{}w~}mv~}K{|v~|Z{|v" "~|Yv~|iv~|^{}w~}xv~}`v~|{|w~p{}w~yv~|d{|v~|t{|v~|U{|v~|V{|u~I{|w~}Fw~|L{|" "w~| u{}w~|mv~|_v~|m{|v~a{}w~}O{}w~|lv" "~|b{}w~|Cw~}V{}w~|lv~|`w~}m{|w~}Wv~Lv~Tw~}x{|u~|Ov~_w~}mv~mv~hw~}m{|w~}b{}" "w~|l{|w~}`v~kv~c{}w~|lv~|Zw~}B{|u~Xv~" "S{|w~|m{}w~|\\{|w~}w{}w~|^v~y{}x~}u{|x~}y{}w~]{|v~|}v~T{}w~|y{|w~}U{|v~}J{" "|w~}Lw~|M{|w~} Mx~}v{|w~|{|w~|v{}x~e{" "}w~|o{}v~\\v~l{|w~}a{|w~|pw~}_{}w~|l{|w~}_v~Mw~}m{|w~}[{|w~}y{|w~}X{}w~|r{" "}w~}_{|w~|m{}w~|h{|v~|qv~|r{|v~|i{}w~" "|u{}w~tv~|b{|w~}q{|w~}`v~t{}w~t{}w~|bv~kv~c{}w~|l{|w~}X{|w~}Vv~lv~b{}v~jv~" "|\\u~P{}w~}S{}v~|iu~g{|t~|w{|v~v{}u~}" "f{}w~}hv~|a{}h~|c{}v~|f{}v~g{|u~|B{}w~Au~|b{}v~|y{}w~xu~a{}v~|k{}v~}b{}v~|" "y{}w~x{}w~}!{}w~|Vv~sy~}S{|v~O{|u~}y|" "{y|u~}T{|w~}Lw}|P{|}p~}-{|y~}u{}l~u{}y~|.{|v~|v{}w~}Dw~}6{|y~}uw~rw~}w{}y~" "| O{}w~ p{|w~|m{}w~|Ux~}w{|x~} C{}w" "~}v{|v~|W{}x~}px~u{}x~d{|w~i{}x~}c{}x~}px~u{}x~_{}w~}Y{}`~|d{}`~|d{}`~|d{}" "`~|d{}`~|d{}w~}j|}w~}l{|c~X{}v~|K{}w~" "}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~gu~|g{}w~|p{}w~}yv~h{}v~|" "f{}v~i{}v~|f{}v~i{}v~|f{}v~i{}v~|f{}v~" "i{}v~|f{}v~a{}v~|v{|u~|c{}v~|}w~|l{}v~fv~|iv~|ev~|iv~|ev~|iv~|ev~|iv~|Z{|" "v~|V{}h~}\\w~}k{}w~|d{}w~|mv~|a{}w~|mv" "~|a{}w~|mv~|a{}w~|mv~|a{}w~|mv~|a{}w~|mv~|k{}w~|mv~|U{}w~}O{}w~|M{}w~|M{}" "w~|M{}w~|Bv~Lv~Lv~Lv~W{}w~}l{}w~}`w~}m" "{|w~}b{}w~|l{|w~}b{}w~|l{|w~}b{}w~|l{|w~}b{}w~|l{|w~}b{}w~|l{|w~}.{}w~|y{}" "x~|s{|w~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w" "~|m{}w~|a{|w~|m{}w~|[{}w~|y{|w~}Zv~kv~\\{}w~|y{|w~} " "R{|w~r{}w~rw~}h{|w~dw~}h{|w~y{|w~|t{|w~}yw~}h{|w~y{|w~|lw~}" "h{|w~dw~}Z{|w~P{}w~|y{|w~} " "Rs}v~g}|_{}w~{|y~}%{|p~|{|~yp~}g{}m~{}~{}m~|a{}l~|X{|m~}\\w~}kw~}a{|w~|mv~" "]v~r{}w~}X" "{|v~{|v~^{}w~} n{}v~ " "gw~|tw~|O{|y~|uw~}]{|x~}sw~|rw~|p{|v~l{}r~}'{|w~}H{|w~} v{}w~ " "h{|w~T{|v~m{}w~}V{}w~}" "S{}v~}?{|v~c{|_~|Ov~|`v~|m{}w~}Y{|v~W{|v~k{}w~}O{|v~ " "J{|}p~}|d{|Z~}d{|}p~}|-w~s{|w~ov~|v{}x~|lv~|j{|v~c{}w~}k{}" "v~cv~}O{}w~}h{}v~|c{}w~}L{}w~}Rv~}fv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}rt~Z{}w~" "}V{}w~|ru~}rv~|h{}w~|p{|v~|{v~h{|v~}g" "{|v~}c{}w~}Rv~}g{|v~}e{}w~}m{|v~|L{|v~|Z{|v~|Y{}w~}j{|v~|^{|v~|{|v~_{}w~}{" "}x~}p{|w~yv~cv~}r{}v~U{|v~|W{|u~|I{|w" "~}F{}x~}L{|w~| " "u{}w~|n{|v~|_v~}m{}w~}a{|w~}O{|w~}m{|v~|b{}w~}Cw~}V{|w~}m{|v~|`w~}m{|w~}" "Wv~Lv~Tw~}vu~|Pv~_w~}mv" "~mv~hw~}m{|w~}b{|w~}l{}w~}`v~|m{|w~}c{|w~}lv~|Zw~}@v~|Yv~S{|w~}mv~|[v~wv~]" "{}w~|{w~|u{|w~yw~}]v~}y{}v~U{|w~}y{}w" "~|V{|v~}I{|w~}Lw~|M{|w~} " "M{|w~x}v~}x{}v~x}w~|e{}w~}ou~|]v~l{|w~|a{|w~p{}w~|_{|w~}l{}w~}`{|w~}Mw~}m{" "|w~}Zv~y{}w~" "|Y{|v~q{|v~_{|w~}m{}w~|gv~|r{|v~|r{|v~h{}w~}u{}w~tv~a{|w~}q{|w~}`v~t{}w~t{" "}w~|bv~|m{|w~}c{|w~}l{}w~}X{|w~}V{}w~" "|n{|w~}bv~}j{}v~]{}v~|P{}w~}Ru~j{}v~|f{|t~}|y{|v~x{|t~}e{}w~}hv~|`{|}l~}`" "v~}g{|v~}f{|u~|C{}w~Bu~|`u~|{}w~yu~|`{" "}v~|m{}v~}a{|u~|{}w~y{}v~}!{}w~|Vv~|ty~}S{|v~P{|g~}U{|w~}Lw~|N{|r~}+{}y~|" "u{|}o~}v{|y~}+v~}v{}v~Ew~}5{}y~|vw~r{|" "w~|y{|y~} N{}w~ p{|w~}m{}w~|Ux~}w{|x~} " "Dv~}v{}v~|W{|w~p{}y~|u{}x~dw~|j{}w~c{|w~p{}y~|u{}x~`{}v~|Yv~|j{|v~dv~|" "j{|v~dv~|j{|v~dv~|j{|v~dv~|j{|v~dv~|j{|v~l{}w~}n{|v~Wv~}K{}w~}M{}w~}M{}w~}" "M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~h{" "|v~}f{}w~|p{|v~|{v~h{|v~}g{|v~}i{|v~}g{|v~}i{|v~}g{|v~}i{|v~}g{|v~}i{|v~}" "g{|v~}b{}v~|t{|u~|cq~|l{|v~}f{}w~}j{|v" "~|e{}w~}j{|v~|e{}w~}j{|v~|e{}w~}j{|v~|Z{|v~|V{}k~}|Zw~}k{}w~}d{}w~|n{|v~|" "a{}w~|n{|v~|a{}w~|n{|v~|a{}w~|n{|v~|a{" "}w~|n{|v~|a{}w~|n{|v~|k{}w~|n{|v~}U{|w~}O{}w~}M{}w~}M{}w~}M{}w~}Bv~Lv~Lv~" "Lv~W{|v~lv~|`w~}m{|w~}b{|w~}l{}w~}b{|w" "~}l{}w~}b{|w~}l{}w~}b{|w~}l{}w~}b{|w~}l{}w~}Xt|X{}w~}{}x~}r{}w~}a{|w~}mv~|" "a{|w~}mv~|a{|w~}mv~|a{|w~}mv~|[{|w~}y" "{}w~|Zv~|m{|w~}\\{|w~}y{}w~| " "Qw~}s{}w~s{}w~fw~}f{}w~fw~}y{|y~|r{|y~}y{}w~fw~}y{|y~|l{}w~fw~}f{}w~Y{|w~" "P{|v~y{}w" "~| " "Kv~}J{|w~|}y~|${}r~}y{}~y{|q~f{|n~|{}~yn~}_m~|V{|o~}[w~}kw~}`w~}n{|w~}^{|" "w~}r{|v~Wv~{}w~}]v~| o{|v~| hw" "~t{|w~N{|y~|uw~}]w~|s{}x~|rw~|ov~|l{}s~&{|w~}H{}w~| v{}w~ " "h{}x~}Sv~|nv~|V{}w~}T{}v~}>{}w~}Q{}w~}J{}v~_{}w~}mv~" "}Y{}w~}Vv~|lv~|Ov~} " "G{|}p~}|0{|}o~}*{}x~rw~}q{}v~|w{}w~l{|v~hv~|d{}w~}ku~c{}v~}P{}w~}i{}u~b{}" "w~}L{}w~}R{}v~|gv~" "|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}qt~[{}w~}V{}w~|r{}v~|rv~|h{}w~|o{}w~}{v~g{}v~" "|hu~|c{}w~}R{}v~|hu~|e{}w~}lv~}L{}v~Y" "{|v~|Y{}v~j{}v~\\{}w~}{}w~}_{|v~{w~|ow~y|v~d{}v~pv~}V{|v~|Wu~|H{|w~}F{|w~" "L{|w~| u{}w~m{}v~|_u~mv~|a{|v~Nv~|n{}" "v~|b{|v~Cw~}Uv~|n{}v~|`w~}m{|w~}Wv~Lv~Tw~}uu~|Qv~_w~}mv~mv~hw~}m{|w~}b{|v~" "lv~|`v~}m{}w~}c{|v~m{|v~|Zw~}@{}w~|Yv" "~S{|w~}mv~|[{}w~|y{|w~}]{|w~}{w~sw~y|w~}^{}w~}wv~}U{}w~yv~Uv~}Gw~}Lw~|M{|" "w~| L{|q~}v{}q~|d{|w~}p{|u~|]v~l{}w~|a" "{|w~pv~^{|v~lv~|`{|w~|Mw~}m{|w~}Z{}w~y|v~X{}w~}pv~|`{|w~}mv~|gv~}r{|v~}r{}" "v~h{|v~u{}w~u{|w~}a{|w~}q{|w~}`{}w~|u" "{}w~tv~av~}m{}w~}c{|v~lv~|X{|w~}V{|w~}n{}w~|c{|v~i{|v~|_{}v~}O{}w~}R{|v~}" "l{}v~|d{|r~y}v~y}s~}d{}w~}hv~|]{|}s~y}" "|^{}v~|hu~|e{|v~}C{}w~C{}v~|^u~|}w~{}v~|^{}v~n{|v~}_{|u~|}w~{}v~} " "{}w~|V{}w~}ty~}S{|v~Q{}e~}V{|w~}Lw~|L{|t~*{|x" "~|t{|y}u~}|u{|x~|*{}w~|v{|v~Fw~}5{|x~|ww|qw|y{|x~| >{|w~}mv~|Ux~}w{|x~} " " Ev~}v{|v~U{}x~|q{|y~}t{}x~e{}x~}j{}w" "~b{}x~|q{|y~}t{}x~a{}v~}Y{|v~hv~|f{|v~hv~|f{|v~hv~|f{|v~hv~|f{|v~hv~|f{}v~" "hv~|n{|v~|n{|v~W{}v~}L{}w~}M{}w~}M{}w" "~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~i{|u~|f{}w~|o{}w~}{v~g{}v~|hu~|h{}v~|" "hu~|h{}v~|hu~|h{}v~|hu~|h{}v~|hu~|c{}" "v~|r{|u~|d{}s~|ku~|f{}v~j{}v~d{}v~j{}v~d{}v~j{}v~d{}v~j{}v~Y{|v~|V{}w~}r|" "Vw~}k{|w~|d{}w~m{}v~|a{}w~m{}v~|a{}w~m" "{}v~|a{}w~m{}v~|a{}w~m{}v~|a{}w~m{}v~|k{}w~m{}u~U{|v~O{|v~M{|v~M{|v~M{|v~" "Bv~Lv~Lv~Lv~Vv~|n{|v~_w~}m{|w~}b{|v~lv" "~|b{|v~lv~|b{|v~lv~|b{|v~lv~|b{|v~lv~|X{}u~X{|v~|x~}qv~|a{|w~}mv~|a{|w~}" "mv~|a{|w~}mv~|a{|w~}mv~|Z{}w~yv~Yv~}m{}" "w~}[{}w~yv~ " "P{|w~}t{}w~t{|w~}f{|w~}h{|w~}f{|w~}yy|p{|}y{|w~}f{|w~}yy|l{|w~}f{|w~}h{|w~" "}Y{|w~Ov~y|v~ K{}w~}Hw~}y" "~}\"{}t~}x{}~x{|s~d{|p~}y{}~y{|p~}]o~|T{}p~Zw~}kw~}`{}w~|o{}w~|^{}w~|qv~|" "X{}w~|v~|]{|v~| o{}v~j{} {|x~}t{|" "x~}N{|y~|v{}w~}^{}x~}r{}x~}rw~|o{}v~k{}u~|%v~Hv~ u{}w~ " "hw~|S{}v~o{}v~U{}w~}U{}v~}>{|v~}Q{}w~}Ju~_{|v~n{|v~|Z{|" "v~|Vv~}m{|v~|P{}v~ " "C{}o~}4{|o~}|({|x~}s{}w~}s{}u~|x{}w~|l{}w~}h{}w~}d{}w~}l{|v~}bu~|g{|}g{}w~" "}j{}u~|b{}w~}L{}w~" "}R{|u~|hv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}pt~\\{}w~}V{}w~|r{|v}qv~|h{}w~|nv~|" "v~g{|u~|j{}v~}b{}w~}R{|u~i{}v~}d{}w~}" "l{|v~|M{}v~Y{|v~|Y{|v~|kv~}\\{|v~{v~|_{|v~|w~|o{}x~y}w~}e{|v~|p{|v~|W{|v~|" "X{}v~}G{|w~}F{|w~|M{|w~| u{}w~|nu~|_" "u~}o{}v~_v~}O{}w~}o{|u~|av~}Dw~}U{}w~}o{|u~|`w~}m{|w~}Wv~Lv~Tw~}t{}v~|Rv~_" "w~}mv~mv~hw~}m{|w~}av~|n{|v~_u~mv~|bv" "~|n{}v~|Zw~}@{}w~|Yv~Rv~n{}v~|[{|w~}y{}w~|\\w~}|x~}s{}x~y}w~|_{}v~v{|v~|V{" "|w~y}w~}Vu~Fw~}Lw~|M{|w~| K{|s~}t{}s~" "|bv~p{}u~}]v~|mv~`{|w~q{}w~}]v~}n{}v~_{|w~|Mw~}m{|w~}Yw~y}w~|Xv~o{|w~}`{|" "v~n{|v~|g{}v~r{}u~rv~}gv~|v{}w~uv~|a{|" "w~}q{|w~}`{|w~}u{}w~u{|v~au~mv~|bv~}n{}v~Vv~Uv~nv~b{}w~}hv~}`{|v~}N{}w~}Q{" "|v~}n{}v~}b{|c~}c{}w~}hv~|Z{|v~Z{|u~|" "j{}v~}c{|w~B{}w~B{}x~|\\u~}w~}v~|\\{}x~|m{}x~}]{|u~}w~}v~} " "{{v~|V{|v~|uy~}S{|v~R{}v~y|q~}|u~W{|w~}Lw~|J{}u~*{|x" "~|e{|x~|({}x~}u{|w~F{|x}|4{|x~|e{|x~| ={|v~n{|v~|Ux~}w{|x~} " "Ew~|u{|x~}U{|x~}p{}j~}iw~j{}w~b{|x~}p{}j~}f{}v~}" "X{}w~}h{}w~}f{}w~}h{}w~}f{}w~}h{}w~}f{}w~}h{}w~}f{}w~}h{}w~}fv~}h{}w~}n{}" "w~}m{|v~Vu~|g{|}c{}w~}M{}w~}M{}w~}M{}w" "~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~j{|u~}e{}w~|nv~|v~g{|u~|j{}v~}g{|u~|j{}v~}" "g{|u~|j{}v~}g{|u~|j{}v~}g{|u~|j{}v~}c{" "}v~|p{|u~|e{|t~}k{}v~}e{|v~|kv~}d{|v~|kv~}d{|v~|kv~}d{|v~|kv~}Y{|v~|V{}w~}" "Mw~}k{}w~|d{}w~|nu~|a{}w~|nu~|a{}w~|n" "u~|a{}w~|nu~|a{}w~|nu~|a{}w~|nu~|k{}w~|nt~|Uv~}Ov~}Mv~}Mv~}Mv~}Cv~Lv~Lv~" "Lv~V{}v~nv~}_w~}m{|w~}av~|n{|v~`v~|n{|v" "~`v~|n{|v~`v~|n{|v~`v~|n{|v~W{}u~Wr~q{|v~_v~n{}v~|`v~n{}v~|`v~n{}v~|`v~n{}" "v~|Z{|w~y}w~}Yu~mv~|[{|w~y}w~} O{}w~}" "u{}w~u{}w~}d{}w~}j{}w~}d{}w~}j{}w~}d{}w~}j{}w~}d{}w~}j{}w~}X{}w~O{|w~y}w~}" " L{}w~}G{}u~|!{|}x~}|w{}~v{}w~}b{|r~|" "x{}~w{}s~|\\{|q~}Rq~|Zw~}kw~}`{|v~p{|v~]v~p{}w~}X{|q~[{}v~} " "p{|v~}ly}$v}|\"{}x~}t{}x~}Yy}|s{|y~|w{|v~|_{|w~" "q{}x~}s{|w~n{|v~}l{|u~}%{}w~|Iw~} u{}w~L{}w~} " "tv}|P{|w~R{|v~|pv~}U{}w~}V{}v~}={}v~|Q{}w~}K{}v~|^v~|o{}v~Y{}v~U{" "}v~m{}v~P{|v~}U{|v}M{}w~}F{|}q~}6{|q~}|G{|w}|^w~ru~y|x{|}t~y|}v~|kv~|h{|v~" "d{}w~}m{|u~|b{|u~|i{|~}g{}w~}l{|}u~}a" "{}w~}L{}w~}Q{}u~|iv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}ot~]{}w~}V{}w~|bv~|h{}w~|" "n{}q~f{}u~k{}u~a{}w~}Q{}u~k{|u~c{}w~}" "kv~}c{|}h{|v~}Y{|v~|X{}v~l{}v~|[v~}v~]v~}w~n{}r~|ev~}n{}v~W{|v~|Y{}v~}F{|" "w~}Ew~}M{|w~| u{}w~|o{}u~|_t~|q{|v~}_" "{|v~|P{|v~}pt~|a{|v~|Ew~}U{|v~|pt~|`w~}m{|w~}Wv~Lv~Tw~}s{}v~|Sv~_w~}mv~mv~" "hw~}m{|w~}a{}v~nv~}_u~}o{}v~a{}v~o{|u" "~|Zw~}@{}w~|Y{}w~|Sv~|p{|u~|Zv~{|v~[v~}x~}s{|r~_{|v~|u{}v~Uq~V{}v~|Fw~}Lw~" "|M{|w~| I{|y}~y}|r{|}x~}|`{}w~}qs~]u~" "n{|v~`{|w~r{|v~\\{|v~nv~}_{|w~}Mw~}m{|w~}Y{}r~X{}w~}nv~`{|v~|o{}v~|g{|v~|" "st~|t{|v~|g{}v~v{}w~v{|v~`{|w~}q{|w~}_" "v~|v{}w~uv~}au~}o{}v~a{|v~nv~}Vv~U{|w~}p{}w~}bv~|h{|v~`u~M{}w~}P{|u~|q{}v~" "}_{}g~}|b{}w~}hv~|Z{|v~Y{}u~k{}u~a{|y" "~A{}w~A{}~|Zl~|Z{}~|k{}~}[{|l~} " "yv~}Uv~}uy~}S{|v~S{}v~|x{|y}x~}|wu~X{|w~}Lw~|I{|v~}*{}x~|g{|x~}&{}y~}t{|x~" " T{}x" "~|g{|x~} <{|v~|o{}v~|Ux~}w{|x~} " "Ex~|t{|y~}Tw~|p{}j~}j{}x~|k{}x~}aw~|p{}j~}g{}v~}Wv~|h{|v~fv~|h{|v~fv~|h{|" "v~f" "v~|h{|v~fv~|h{|v~g{|v~g{|v~|ov~|m{|v~V{|u~|i{|~}c{}w~}M{}w~}M{}w~}M{}w~}D{" "}w~}M{}w~}M{}w~}M{}w~}Z{|v~k{}t~d{}w~" "|n{}q~f{}u~k{}u~e{}u~k{}u~e{}u~k{}u~e{}u~k{}u~e{}u~k{}u~c{}v~|n{|u~|e{}u~|" "l{}u~c{}v~l{}v~|c{}v~l{}v~|c{}v~l{}v~" "|c{}v~l{}v~|Y{|v~|V{}w~}Mw~}kv~c{}w~|o{}u~|a{}w~|o{}u~|a{}w~|o{}u~|a{}w~|" "o{}u~|a{}w~|o{}u~|a{}w~|o{}u~|k{}w~|o{" "}s~U{|v~|P{|v~|N{|v~|N{|v~|N{|v~|Dv~Lv~Lv~Lv~Uv~}p{}v~^w~}m{|w~}a{}v~nv~}`" "{}v~nv~}`{}v~nv~}`{}v~nv~}`{}v~nv~}W{" "}u~W{}t~|qv~}_v~|p{|u~|`v~|p{|u~|`v~|p{|u~|`v~|p{|u~|Yq~Xu~}o{}v~Yq~ " "M{}w~}|w{}x~}v{}v~b{}w~}|m{}v~b{}w~}|m{}v~" "b{}w~}|m{}v~b{}w~}|m{}v~W{}x~}Nq~| M{|v~F{|u~ " "py~|V{|}y~y}|vy~|w{|y}y~y}Y{|s~}Q{|s~|Yw~}kw~}_{}v~|s{}v~|^{|w~}p" "{|v~X{|r~}Z{}u~} " "q{}v~}o{|y~}$v~}\"w~|tw~|Y{}y~}|u{|y~|x{|u~^{}x~|q{|w~s{}x~}mu~}n{|s~}&{|" "w~|J{|w~| u{}w~L{" "}v~ " "u{|v~|P{}x~}Q{}v~|r{}v~T{}w~}W{}v~}O{}|k{}v~}P{}w~}]{}|l{}u~]{|v~|q{}v~|" "Yv~}U{|v~}o{}v~}Q{|v~}T{}v~M{}v~C{|" "}t~}6{|t~}|D{}w~}^{}x~|s{|m~y}q~|k{|v~fv~|e{}w~}n{|u~}`{}u~|l{|}y~}g{}w~}" "n{|}t~}`{}w~}L{}w~}P{}u~}jv~|h{}w~}hv~" "|Y{}w~}M{}w~}W{}w~}nt~^{}w~}V{}w~|bv~|h{}w~|mq~e{}u~|n{}u~|a{}w~}P{}u~|n{}" "u~|c{}w~}k{|v~|d{|y~}k{|u~|Y{|v~|X{|u" "~n{|u~Z{}r~}]{}s~}n{|r~e{}v~lv~}X{|v~|Z{|u~E{|w~}E{}w~M{|w~| " "u{|v~p{|t~|_s~|s{|u~]u~|P{}v~}s{|s~|`u~|k{|Ww~}T{" "}v~}s{|s~|`w~}m{|w~}Wv~Lv~Tw~}r{}v~}Tv~_w~}mv~mv~hw~}m{|w~}`v~}p{}v~|_t~|" "q{|v~|`v~}q{|t~|Zw~}Q{|kv~|Y{}w~}S{}v~" "pt~|Z{}w~y}w~}[{}s~|rs~}_v~}s{}w~}V{}s~}W{}v~|Ew~}Lw~|M{|w~| " "r{|v~|s{}s~}^u~}ov~|_w~|s{}w~|[v~}pu~]v~|Nw~}m{|w" "~}Y{|s~}Xv~m{}w~|a{|u~p{|u~|fv~}t{}x~}x~}t{}v~ev~}w{}w~w{|v~}`{|w~}q{|w~}_" "{}v~|w{}w~v{}v~`t~|q{|v~|`v~}p{}v~U{}" "w~|Uv~|r{|v~b{|v~fv~|bu~|M{}w~}O{|u~}t{|u~}\\{|k~}|`{}w~}hv~|Z{|v~X{}u~|n{" "}u~|`{|@{}w~@{|Xn~|X{|i{|Y{|n~} xv~}U" "{|v~}vy~}S{|v~T{|v~|jv~}Y{|w~}Lw~|H{|v~|*{}x~}i{}x~}${}~}s{|y~ " "S{}x~}i{}x~} ;{|u~p{|u~|Ux~}w{|x~} Ey~|s{|~}T" "{}x~}o{}j~}k{|w~k{}x~}a{}x~}o{}j~}h{}v~}W{|v~fv~|h{|v~fv~|h{|v~fv~|h{|v~" "fv~|h{|v~fv~|h{}w~}f{}w~}p{|v~l{|v~U{}u" "~|l{|}y~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~n{|}s~c{}w~|" "mq~e{}u~|n{}u~|d{}u~|n{}u~|d{}u~|n{}u" "~|d{}u~|n{}u~|d{}u~|n{}u~|d{}v~|l{|u~|et~|n{}u~|c{|u~n{|u~b{|u~n{|u~b{|u~" "n{|u~b{|u~n{|u~X{|v~|V{}w~}Mw~}x{|p{}v" "~c{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|k{|v~p{" "|q~j{|gu~|Pu~|k{|_u~|k{|_u~|k{|_u~|k{" "|Vv~Lv~Lv~Lv~U{|v~}r{}v~}^w~}m{|w~}`v~}p{}v~|_v~}p{}v~|_v~}p{}v~|_v~}p{}v~" "|_v~}p{}v~|W{}u~Vu~|q{}v~|_{}v~pt~|`{" "}v~pt~|`{}v~pt~|`{}v~pt~|Y{}s~}Xt~|q{|v~|Y{}s~} " "Lu~}p{}u~|au~}p{}u~|au~}p{}u~|au~}p{}u~|au~}p{}u~|W{}x~}N{}s~} " "M{|v~|Ev~} py~|Jy~|M{}t~O{|u~}Xw~}kw~}_{|t~}w|}u~}]{}w~}ov~|Xr~|Y{}t~}y| " " tt~|r{}x~}$v~}\"w~t{|w~X{}v~}y|y{|" "y~y|}t~|_{|x~}ow~}tw~|m{|t~|r{|}q~}&w~}J{}w~ t{}w~L{}v~ " "u{|v~|Pw~|Pu~|t{}v~|\\s|}w~}r|a{}v~}Nx~}|p{}t~O{}w~}]{}" "y~}|q{}t~|\\{}v~|s{}u~Y{|v~|T{}u~|r{}u~|_{~}|r{|}u~|T{}v~M{}v~@{|}w~}6{|w~" "}|A{}w~}^{|w~r{|o~}{}s~}iv~}f{}w~}e{}" "w~}q|y}s~|_{}t~|p{|}w~}g{}w~}r|y}q~}_{}w~}g|`{}w~}O{}t~}o{|}u~|h{}w~}hv~|" "Y{}w~}M{}w~}W{}w~}mt~_{}w~}h|i{}w~|bv~" "|h{}w~|m{}r~dt~}|r{|t~|`{}w~}Ot~}q{|t~}b{}w~}jv~}d{|w~}|p{|}u~}X{|v~|W{}u~" "|q{}u~|Z{|r~|]{|s~|mr~f{|v~|l{|v~|Y{|" "v~|[{|u~}b|^{|w~}E{|w~|N{|w~| " "tv~}r{}s~|_w~y}x~}|w{|}u~|]{|u~|p{|}|^t~y|x{|}w~}w~|`{|u~|n{|y~|Xw~}St~y|" "x{|}w~}" "w~|`w~}m{|w~}Wv~Lv~Tw~}q{}v~}Uv~_w~}mv~mv~hw~}m{|w~}`{}v~}r{}v~}^s~}s{|v~}" "_{}v~}s{|s~|Zw~}Qy~}|o{}w~}X{|v~}|U{|" "v~}s{|s~|Z{|q~Z{|s~qs~|`{}w~}qv~}Vs~|X{}v~|Dw~}Lw~|M{|w~| " "qu~|u{}w~|v~}_s~|s{|u~^{}w~t{}w~}Z{|v~}|t{|}v~|]{}v~" "|ny|^w~}m{|w~}Xs~|Y{}w~}m{|w~}a{|t~|s{}t~}f{}v~}v{|w~{w~|v{}v~}e{}v~}x{}w~" "x{}u~_{|w~}q{|w~}^u~}|y{}w~x{}u~}`s~}" "s{|v~}_{|v~}|t{|}v~|U{|v~}|W{|v~|t{|v~|bu~f|v~}c{}v~}h|_{}w~}Vs}t~}v{}t~s}" "`{|y}t~y}|]{}w~}hv~|Z{|v~Wt~}|r{|t~|#" "{}w~ vp~| {|p~} " "wv~}T{}v~}wy~}v{}~Z{|v~S{}x~|hx~}X{|w~}Lw~|G{}w~}){|w~|m{|w~|\"{|}q{} " "R{|w~|m{|w~| XY| ${|u~}r{" "|t~}Ux~}w{|x~} " "E{}qy|T{|w~c{}x~gw~|lw~}a{|w~c{}x~e{}v~}Vv~}f{}w~}hv~}f{}w~}hv~}f{}w~}hv~}" "f{}w~}hv~}f{}w~}hv~|f" "{|v~pv~}l{|v~}h|h{}t~|p{|}w~}c{}w~}g|a{}w~}g|a{}w~}g|a{}w~}g|X{}w~}M{}w~}" "M{}w~}M{}w~}Z{|v~r|x}q~b{}w~|m{}r~dt~}" "|r{|t~|bt~}|r{|t~|bt~}|r{|t~|bt~}|r{|t~|bt~}|r{|t~|d{|v~|j{|v~}f{}s~}|r{|" "t~|a{}u~|q{}u~|a{}u~|q{}u~|a{}u~|q{}u~" "|a{}u~|q{}u~|X{|v~|V{}w~}Mw~}xy~}y|wy|u~|bv~}r{}s~|`v~}r{}s~|`v~}r{}s~|`v~" "}r{}s~|`v~}r{}s~|`v~}r{}s~|jv~}r{}w~}" "|u~|o{|}y~g{|u~|p{|}|_{|u~|n{|y~|`{|u~|n{|y~|`{|u~|n{|y~|`{|u~|n{|y~|Wv~" "Lv~Lv~Lv~T{}u~}|x{|}u~}]w~}m{|w~}`{}v~}" "r{}v~}^{}v~}r{}v~}^{}v~}r{}v~}^{}v~}r{}v~}^{}v~}r{}v~}V{}u~V{|v~}r{}v~}^{|" "v~}s{|s~|`{|v~}s{|s~|`{|v~}s{|s~|`{|v" "~}s{|s~|Xs~|Xs~}s{|v~}Ws~| " "K{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~U{}" "x~}N{|s~| M" "{|w~|D{}w~| q{|y~}K{|y~}L{}v~|N{}v~Ww~}kw~}^{|j~}\\v~|o{}w~}X{}s~W{|^~} " " -s~}v|}v~}$v~}#{|w~t{|x~}X{}e~|^w~|o" "{|w~|v{}w~k{|s~}v|}t~y}v~}'{}w~Jw~} t{}w~L{}v~ " "u{|v~|Q{|w~O{|u~}w|}u~}\\{|e~|ab~`u~w}|x}r~|O{}w~}]{}v~w}|x}s~}Z" "t~}w|}t~X{}w~}S{|t~y}v|}t~}^v~y}y|y}s~|S{}v~M{}v~={|}~}6{|y~}|?{}w~}]w~}q{" "}r~|y{}u~}h{|v~|f{|v~e{}c~|]{}s~y}v|y" "}t~}g{}b~|^{}c~}`{}w~}N{}r~y}v|y}r~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}lt~`{}d~}" "i{}w~|bv~|h{}w~|lr~cr~}v|}s~}_{}w~}Ns~" "y}v|}s~}a{}w~}j{|v~|e{|s~}u|}r~W{|v~|Vs~}v|y}t~|Xs~}\\{|s~|m{}t~}fv~}j{}v~" "Y{|v~|[{}\\~}^{|w~}Dw~}N{|w~| t{}u~y" "|x{|}w~y}w~|_w~}{k~|[{|t~}|wy|}x~|^{|k~y|w~|_{|t~}|vy|y}w~|Xw~}S{|k~y|w~|`" "w~}m{|w~}Wv~Lv~Tw~}p{}v~}Vv~_w~}mv~mv" "~hw~}m{|w~}_{}u~}|x{|}u~}]w~y}w~y|yy|}u~|^{}u~}|x{|}w~}w~|Zw~}Qv~}y|v{|}u~" "|Wm~[{}u~}w|}v~}w~|Y{}s~}Yt~}q{}t~|a{" "}v~p{|v~|W{}t~W{}d~Uw~}Lw~|M{|w~| " "q{|u~}|y{|}v~{|s~br~}y|yy|}u~|^{|w~}v{}v~X{}u~}y|{y|}u~}\\{|t~}|vy|y}y~}^" "w~}" "m{|w~}X{}t~Xv~|lv~|b{|s~}v|}q~x}hu~}|{y|w~}{}w~}|{|}u~c{}u~}|}w~|}t~|_{|w~" "}q{|v~}_{|s~}v~}s~}_w~y}w~y|yy|}u~|^{" "}u~}y|{y|}u~}S{}r~}Z{}v~}|x{|}v~}b{|Z~c{}c~}_{}w~}Vk~v{}l~|^{|v~Y{}w~}hv~|" "Z{|v~Vr~}v|}s~|\"{}w~ ur~| y{|r~} vv~" "}St~}y|y~}{y|}x~`{}b~}a{}~|f{~}W{|w~}Lw~|G{|w~}({|v~}|s{|}v~| " "E{|v~}|s{|}v~| X{|Z~} ${|s~}y|{y|}q~}|}Xx~}w{|x~" "} " "l{}x~|c{}x~h{}x~}m{|w~|`{}x~|c{}x~f{|v~}V{|v~|f{|v~i{|v~|f{|v~i{|v~|f{|v~" "i{|v~|f{|v~i{|v~|f{|v~i{|v~dv~|r{|" "v~k{|b~g{}s~y}v|y}t~}c{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}w~}M{}w~}M{}w~}Z{|b~" "}a{}w~|lr~cr~}v|}s~}`r~}v|}s~}`r~}v|}" "s~}`r~}v|}s~}`r~}v|}s~}b{|x~|h{|x~}f{}o~}v|}s~}_s~}v|y}t~|_s~}v|y}t~|_s~}" "v|y}t~|_s~}v|y}t~|W{|v~|V{}w~}Mw~}xk~}" "a{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{" "}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|j{}" "u~y|x{|}u~y{|t~}|vy|}v~f{|t~}|wy|}x~|^{|t~}|vy|y}w~|_{|t~}|vy|y}w~|_{|t~}|" "vy|y}w~|_{|t~}|vy|y}w~|Wv~Lv~Lv~Lv~S{" "}j~}\\w~}m{|w~}_{}u~}|x{|}u~}\\{}u~}|x{|}u~}\\{}u~}|x{|}u~}\\{}u~}|x{|}u~}" "\\{}u~}|x{|}u~}U{}u~V{}t~}|x{|}u~}\\{" "}u~}w|}v~}w~|_{}u~}w|}v~}w~|_{}u~}w|}v~}w~|_{}u~}w|}v~}w~|X{}t~Ww~y}w~y|" "yy|}u~|W{}t~ I{}h~}\\{}h~}\\{}h~}\\{}h~" "}\\{}h~}T{}x~}Ms~ K{|y~}C{|w~ " "p{}x~K{}x~Kw~|L{}x~|Ww~}kw~}]{|l~}\\{|v~n{|w~}X{|s~U{}`~} " "-{|h~|$v~}#{}x~}t{}x" "~}X{|}g~|^{}x~}m{}w~}y|}v~|j{|g~}y{}v~}({|w~|L{|w~| t{}w~L{}v~ " "u{|v~|Q{}x~}N{}k~}[{|e~|ab~`e~|N{}w~}]{}g~}Y{|i~" "|Xv~|R{|g~}]i~|R{}v~M{}v~;y|5{|<{}w~}]{|w~|p{|v}|w{|x}|e{}v~dv~}f{}e~}|[{}" "d~|g{}d~}\\{}c~}`{}w~}M{}c~}|g{}w~}hv" "~|Y{}w~}M{}w~}W{}w~}kt~a{}d~}i{}w~|bv~|h{}w~|l{|s~b{}f~|^{}w~}M{}f~|`{}w~}" "iv~}e{|c~V{|v~|Uf~}W{}t~|[s~l{}t~|g{}" "v~hv~}Z{|v~|[{}\\~}^{|w~}D{}w~N{|w~| " "sj~{}w~|_w~}{|m~|Y{}i~|]{|m~|{|w~|^{|f~|Xw~}R{|m~|{}w~|`w~}m{|w~}Wv~Lv~Tw" "~}o{}v~}Wv~_w~}mv~mv~hw~}m{|w~}^h~\\w~}{k~|\\k~y|w~|Zw~}Qg~}V{|n~Zk~{}w~|" "Y{|s~|Y{}u~}q{|t~a{|v~|o{}v~W{|u~|W{}d" "~Uw~}Lw~|M{|w~| " "p{|l~|ys~be~}\\{}v~x}u~V{}j~}Z{|h~}^w~}m{|w~}X{|u~|Y{|w~}k{}w~}b{|w~}m~|s~" "h{|m~xm~|b{}g~|^{|w~" "}pr~a{|f~}^w~}{k~|\\{}j~}R{|r~}Y{}l~}a{}Z~}d{}c~}_{}w~}Vk~v{}l~|^{|v~Y{}w~" "}hv~|Z{|v~U{}f~|!{}w~ tt~| w{|t~} uv~" "}R{}i~`{}b~}`{|?{|w~}Lw~|Fw~}&{}t~w}t~} A{}t~w}t~} V{|Z~} " "${|w~}m~|s~Xx~}w{|x~} m{|x~}b{}x~hw~lk~k{|x~}b{}x~" "fv~}U{}v~dv~}j{}v~dv~}j{}v~dv~}j{}v~dv~}j{}v~dv~}j{}w~}d{}w~}r{}w~}k{|b~f{" "}d~|c{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}" "w~}M{}w~}M{}w~}Z{|d~}|`{}w~|l{|s~b{}f~|^{}f~|^{}f~|^{}f~|^{}f~|`{|~|f{|~}" "f{|w~|}f~|]f~}]f~}]f~}]f~}V{|v~|V{}w~}" "Mw~}xl~}_j~{}w~|_j~{}w~|_j~{}w~|_j~{}w~|_j~{}w~|_j~{}w~|ii~w{|f~e{}i~|]{|" "f~|^{|f~|^{|f~|^{|f~|Wv~Lv~Lv~Lv~R{}l~" "}[w~}m{|w~}^h~Zh~Zh~Zh~Zh~){|f~Zk~{}w~|^k~{}w~|^k~{}w~|^k~{}w~|X{|u~|Ww~}{" "k~|V{|u~| H{|j~|Z{|j~|Z{|j~|Z{|j~|Z{|" "j~|S{}x~}M{}u~} I{}Ax~} " "pw~|Lw~|L{|y~|Jy~|Vw~}kw~}[{}o~|[{}w~}mv~Wt~}T{|}b~} " "+{}l~}\"v~}#w~|tw~|U{|}l~}]{|w~" "ko~|h{|j~}|w{}u~({}w~L{}w~ s{}w~Lv~| " "u{|v~|Qw~}M{|m~}Z{|e~|ab~`g~}|M{}w~}]{}h~|W{|k~W{}v~P{|i~|\\k~}P{}v~Mv~| " "i{}w~}\\{}w~Jv~}d{}v~f{}g~}|X{|}h~}e{}g~}|Z{}c~}`{}w~}L{|}g~}|e{}w~}hv~|Y{" "}w~}M{}w~}W{}w~}jt~b{}d~}i{}w~|bv~|h{" "}w~|ks~a{|i~}\\{}w~}L{|i~}^{}w~}i{|v~|e{}f~}U{|v~|T{}i~|Ut~Z{}u~}l{|t~g{|" "v~|h{|v~|[{|v~|[{}\\~}^{|w~}D{|w~N{|w~" "| " "s{|l~|{}w~|_w~}x{}q~}|W{|j~|[{}p~|y{|w~|]{|g~|Xw~}P{}q~}|y{}w~|`w~}m{|w~}" "Wv~Lv~Tw~}n{|v~}Xv~_w~}mv~mv~hw~}m{" "|w~}]{}l~}[w~}{|m~|Zm~|{|w~|Zw~}Qh~|T{|o~Z{|m~|{}w~|Xs~X{}u~|pu~}av~}m{}w~" "}Wu~V{}d~Uw~}Lw~|M{|w~| o{|n~|w{}u~b" "f~}Z{}p~}T{}l~}X{|i~}^w~}m{|w~}Wu~Xv~|k{|v~b{|w~y|o~|{}t~g{|o~|x{|o~}`{}i~" "|]{|w~}p{}s~_{}j~}|]w~}{|m~|Z{}l~}P{|" "s~}X{}n~}`X~d{}c~}_{}w~}Vk~v{}l~|^{|v~Y{}w~}hv~|Z{|v~T{|i~} {{}w~ sv~| " "u{|v~} tv~}Q{}j~`{}b~}#{|w~}Lw~|G{|w~}${" "}m~} ={}m~} T{|Z~} ${|w~y|o~|{}t~Xx~}w{|x~} " "mw~|b{}x~i{}x~|lk~kw~|b{}x~g{|v~Tv~}d{}v~jv~}d{}v~jv~}d{}v~jv~}d" "{}v~jv~}d{}v~k{|v~|d{|v~rv~|k{|b~e{|}h~}a{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}" "w~}M{}w~}M{}w~}Z{|g~}|]{}w~|ks~a{|i~}[" "{|i~}[{|i~}[{|i~}[{|i~}/" "{|w~|y{|i~}Z{}i~|[{}i~|[{}i~|[{}i~|U{|v~|V{}w~}Mw~}xm~|^{|l~|{}w~|_{|l~|{}" "w~|_{|l~|{}w~" "|_{|l~|{}w~|_{|l~|{}w~|_{|l~|{}w~|i{|l~}u{|g~d{|j~|\\{|g~|]{|g~|]{|g~|]{|" "g~|Wv~Lv~Lv~Lv~Q{|}p~}|Zw~}m{|w~}]{}l~" "}X{}l~}X{}l~}X{}l~}X{}l~}){|w~}l~}Y{|m~|{}w~|^{|m~|{}w~|^{|m~|{}w~|^{|m~|{" "}w~|Wu~Vw~}{|m~|Tu~ E{|}p~}|V{|}p~}|V" "{|}p~}|V{|}p~}|V{|}p~}|Qw~}Lu~| i{}y~| " "q{|w~}M{|w~}K{|}I{|}Uw~}kw~}Y{|y}w~y}|Yv~|m{}w~|X{}u~|Q{|}e~} *{|}p~" "}|!v~}#w~t{|w~Py|x}y~x}y|[w~|j{}r~|e{|n~}|t{}u~){|w~|N{|w~| s{}w~Lv~ " "t{|v~|R{|w~|L{|}p~|Y{|e~|ab~`y|}l~}|K{}w~}" "]{|}k~|S{}o~|Vv~}N{|m~}Z{}n~}|O{}v~Mv~ " "h{}w~}[v~L{|v~|d{|v~|g{}k~y}y|T{|}m~}|c{}m~x}y|W{}c~}`{}w~}J{|}k~}|c{}w" "~}hv~|Y{}w~}M{}w~}W{}w~}it~c{}d~}i{}w~|bv~|h{}w~|k{|t~_{|m~}|[{}w~}J{|l~|]" "{}w~}h{}w~}c{|}k~}|T{|v~R{|}m~|S{}v~}" "Z{|u~|kt~gv~}f{}v~[{|v~|[{}\\~}^{|w~}Cw~|O{|w~| " "q{}p~}x{}w~|_v}vy}w~y}|S{}m~}Xy}w~y}|w{|w}|[{|l~}|Vw~}N{|}w~y}" "|w{}w~|`v}lw}|Wv~Lv~Tv}m{|u}Yv}_w~}mv~mv~hw~}m{|w~}\\{|n~|Zw~}x{}q~}W{}q~}" "|y{|w~|Zw~}Q{|}l~}P{|y}s~X{}q~}x{}w~|" "X{}u~}X{|u~o{}v~|b{}w~}kv~}X{}w~}V{}d~Uv~Lw~|M{|w~| " "n{|}q~}u{|}w~bv~{}o~}|X{|r~|R{|}p~}|U{}l~}|^w~}m{|w~}W{}w~" "}Xw}|i{|w}b{|w~|{|q~|y{|t~f{|q~|v{|q~|^{|l~}[{|w~}os~]{|}o~}|[w~}x{}q~}W{|" "}p~}|M{|}v~}W{|p~|`{|X~|e{}c~}_{}w~}V" "k~v{}l~|^{|v~Y{}w~}hv~|Z{|v~R{|m~}| y{}w~ rx~| s{|x~} " "sv~}P{|}n~}|`{}b~}#{|w~}Lw~|Ty|pv~|\"y|}u~}y| 9y|}u~}y| " "R{|Z~} ${|w~|{|q~|y{|t~Xx~}w{|x~} y}| " "q{}x~}aw}j{|w~kk~l{}x~}aw}gv~}U{|v~|d{|v~|l{|v~|d{|v~|l{|v~|d{|v~|l{|v~|" "d{|v~|l{|v~|d{|v~|l{|v}bv}|t{}w~}j{|b~c{|}m~}|_{}c~}a{}c~}a{}c~}a{}c~}X{}" "w~}M{}w~}M{}w~}M{}w~}Z{|m~x}y|Z{}w~|k{" "|t~_{|m~}|X{|m~}|X{|m~}|X{|m~}|X{|m~}|.w~}v{|}n~}|X{|}m~|X{|}m~|X{|}m~|X{|" "}m~|S{|v~|V{}w~}Mv|wy|}u~y}|Z{}p~}x{}" "w~|]{}p~}x{}w~|]{}p~}x{}w~|]{}p~}x{}w~|]{}p~}x{}w~|]{}p~}x{}w~|g{}o~|r{|l~" "}|a{}m~}Y{|l~}|Y{|l~}|Y{|l~}|Y{|l~}|U" "v~Lv~Lv~Lv~O{|y}v~y}|Xw~}m{|w~}\\{|n~|V{|n~|V{|n~|V{|n~|V{|n~|(w~|{|n~|V{}" "q~}x{}w~|\\{}q~}x{}w~|\\{}q~}x{}w~|\\" "{}q~}x{}w~|W{}w~}Vw~}x{}q~}R{}w~} B{|t}|P{|t}|P{|t}|P{|t}|P{|t}|Nw~} " "3{|~} ;f| '{|y}w~}y| 8{|y~|X{|x~}" "h{|}w~}|ay|y}w~y}| rw~}N{}w~ ?{|w~| " "D{}w~I{|y}w~y}|%b|\\{|x}u~y}|!y|y}u~y}y|O{|y}w~y}| {{y|}u~y}|Vy|y}v~}y| " "u{|" "w~| B{|v~| 1{|y}u~y}| o{|x}u~y}y| Fv~| 7y|y}v~y}| {{y|y}q~|#y|y}u~y}y| " "{{|y}v~y}y| a{|w~}C{}x~}O{|w~| oy}" "v~}|vv|!{|}t~y}|!{|y}t~y}|Sv|Av~\"v|Lv~ " "Rv|mv|mv|hv|lv|Z{|y}u~}|Xw~}v{|}w~y}|T{|}w~y}|w{|w~|Zv|Ny|y}u~y}| {{|y}" "w~}|uw|W{|u}|Wv}|o{|v}av|ju|Xv~| sv~Lw~|M{}w~| " "ly|}v~}|Uv~yy|}v~y}|S{|y}~y}|N{|y}v~y}|Qy|y}v~x}|[v|m{|w~}W{|w~" "|#{|w~|x{|}w~}|v{|}y~y}c{|y}x~y}ry}x~y}|Z{|y}s~}y|G{}w~}|Zy|v~}|Ww~}v{|}w~" "y}|T{|y}v~y}| x{|y}w~}| Ry|y}v~y}|" " Zy| rv~}M{|y}u~}|]`| Iw~|T{|y~}|u{|u~ " "5{|w~|x{|}w~}|v{|}x~}Wx~}w{|x~} {}y~} r{|y}|Kw~|L{|y}|Hv~| E" "{|y}u~y}| " "qy|y}v~y}|Sy|y}v~y}|Sy|y}v~y}|Sy|y}v~y}|Sy|y}v~y}|+{|y~}r{|y}v~y}|R{|y}v~" "y}y|S{|y}v~y}y|S{|y}v~y" "}y|S{|y}v~y}y| " "oy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|d{|}v~y}|n{|y}" "u~y}y|\\{|}t~y}|U{|y}" "t~y}|T{|y}t~y}|T{|y}t~y}|T{|y}t~y}|Rv|Lv|Lv|Lv|!v|lv|Z{|y}u~}|R{|y}u~}|R{|" "y}u~}|R{|y}u~}|R{|y}u~}|'{}x~|w{|y}u~" "}|S{|y}w~}|uw|Z{|y}w~}|uw|Z{|y}w~}|uw|Z{|y}w~}|uw|Vv~|Vw~}v{|}w~y}|Qv~| " " Mw~| K{|y~| e{|w~Nw~" "| ?{}w~ Cw~} .{}w~ @{|v~|d{}| Kv~| !u~| J{|w~}C{|w~O{|w~| " " 9w~} Iv~ bw~}9{|w~| X{|v~ rv" "~Lw~|M{}w~| w~| D{|w~| .w~| ?{|v~}g{|x~| M{|v~ {|u~| " "K{|w~}Bw~|P{|w~| :{}w~} Iw~} bw~}9{" "|w~| X{}w~| r{}w~|Mw~|Mv~ ;v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} " " )v~}Iy~} gw~|T{|l~| 4{|w~" "|Ax~}w{|x~} {{}y~} /v~| ?x~| f{|x~ M{} " "%{}w~|Uw~}D{}w~| Lw~| K" "{|y~| d{|w~Pw~| ?{|w~ C{}w~ .{|w~ ={|u~}|l{|u~| N{}v~ " "{{|u~| L{|q~}H{}x~}V{}q~| :v~| Iw~}" " bw~}9{|w~| Xv~ q{}w~}Mw~|N{|v~ ;v~ S{|w~}W{|w~|#{|w~| j{}w~ " "s{}w~Uw~} )v~}Iy~} gw~|T{|}o~}| " " 3{|w~|Ax~}w{|x~} {{|x~| 0v~}m{} N{|x~ e{}y~} " " Rv~Tw~}Dv~ S{}x~x{|w~| " " K{|y~| c{}x~}R{}x~} >{|x~| Cw~} .{|x~| ;{}t~}|sy|}t~| " " N{|v~} y{|u~| M{|q~}H{|w~V" "{}q~| ;{}v~ I{|w~} bw~}9{|w~| Y{}w~} q{|v~}|Ow~|P{|}v~} ;v~ " "S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} " " )v~}Iy~} gw~|Q{|y}v~y}| 1{|w~|Ax~}w{|x~} yx~| 0{}v~|p{|~} " "N{|x~| f{|x~ " " S{}w~}Tw~}E{}w~} S{}x~|y{|w~ J{|y~| bw~|Sw~| " ">{}y~} K{}y~} 9{|p~x}q~}| N{|u~" "| x{|u~ M{|q~} y{}q~| K{|}|p{|u~| I{}w~| bw~}9{|w~| Z{|v~ " "o{}q~}Tw~|U{|p~ :v~ S{|w~}W{|w~|#{|" "w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~| W{|w~|Aw|vx| y{|x~} " "0{|u~|s{}x~} N{|x~| " " f{|x~| U{|v~Sw~}F{|v~ R{|x~}y{}w~ J{|y~| " "b{|x}|T{|x}| w{}g~}| Q" "x|y}u~} v{|u~ N{|p} yp}| K{|x~}y|wy|}u~} J{|}v~ aw~}9{|w~| " " \\{|}v~} nq~}Tw~|U{|q~| :v~ S{|w~}" "W{|w~|#{|w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~| W{|w~| " ":{|}w|}w~| /t~y}x|y}v~} U{|}|x{|w~| " " f{}x~| W{|}v~}Sw~}H{|}v~} Qq~| " "J{|y} *{|}l~}| O{}q" "~ tt| `{|i~} Lr~| aw~}9{|w~| `{}q~ l{}s~}Tw~|U{|s~}| " "9v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~" "} )v~}Iy~} gw~| W{|w~| :{|q~ .{|i~} U{|q~ " " ly}w|}w~| [{}q~Rw~}" "L{}q~ P{}r~ M{|y}u~y}y| L{}r~| " " R{|j~} Ks~} `w~}9{|w~| " " `{}r~| jy|v}|Tw~|U{|u}| 6v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} " " )v~}Iy}| gw~| W{|w~| :{|r~| " " -{|k~}| U{|r~} l{}r~} Z{}r~|Rw~}L{}r~| " " O{}t~ " " k{}t~} -{|`}| `{|}m~}| Jt~} _w~}9{|w~| `{}s~| " ":w~| cv~ S{|w~}W{|w~|#{|w~| j{}w~ s{}" "w~Uw~} )v~} d{|w~| 9y}w~y} ){}o~}| S{|}u~}| " " k{}r~ Y{}s~|Qw~" "}L{}s~| M{}w~} j{}w~}| " "+{}`~} ]{|x}v~y}| Gw~y} ]w~}9{|w~" "| `{}v~}| 8w~| cv~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} " " g{|w~| 8{|}v~y}| Ly| " " g{|y}w~}| X{}v~}|Ow~}L{}v~}| Iy| " " " "l{}`~} Ww~| " " " " L{}`~} Ww}| " " " " r{"}; // Define a 104x128 binary font (huge sans). static const char* const data_font_huge[] = { " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " FY AY " "'Z ;W @Y @Y 'Z Y @Y (Z :Y ?Y (Z 0Y ?Y (Z " " >X " " " " " " " " " " " " " " " " " " )X AX '\\ )XAV 7YDY -] BY BY '[ +YEY 2X " "AY (\\ -YDY 'XAU 3Y AY (\\ )XAV 8YD" "Y LY AY (\\ ,YEY #Y " " " " " " " " " " " " " " " " " " (X CX '^ +[CU 6ZEY .` C" "X CY '] -ZEZ 2X CY (^ .ZEZ )[CU 2Y CY (] *[CU 7ZEZ LY CY (] " "-ZEZ %Y " " " " " " " " " " " " " " " " " " 'Y EY '^ ,^FV 6ZEY /b CX DX '_ .ZEZ 2Y DX " "'_ /ZEZ +_FV 1X CX (_ ,^FV 7ZEZ " " KX CX (_ .ZEZ &Y " " " " " " " " " " " " " " " " " " %Y GY '` .aHV 6ZEY 1e DY FX" " 'a /ZEZ 1Y FX '` /ZEZ +aHV 0X EX '` .aHV 7ZEZ JX EX (a /ZEZ &X " " " " " " " " " " " " " " " " " " " " #X GX 'XNX 0dKW 6ZEY 1f DY HX &WMX 0ZEZ 0X GX " "'XMW 0ZEZ ,dLX /X GX 'WMX 0dLX 7ZEZ" " IX GX 'WMX 0ZEZ 'X :T " " " " " " " " " " " " " " " " " " ;X IX 'XLX 1o 5ZEY 2ZLY " " CX IX &WKW 0ZEZ /X HX (XLX 1ZEZ ,o .Y HX (WKX 1o 6ZEZ IY IY " "(WKW 0ZEZ (X X MX &WH" "W 3VHa 4ZEY 3WDW CX LX 'WGW 2ZEZ -X LX 'WHW 2ZEZ -VHa +X KX " "(XHW 3VHa 5ZEZ GX KX (WGW 2ZEZ )X " " ?b " " " " " " " " " " " " " " " " ?W MW &WFW 4VF^ " "3ZEY 4WBV BW MX 'WEW 3ZEZ ,W M" "X 'WFW 3ZEZ -VF^ )X MX 'WFW 4VF^ 4ZEZ FX MX 'WFW 3ZEZ *X " " ?d " " " " " " " " " " " " " " " " " " ?W X 'WDW 5UC[ 2ZEY 4VAV AW X &WDW 4ZEZ +W NW 'WDW " "4ZEZ -UC[ 'W MW 'WDW 5UC[ 3ZEZ " "EW MW 'WDW 4ZEZ +X ?f " " " " " " " " " " " " " " " " " " @X \"X 'WBW 6UAW 0ZEY 4V@V B" "X !W &WBV 4ZEZ +X !W 'WBW 5ZEZ .VAW $W W 'WBW 6UAW 1ZEZ DW W " "'WBV 4ZEZ +W >f " " " " " " " " " " " " " " " " " " ?X #W 'W@W U?V AX #W &W@V NX " "#W &V@W 9W \"W 'W@V .W " "\"W 'W@V !W >XHX " " " " 3Y " " " " " " " " " " " " " " 6W $W &V>V U?V @W $W &W>V " " NW $X 'V>V 8W $X (W>V /X $W 'W>V #W " ">XFX " " 5Z " " " " " " " " ,Z " " " " " " GZ " " #U?V " " NY 7Z ,X CVCW MY " " 7Z ,X $Z 7Z ,X >Z 6Y ,X 4Z 7Y +W 7Y " " @Z " " " " " " +Z " " " " " " " " HY \"U?V " " " " MY 8Y ,Y CVBV LY 9Z ,Y #Z 9Z ,Z >Z " "8Y ,Y 3Y 8Z ,Y 9Y " " ?Z " " " " " " *Y " " " " " " IY " " !U?V " " LY :Y ,[ $R>U " ",V@V MZ :Y +Z #Y 9Y +Z ?R" ">U 8Y 9Y +Z %S?U HY :Z ,[ ;Y " "?[ " " " " " " )Y " " " " 8U " " " " 9Y V@U " " JY Y @Y /X 0Y " " K` .X " " ^ =ZEY " " @Y " " NVAV

Y E^ /X 0_ %f " " 1] 'c " " @ZEZ AY " " MV" "CW X *^ " "+]DU 7ZEZ 5U>U JY ?Y *^ -YEZ 4Y " " ?Y *^ .ZEZ 5[ ]DU 5Y >Y +^ ,]DU 6ZEZ Y ?Y +_ .ZEZ \"Y Z G[ G\\ " " @e !f JX !Y " "LY %d :Y Y Ha /X 0b " " *j L] D_ " " +g A[ LY 8Z -ZEZ \"Y " " 1o )V FX NZ FY " "%Y ,X NX*Z NW 3WEW H\\ #[ !Z " "\"[ \"[ \"[ G[7T 8g 0Y " "@Y +_ ,_FV 7ZEZ 5U>U IY @Y +` .YEZ 3X ?X *` /ZEZ 4[:P 8_FV 4X ?Y " "+` ._EU 6ZEZ NX @Y *_ .ZEZ #Y ;Y" " FYEZ ;] GU " " W ,X " " FV a \"d -g >d (d +b %b 4f " "Bg Ie \"e \"h " " Ge !f IX \"Y LY &e :Y Y " " Jc /X 0c " " -n $g I` .j >a ;e HU " " .U +b Ac 2ZEZ 'b " " 5o -] Na (c KY .Y #_ 8Y!W'Y\"X.c$X " "3XGX Mf -e +d " ",e ,e ,e \"e=V ;k 1Y BY +XNW .aGV 7ZEZ 5V@V HX AY " "+XNW .YEZ 3Y AY *WNW /ZEZ 4\\>T 9`GV 3" "X AY +XNW .`GV 6ZEZ NY AX *XNW /ZEZ $Y :Y FYEZ <_ " " IU (Q LZ 4Z2Z 1Q " " &g %Z +XCX MT Y " " Kd /X 0e 0p " " (m Lb 1m ,\\ 5~S E~R Ah 'Z :~]+[;Z;Z Ik LW " " DX DW /i ?Y(Y 4h 5ZEZ" " ,\\ ,h 7\\ -o .` $f -h NY No %_ %c @_\"X-_\"W0h&W " ".\\ $\\ \"\\ #\\ #\\ )g 5~a Lm D~S I~S " "H~R H~R 6Z !Z !Z \"Z :r 8^,Y Bk 2k 2k 2k 2k (kAX+Z(Z#Z(Z$Z(Z$Y'Y&[%[ MZ " " Im 1X CY *WMX /bHV 7ZEZ 5V@V G" "X CY *WLW /YEZ 2Y CY *WLW 0ZEZ 3[AW :bHV 3Y BX *WLW 0bHV 6ZEZ MY " "CX *XMX 0ZEZ $X 9Y FYEZ " " =a M~i 7U (Q N_ 9_8_ 3R )k " "'Z +XCX +X@X 4T >e,X Cl &X IX *X GV " " GX 5i 0d 2p ;u !^ ?y 2o F~S @n 4j /l N\\ 8x .r Nx " "7~R E} >t KZ(Z :Z \"Z 4Z-] KZ 2_'_(^-Z" " Ep =t 5o Au 1u N~d'Z(Z)Z MZY " " Le /X 0e 1r +r c " " 3o -\\ 5~S E~R Dn *Z :~]+[;Z;Z Ko " " Y EX EY 2m @Y)Y 6l 7ZEZ 0e 2k >e 1o 0c 'j /i " " X !r (b 'g Eb\"W0c#X0i(W -" "\\ $] #\\ $] #\\ (f 6~b r F~S I~S H~R H~R 6Z !Z !Z \"Z :w =^,Y Ep 6p 7p " "7o 7p ,oDY+Z(Z#Z(Z$Z(Z$Y'Y%Z%Z LZ Kp" " 1X DX *WKW /WMYJV 6ZEZ 5V@V GY EY *WKX 0YEZ 1Y EY *XKW 1ZEZ 2[EZ " ":WMZKV 1Y DX *WKX 1WLYKW 6ZEZ L" "Y EY *WKW 0ZEZ %X 8Y FYEZ >c M~h 7T (S !a Y >X 8f /X 0f " " 3t -s c " " 4q /^ 6~S E~R Fr ,Z :~]+[;Z;Z Ms #[ FX F[ 4n @Y*Y " "6m 7ZEZ 3k 5l Bk 4o 1f )k 0k #" "X #u (b (i Fb#X0c#W/k+X .^ %] $^ %] $^ (d 5~b\"v H~S I~S H~R " "H~R 6Z !Z !Z \"Z :{ A_-Y Gt :t ;t ;s ;t " " 0sGY*Z(Z#Z(Z$Z(Z$Y'Y$Z'[ LZ Ls 2X FX *WIW 1WJc 6ZEZ 4VBV EY FX " "*XJW 0YEZ 0X EX )WJW 1ZEZ 1[I^ x %_ ?y 5r F~S Ct :p" " 6s /e *^ 9| 6z#~ =~R E} B}!Z(Z :Z \"Z 4Z/\\ HZ 2`)`(_.Z Iw @y " ">w Ez 9z!~d'Z(Z)[ Z;Z0]/Z4Z,Z$[(Z%~^ " "@e 2X Gf +a MX %Y LY *i :Y Y " ">Y 9f /X 0g 5v " " 0u d 6_K_ 0^ 6~S E~R Gu .Z :~]+[;Z;Z w &] " "GX G] 6U &o ?Y+Y 7X )n 7ZEZ " "6p 7m Eo 6o 2h *l 1l %X #v (b )k Gb$X/c$X/l,W -^ &_ %^ " "&_ %^ 'b 4~b$z J~S I~S H~R H~R 6Z !Z " "!Z \"Z :~ D_-Y Hw =v >w >w >w 4wIX)Z(Z#Z(Z$Z(Z$Y'Y$[)[ KZ Mt 1X HX " ")WHW 2VHb 6ZEZ 4WDW DX GX )WHW 1YE" "Z /X GX )WHW 2ZEZ 0[M` ;VHb /X GY *WHW 3VHb 5ZEZ JX GX )WHW 2ZEZ " "'Y 7Y FYEZ ?e M~f " " 7U )U %g Bh@g :W .~T 't +Z +XCX ,X@X 3T " "Ak1X Er (X JX 'X IV HX 8q" " =m 7y ?y '` ?y 6s F~S Dv Y >Y " " :] %X &] 5]C\\ 1v Nc 7\\D\\ " "1_ 6~S E~R Iy 0Z :~]+[;Z;Z!y (_ H" "X H_ 7U 'p ?Y,Y 6X *o 7ZEZ 8t 9YH] Ht 9o 3i *XG[ 1VE[ " "&Y %x (b *[I[ Hb$W.c%X.VE[-X " " ._ &_ %_ '_ %_ '` 4~c%} L~S I~S H~R H~R 6Z !Z !Z \"Z :~Q F`.Y Jz @z Az " "Ay Az 7zKX(Z(Z#Z(Z$Z(Z$Y'Y#[*Z JZ Na" "J_ 2X IX )WGW 2VG` 5ZEZ 4XFX CX IX )WFW 2YEZ .X IX )WFW 3ZEZ /j " "8VG` -X HX *WFW 4VG` 4ZEZ IX IX " ")WGW 2ZEZ 'X 6Y FYEZ ?XKX M~f 7T )W 'i DiAi ;X " " 1~V (w -Z " "+XCX ,X@X 3T AZI[2W Es (X KX &X IV HX 9s >m 7z @z )a ?y 7t " "F~R Dx >t 9v 8s 2` :~P <~Q&~S" " A~R E} E~T$Z(Z :Z \"Z 4Z2] FZ 2a+a(`/Z K| C{ C} H| " "=|!~d'Z(Z(Z!Z9Z1^1Z2[0[!Z+[$~^ @X $X ;Y -e MX 'Y " "LY +[ +Y Y >Y :[ #X #Z " " 6\\?[ 2v F\\ " " 8Z@[ 2` 7~S E~R J{ 1Z :~]+[;Z;Z#} +` HX Ia 8U (q " ">Y-Y 6X +p 7ZEZ 9bMb ;U@Y JbMb :" "n 3ZIZ +T@Y 2R>Y 'X %y (XLV +ZEZ IXMW%X.YMW%W-R>Y.W -` '_ &` " "'_ &` '` 4~c'~R N~S I~S H~R H~R 6Z !Z " "!Z \"Z :~S Ha/Y K| B| C| D} D| 9|MX'Z(Z#Z(Z$Z(Z$Y'Y\"Z+[ JZ N]B\\ 2X " "JX *WEW 3UE_ 5ZEZ 3YJY AX JW )WE" "W 2YEZ -X KX (WFW 3ZEZ .f 5UE_ ,X JX )WFW 4VF_ 4ZEZ HX KX )WEW " "3ZEZ (X 5Y FYEZ @YJW M~" "e 7U *X (j EkCk =Y 3~X )x -Z +XCX " ",W?X 3T BYEY3X Ft (X KX %X JV " " IX 9u ?m 7{ A{ *a ?y 8u F~R Ez @v :v :w 4` :~Q >~S'~U C~R E} " "G~V$Z(Z :Z \"Z 4Z3] EZ 2a+a(a0Z M~P D" "| E~P I} ?}!~d'Z(Z'Z\"Z9Z1^1Z1Z0Z [,Z#~^ @X $X ;Y .g MW 'Y LY " "+Y )Y Y " " >Y :Z \"X \"Z 7[=Z 3aE[ E[ " " 9Z>[ 3` 7~S E~R L~ 2Z :~]+[;Z;Z$" "~P -b IX Jc 9U )r >Y.Y 5X ,]DX 7ZEZ ;\\>\\ \\ 0XDX ,R=Y MX (X %hEW (SG" "V ,YAY JSHW%W-SGW&X GX/W ,` (a '` (a '` (a 5~d(~S N~S I~S H~R H~R 6Z " "!Z !Z \"Z :~T Ia/Y L~P F~P F~P F~P F~P" " <~X&Z(Z#Z(Z$Z(Z$Y'Y\"[-[ IZ \\>Z 1X LX )VCW 4UD] 4ZEZ 2f ?X LX " ")WDW 3YEZ ,W KX )WDW 4ZEZ -b 2UD] *W" " KX )WDW 5UD] 3ZEZ GW LX (VCW 4ZEZ )X 4Y FYEZ " "@XIX M~d 7U *Y *l GmDl ?[ " " 6~Z *`C\\ -Z +XCX ,W?W 2T CYCY5X E]CZ (X LX $X JV " " IX 9]E^ @m 7aGb B^Ec ,b ?y " "9aF[ F~R E_C_ B_E^ ;]E_ ={ 7b ;~R @cBb'~V D~R E} HeBc$Z(Z :Z " "\"Z 4Z4] DZ 2b-b(a0Z NbCb E} GbCb J~ Aa" "B_!~d'Z(Z'Z#[9Z2_1Z0Z2[ N[.Z\"~^ @X $X ;Y /i MW (Y LY ,Y (Y " " Y >Y " " :Y !X !Y 8[;Z 1\\ 0\\:U D[ " ";ZbCh%Z(Z" "#Z(Z$Z(Z$Y'Y![.Z HZ Z;Z 1X NX )WBV 5VBZ $e >W MX )WBW !X MX " ")WBW #` /UBZ (W MX )WBW 6UBZ " " 9X MW (WCW MX 3Y GXHW M~d 8U *[ +m HnFn " "A] 9~\\ +^=Y" " -Z +XCX -X@X 2U DXAX5W E\\=V (X LX #X .R@V?Q ,X :\\A\\ @m " "7\\>_ CY<_ -c ?y :^=V F~Q E]>^ D]@] " " j E~R E| Ha8^$Z(Z :Z \"Z 4Z5] CZ 2b-b(b1Z " "`<_ FZ@d I`=` K[@d C_:Z ~b&Z(Z'Z#Z8Z2`" "2Z0[4[ LZ/[\"~^ @X #X Y >Y ;Z " "!X !Y 8Z9Y 6d 4[5R CZ ;Y:Z 5b 8~R D~Q " "MbAb 8` =~]+[;Z;Z&`=` 1f KX Lg " " ;U *\\=T =Y0Y 4X ,Z;R 5Z3Y &W !Y3Y 3W@W EW LX *W " "%jEW KV -X=X @W'X W'X EX1W ,b " "*b (b )b )b )b 7ZH~R)a:] N~R H~R G~R H~R 6Z !Z !Z \"Z :Z>j Lb0Y N_<` J`<_ " "J`=` J`=` J`=` @`=e%Z(Z#Z(Z$Z(Z$Y'Y" " Z/[ HZ !Z9Y 0W X )WAW 6VAW \"d Y " " >Y ;Y X !Y " " 8Y8Y 6f 6Z2P BY j " "BZ(Z+[;Z;Z'_9_ 3h LX Mi <" "U *[:R V EW KW +W %kEW " " KV .X;W @W'W NW(X CW2X -c *c )b " "*c )c +c 7ZHZ 2_5[ NZ !Z Z !Z >Z !Z !Z \"Z :Z7d Mc1Y ^8_ K^8^ L_8^ L_9_ " "L^8_ B_9b$Z(Z#Z(Z$Z(Z$Y'Y [1[ GZ !Z" "8Y 0W !W (V?W I` :X !W (V?W X \"X (W@W *d EX !W (W@W " " 0X \"X (V?W !W 1Y #d ," "e +d +d ,e #XHW LZ#Z 7U +] -o KqHp C_ X #X " " Y >Y " " ;Y X X 9Z7X 6g 7Y" " #Z =Y8Z 7d 7[ Z )_7_ Bp EZ(Z+[;Z;Z(^5^ 5j " "MX Nk =U +[7P Z !Z !Z \"Z :Z3a Nc1Y!^5] L]4] N^5^ N^5^ N^5] " "C^5_#Z(Z#Z(Z$Z(Z$Y'Y N[2Z FZ \"Z7Y /W #W (W>V H^" " 8X #W (W>V NW \"W (W>W .h EW \"X )W>W 0W #X (V=V " "\"W 0Y &j 1i 0j 1j 1i &X ` .\\5U -Z +XCX " "-W?W =r'X>W8X EZ ;X NY !X 1XDVDX 2X " " &X ;[;[ BWDZ 7T2\\ \"\\ 1XMZ ?Y L\\ 2Z E[7[ G\\9[ >S5[ " "F`7` ?YNY Y >Y ;Y " "X Y :Y6Y 7i 9Y \"Y " " >Y6Y 7YNY 6[ !Z *^3] Dt GZ(Z+[;Z;Z)]2] 6l NX m " " >U +Z !Y4Z 3X -Y NW(W (W " " &X)X 8VZ !Z !Z \"Z :Z1` d2Y\"]2] N]2] ]2]!^2]!]2] " "E]2]\"Z(Z#Z(Z$Z(Z$Y'Y MZ3[ FZ \"Z6X .V $W 'VR4[ G^1^ " "AZNY Y >Y ;Y X Y " " :Y6Y 7j :Y \"Y " " >Y6Z 9YMY 5[ \"Z *]1] Hy IZ(Z+[;Z;Z)\\/\\ 8n X !o ?U ,[ " " Y5Y 2X -Y W&W )W 'W%W 9V" "Z " "!Z !Z \"Z :Z/_!d2Y#]0]!]0]\"]0\\!\\/\\\"]0] F\\0]#Z(Z#Z(Z$Z(Z$Y'Y M[5[ " "EZ \"Y5X +P " " %_K[ CY *r 9q 8r 9r 9q *X ;Z%Z " " >Q JT ,b 0q MsKs Ge " "C^ *[0R -Z +XCX .X@X @v)X=X:W CY :X Y NX 1[HVH[ 1X " " 'X ;Z7Z 0Z 7P,[ ![ 3XLZ ?Y M[" " 1Z EZ4[ I[5Z ?P1Z I^-] BYLY =Z1[ H\\(T'Z-^ JZ MZ *\\$S$Z(Z " ":Z \"Z 4Z:] >Z 2YMX1XMY(YNZ4Z$].\\ JZ5" "\\!\\-\\ Z4[ GZ ;Y 9Z(Z%Z'Z4Z5XNX5Z*Z:[ F[6Z [ ;X \"X =Y 5\\C[ " "#Y LY -Y 'Y 8X >Y " " >Y ;Y X Y :Y6Y 7k ;Y \"Z " " @Z5Y 9YLY 5[ #Z +\\.] J| KZ" "(Z+[;Z;Z*\\-\\ :p !X \"q @U ,Z NY6Y 1X -X W#V *W " "(W#W :U;V +X DW LW )mEW KV" " /X9X BW*X LW*X BW3W +YLY -YMY ,YLY -YMY ,YLY -YMZ ;ZFZ 5\\'S NZ !Z " "Z !Z >Z !Z !Z \"Z :Z-^\"e3Y#\\.]#].\\" "#\\-\\#\\-\\#\\-\\ H\\.]$Z(Z#Z(Z$Z(Z$Y'Y L[6Z DZ \"Y5Y " " /[G[ " " DY +u =u S LU ,c 1q MtLt " "Hf E] )[.Q " " -Z +XCX .W?X Bx)X=X;X DZ :X X MY 0ZIVIZ /X 'X ;Z7[ 1Z AZ ![ " "4XKZ ?Y MZ 0Z EZ3Z I[5Z " "Z J])\\ CYLY =Z1[ I\\%R'Z+] KZ MZ +\\\"R$Z(Z :Z \"Z 4Z;] =Z " "2YMX1XMY(YNZ4Z$\\,\\ KZ4[\"\\+[ Z4\\ I[ ;Y 9Z(Z$Z" "(Z4Z5WLW5Z*[<[ DZ7[ !\\ ;X \"X =Y 6\\A[ $Y LY -Y 'Y " "8X >Y >Y " " ;Y X Y :Y6Y 7l Z !Z !Z \"Z " ":Z,^#YNZ3Y$\\,\\#\\,\\$\\,\\%\\+\\%\\,\\ MP" " NP N\\-]$Z(Z#Z(Z$Z(Z$Y'Y KZ7[ Dq :Z4X " "/XC[ EY " " -x @x >x ?x @x -X :Z'Z ?U MU -e 2q MtLt Ig E[ " " 'Z,P -Z +XCX .W?W By)" "XZ0Z" " J\\#Q'Z*\\ KZ MZ +[ Q$Z(Z :Z \"Z 4Z<] Y 7[>[ %Y LY -Y 'Y 8X >Y " ">Y ;Y X Y ;Y" "5Y 7UH_ Z !Z !Z \"Z " ":Z+]#YMZ4Y%\\*\\%\\*\\&\\*[%[)[%[*\\ R!R [-_%Z(Z#Z" "(Z$Z(Z$Y'Y K[9[ Ct =Y3X /U@[ " " \"Q EY .z B{ " "B{ Az B{ /X :Z'Y >V U -g 4r NvNu Ji *\\ 5X.X 6\\ 7Z1Z M[ " " '[ 8Z +XCX /X@X C`MTL_)W;" "WZ0Z " "J[ 'Z)\\ LZ MZ ,\\ \"Z(Z :Z \"Z 4Z=] ;Z 2YLX3XLY(YMZ5Z%[([ " "LZ3[$\\)\\\"Z3[ IZ :Y 9Z(Z$Z)Z3Z6XLX6Z(Z>[ B[:Z !" "\\ 9X !X >Y 8[<[ &Y LY -Y 'Y 8X >Y " ">Y ;Y X Y ;Y5Y " "7RB] =\\ $Z BY2Y ;YJY 3[ &Z -[(\\!~U " "Z(Z+[;Z;Z,\\)\\ ?\\MXL[ $X %\\LXM\\ CU" " ,Y *Q\"R DY9Y 0X -Y #V=_?V Cm *V LV Z !Z !Z \"Z " ":Z*]$YMZ4Y%[([%[(['\\)\\'\\)\\'\\)[!T#T\"\\-`&Z(Z#Z(" "Z$Z(Z$Y'Y J[:Z Bw @Y6[ .Q<[ " " #S GY /`Da E`C" "` DaD` C`Da E`C` 0X 9Y(Z ?X !U .h 4r NvNu Kk .c 9X.X 7^ 7Y1Y M[ " " &Z 7Z +XCX /X@X C\\" "ITFY)W;W=X BY 9X !X KY +YNVNZ *X (X ;Z4Z 2Z @Z !Z 6YJZ ?Y Z " "/Z DY2Z JZ1Y ,T T MZ N[ NZ HZJ" "Y >Z0Z K[ &Z(\\ MZ MZ ,[ !Z(Z :Z \"Z 4Z>] :Z 2YLX3XLY(YLZ6Z&['\\ " "MZ3[$['[\"Z2Z IZ :Y 9Z(Z#Z*Z2Z7XLX7Z'[@[ @Z;" "[ ![ 8X !X >Y 9[:[ 'Y LY -Y 'Y 8X >Y " ">Y ;Y X Y ;Y" "5Y %\\ =] %Y BY2Z =ZJY 3\\ 'Z " ".\\'[#cLZLb!Z(Z+[;Z;Z,['[ @\\LXK[ %X &\\KXL\\ " " DU -Z +S$T EY:Y /X -Z %V?fBU Eo +VEg=V =VZ !Z !Z \"Z " ":Z)\\$YLZ5Y&\\'['['\\(['['['['['[#V%V#[-a&Z(Z#Z(Z$" "Z(Z$Y'Y IZ;Z Ay BY9^ G[ " " %U HY 0]<^ G^=^ F" "^<] E]<^ G^=^ 1X 9Z)Z @Z \"U .i 5r NvNu Lm 2h ;X.X 7^ 7Y1Y N[ " " &[ 7Z +XCX /W?X D[GTC" "V)W;W=W AZ :X \"Y KY *j (X (X ZY .Y3Y 3Z " "'\\ MZ )Z ;Z 2^ +Y ;Y " "X Y 6Y /Y5Y $[ =` G^ !Z IZ M\\ #Y2Z =YIZ 3\\ " "(Z .[%[%aIZI`\"Z(Z+[;Z;Z-[%[ B\\KXJ[" " &X '\\JXK\\ H\\ 1Z ,U&V EY;Y /X ,Z 'V@jDV Gp +UDj?V " ">VZ " "!Z !Z \"Z :Z(\\%YLZ5Y&[&['[&[)\\&[)[%[)" "[&[$X'X%[-b&Z(Z#Z(Z$Z(Z$Y'Y I[=[ Az CY;` 5\\ $] $\\ \"\\ #\\ $] 8\\/[ 3\\ " "'\\ #\\ \"[ \"[ \"[ &Z &[ ![" " #\\ #[ ![ G[@W IYBZ J]8] I\\7\\ H]8] I]8] I\\7\\ 2X " "8Y*Z @Z \"U .k 5q N~o Mm 4l =X" ".X 7^ 7Z3Z NZ %Z 6Z +XCX /W?W D[FT@S)W;W>X AZ :X " "\"Y JX (f &X )X ;Z3Z 2Z @Z !Z 7" "XHZ ?Y !Z /Z CY1Y JZ1Z 2Y Y $Z Z HY JYHY ?Z/Y L[ %Z'\\ NZ MZ -[ " " Z(Z :Z \"Z 4Z@\\ 7Z 2YKX5XKY(YKZ7Z'[" "$[ NZ2Z%[%[#Z2[ JZ :Y 9Z(Z#[,Z1Z8XJW7Z%ZB[ >[>Z !\\ 7X X ?Y ;[6[ " "(e 7YE` (e 3aEY 8c 2r 5`DX GYEa (X NX " "0X1Z 8Y FXD`9` YD` -c 9XD` /aEX :XD] 6g 7t BX0Y LY)Y+X6Z6X)Z/Z NX)Y I} 2Y " " X Y 9_>W KY5Y #[ =c h >XD` " "AT#X 5Y 6X0X LY'Y ?RCW ?~Y!X?X?X ;d 'r!~W KZ1Y =YHY 2\\ )Z " "/[$[%_GZG_#Z(Z+[;Z;Z-[%[ C\\JXI[ 'X (\\IXJ\\ " " (Y d 5Z -W(X FYV=W +X HX )^ " ",Y1Y HnEW KV 0X7W BW-W HW.X M^/X )" "Y +YHY 2YHZ 1YHY 2ZHY 1YHY 2ZHY ?ZDZ 9[ LZ !Z Z !Z >Z !Z !Z \"Z " ":Z'[%YKZ6Y'\\%[)[$[*[%[)[%[)[%[%Y)Z&[.d'Z(Z#" "Z(Z$Z(Z$Y'Y H[>Z @{ DY=b ;f -f -f ,e -f -f Ae7c ;e /b )c *c *c 'Y NX NX " " X E[ >XD` -c )c *b *c )c '\\ &bDX L" "X0X GX0X GX0X GX0X KY)X KYE` ?Y*Y 8[4\\ K[3[ J\\4[ I[4\\ K[3[ 3X 8Z+Z " " AZ !U /m 6q N~o No 6o ?X.X 8_ " "6Y3Z Z $Z 6Z +XCX 0X@X DZET>Q)W;W>W ?Y :X \"X IY " "'b $X )X ;Z2Y 2Z @Z !Z 8YHZ ?Y " "!Z 0[ CY1Y JZ1Z 5\\ \\ 'Z!Z FY LZHZ @Z/Y L[ %Z&[ NZ MZ .[ NZ(Z " ":Z \"Z 4ZA\\ 6Z 2YKX6YKY(YKZ7Z'[$[ NZ" "2Z&[#Z#Z2[ JZ :Y 9Z(Z\"Z,Z1Z8XJX8Z%[D[ ZHY 1\\ *Z " "/[#['^EZE^$Z(Z+[;Z;Z.[#Z C[IXH[ (X ([HXI[ (" "Z $k 9Z .Y*Z FY=Y .X ,\\ *UAnCU J^CW -VCmAV ?W>V *X IX (a " "/Y1Y HnEW KV 0X7W BW.X HW.W La3X " "(Y ,ZHY 2YGY 2ZHZ 3YGY 1YHZ 3YGY @ZCZ 9[ LZ !Z Z !Z >Z !Z !Z \"Z " ":Z'\\&YJY6Y'[$[)[$[*[$[+[#[+[$[&[+\\([.e'Z(" "Z#Z(Z$Z(Z$Y'Y GZ?Z ?| EY>c >l 4l 3l 2l 3l 4l Gl=h @k 5h /h /h /h )Y Y " "NX Y E[ ?XFd 1g .h /h /h /h )\\ )hHX " "LY0X HY0X GX0X GX0Y LZ+Y KYGd AY*Y 9[EXD[ M[1[ L[1[ K[1[ M[1[ 4X 8Z+Y " " A[ !T /n 6q N~o q 8q @X.X 8` 7" "Y3Y Z $Z 5Z +XCX 0X@X DYDT EW;W?X ?Y :X #Y IY %^ " "\"X )X k 5}\"~W KY0Z ?YGZ 1[ *Z " "/Z\"[(]CZD^%Z(Z+[;Z;Z.[#[ CYHXGY 'X 'YGXHY 'Z &o" " ;Z /[,[ FZ?Y -X +\\ +UBoBU LZ>W -UBnAU >W@W *X JX 'c 1Y1Y " "HnEW KV /W7W BW.W GW/X Lc5W 'Y ," "YFY 4ZGY 2YFY 3YGZ 3YFY 3YGZ AZCZ 9Z KZ !Z Z !Z >Z !Z !Z \"Z " ":Z&[&YJZ7Y'[#[*Z\"Z+[#[+[#[+[#[&[-\\'[/YM[(Z(Z#" "Z(Z$Z(Z$Y'Y G[A[ ?} FY?] :p 8q 8q 7q 8q 8p LqAl Do 9l 3l 3l 3l +Y Y NX " "Y #i @XHh 5k 2l 3l 3k 2l +\\ +lKX KY0" "X HY0X GX0X GX0Y KY,Z KYIh CZ,Z :ZCXC[ [/[ N[.Z MZ.[ [/[ 5X 7Y,Z " "AZ !U /o 7p M~n s :s AX.X 8` 7Z4Y Y" " #Z 5Z +XCX 0W?X EYCT EW;W@X >Z ;X #Y HX #Z X " " *X ;Z1Z 3Z @Z !Z 9XFZ ?Y \"Z /Z " "BY2Z KZ0[ [/Z 4t =YJj 3q " ">kJY >o 8r ;kJY GYJk .Y NX 0X5\\ 6Y FY" "JiBi$YJk 8o ?YJj 9kJX ;YJc Z !Z !Z \"Z " ":Z&[&YIZ8Y([\"[+[\"[,[\"Z+Z!Z,[\"[%[/\\" "&Z/YL[(Z(Z#Z(Z$Z(Z$Y'Y F[BZ >Z@d GY@\\ :t ;t t TAU NX;W )P9P =UAWAYAU " ">XDX )X LX HY 3Y1Y HnEW KV /W7W " "AP9P 9W0X FW0X ?Y8W &Y -YEZ 5YEY 4ZFZ 5YEY 4ZEY 5YEY BZBZ :[ KZ !Z Z !Z " " >Z !Z !Z \"Z :Z%['YIZ8Y([!Z+Z![,Z![-" "[![-[!Z$[1\\&[/XJZ(Z(Z#Z(Z$Z(Z$Y'Y EZCZ =Z;` HYA[ 8u oLX ;YLe ?u VAW?XAU ?ZHY (X MX EX 4Y1Y HnE" "W KV /W7W AQ:Q :W0W EW1X Z !Z !Z \"Z :Z%['YHZ" "9Y(Z Z+Z Z-[![-[![-Z [$[3\\%[0XI[)Z(Z#Z(Z$Z(Z$Y'Y E[E[ =Z9^ HYBZ 6v =v >w " "=w >v =v\"vIt Lt >t ;t ;t ;t /Y Y N" "X Y *r BXKn qMY GYMp 0Y NX 0X8[ 2Y FYMoIp'YMq ?v BYMp ?qMX ;YMf " "?u U@W?XAU >j (X " " NX CX 5Y1Y HnEW KV /W7W AR;R ;W1X EW1W :XZ " "!Z !Z \"Z :Z$Z'YHZ9Y)[ [-[ [.[ Z-Z NZ-Z [#[5\\$Z0XH[)Z(Z#Z(Z$Z(Z$Y'Y D[FZ " "w ?x >x ?w >w#wKv Nu ?v" " =v =v =v 0Y Y NX Y +s BXLp >u \\ DX.X :c 7Z7Z!Y " " \"Z 4Z +XCX C~d&XBT DW=XB" "X :[ >X $Y FY +f &X +X ;Z/Z 4Z AZ !Z ;YDZ ?YFP -Z?Q BZ ?Z5Z " "JZ/Z 5Z \"[ Gj Ii ;[\"X1Q,W\"YCZ BZ1" "Z MZ \"Z$[!Z MZ /Z LZ(Z :Z \"Z 4ZH] 0Z 2YHX;XHY(YHZ:Z)Z N[!Z2Z([ NZ%Z2Z " "I[ ;Y 9Z(Z Z1Z,Z;XGW;Z N[L[ 4[H[ #\\" " 1X MX AY BZ&Z 8^Ga AYN[H_ " "YDY *X )b 6UDY%U V9W ,SU@W>W@T =h 'X X AW 5Y1Y HnEW " "KV /X9X ASZ !Z !Z \"Z :Z$Z'YGZ:Y)[ " "NZ-[ [.Z N[.Z NZ.[ NZ\"[7\\$[1XFZ)Z(Z#Z(" "Z$Z(Z$Y'Y CZGZ ;Z6\\ IYCY 4^Ga ?^Ga @_Hb ?^Ga ?^Ga ?^Ga$^GaMaI`!bH\\ @aI` " "?aI` ?aI` ?aI` 1Y Y NX Y ,u CXM^Nb" " @aKa >aJa ?aJa ?aKa =`Ja 1\\ 0`Ic GY0X HY0X GX0X GX0Y IY0Z IYN[H_ FZ0Z " " X>Y&X#X%YJT9TIY&Y.TJY&X#X 8X 5Y0" "Z CZ ;P4U 1w 9l J~m#z B[;[ EX.X :d 7Y7Y X )~Q " "#Z +XCX C~d&XBT DW=XCX 9\\ ?X $Y FY " "-j (X +X ;Z/Z 4Z AZ \"Z :XCZ ?YM_ 5ZE^ IZ >Y6Z IZ0[ 5Z \"[ Jj " "Ci ?\\\"X6\\2X#YBY BZ1Z MZ \"Z$[!Z " "MZ 0[ LZ(Z :Z \"Z 4ZI] /Z 2YHX;XHY(YGZ;Z)Z N[!Z3[([ NZ%Z2Z H[ ^ BcB] >_?W C^CYNY C]A] 4Y /]Bc GYNYD^ 2Y NX 0X;\\ 0Y " "FYNXC\\KYD](YNYC] A]B^ DcB] C^CYNX ;YNZDQ A\\" ";V 5Y .Y1Y IY/Y&Y;_;Y\"Z;Z FZ0Y $[ 2Y X Y M];\\ F]E[JX IY9[ LY " ">ZKf =]=V CYNYC] K`2Z 5^ 9Y1Y!Z\"Z!^JZM^" " K~Y!Y@X@Y E]C^ CaHl\"~W LY.Z BYBY .\\ 0Z 1Z M[-[>Z>[(Z(Z*Z;Z<[0[ N[$[ " "W@U =f &X !X @W 5Y1Y HnEW " "KV /X9X AT=T =W2X DW2W 8W=X $Y .YBY 8ZC" "Z 7YBY 8ZCZ 7YBY 8ZBY FZ@Z ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z$[(YGZ:Y)[ " "NZ-Z MZ.Z N[/[ N[/[ NZ![9\\#[2YFZ)Z(Z#Z(Z" "$Z(Z$Y'Y C[I[ ;Z5\\ JYCY 4X=^ @X=] @Y=] ?Y>^ @X=^ @X=^%X=l@\\\"_?W A]@\\ " "@]@\\ @^A\\ @^A\\ 1Y Y NX Y -w DXNY" "C] A^C^ ?^C^ A^B] @^C^ ?^C^ 2\\ 1^C_ FY0X HY0X GX0X GX0Y IY0Y HcB] FY0Y " " ;X=X=Y(Y#Y'YJV;VIX&X.VJY(Y#Y 9W 4Z1" "Z DZ =S4U 2y 9j I~l#{ BZ9Z EX.X :d 7Z8Y!Y *~R " "#Z +XCX C~d'YBT DX?XBW 7\\ @X $Y FY " "/ZNVNZ *X ,X :Z/Z 4Z AZ #Z :XBZ ?o 9ZGc MZ =Z8[ HY0\\ 6Z \"[ Li " " >j C\\\"X8aGVBW$ZBZ CZ2Z LZ \"Z#Z!" "Z MZ 0[ LZ(Z :Z \"Z 4ZJ] .Z 2YHXY " "9Z(Z NZ2Z,Z\\ @^:T C\\?b D\\=\\ 5Y 0\\>a Ga?\\ 2Y NX 0X<\\ /Y " "Fa@\\MX@[(b@\\ B]?\\ Da?] D\\?a ;b 1Z6" "S 5Y .Y1Y IZ1Z&Y;_;X![=Z DY1Y #[ 2Y X Y `>` I\\B[KX IY:\\ LY ?ZDa " "?\\7R Cb?\\ F[3Y 5_ 9Y1Y\"Z Y!]IYJ] L" "~Y!Y@X@Y F\\?\\ D^Ai\"~W LY.Z CZBZ .\\ 1Z 1Z LZ.[=Z>[(Z(Z*Z;Z<[0[ N[%\\ " "XAU V ?W3X CW3X 8X>W #Y /Z" "BZ 9YAY 8ZBZ 9YAY 8ZBZ 9YAY FZ@Z ;Z IZ !Z Z !Z >Z !Z !Z \"Z " ":Z$[(YFZ;Y)Z MZ-Z MZ/[ MZ/[ N[/Z M[![;\\\"[3YE[*" "Z(Z#Z(Z$Z(Z$Y'Y B[JZ :Z4[ JYCX 3U8\\ @U8\\ AV8\\ @U7\\ AU7[ " "@U8\\%U8h=\\$]9T B\\=\\ B\\=\\ B\\=\\ B\\<[ 2Y Y " "NX Y .x Da?\\ C]?] A]?] B\\?] B]?] A]?] 3\\ 2]?] FY0X HY0X GX0X GX0Y " "IZ1Y Ha?] GY1Z ~d W5T 2{ 9i H~k$} DZ7Z FX.X :d 7Z9Z!X " " )~R #Z 0~d&XBT DX?XCX 6\\ " " =Y EY 0ZMVMZ +X ,X :Z/Z 4Z B[ %\\ :XBZ ?q ;YHg Z \\ 0Z 6Y.Z CYAZ -\\ 2Z 1Z LZ.[=Z=[)Z(Z*Z;ZW>X@T ;a #X #X =W 6Y1Y GmEW " "KV .X;X @W@W @W3W BW4X 6W?X #Y /Y@Y :" "ZAY 8Y@Y 9YAZ 9Y@Y 9YAZ GZ@Z ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z#Z(YFZ;Y)Z " "M[/[ MZ/[ MZ/Z LZ/Z M[ [=\\!Z3YD[*Z(Z#Z" "(Z$Z(Z$Y'Y AZKZ 9Z4[ JYDY 3R3[ AR3[ BS3Z @S4[ AS4[ AR3[&R3e:[&]6R C\\:[ " "D\\:[ D\\:[ D\\:[ 3Y Y NX Y /_B] E_<" "[ C[;[ B\\<\\ C\\<\\ C[;\\ C\\<\\ 3\\ 3\\<\\ FY0X HY0X GX0X GX0Y HY2Z " "H`<[ FY2Y ;X~d#Z6U 3} :h G~k%~P EY5Y FX.X ;ZNY 6Y9Z!X " " *~R \"Z 0~d&YCT CXAXBW 5] " " >Y EY 2ZKVKZ -X ,X :Z/Z 4Z BZ &] :XAZ ?s =YJk #[ ;[=[ FZ1\\ 6Z " "\"[ #j L~d Ki J\\!X:hKVAW%Y@Y CZ5\\ L" "[ \"Z#Z!Z MZ 0Z KZ(Z :Z \"Z 4ZL] ,Z 2YGX=XGY(YEZ=Z*[ M[\"Z4['Z LZ&Z4[ " "F` BY 9Z(Z MZ4Z*Z=XEW=Z Jd .ZLZ #\\ .X" " LX BY JQ1[ D_:[ B\\ ([9_ F[7Z 6Y 1[:_ G^9Z 3Y NX 0X>\\ -Y " "F^;b;Z)_:Z D[:\\ F_:[ G[9^ ;_ /Y EY .Y1Y " "HY2Z$Y=a=Y NZ@[ BY3Z %[ 0Y X Y \"eCd L[>YLX HY>^ IY AY=] @Z &_:Z " "DY4Y 5a :Y1Y\"Z Z$\\GYG\\ EY9Y IY@X@Y G" "Z9[ G\\;[ 0Y 5Y.Z DZ@Y ,\\ 3Z 1Z LZ.ZUDX!T\"XW>X@U :] !X $X Z !Z !Z \"Z :Z#Z(YEZ~d&^7U 4~ 9f E~i%~R GY4Y FX.X ;ZNZ 7Y9Y!X )~R " "\"Z NW?W BYCT CYBXCX 6_ ?Y EZ 5ZI" "VIZ /X ,X :Z.Y 4Z C[ )_ :YAZ ?t >YKn %Z 9\\A\\ EZ1\\ 6Z \"[ &j " "I~d Hi N\\ W:jLVAW&Z@Z DZ8^ KZ !Z#[\"Z " " MZ 0Z KZ(Z :Z \"Z 4ZM] +Z 2YGY?XFY(YEZ=Z*Z L[\"Z4['Z LZ&Z4[ Fc EY 9Z(Z " "MZ5Z)Z>XDW=Z Ic .[NZ #\\ -X KX CY " " )Z D^8[ D\\ '[8^ FZ5Z 7Y 2[8^ G]8Z 3Y NX 0X?[ +Y F]9`9Y)^9Z E[8[ " "F^8Z GZ8^ ;^ .Y EY .Y1Y GY3Y#Y=WNX=Y M" "ZAZ AY3Y %[ /Y X Y #gEf N[W>W?U 7W <~d BX ;W 6Y1Y GmEW KV -X=X ?YBY BW4W " "AW5X 5W@W !Y 0Y?Z ;Y?Y :Z@Z ;Y?Y :Z?Y ;Y" "?Y HZ?Z <[ IZ !Z Z !Z >Z !Z !Z \"Z :Z#Z(YEZY D~P JZ " "!Z#[\"~Q Dy Z K~] :Z \"Z 4ZN] *Z 2YFX?XF" "Y(YDZ>Z*Z L[\"Z5\\([ LZ&Z5\\ Eg JY 9Z(Z MZ5Z)Z>XDX>Z Ib ,f $\\ ,X KX " "CY (Y D]6Z D[ '[7^ GZ4Z 7Y 2Z6] " "G]7Z 4Y NX 0X@[ *Y F]8^8Z*]7Z FZ6[ G]6Z I[7] ;] -X DY .Y1Y GY3Y#Y=WNX=X " "L[CZ ?Y4Y &[ .X NX Y $iGh Z:XNX" " GYHg HY CY8\\ CY $]7Z DY6Y 4b ;Y1Y#Z MZ&[EYE[ FY9Y IY@X@Y HZ7[ I[7[ 2Y " "5~V DY>Y +\\ 5Z 2Z KZ/[W>W?U K~d CX ;X " " 6Y1Y FlEW KV -Y?Y ?ZCZ CW5X AW5W 5XAX !Y 0Y>Y Y Y " ";Y?Z JZ>~Q3[ I~Q G~Q F~Q G~Q 5Z !Z !Z " "\"Z :Z#Z(YDZ=Y*[ LZ/Z L[0Z L[0Z LZ0[ LZ L[C\\ N[5X@Z*Z(Z#Z(Z$Z(Z$Y'Y ?e " "7Z3[ KYDY @Y Y !Z Y Y Y 4_4Y)[ %Z3" "Y GZ3Y FZ4Y FZ4Y 4Y Y NX Y 1[8Z F\\7Z F[7[ EZ6[ G[6[ G[6Z EZ6[ Y D~ IZ !Z#[\"~Q Dy![ K~] :Z \"Z 4h )Z " "2YFX@YFY(YDZ>Z*Z KZ\"Z5\\([ LZ&Z6\\ Ck Y 9Z(Z LZ6Z(" "Z?XDX?Z G` *d #[ +X KX CY 'Y E]6[ F[ &Z5] GY2Y 7Y 3Z4\\ G\\6Z 4Y " " NX 0XA[ )Y F\\7]6Y*\\5Y G[5Z G\\5Z I" "Z5\\ ;] -X DY .Y1Y GZ5Z#Y>XMW>Y K[E[ ?Y5Y &[ .Y NX Y " "$XIZHZIY!Z:XNX GYHf GY DY6[ CY $\\5Y CX6Y 5c ;Y1Y#" "Z MZ&[EYDZ FY9Y IY@X@Y IZ5Z IZ5Z 2Y 5~V EZ>Y *[ 5Z 2Z " "KZ/[Z EiKh 6X /XC^ BTDX U\"YA\\ 4ZCZ N~d &U>W?X>T K~d EY :W " " 5Y1Y EkEW KV ,YAY =ZCZ DW6X @W6" "X 5W@W 'Z>Y Z =Y=Y ;Y>Z =Z>Y JZ>~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z " "\"Z :Z#[)YDZ=Y*[ LZ/Z KZ0Z L[1[ LZ0[ L" "Z K[E\\ M[6Y@Z*Z(Z#Z(Z$Z(Z$Y'Y >d 7Z2Z KYDY @Y Y Y NY Y !Y 4^3Z*Z " "$Z3Z HZ3Z HZ3Z HZ2Y 5Y Y NX Y 2[6Z G" "\\6Y FZ5[ G[5Z GZ5[ GZ5[ G[5Z =[:_ HY0X HY0X GX0X GX0Y GZ5Y F\\5Z GY5Z " " Z6Y &[ .Y NX Y %WEYJYEX#Z8a GYHe FY DX4[ DY $\\5Y CY8Z " "5d Y*Z KZ/Z KZ0Z " "L[1[ L[1[ LZ J[G\\ L[7Y?Z*Z(Z#Z(Z$Z(Z$" "Y'Y >c 6Z2Z KYDY ?Y X NX NY Y Y 4\\1Y+[ %Z1Y HY1Y HY1Y HY1Y 5Y Y " "NX Y 3[5Z G[5Z HZ3Z GZ4[ HZ4Z HZ3Z GZ" "4[ >Z9` IY0X HY0X GX0X GX0Y FY6Z F\\4Z GY6Y ;W9X9W-X " "JX,WD[I\\DW,W1[DW-X JX =X 1Y6Z <~d'RKY:U 5~U J" "~T$~g'~X KY1X GX.X Z ?y DgF` *Z 2k >Z4^ 6Z \"[ 1j >~d =i -[ LW=\\C_?W)YZ=Z =YZ=Z =YZ=Z LZ=~Q3Z H~Q G~Q F~Q G~Q" " 5Z !Z !Z \"Z Ew5[)YCZ>Y*Z KZ/Z KZ0Z KZ1[ L[1Z KZ I[I\\ " "K[8Y>[+Z(Z#Z(Z$Z(Z$Y'Y =a 5Z2Z KYDY ?Y Y X MX Y Y" " 4\\1Y+Z $Y0Y IZ1Y IZ1Y IZ0X 5Y Y NX Y 3Z3Y GZ3Y HZ3Z HZ2Z IZ2Z IZ3Z " "GZ3Z >Z:a IY0X HY0X GX0X GX0Y FZ7Y E[" "3Z GY6Y ;W9X9W-W HW,WC[K\\CW,W2[CW-W HW =X 1Z7Z <~d NX:U 5~V " "M~X%~e&~Y LX0Y HX.X =ZJY 6Y=Z W " " NZ 3Y X@X ?]IT ?hCW 7h2X ;Y CY 7TAVAT 1X .X " "8Z.Y 4Z G\\ 6g 5X=Z ?X?a EeB^ +Z /f ;[5" "^ 4i ;~d :i 1[ LWr *Y " "9Z(Z KZ8Z'Z@XBX@Y D\\ &` $\\ )X JX DY &X E[2Z HZ %Z3\\ IZ/X 8Y " "4Z2[ GZ3Y 4Y NX 0XE\\ &Y FZ4[5Y*[4Z IZ" "2Z H[2Y KY2[ ;[ +X DY .Y1Y FZ7Z!Y?WLX?X H[IZ ;Y7Y '[ ,Y NX NY *Q " "NV@WLW?U#Z8` FYHd .^FY EX2[ DX $[3Y CX8Y" " 5YMY [/[IuI[.\\ 4X 4\\ =X =\\$\\" " =X MZAU -Z &X8Y G~W 6X 0W<\\ FUEX MT iNW 8[D[ K~d &T=WE\\QZZeBX] ,Z 1j <[7_ 7i 8~d 7i 5[ KW=Z=" "\\?W*Y:Y F{ FZ !Z\"Z\"~Q Dy![1j&~] :Z \"Z 4e &Z 2YDXCXDY(YBZ@Z*Z " "KZ\"Z[/[IuI[/\\ 3X " "3\\ >X >\\\"\\ >X MZAU -Z 'X6X 5c " "%X 1X;\\ GUEX MT NgMW 9[D[ J~d &T=m;T K~d In 4TA[ 4Y1Y BhEW 3Z " " DX )i 5[D[ IX9W5Z3W8WFj?TA[BX5Z KY" ";Z @Z;Z ?Y:Y @Z;Z ?Z;Y ?Y;Z NZ<~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z \"Z " "Ew5[)YAY?Y*Z KZ/Z KZ1[ KZ1[ L[1Z KZ G[M\\ IZ8" "X<[+Z(Z#Z(Z$Z(Z$Y'Y <_ 4Z2Z KYD[ @X NX Y NY X NX 3Z/Y-Z $Z/Y KZ/Y " "KZ/Y KZ/Y 6Y Y NX Y 4Z2Z HZ3Y IZ1Z I" "Z1Z JY1Z JZ1Z IZ1Z @Z;XNZ JY0X HY0X GX0X GX0Y EY8Y D[2Z GY8Y " ";X9X8W.W HW-W@hAW-X4[@W.W:[:W =X 0Z9Z I" "[ 7YY ~m 4Z 3Y " " W?X >g =cAW?]'[K\\5Y ;Y CZ %V M" "X /X 7Y-Z 5Z H[ 4l ;XZ>Z.[IuI[0\\ 2X 2\\ ?X ?\\ \\ ?X MY@U 8y ;X6X 4a $X " "1X9[ HUEX MT MeLW :[D[ I~d &T=l:T " "K~d Io 5m 3Y1Y AgEW 3Z Nl 2g 3[D[%lDX5Z>mDXFk@mAW5[ LZ:Y @Y:Z ?Y:Y " "@Z:Y ?Y:Z AZ:Y NZ<~Q3Z H~Q G~Q F~Q G" "~Q 5Z !Z !Z \"Z Ew5[)YAZ@Y*Z KZ/Z KZ1[ KZ1[ L[1Z K[ Gh " "HZ9X;[+Z(Z#Z(Z$Z(Z$Y'Y ;] 3Z2Z KYC[ AX NX Y NY Y X" " 3Y.Y-Z $Y.Y KY.Y KY.Y KY.Y 6Y Y NX Y 4Z1Y HY2Y IZ1Z IY0Z KZ0Z KZ1Z " "IY0Z @Y;XMZ JY0X HY0X GX0X GX0Y DY9Y D" "Z0Y GY9Z ;W8X8W.W HW-W?f?W.W4[?W.W:[:W =X 0Z9Y HZ 5X_@XAa*[I\\6Y ;Y CZ %V MX /X 7Y-Z " "5Z I[ 3n >X;Z ] G`9\\ .Z 4s @[9` " " =i /i ;Z IV=Y9Z>V+Z:Z G~P JZ !Z\"Z\"~Q Dy!Z1l'~] :Z \"Z 4g (Z " "2YDYEXCY(YAZAZ*Z KZ\"}$Z K['z 5r /Y 9Z(Z JZ;Z" "$ZAW@WAZ F_ %\\ $[ &X IX EY &Y FZ0Y IZ %Y/Z IY.Y 9Y 4Y0Z GY1Y 5Y " " NX 0XH[ \"Y FY3Z3Y+Z2Y JZ0Z IZ0Y MY0" "Z ;Z *Z FY .Y1Y DY9Y MYAWJXAY F[MZ 8Z:Y )[ +Z MX N[ 7g1U U<^;U&Z6^ " "EYHj 9gJY FX/Y CY &Z2Y BYY1Y%Z" " J[*ZBYBZ HY9Y IY@X@Y KY0Z MY/Y 4Y 6~W GZ:Z ,[ 6Z 2Z " "KZ/Z;Z;Z*Z(Z([>Z?[.ZHuI[1\\ 1X 1\\ @X @\\ M\\ @X NZ" "@U 8y ;W4X 5` #X 1X8Z HUEX MT LbJW ;ZC[ H~d &T=j8U L~d Io 5l " "2Y1Y @fEW 3Z Nl 0c 0[CZ&lDW5[>mEXE\\N^" "AlAX6\\ LZ:Z AY9Y @Z:Z AY9Y @Z:Z AY9Z!Z;~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z " "\"Z Ew5[)Y@ZAY*Z KZ/Z KZ1[ KZ1[ L[1Z K" "[ Ff GZ:X:[+Z(Z#Z(Z$Z(Z$Y'Y :\\ 3Z2Z KYC\\ BY X NX NY Y X 3Y-X-Y " "#Y-X KY-X KY-X KY-X 6Y Y NX Y 5Z0Y HY" "2Y IY/Y JZ0Z KZ0Z KY/Z KZ/Y AZ;WKY JY0X HY0X GX0X GX0Y DY:Z DZ0Y FY:Y " " :WK~KW.WK}KW-W>d>W.W5[>W.W:[:W =X /" "Y:Z IZ 4Y=T 6~[%~b'~_%~\\ NY/X HX.X >ZHY 6Y?Y N~m " "4Z 3Y !X@X ;l @[>WBe,ZG\\7Y ;Y" " CZ %V ;~c LX 7Y-Z 5Z J\\ 2n @Y;Z N\\ G`8\\ /Z 5u A\\V+Y8Y G~R LZ !Z\"Z\"~Q" " Dy![2l'~] :Z \"Z 4h )Z 2YCXEXCY(Y@ZBZ*Z KZ\"|#Z K['x 0q 1Y 9Z(Z " "IZY1Y%Z " "IZ*YAYBZ HY9Y IY@X@Y KY/Y MY/Y 4Y 6~W GY9Z " "-[ 5Z 2[ LZ/Z;Z;Z*Z(Z'[?Z?[.[IuI[2~n BX B~n AX A~m AX NZ@U 8y dEW 3Z Nl ._ ,ZCZ'lEX6\\>mEWDVCZBkAX6] LY8Y " "BZ9Z AY8Y BZ9Z AY8Y BZ9Z!Z;~Q3Z H~Q " "G~Q F~Q G~Q 5Z !Z !Z \"Z Ew5[)Y@ZAY*Z KZ/Z KZ1[ KZ1[ L[1Z KZ Ee " "FZ;Y:[+Z(Z#Z(Z$Z(Z$Y'Y :[ 2Z2Z KYB\\ CY X NX" " NY Y Y 4Y-Y.Y #Y-X KY-X KY-Y LY-Y 7Y Y NX Y 5Z0Z IY2Y JZ/Z KZ/Y " "KY/Z KY/Z KZ/Y#~d$ZX /Z;Z JZ " "2X>U 6~\\'~c&~^$~Z MY/X HX.X >YGZ 7Z@Y " "N~m 4Z 3Y !X@X :n 'WBg.ZE\\8X :Y CZ %V <~e " " NX 6Y-Y 4Z K\\ #a AX:Z M\\ H_6[ 0Z" " 6aI` A]?c ?f $f ?Z IW>Y7Y>V,Z8Z HZ8` MZ !Z\"Z\"Z MZ 1[2l'Z(Z :Z " "\"Z 4ZN] *Z 2YCXFYCY(Y@ZBZ*Z KZ\"{\"Z " "K['v +o 2Y 9Z(Z IZq:X !U:[9U&Y5] DY?d =jLX FY/Z C[ " ")Y1Y AX=Z 6ZIY >Y1Y%Z IZ*YAYAY HY9Y IY@X@Y KY/Y NZ/Z 5Y 5Y-Y HZ8Y .[ 4Z " "1Z LZ/Z;Z;Z*Z(Z'[?Z@[-[ L[3~o BX B~o BX" " B~o BX NZ@U 8y mFXDS?YBi?W5] CY 4Z8Y BY7Y BZ8Z CY7Y AY8Z CZ8Y!Y:Z Z !Z !Z \"Z Ew5[)Y?ZBY*Z KZ/Z KZ1[ KZ" "1[ L[1Z KZ Dc E[=Y9[+Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z2Z KYB^ &i 0i 1i /i 0i 0i " "Ej-Y/Z $Z-Y MZ-Y MZ-Y LY-Y 7Y Y NX Y 5Y/" "Z IY1X JZ/Z KZ/Z LY.Y LZ/Z KZ/Z$~d$Z=WIZ KY0X HY0X GX0X GX0Y CYX .Y;Y JZ 1Y?U 6~\\(~e'~]\"~X LX.X HX.X >YFY 7ZAZ N~m " " 4Z 3Y !W?X 9p +XCi0ZC\\9X " " :Y CZ %V <~e NX 6Z.Y 4Z L\\ M^ CY:Z L[ H^4Z 0Z 7^A^ C_Ce " "?c Mc @Z HW>X6Y>V,Y7Z HZ5^ NZ !Z\"" "Z\"Z MZ 1[2l'Z(Z :Z \"Z 4ZM] +Z 2YBXGXBY(Y?ZCZ*Z KZ\"z![ LZ&w 'k 3Y 9Z(Z " "IZ=Z\"ZCX@XCZ Gc &Z &\\ $X HX FY " " >q FY.Y JY $Y/Z JY,X 9Y 5Y.Y GY1Y 5Y NX 0XL\\ NY FY3Z3Y+Y1Y JY.Z " "JY/Z NY/Y ;Y (^ KY .Y1Y CY;Y KYCXIXCY " "Bc 4Y\\IYMX FY/Z B\\ +Y1Y AY>Y " "5ZIZ ?Y1Y%Z IZ*YAYAY HY9Y IY@X@Y KY/Y NZ" "/Z 5Y 5Y-Y HZ8Z 0\\ 4Z 1Z LZ/Z;Z;Z*Z(Z&[@Z@[-[ L[4~p BX B~o BX B~p CX " " NY?U 8y mFWCQ;XAe>X6UNW CY 4Y7Z DZ7Y BZ8Z CY7Z CZ7" "Y CY7Z#Z:Z Z !Z !Z \"Z :Z#[)Y?ZBY*Z KZ/Z KZ0Z KZ1[ L[1Z " "KZ Ca D[>Y8[+Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z3[ " "KYA^ /q 9r 9q 7q 8q 9r Mq,Y/Z $Y,Y MY,Y MY,Y MZ-Y 7Y Y NX Y 5Y.Y IY1X " "JZ/Z KY.Z LY.Y LZ/Z KY.Z$~d$Y=XIZ KY0X" " HY0X GX0X GX0Y CYX .YW-Y6Y HZ2\\ Z !Z\"Z\"Z " "MZ 1[2l'Z(Z :Z \"Z 4ZL] ,Z 2YBXGXBY(Y?Z" "CZ*Z KZ\"x N[ LZ&x #f 3Y 9Z(Z HZ>Z\"ZCW>WCZ Hd &Z &[ #X HX FY At " "FY.Y JY $Y/Z JY,Y :Y 5Y.Y GY1Y 5Y NX" " 0XM\\ MY FY3Y2Y+Y1Y JY.Z JY.Y Z/Y ;Y (b Y .Y1Y CY;Y KYCWHXCY Bb 3Y=Y " "*[ 6e JX Ke KzF^ !U9Y7T'Z4[ CY7] @[E" "XNX GZ.Y Ai 9Y1Y AY>Y 5YHZ ?Y1Y&[ IZ+ZAYAY HY9Y IY@X@Y KY/Y NZ.Y 5Y 5Y-Y " "IZ6Y 0[ 3Z 1Z LZ/Z;Z;Z*Z(Z&\\AZA[,[ L[" "4~p BX B~o BX C~q CX NY?U 8y Z !Z !Z \"Z :Z#[)Y>ZCY*Z K" "Z/Z KZ0Z L[1[ L[1Z KZ B_ C[>X7[+Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z3[ KY@_ 5u XHZ KY0X HY0X GX0X GX0Y " "BY=Y BY.Y FY=Z 9WK~KW/WJ}JW.W:\\:W.W" "9[:W/W9[9W >X .Z=Y JZ /X@U 6~^*~g&~Y N~V KX.Y IX.X ?ZFZ 7ZBY L~l " " 4Z 3Y \"X@X 3n /X" "CZIZ2Z@\\W.Z6" "Z IZ1[ Z !Z#[\"Z MZ 1[2l'Z(Z :Z \"Z 4ZK] -Z 2YBXHYBY(Y>ZDZ*Z KZ\"v L[ " "LZ&z !c 4Y 9Z(Z HZ>Z\"ZDX>XDY Ge 'Z '[ " "\"X GX GY Dw FY.Y JY %Z/Z J~W :Y 5Y.Y GY1Y 5Y NX 0XN\\ LY " "FY3Y2Y+Y1Y JY.Z JY.Y Z/Y ;Y 'e $Y .Y1Y CZ=Z" " KYDXGWDY @a 3Z>Y +[ 5d IX Ic L~d !U8X7T'Z4[ CY5\\ AZCa GY-Y @h 9Y1Y " "@X?Z 6ZGY ?Y1Y&[9X9Z+ZAYAZ IY9Y IY@X@Y " "KY/Z Y-Y 5Y 5Y.Z IZ6Z 2[ 2Z 1Z M[/Z;Z<[*Z(Z%[AZB\\,[ LZ3~p BX B~o BX C~q " "CX NY?U 8y Z !Z !Z \"Z :Z#[)Y>ZCY*Z KZ/Z KZ0Z L[1[ L[1[ LZ " "A] B[?X6Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z3[ KY?" "_ 8w ?x ?w =w >w >w$~u/Y #~W M~W M~W M~W 7Y Y NX Y 6Z.Y IX0X JY-Y KY.Z " "MZ.Z MY-Y KY-Y$~d$Y?XFY KY0X HY0X GX0" "X GX0Y BY>Z BY.Y EY>Y 8WK~KW/WJ}JW.W;]:W.W:[9W/W9[9W >X -Y>Z KZ " ".YAU 6~^*~g%~W L~T JX.Y IX.X ?YEZ 7Z" "CZ L~k :y KY \"X@X 0m 1WCYEY3Y>\\=X 9Y BY %V <~e " " =l X 5Z.Y 4Z \\ E[ GY8Z JZ I]" "2Z 2Z 8[7[ BqMZ ?^ C^ @Y GV=W4X>V-Y5Z IZ0[!Z !Z#[\"Z MZ 1[2l'Z(Z " ":Z \"Z 4ZJ] .Z 2YAXIXAY(Y=YDZ*Z L[\"s" " I[ LZ&[Cc Na 5Y 9Z(Z HZ?Z YDX>XEZ Hg (Z (\\ \"X GX GY Fy FY.Y " "KZ %Z/Z J~W :Y 5Y.Y GY1Y 5Y NX 0e KY" " FY3Y2Y+Y1Y KZ.Z JY.Y Y.Y ;Y &h (Y .Y1Y BY=Y IXDXGWDY ?_ 1Y?Z ,[ 4b GX " "Ga L~c T6V6T'Z4[ CY4\\ CZ@_ GY-Y >f " "9Y1Y @Y@Y 5YFZ @Y1Y&Z8X9[,ZAYAZ IY9Y IY@X@Y KX.Z Y-Y 5Y 5Y.Z IY5Z 3[ 1Z " "1Z M[/[WEY9T " "-X EY1Y 1WEW 3Z 6ZCZ 7X7" "UKV HW*W KX6ULW CY 5Y5Z FZ5Z EY4Y FZ5Z EZ5Y EY5Z%Z9Z Z " "!Z !Z \"Z :Z#Z(Y=ZDY*[ LZ/Z KZ0Z L[0Z " "LZ0[ LZ A] B[@X5Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z4[ JY>` Y " "8WK~KW/WJ}JW.W<_;W.W;[8W/W9[9W >X -Z?Z " " LZ -YBU 5~^*~h%~U J~R IX.Y IX.X @ZDY 6YCZ LW 'y " " JY \"W?X ,j 3WCYCY4Y=\\>X 9Y CZ" " %V <~e =l X 5Z.Y 4Z !\\ C[ IY7Z JZ I]2Z 3[ 9[5[ BoLZ ?a " "Ia @Y HW>X3W>V.Z4Y IZ/Z!Z !Z#[\"Z MZ 0" "Z Z'Z(Z :Z \"Z 4ZI] /Z 2YAXIXAY(Y=ZEZ*Z L[\"o DZ LZ&Z<^ M_ 5Y 9Z(Z GZ@Z " "ZEX>XEZ I[MZ (Z )\\ !X GX GY " "Gz FY.Y KZ %Y-Y J~W :Y 5Y.Y GY1Y 5Y NX 0c IY FY3Y2Y+Y1Y KZ.Z JY.Y Y.Y " ";Y %j +Y .Y1Y BY=Y IYEXGXEY >] 0Y?Y ,[ " "3` EX E_ L\\Cx NT6V6T'Z4Z BY2Z CY>^ GY-Y ;c 9Y1Y @YAZ 6ZEY " "@Y1Y&Z8X9[,ZAYAZ IY9Y IY@X@Y KX.Z Y-Y 5Y 5Y.Z JZ" "4Y 4\\ 1Z 1[ NZ.[" "WDX:U -X EY1Y 1WEW 3Z 5YBY 7W6UKV IX*W KW6UKW CY 6Z4Y " "FZ5Z FZ4Z GZ4Y EY4Z GZ4Y%Y8Z <[ IZ !Z " " Z !Z >Z !Z !Z \"Z :Z#Z(Y=ZDY*[ LZ/Z L[0Z L[0Z LZ0[ LZ B_ " "BZAY5Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z5\\ JY=` ?{ B{ Bz @z B{ " "B{'~x/Y #~W M~W M~W M~W 7Y Y NX Y 6Z.Y IX0X JY-Y LZ-Y MZ.Z MY-Y " "KY-Y$~d$Y@WDY KY0X HY0X GX0X GX0Y AY@Z AY.Y " "DY@Z 8WK~KW/WJ}JW.W=aX ,Y?Y LZ +XBU 6~_+~i%~U " "I~P HX.Y IX.X @ZDZ 7YCY KX " " (y JY \"W?W (h 5XCXAX5Z<\\@Y 9Y CZ $T ;~e =l X 5Z/Z " "4Z \"\\ AZ IX6Z JZ I\\1[ 4Z 8Z3Z AmKZ" " ?d d AZ HW>X3W>V.Z4Z JZ.Z\"[ \"Z#[\"Z MZ 0Z Z'Z(Z :Z \"Z 4ZH] " "0Z 2YAYKX@Y(YWCX;U -X " "EY1Y 1WEW 3Z Is 0YAX 8W6UJV IW)W" " LX7UJW CY 6Z4Z GY3Y FZ4Z GY3Y FZ4Z GY3Z'Z8Z <[ IZ !Z Z !Z >Z !Z !Z " "\"Z :Z#Z(Yc=W.W=[6W/X:[:X >X ,Y@Z M[ " "+YCT 5~`,~i$~S H~P HX.Y IX.X @YCZ 7ZDY KX )y HX " "#X@X (TNc 6WCX@X5Y:\\AX 8Y CZ :~e" " =l !X 4Z/Z 4Z #\\ @[ KY6Z IZ I[0Z 4Z 9Z2[ @jJZ ?f %g AZ " "HW>X3W>V.Y2Y JZ.Z\"[ \"Z#Z!Z MZ 0Z Z'Z(Z" " :Z \"Z 4ZG] 1Z 2Y@XKX@Y(YWBXZ !Z !Z \"Z :Z#Z(YW.W>[5W.W:[:W =W +ZAY LZ *YDU 5~`,~i#~Q F} " "GX.Y IX.X AZBY 7ZEZ KX " ")y HX 6~e 9TJ_ 7XCX?X6Y9\\BX 8Y CZ KX Nl !X 4Z/Z 4Z $\\ " ">Z LY5Z IZ I[0Z 5Z 8Z1Z >fHY =h " " +i @Z HW>X3W?W/Z2Z KZ.[#[ \"Z#Z!Z MZ 0Z Z'Z(Z :Z \"Z 4ZF] 2Z " "2Y@XLY@Y(Y;ZGZ*[ MZ!Z /Z M[&Z7[ K\\ 6Y 9Z(Z FZ" "BZ MYFXY FY.Y KZ %Y-Y K~X :Y 5Y.Y " "GY1Y 5Y NX 0e KY FY3Y2Y+Y1Y KZ-Y JY.Y" " Y-X ;Y !m 2Y .Y1Y AZAZ GYGXEXGY >] .ZBY -[ 1e JX Ke LU4k IU8Y8T'Y2X " "AY0Y EX:[ FY-Z Ah 9Y1Y >XCZ 6YBY AY1Y&" "Z8X8Z,Y@YAZ IY9Y IY@X@Y LY-Y Y-Y 5Y 5Z/Y JZ2Z 8[ .Z " "0[!Z,[=Z=[)Z(Z\"]FZG]'Z M[1] 1X 1\\ @X @\\ L\\ AX DX 4" "Z?U -Z (X4X H~W ;\\;W GTDX\"U s A[D[ 6X %T>WBXZ !Z !Z \"Z " ":Z$[(Y;ZFY)Z M[/[ MZ/[ MZ/Z M[/Z M[ Ee EZC" "X3[*Z(Z#Z(Z$Z(Z$Y(Z 9Z 2Z8^ IY9` Fb=Y Eb=Y Eb=X Cb>Y Eb=Y Eb=Y*b=~V/Y #~W " "M~W M~W M~W 7Y Y NX Y 6Y-Z JX0X JY" "-Y LZ-Y MY-Z MY-Y LZ-Y CZCXBY KY0X HY0X GX0X GX0Y @YBZ @Y.Y CYBY " "6W8X8W.W HW-W@g@X.W?[4W.W:[:W =W *YBZ " " MZ (XDU 5~`,~i\"~ D{ FX.Y IX.X AZBZ 7YEY IX +y " "GX 6~e 9TG] 8WBW>X6Y8\\DY 8Y CZ " " KX Nl !X 4Z/Z 4Z %\\ =Z LX4Z IZ I[0Z 5Z 9Z0Z X3W?W/~S KZ-Z\"Z \"Z#Z!Z MZ 0[!Z" "'Z(Z :Z \"Z 4ZE] 3Z 2Y?XMX?Y(Y;ZGZ)Z MZ!Z /[ N[&Z6[ K\\ 7Y 9Z(Z FZCZ " "LZGX^ .YCZ ." "[ )_ KX L_ ES/e FU8Z9T'Z3X AY0Y FY:[ FY-Z Cj 9Y1Y >XCY 6ZBZ " "BY1Y&Z8X9[,Y@YAZ IY9Y IY@X@Y LY-Y Y-Y 5Y 5Z/Y J" "Z2Z 9\\ .Z /Z!Z,\\>Z>[(Z(Z!]GZH^'[ N[0\\ 1X 2\\ ?X ?[ M\\ @X DX 4Z?U " "-Z 'W4W G~W :]>X GTDY#U s @[D[ 7" "X %U?WAX>U ,X EY1Y 1WEW \"s 3ZC[ 9X7UHV KW(W MX7UHW CY " "7~S J~S H~S I~S I~S I~S)} ;Z IZ !Z Z" " !Z >Z !Z !Z \"Z :Z$[(Y;ZFY)Z MZ-Z MZ/[ N[/[ N[/Z MZ Eg " "F[EX2[*Z(Z#Z(Z$Z(Z$Y(Z 9Z 2Z9^ HY7_ G]8Y F^8Y F^8X D]8" "Y E]8Y F^8Y+^8~V/Y #~W M~W M~W M~W 7Y Y NX Y 6Y-Z JX0X JY-Y LZ-Y MY-Z " "MY-Y LZ-Y BYDXAY KY0X HY0X GX0X GX0Y" " @ZCY ?Y.Y CYBY 5W9X8W.W HW-WAiAW,WA[3W.W9Y9W >X *ZCZ 6~d IYET " "4~`,~i!| By EX.Y IX.X AYAZ 7ZFY IX " " Z 3X 6~e 9TF\\ 9WBX=W7Z7\\EX 7Y CZ KX Nl " "\"X 3Z/Z 4Z &\\ ;Z M~Z %Z I[0Z 6[ 9Z/" "Y 8ZCZ 8i 6~d 5i ;Z HW>X3W?W0~T KZ-Z\"Z \"Z$[!Z MZ 0[!Z'Z(Z :Z \"Z " "4ZD] 4Z 2Y?XMX?Y(Y:ZHZ)Z N[!Z /[ NZ%Z6[" " J[ 7Y 9Z(Y DZDZ LZGW:WGZ K[GZ +Z -\\ LX EX IY L\\6Y FY.Y KZ " "%Y-Y K~W 9Y 5Y.Y GY1Y 5Y NX 0XM\\ MY " "FY3Y2Y+Y1Y KZ.Z JY.Y Y-X ;Y Ji 4Y .Y1Y @YAY FYGWDXGX >` /YCY .[ $\\ LX " "M\\ AR+` CT9[:U'Z3X AY0Y FY9Z FY-Z " "D` .Y1Y >YEZ 6YAZ BY1Y&Z8X9[,ZAYAZ IY9Y IY@X@Y LY.Z Y-Y 5Y 5Z/Y KZ1Z 9[ " "-Z /Z\"[+[>Z>[(Z(Z ^IZJ_&[ NZ.\\ 2X 3" "\\ >X >[ \\ ?X DX 4Z?U -Z 'X6X G~W 9^@X GUDY$T Ns ?[CZ 8X " "%U?WAY?U ,X EY1Y 1WEW \"s 4" "ZCZ 7W7UGV LX)X MW7UGW CY 8~T J~T I~S J~T I~T K~T*~ ;Z IZ !Z Z !Z >Z " "!Z !Z \"Z :Z$[(Y:ZGY)[ NZ-Z N[.Z N[/[ N" "[/[ NZ Fi G[FX1Z)Z(Z#Z(Z$Z(Z$Z)Z 9Z 2ZX )YCY 5~d IYFU 4~`,~i!{ @x EX.Y IX.X AY@Y 7ZGZ IX " " Z 3X 6~e 9TD[ ;XBX=X8" "Z6\\GY 7Y CY JX Nl \"X 2Y/Z 4Z '\\ :Z M~Z %Z I[0Z 6Z 8Z/Z \"Z " " 5i 9~d 8i 8Z HW>X3W?W0~U LZ-Z\"[ " "#Z$[!Z MZ /Z!Z'Z(Z :Z \"Z 4ZC] 5Z 2Y?XNY?Y(Y:ZHZ)[ [!Z .Z NZ%Z5[ K[ 7Y " "9Z(Y DZDY KZHX:XHY K[EZ ,Z .\\ KX EX" " IY LZ4Y FY.Y KZ %Z.Y KZ X DX 4Z?U -Z 'X6X G~W " "8^BX FUDY%U Ns =ZCZ 9X $U@W@X?T +X EY1Y 1WEW \"s " "5ZCZ 7W7UFV LW(W MX8UFW CY 8~U K~T J~U K~" "T J~U K~T*~ ;[ JZ !Z Z !Z >Z !Z !Z \"Z :Z$Z'Y9YGY)[ [-[ [.Z N[.Z NZ.[ " "NZ G\\L[ GZGX0Z)Z(Z#Z(Z$Z(Y#Z)Z 9Z 2~ " "GY4] J[4Y G[4Y G[4X EZ4Y FZ4Y G[4Y,[4X 1Y #Y Y Y Y 9Y Y NX Y 6Y-Z " "JX0X JY-Y LZ-Y MZ.Z MY-Y KY-Y BYEW?Y" " KY0X HY0X GX0X GX0Y ?YDY >Y.Y BYDY 4W9X9W-X JX,WD\\J[CW,WC[2W-X JX " ">X )YDZ 5~d HXFU 4~_+~i z @w DX.Y" " IX.X BZ@Y 6YGZ IY Y @~e 9TCZ ;WAX=X8Y4\\HX " "6Y CY JX Mj !X 2Y/Y 3Z (\\ 9Z" " M~Z %Z I[0Z 6Z 8Z/Z \"Z 2i <~d ;i 5Z HW>X3W@W/~U LZ-[#[ #Z$Z Z MZ " "/Z!Z'Z(Z :Z \"Z 4ZB] 6Z 2Y>a>Y(Y9ZIZ)[ " "Z Z .Z [%Z4Z JZ 7Y 9Z)Z DZEZ JYHX:XIZ KZD[ -Z /\\ JX EX IY " "MZ3Y FY.Y JY %Z/Z JY Z !Z !Z \"Z :Z%['Y9ZHY(Z [-[ Z" "-[ Z-Z [-Z [ H\\J[ HZHY1[)Z(Z#Z(Z$Z(Y#Z)Z 9Z 2} FY2\\ KZ3Y GZ3Y GY3Y FZ3Y " "GZ3Y GZ3Y,Z3X 1Y #Y Y Y Y 9Y Y " "NX Y 6Y-Z JX0X JY-Y KY.Z MZ.Z MY-Y KY-Y BYFX?Y KY0X HY0X GX0X GX0Y " ">YEY >Y.Y BYEZ 4X:X9W,W JW+WE\\H[EX,X" "E[1W,W JW =X )ZEY 4~d HYHU 2~^+~i Nx >u CX.Y IX.X BY?Z 7ZHY GX " " Z A~e 9TCZ ~d >i 2Z GV>X3W@W0~V LZ-[\"Z " "#Z%[ Z MZ /[\"Z'Z(Z :Z \"Z 4ZA] 7Z 2Y>a>Y(Y9ZIZ(Z Z Z .[![%Z4[ KZ 7Y " "9Z)Z CZFZ JZIX:XIZ L[CZ -Z /[ IX DX J" "Y MY2Y FY.Y JY %Z/Z JY Y CY1Y&Z9Y9Z+ZAYAY HY9Y IY@X@Y LZ/Y N" "Y-Y 5Y 4Y0Z LZ.Y =[ *Z .[%Z(]AZA]'Z(Z L~\"[![+\\ 5X 6\\ JTEXET J[&\\ " "KSDXES $Y 3Y?U -Z &Y:Y F~W 5_GX DU" "CZ9QAU DZCZ ;X $VAW?YBU +X EY1Y 1WEW DZCZ 6W7UEV " "NX)X MX8UEW DY 8~V L~V L~W M~V K~V M~V" ",~P :Z JZ !Z Z !Z >Z !Z !Z \"Z :Z%['Y8ZIY(Z Z+Z Z-[![-[![-[![ I\\H[ " "I[JY0[(Y(Z#Z(Z$Z)Z#Z)Z 9Z 2| EY1\\ LY2Y " "HZ2Y HZ3Y FY2Y GY2Y GY2Y-Z2X 1Y #Y Y Y Y 9Y Y NX Y 6Z.Y IX0X JY-Y " "KY.Z MZ.Z MY-Y KY.Z BYGX?Z KY1Y HY0X" " GX0X GX0Y >YFZ >Y.Y AYFY 2W:X:X,W JW+XG\\F[FW+XF[1X,W JW =X (YEY " "4~d GXHU 2kNRMk*tNq Mv Y 7ZIZ GY !Z A~e 9TBY `=Y(Y8ZJZ([\"[ Z " ".[!Z$Z3Z KZ 7Y 9Z)Z CZGZ IZIW8WIZ M[AZ .Z 0\\ IX DX JY MY2Y " "FY.Y JY $Y/Z JY YEY CYIWBXIX @f 0YGZ 0[ " "LZ NX NY 'U>WMW?V&Z4Y AY/Y HY8Y" " EZ.Y FZ %Y1Y Y CY1Y&[:Z:Z+ZAYAY HY9Y IY@X@Y LZ/Y NZ.Y 5Y 4Y0Y " "KZ.Z ?\\ *Z -['['\\AZB]&Z(Z K|![!Z)\\ 6" "X 7\\ JVFXFV J[(\\ KUEXFU %Y 3Y?U -Z %YXCU *X EY1Y 1WEW" " F[CZ 6X8UDV NW)X MX8UDW DY 8~W N~W L~W M~V L~W M~W-~P :[ KZ !Z " " Z !Z >Z !Z !Z \"Z :Z%['Y8ZIY([\"[+[" "\"[,Z![-[!Z,[!Z I\\F[ J[KY/Z'Z)Z#Z)Z#Z)Z#Z)Z 9Z 2{ DY0[ MY1Y HY1Y HY2Y " "FY2Y HZ2Y HY1Y-Y2Y 1Z $Y Y Y Z :Y Y" " NX Y 6Z.Y IX0X JZ.Y KY.Z MZ.Y LZ.Y KY.Z BYHX>Z KY1Y HY1Y GX0X GX0Y " "=YGY =Y.Y AYFY 2X;X:W+X LX*WH\\D[HX" "*WG[0W+X LX =X (YFZ 4~d GYIU 2jLQLj*pNRNq Lt :q AX.Y IY0Y CZ>Y 6YIZ " "FX !Z A~e 9T" "BZ >W?W;W8Z2\\MY 4Y DY JX 4X 1Z1Z 3Z +\\ 6Z M~Z %Z HZ0Z 8[ " "7Y.Z #Z )i D~d Ci -Z GV=W4XAW/~W M" "Z-[\"[ $Z&[ NZ MZ .Z\"Z'Z(Z :Z \"Z 4Z?] 9Z 2Y=_=Y(Y8ZJZ([\"[ Z -Z\"[$Z3[ " " L[ 8Y 9Z)Z BZHZ IZJX8XJY LZ@[ /Z 1\\" " HX DX JY NY1Y FZ0Z JY $Y/Z JY YEY BXJXAWJY A[N[ 1YGY 0[ JY NX NY 'V@WLX@U$Y5[ BY/Y HX7X DZ.Y " "FY $Y1Y Z " "/Z K_MZ BUC]BVBU A[D[ >X #VBW=XDU *X EY1Y 1WEW " " G[D[ 5W8UCV X*X LW8UCW EZ 8~W N~X M" "~W N~X M~W N~X.~Q :[ KZ !Z Z !Z >Z !Z !Z \"Z " ":Z&[&Y7ZJY([\"[+[\"[,[\"Z+[#[+Z\"[ J\\D[ JZKX/['Z*[#[*Z#Z)Z#Z)Z" " 9Z 2z CY/Z MY1Y HY2Z HY2Y GY1Y HY1Y HY1Y-Y2Z 2Z $Z !Z !Z !Z :Y Y NX " "Y 6Z.Y IX0X JZ/Z KY.Z LY.Y LZ/Z KY.Z " " BYHW=Z KY1Y GX1Y GX1Y GX0Y =YHZ =Y/Z @YHY 1X;X;X*W " "LW)XJ\\B[IX*XI[0X*W LW Z 7ZJY EY !Z 1X@X &TAY " "?X?W;W8Z1\\NX 3Y DY JX 5Y 0" "Y1Z 3Z ,\\ 5Z M~Z %Z HZ0Z 8Z 6Y.Z #Z &i G~d Fi )X FV=X5XAW0~Y NZ-[!Z " "$Z&[ NZ MZ .[#Z'Z(Z :Z \"Z 4Z>] :Z 2" "Y=_=Y(Y7ZKZ'Z#[ NZ -[#[$Z2[ M[ 8Y 9Z)Z BZHZ HYJX8XKZ M[?Z /Z 2\\ GX CX " " KY NY1Y FZ0Z JZ %Y/Z JZ =Y 4" "Y0Z GY1Y 5Y NX 0XG\\ $Y FY3Y2Y+Y1Y JZ/Y IZ0Y MY/Y ;Y 8[ 8Y .Y1Y >ZGZ " "BYKXAXKY B[LZ 0YHY 1[ IY NX Z &VB" "XKXBV$Y5[ BY/Y HX8Y CY/Z GY #Y1Y Z !Z !Z \"Z :Z&[&" "Y7ZJY'[#Z)Z#[+[#[+[#[+[#[ K\\B[ K[MX.['Z*Z!Z*Z#Z)Z#Z)Z 9Z 2x AY.Z NY2Z " "HY2Z IY1Y GY1Y HY1Y HY2Z-X1Z 2Z $Z !Z !Z" " !Z :Y Y NX Y 5Y/Z IX0X JZ/Z KZ/Y KY.Y LZ/Z KZ/Y AYIWW;W8Z0e 3Y EZ JX 5X /Z2Y 2Z -\\ 4Z M~Z %Z " "HZ0Z 8Z 6Z/Z $Z #j J~d Ii CW>X6Y" "BX0~Y NZ-[![ %Z'\\ NZ MZ -Z#Z'Z(Z :Z \"Z 4Z=] ;Z 2Y<][ 0" "Z 3\\ FX CX KY NY2Z FZ0Y IZ %Y/Z JZ =Y 4Y0Z GY1Y 5Y NX 0XF\\ " "%Y FY3Y2Y+Y1Y JZ/Y IZ0Y MY/Y ;Y 7Z 8Y" " .Y2Z =YGY AYKW@XKY BZJZ 1YIY 1[ HY NX Y %WEYIYFW#Y5[ BY/Y HX8Y " "CY/Z GY #Y1Y ;XIY 6Y;Z EY1Y%Z:Z:Z*ZBYBZ " "HY9Y IY@X@Y LZ/Y MY/Z 4Y 4Y2Y KZ,Z B[ 'Z +[+[#_FZF_$Z(Z Gt JZ$[%\\ 9X " ":\\ J\\IXI[ I\\/\\ K[HXI[ (Y 3Z@U -Z " "%^F^ /Z X \"f >VBnCU >[D[ @X \"VCWZ !Z !Z \"Z " ":Z'[%Y6ZKY'[$[)[$[*[$[*[%[*[$[ K\\@[ Le.[&Z*Z!Z*Z\"Z*Z#Z*[ 9Z 2v " "?Y.Z NY2Z HX1Z IY1Y GY1Y HY2Z HX1Z.Y1Z 1Y #Y Y Y Y :Y Y NX Y 5Y/Z " "IX0X IY/Z KZ/Y KY/Z KY/Z KZ/Y 7\\ 7ZKW" ";Y IX1Y GX1Y GY2Y GY2Z YJX(XJY/X)X Y W;W7Y/c 2Y EY IX 5X /Z3Z 2Z .\\" " 3Z M~Z &Z FY1Z 8[ 6Z/Z $Z i L~d Li @W>Y7YBW0Z*Y NZ-[![ %Z'[ MZ " "MZ -[$Z'Z(Z :Z \"Z 4Z<] Z !Z !Z \"Z :Z(\\%" "Y6ZKY&[%[)\\&[)[%[)[%[)[%[ L\\>[ Ld.[&Z*Z!Z*Z\"Z+[\"Z+Z 8Z 2s YJY .X=X=Y(" "X!X'YJWX.Y HY2Y " "CZW=X8ZC" "W/Z*Z Z-Z N[ &Z(\\ MZ MZ -\\%Z'Z(Z :Z \"Z 4Z;] =Z 2Y<]Y 4Z2[ GY1Y 5Y NX " "0XD\\ 'Y FY3Y2Y+Y1Y IY0Z IZ1Z MZ1Z ;Y 6Y" " 8Y .Y2Z =ZIZ @XLX?WLY C[H[ 2YKZ 3[ EX NX Y $hFh\"Z7\\ BY0Y GX9Y " "BZ1Z FX \"Y1Y ;YKY 6Y9Y EY2Z%Z;[:Z*ZBYB" "Y GY9Y IY@XAZ L[1Y LZ1Z 3Y 3Y3Y LZ*Z D[ &Z *[-[ aJZJa\"Z(Z Cl F\\'[\"\\ " ";X <\\ F\\KXK\\ F\\3\\ H\\JXK\\ 'Y " "2ZAU -Z 'z 1Z X Na ;V@jDV :ZCZ BX UDW;XIU 'X EY2Z " "1WEW KZCZ 3X9U@V\"W*X LX9VAW H[ " "8Z*Z\"Y)Y!Z*Z\"Z*Y!Z*Z\"Z*Z1Z3Z 8[ MZ !Z Z !Z >Z !Z !Z \"Z " ":Z(\\%Y5ZLY&[&['[&[([&[)\\'\\)[&[ L\\<[ Mc.[$Z,[!" "[,[\"Z+Z!Z+Z 8Z 2n 7Y-Y NX1Z IY2[ IY2Z GY2Z HY2Z IY2[.Y2\\ 2Z $Z !Z !Z !Z " " ;Y Y NX Y 5Z0Y HX0X IZ1Z IY0Z KZ0" "Y JZ1Z IZ1Z 7\\ 6YMX;Z IY3Z GY2Y GY2Y GY2Z ;YKY ;Z1Z >YJY " ".Y>X=X'Y#Y&XIU:UJY&YJU.X'Y#Y ;X &YJZ #Z JXLU" " -dIQId%kKRKk El 2j >X.Y HY2Y CY;Z 7ZMZ BZ #Z " "3X@X %TAX @WZ 2Y;[;Y(Y5ZMZ&\\([ LZ +['[\"Z0[ Z 7Y 8[,Z ?YKZ EYLX6XLY [:[ 2Z " "5\\ DX BX LY NY3[ F[2Z HZ %Y1" "[ IZ >Y 3Y2[ GY1Y 5Y NX 0XC\\ (Y FY3Y2Y+Y1Y IZ2Z H[2Z LY1Z ;Y 6Z 9Y " ".Y2Z Z !Z" " !Z \"Z :Z)\\$Y5ZLY%[(\\'\\(['\\(['['['[(\\ M\\:[ Ma-[$Z,Z NZ,Z![,Z!Z,[ " "8Z 2Z #Y-Y NX2[ IY2[ IY2Z GY3[ HX2[ IY2" "[.Y2\\ 2Z $Z !Z !Z Y ;Y Y NX Y 5Z1Z HX0X IZ1Z IZ1Z JZ2Z JZ1Z IZ1Z " "7\\ 6c:Z IY3Z GY3Z GY3Z GY3[ ;YKY ;[2Z =" "YLY ,Y?X>Y&Y%Y%YIS8SJY$YJS.Y&Y%Y :X &ZKY #Z IYNU ,cISIb#jKRJi " "Cj 1i =X.Y GY4Y BY:Y 7ZMZ AZ " " $[,P )W?X %TBY AXXMY DZDZ 2YLY 3[ DY X Y \"eCd " "NY8^ CY0Y GX:Y @Z2Z FX \"Y1Y :YMY 6Y7Y " "FY2Z%[<\\a@V 7YBY CX NV LV " "BZ3Z 1WEW LYBY 2W8U?V#W+X KX9U" "?W J[ 7Z(Y#Z)Z#Z(Z$Z)Z\"Y(Z$Z(Y2Z2Z 7\\\"P NZ !Z Z !Z >Z !Z !Z \"Z " ":Z*\\#Y4ZMY%\\)[%[)\\&[)\\'\\)\\'\\)[ M\\8" "[ N`-[#Z,Z NZ,Z Z-[![-[ 8Z 2Z #Y-Y NX2[ IY2[ IY3[ GY3[ HY3[ HX2[.Y3^ 2Z " "$Z !Z !Z !Z ZMZ " "DZMW4WMZ![7Z 3Z 7\\ BX AX MY NY3" "[ F\\4Z FZ &Z3\\ HZ ?Y 3Z4\\ GY1Y 5Y NX 0X@[ *Y FY3Y2Y+Y1Y HZ3Z H\\4Z " "KZ3[ ;Y 5Y 9Y -Y4[ ;YKY >YNX=WNY D[D[ " "3YMY 3[ CY X Y !cAb MZ9^ CZ2Z GX:Y @Z3Z EX \"Y1Y :YMY 7Z7Y " "FZ4[$Z<\\Z !Z !Z \"Z :Z+]#Y4ZMY$[*\\%\\*[%\\+\\%\\+\\%\\+\\ N\\6[ " "N^-\\#[.[ N[.[ [.Z NZ-Z 7Z 2Z #Y-Y NY4\\ IY3" "\\ IY3[ GY3[ HY4\\ HX3\\.Y3^ 2Z $Z !Z !Z !Z i i 2WZ4" "Z EY #Y1Y 9XNZ 7Y6Z GZ4[$Z=]=['ZDYDZ FY9Y HZBXBZ K]5Z J[5[ 2Y 2Z7Y L[(Z " "H[ #Z '\\5[ F~ LZ(Z :Z :\\-\\ KW :X :" "V >r >V/V @s #Z 2[CU -Z +[MeL[ 5Z X G\\ :W!V 3W@W 7V!W " " AZ4[ 1WEW LW@W 1W7s,X-" "Y JX8t$\\ 7Z'Z%Z'Z$Z'Y%Z'Z$Z'Y%Z'Z4Z1Z 6\\&S NZ !Z Z !Z >Z !Z !Z \"Z " ":Z,]\"Y3ZNY$\\,\\#\\,\\$\\,\\$\\-\\$\\," "\\ N\\4[ ]-\\![/Z LZ/[ N[/[ N[/[ 7Z 2Z #Y-Y NY4\\ HY5] IY4\\ GY4\\ HY4\\ " "HY4\\.Z5` 2Z $Z !Z !Z !Z =Y Y NX Y " "3Z4Z GX0X H[5[ GZ4Z GZ4Z H[5[ GZ4[ 6\\ 5_9[ HZ5[ GZ5[ FY5[ FY5\\ :YNZ " ":\\4Z ;YNY )YAXAZ\"Z+Z!Z*Y Y*Z\"Z+Z 8" "X $YMY %[ F^ '\\FSF\\ LcGRGc >f ,c :X.Y FZ7Y BY8Y 7e >[ " " %[1S -Y 'X@X ;Q:TCZ CX:X=X" "5[.] /Y HY HX NZ GZ 'X +[8Z 0Z 4\\ 0[ 'Z M\\ CZ6[ 9Z 2[3[ '[ " "0Y Y ?f f BX DW=\\C_J[.Z&Z\"Z0\\ " "J\\(T'Z._ JZ MZ *])Z'Z(Z :Z \"Z 4Z6] BZ 2Y JY(Y3e#\\.\\ JZ )]/\\ NZ.[ " "NQ'[ 6Y 6[0[ =ZNZ CYNX4XNY!Z4[ 5Z 8[ @X" " AX MY NY5] F]6Z DZ &Z5] G[ AY 2[8^ GY1Y 5Y NX 0X>[ ,Y " "FY3Y2Y+Y1Y H[6[ G]6Z IZ5\\ ;Y 6Y 8Y -Z6\\ ;Z" "MZ =b=b EZ@Z 3d 5[ AY X Y L[:\\ IZ;` D[4Z FXZ5[ EY #Y1Y 9c " "7Z5Y GZ5\\$[>^>['[EYE[ FY9Y HZBXCZ J]5Z " "IZ5Z 1Y 1Y8Z LZ&Z J[ \"Z &\\8] E| KZ(Z :Z :]/] JU 9X 9T

q " "\"Z 1ZCU -Z ,[JaI[ 6Z X F\\ :W#V 1" "V?V 7W#W @[5[ 1WEW LV?V 1X7s,W-Y JX7t%\\ " "6Z&Z&Z'Z%Z&Z&Z'Z%Z&Z&Z&Y4Y0Z 5\\(T NZ !Z Z " "!Z >Z !Z !Z \"Z :Z.^!Y3e#\\.\\!\\.\\#].\\#]/]#\\.\\ N\\2[ ]/]![0[ L[0[ " "M[0[ N\\1[ 6Z 2Z #Y-Y NY5] HY5] IZ6] GY" "5] HY5] HY5]-Y5a 3[ %[ \"[ \"[ \"[ >Y Y NX Y 3Z5[ GX0X GZ5Z F[6[ G[6[ " "GZ5Z F[5Z 5\\ 4^9Z FY6\\ FY6\\ FY6\\ " "FY6] 9c 9]6Z :d )[CXBZ Z-Z NZ-[ [-Z Z-Z 7X $YNZ %Z D] $VCSDW " "G`FSG` ;d +c :X.Y F[9Z CZ8Y 6d =\\ " " '\\3T -Z (W?X ;Sd c @Z EW<_Ks-Z&Z\"Z1] J^,V'Z/_ IZ MZ )]*Z'Z(Z :Z " "\"Z 4Z5] CZ 2Y JY(Y2d#]0\\ IZ (]1] NZ-" "Z NS*\\ 6Y 6[1[ Z 4c 5[ @Y X Y " "HS3V FZZ%ZEYF[ EY9Y GZCXD[ J^7Z H[7[ 1Y 1Z:Z KZ&Z K[ !Z %];] Bx " "IZ(Z :Z 9]1] HS 8X 8R :n :R+R U 6W%W ?[6\\ 1WEW " " LU>U 0W6s-X.X HW6t&\\ 5Z&Z'Z" "%Z&Z&Z'Z%Z&Z&Z&Z&Z6Z0Z 4],V NZ !Z Z !Z >Z !Z !Z \"Z " ":Z0`!Y2d\"\\0]!]0\\!]0\\!]1]!]1] \\0[ ]1] N[2\\ L\\2[ L\\" "2[ L[1[ 6Z 2Z #Y.Y MZ7^ HY6^ HY6] GZ6] HZ7^ HZ7^-Y6c 3[ %[ \"[ \"[ \"[ " "?Y Y NX Y 3[7[ FX0X G[7[ E[7[ FZ7[ F" "[7[ E[7[ 5\\ 4]9[ FZ8] FZ8] FZ8] FZ7] 9c 9]7[ 9b '[DXD[ N[/Z LZ/[ " "M[0[ N[/Z 6X $d %Z C\\ ?S 2\\ETD" "\\ 9b )a 9X.Y E[<[ BY7Z 7c ;\\ '\\5U -Z (W?W :U>TE[ " "CX8X?X3\\3b 1Y IY GX NZ GZ (" "X )[;[ /Z 5[ %Q-\\ &Z BQ/] AZ9\\ 9Z 0[6\\ (\\ /Z \"[ ;a ` =Z " "EX[ 4b 6[ ?Y X Y " "FZ=b E]7Z EX=Z <[9\\ D[ %Y1Y 8a 6Y3Y H\\8]#[@WNW@[%[FYG\\ EY9Y G[DXD[ " "J_9[ G[9[ /Y 1Z;Z LZ%Z L\\ !Z $]=\\ >t GZ" "(Z :Z 8]3] FQ 7X 7P 8l 8P)P :m Z 0[EU -Z .[?P?[ 8Z X D[ 9W(W " "-T\\8] 1WEW " " LSZ !Z !Z \"Z :Z2a Y2d\"^3] N]3^ ]3" "] N]3] N]3] \\.[!^3] M\\4\\ J\\4\\ K\\4\\ L\\4\\ 5Z 2Z #Y.Y MZ8_ HZ8_ " "HZ8^ FZ8^ HZ8_ HZ8_-Z8e-Q)\\ &\\-Q G\\-Q " "G\\-Q G\\-Q 5Y Y NX Y 2[9\\ FX0X F[9[ D\\9[ E[8[ E[9[ D\\9[ 4\\ 3[9[ " "EZ9^ FZ9^ FZ9^ F[9^ 9b 8^9[ 8b &[2[" " L\\3\\ K[2[ K[2[ L\\3\\ 6X #c &Z B\\ ?S /UATAT 4a '_ 8X.Y E\\>\\ " "BY6Y 7c :] (\\7V " "-Z )X@X :W@TF[ BW7X?X3]6e 1X IY GX NZ GZ (X ([=[ .Z 6[ $S1^ " "&Z BS3^ @\\<\\ 8Z 0]9] FR6] .Z \"[ 8^ " " ^ ;Z DW;lMc+Z$Z#Z4_ G_2Y'Z5c GZ MZ '^/\\'Z(Z :Z \"Z 4Z3] EZ 2Y " "JY(Y1c!^6^ HZ '^6^ LZ,Z X1] 5Y 5]6\\ :c Ab2a" "\"Z0[ 7Z ;\\ >X @X NY MZ:` F_:[ B\\3P D[;` E\\1S 7Y 0\\>a GY1Y " "5Y NX 0X;\\ 0Y FY3Y2Y+Y1Y F[:[ E_;\\ " "F[;_ ;Y *S1Y 6Z .[;_ :e ;`;` G[<[ 5a 6[ >Y X Y F[?YNY F_:[ DX?Z " ":[;\\ B[ &Y1Y 8a 7Z3Y H]:^#\\BXNWA[#[" "GYH\\ DY9Y F\\FXF\\ I`;[ F\\;\\ /Z 2[=Z KZ$Z N\\ Z #^A] :n DZ(Z :Z 7]5] " " +X Mj (k NZ 0\\FUBP ;Z /[,[ " "9Z X CZ 8X+W *R;R 4X+X =]:^ 1WEW LR;R " "/X5s.W.X GW5t(\\ 4Z$Z(Z%Z'Z$Z(Z$Y'Z$Z(Z$Z" "8Z/Z 3_2Y NZ !Z Z !Z >Z !Z !Z \"Z :Z5c NY1c!^6^ L^6^ M^6^ M]5] M^6^ " "\\,[#a7^ K\\6] I\\6\\ J]6\\ J\\6] 5Z 2Z #" "Y/Z LZ:` H[:` H[:_ FZ:` GZ:` GZ:`-[:YN\\0S(\\4Q C\\0S F\\0S F\\0S F\\0S " "5Y Y NX Y 1[:[ EX0X F\\;\\ C\\;[ C[:" "[ D\\;\\ C\\;\\ 4\\ 3[:\\ DZ;_ EZ;_ EZ;_ EZ;` 8a 8_;\\ 7a %\\6\\ " "J\\5\\ I\\6\\ I\\6\\ J\\5\\ 5X #c 'Z " "@[ @T JT _ %] 7X.Y D^D^ BZ6Y 6b 9_ *];X -Z " ")X@X :ZCTH] CX7YAX1^:h 2Y JY GX NZ" " GZ (X (\\?\\ .Z 7\\ $W7_ %Z BV8` ?\\>] 9[ /];] ET9] -Z \"[ 5[ [ " "8Z DX;jLb*Z$Z#Z7a E`7\\'Z9f FZ MZ &`4^" "'Z(Z :Z \"Z 4Z2] FZ 2Y JY(Y1c _:_ GZ &_9^ KZ,[![6^ 4Y 4]9] 8b @a2a#[/Z 7Z " ";[ =X @X NY M[\\ @]7R" " D\\=a E]4U 7Y /]Bc GY1Y 5Y NX 0X:\\ 1Y FY3Y2Y+Y1Y E\\>] E`=\\ E\\=` ;Y " "*U5[ 6[ /\\>a 9c :_:` GZ:Z 4` 6[ >Y " "X Y E[AYMZ G`<[ CX@Z 9\\=\\ A\\3Q EY1Y 7` 7Y2Z " "I^<_\"[BWMXC\\#]IYI\\ CY9Y F]GXG] Ia=\\ E\\=\\ .[ 2[?Z J" "Z$Z N[ NZ \"^C^ 7g @Z(Z :Z 7_9_ +X Lh &i MZ /]HUDR ;Z .Y*Y 8Z " "X BZ 8Y/X (Q:Q 2X/Y " " <^<` 2WEW LQ:Q .W MV(X/X GX NW\"\\ " "3Z$Z)Z#Z(Z$Z)Z#Z(Z$Z)Z#Z8Z/Z 2`7\\ NZ !Z Z !Z >Z !Z !Z \"Z :" "Z9f MY0b _:_ J_:_ K_:_ L_9_ L_9^ N[*[$c:^ J^:^ H^:^ I^:] H]9] 4Z 2Z " "#YIP7[ L[] " "C\\=\\ A\\=\\ 3\\ 2\\=\\ C[=` E[=` E[=" "` E[=a 8a 8`=\\ 6` #]:] H]9] G]:] G]:] H]9] 4W !a 'Z ?Z ?U " "KT N] $] 7X.Y Cv AZ6Z 7a 7a " " -_?Z -Z )W?X :^GTK_ CX5XAX0_>k 3Y JX FX NZ GZ )Y " "']C] ?} I~S IZ=b %Z BZ>a =]B^ 8Z ._?^ DX" "@_ ,Z \"[ 3Y X 5Z CW:gJ`)Z\"Z$~T Cb=_'~W E~S FZ %b:a'Z(Z :Z \"Z 4Z1] " "G~Q)Y JY(Y0b N`>` FZ %a?` JZ+Z!^_ 8b @a2a$[.[ 8Z <~` AX ?X Y L\\@c Fb@] ?^` H`>` I`>` " "Ja?a Ja?` LY(Y$f?` H_>_ F_>_ G_>_ H_>" "_ 3Z 2Z #YIS;[ K\\?c G\\?c G\\?b E\\@c F\\@c G\\?c,\\?[L^9Y'^} I~S I~ $Z B| ;^F_ 7Z -aEa Dv +Z \"[ 0V U 2Z CX9dI^'Z\"Z$~S " "AfGd'~U C~S FZ $gGg&Z(Z :Z \"Z 4Z0] H" "~Q)Y JY(Y0b McGd EZ $dGc IZ+[\"cEd 3Y 3cGc 7a ?`1a$Z,[ 9Z =~a AX ?X Y " " L^DZNY FYNZF_ =`CY B^EZNY CaB] 7" "Y .qMY GY1Y 5Y NX 0X8\\ 3Y FY3Y2Y+Y1Y D_F_ CYNYE_ B^EZNX ;Y *]A^ 4k " ">^G[NY 8a 9_9^ H[8[ 5^ 6~P 2Y X Y " " D^H[La NfH` AYD[ 6^E_ ?`?X EY1Y 7_ 7Y0Y IcFk(]HZLZI^ `Nk BY9Z E~Q GYNZE^ " "B_E_ ,e ;]G] J~c!~T FZ 3oDo @Z :Z(Z :" "Z 5dGd )X Jd \"e KZ -`MUKY H~U IU&U 6Z X AY 5Z7Z " "LZ7Z ;~d 3cFk 8WEW " " BW LV)X0X FW LW$\\ 2Z\"Z+[#Z)Z\"Z*Z\"Z*Z\"Z*Z\"Z:Z.~T*fGd N~T J~T I~S " "I~S 7Z !Z !Z \"Z :~U JY/a MdGc FcGd GcGd" " HdGd HdGc JW&W$kGc FbFb DbFb FcFb FcGc 3Z 2Z #YIWB] I^DZNY F]D[NY F]D[NX " "E^DZNY F^DZNY F^E[NY+]D]J`@]&`BY AaA]" " DaA] DaA] DaA] 5Y Y NX Y /_F_ CX0X D_E_ ?_F_ ?_F_ @_E_ ?_F_ 7aF_ " "@^FZMX D^FZMX D_GZMX D_G[NY 7_ 7YNYE_ 4^" " dLd CdMd BdLd CdLd DeMd 2X !` %X =Y ?U LV MZ !Y 5X.Y As " "AZ4Y 6` 5~] )x -Z " "*X@X 9} BX3YFZ-{L] 4Y LY FX NZ GZ )X $t >} I~S I} #Z B{ :v 7[ " ",{ Cu *Z \"[ -S S 0Z BW8aG[%[\"Z$~R" " ?~S'~T B~S FZ #~V%Z(Z :Z \"Z 4Z/] I~Q)Y JY(Y/a L~ DZ #~ HZ*Z\"~R 2Y 2} " "5` ?`0_$[+Z 9Z =~a AX ?X Y KsN" "Y FYNr ;u AqMY B{ 7Y -oLY GY1Y 5Y NX 0X7\\ 4Y FY3Y2Y+Y1Y Cv BYNr ArMX ;Y " "*y 2j >qMY 8a 8^9^ I[6Z 5^ 6~P 2Y X " " Y CpK` N} ?YF[ 5w =x EY1Y 6] 7Z0Z J~Y(nJm M{ AY9\\ F~ FYMq @w *d " ";r J~d!~T FZ 3oDo @Z :Z(Z :Z 4~ 'X " " Ib c JZ ,u H~U HS$S 5Z X AY 4\\>\\ I]>\\ :~d " " 3~Y 8WEW CW KV)W0X FX LW" "$[ 2[\"Z+Z!Z*Z\"Z+Z!Z*Z!Z,Z!Z:Z.~T)~S N~T J~T I~S I~S 7Z !Z !Z \"Z :~T " "IY/a L~ D~ E~ F~ E~ HU$U$~X D| B| D} D} " "2Z 2Z #YIr HrMY FsMY FsMX DsNY ErMY FsMY+uH|%v @| C| C| C| 5Y Y NX Y " ".v BX0X Cw =w >v >w =w 8{ ?qMX CqMX C" "qMX CqMY 6] 6YNr 3^ My Ay @y @z Ay 1X _ $V X !" "Y JqMY FYMp 9t ApLY Az 7Y ,mKY GY1Y 5Y NX 0X6\\ 5Y FY3Y2Y+Y1Y Bt " "AYMp ?pLX ;Y *x 1j =oLY 8a 8]8^ IZ4Z 6" "] 5~P 2Y X Y CoI_ N} ?[K] 3u ;w EY1Y 6] 7Y.Y JvM_'mJm Ly @Y9b K| " "EYLp ?u (c :p I~e\"~T FZ 3oDo @Z :Z(Z" " :Z 2{ &X H` Ma IZ +t H~U GQ\"Q 4Z X AY 2aLb FaKa " " 8~d 3YNlN_ 8WEW " "DX KV*W0o-W KW%[ 1Z Z,Z!Z+Z Z,Z!Z+Z Z,Z!Z;Z-~T'~P M~T J~T I~S I~S 7Z !Z " "!Z \"Z :~R GY.` K| B| C{ B{ B{ FS\"S$YM" "{ Bz @z B{ B{ 1Z 2Z #YIq GqLY EqLY EqLX CqMY ErMY EqLY*sF{$u ?{ B{ B{ B{ " "5Y Y NX Y -t AX0X Bu ;u pLX CpLX CpLX BoLY 6] 6YMp 1] Lv >w =v =v >w 0X _ #T ;X " "?W MV LW LV 4X.Y ?n >Y3Z 7_ 1~Z " " 't +Z *W?X 8y @X1j)vG] 5X MY EX NZ GZ *X !p " "<} I~S Iz Z By 6r 5Z )w As (Z \"[ " " 5Z AX HZ Z%~ 9|$~P >~S FZ ~P\"Z(Z :Z \"Z 4Z-] K~Q)Y JY(Y.` Jy AZ x " "EZ)Z#~P 0Y /x 3_ =_0_%Z([ ;Z =~a AX " ">X !Y JpLY FYLn 7s @nKY @y 7Y +kJY GY1Y 5Y NX 0X5\\ 6Y FY3Y2Y+Y1Y " "Ar @YLn =nKX ;Y *w /i x ?x @y 0Z 2Z #YIp EoKY DoKY DoKX BoLY DpLY DoKY)qCy#t =y @y @y @y 5Y " "Y NX Y ,r @X0X As 9s :r :s 9s 7z <" "nKX BnKX BnKX BnKY 6] 6YLn 0\\ Jt ;s :t ;t ;s .X N] !R 9V " ">W NX LU KU 3X.Y >l =Y2Y 7_ /~X " " %p )Z *W?W 4u @X/i(tE] 6Y NX DX NZ GZ *X m :} " "I~S Iy NZ Bw 2o 5Z 'u @r 'Z \"Z " " 4Z AY J[ Z%} 6x\"} <~S FZ N| Z(Z :Z \"Z 4Z,] L~Q)Y JY(Y.` Hv @Z Mu " "DZ)[$~ /Y .u 0^ =^/_&['Z ;Z =~a AX >X" " !Y InKY FYKl 5r ?lJY >w 7Y )hIY GY1Y 5Y NX 0X4\\ 7Y FY3Y2Y+Y1Y " "@p ?YKl ;lJX ;Y *v -h ;kJY 7_ 7]7\\ J[2" "[ 7\\ 5~P 2Y X Y AkE] Nz :i .p 7u EY1Y 5[ 7Y,Y KYMiL_%iGj Hu " ">Y8a Hv BYJl :p $a 7k H~f\"~T FZ 3oDo @Z " ":Z(Z :Z /u #X F\\ I] GZ )r H~U *Z X AY /p >o " " 4~d 3YMiK^ 8WEW EX " "JV+W/o/X JW&Z 0[ Z-Z NZ-[ [.Z NZ,Z NZ.Z NZ=Z,~T$x I~T J~T I~S I~S 7Z !Z " "!Z \"Z :| BY-_ Hv p %Z \"Z " " 4Z @X JZ MZ&{ 3u z 9~S FZ Lx MZ(Z :Z \"Z 4Z+] M~Q)Y JY(Y-_ Fr >Z " "Lr BZ(Z!y -Y -s /] <^.]&[&[ m >YJj 8iIX ;Y *u *f :iIY 7_ 6\\7" "\\ K[0Z 6Z 4~P 2Y X Y ?hC\\ NYMm 8f +m 3s EY1Y 5[ 8Z,Y " "KYLgJ^$gEh Fs =Y8a Fr @YIi 7m !` 6i G~g#~T FZ 3o" "Do @Z :Z(Z :Z .s \"X EZ G[ FZ 'p H~U *Z X AY ,k " ":k 2~d 3YLgJ^ 8WEW " " EW IV,X/o/W IW&Z 0Z MZ/[ NZ-Z MZ.Z N[.Z MZ.Z MZ>Z,~T\"t G~T J~T I~S " "I~S 7Z !Z !Z \"Z :y ?Y-_ Fr 8r 9r :s :r " " AXEr :r 8r :s :s -Z 2Z #YIn AkIY BkIY BkIX @jIY BkIY BkIY'l=t Mq :t ;t " ";t ;t 3Y Y NX Y *m =X0X >m 3m 5n 5m" " 3m 6XLm 7iHX @iHX @jIX @jIY 5[ 5YJj -Z El 3k 2l 3l 4l *X N\\ " " 5U ?Y Y KR HQ 1X.Y 9b 9Y1Z 7" "] )~S \"j &Z +X@X -h ;X+c!l?\\ 6X Y DX Z " "FZ +X Kh 8} I~S Fr JZ As ,i 3[ $n ;m " "#Z \"Y 3Z ?X KZ MZ&x -p Mu 4~S FZ Js JZ(Z :Z \"Z 4Z*] N~Q)Y " "JY(Y-_ Dn gB[ NYLj 5d (j 0q EY1Y 5Z 7Y+Z " "LYKdG]\"dBd Bo ;Y7` Dn >YHg 4i L^ 4e " "E~g#~T FZ 3oDo @Z :Z(Z :Z ,n NX DX EY EZ %m G~U *Z X BZ " ")e 4e /~d 3YKeH] 8" "WEW FW HV,W.o0X IW'Z /Z MZ/Z LZ.Z MZ/[ MZ.Z MZ/[ MZ>Y+~T p E~T " "J~T I~S I~S 7Z !Z !Z \"Z :u ;Y,^ Dn 4" "n 5n 6o 6n @XBm 5n 4n 6o 6o +Z 2Z #YIl =gGY AhGY AhGX ?hHY @hHY " "@gGY%i:o Hm 7p 6o 6p 7p 1Y Y NX Y (i ;X0X " "fGX >fGX >fGY 4Y 4YHf +Z Bg /g .g -g /g " "(X M[ 5T ?Z !Z JP 'X.Y 5" "[ 6Y0Y 7] &~P Ne $Z +W?X '] 6W)a Mh<\\ 7Y !X " "CX Y EZ +X Id 6} I~S Cm HZ =l 'e " "1Z i 6h !Z #Z 3Z ?Y M[ M['s &k Jo .~S FZ Gm GZ(Z :Z \"Z 4Z)] " "~Q)Y JY(Y,^ Bi 9Z Gl AZ'Z Jm (Y (i )\\ " ";].]'[#Z =Z =~a AX =X \"Y DdFY FYFb *h 6cFY 8j 0Y \"YAY GY1Y 5Y " "NX 0X1\\ :Y FY3Y2Y+Y1Y ;f :YFb 1cFX ;Y" " $k ` 7cFY 6] 5[5Z KZ-[ 8Y 3~P 2Y X Y ;b=X NYJe 0` $e +l BY1Y " "4Y 7Y*Y LYIaE[ b@a >k 9Y6_ Ah ;YFc 0e " "FZ 2a D~i$~T FZ 3oDo @Z :Z(Z :Z )i LX CV CW DZ #h D~U *Z X " "-R9Z #[ *[ *~d 3" "YIaE\\ 8WEW GX HV-W-o0W HW'Z 0Z L[0Z LZ/[ LZ0Z LZ/[ LZ0Z " "LZ?Z+~T Lj B~T J~T I~S I~S 7Z !Z !Z \"Z :o " "5Y,^ Ai /h 0i 0i 0i >W?i 1j 0j 1j 1i (Z 2Z #YGh 9cEY ?dEY ?dEX =dFY " ">dFY >cEY#d5j Ch 1j 1j 1j 1j -Y Y NX Y" " &e 9X0X :e ,f -f -e ,f 4XFe 0cEX a NU CZ " "N` 9X -T<[ " " LYG]BX 5WEW %U HW NX MX GZ (d " " +b (b )b )a )b 9V;a " ")c *c *c *c =a 4_ &^ %^ $^ &_ &_ :_/c RM] !R Z 5\\ " " 9X ;X $Y HY NY 0Y 'X " " NY BY X !Y " ":Y 8Y 4Y *Y 1Y EX 3Y " " CZ IU 3X -p " " IY 8WEW #V &Z MV " " " " 0U 'P " " ;Y 2Y >Z 8X " " MT *X &X " " 9X DX " " 5X ?\\%W ?Z 4\\ " " :X ;X $Y " " IZ NY 0Y 'X NY BZ !X !Y :Y " " 8Y 4Y *Y 1Y EX 3Y " " CZ IU 3X -o " " HY 8WEW \"V " " 'Z LU " " 0V " " CZ 2Y >Y 7X " " " " MT )X 'X 9X DX " "5W <\\(X ?" "Z 3\\ ;Y e GX 2f KZ LY " " 0Y 'X !Y >" "\\ %X &] 9Y 8Y 4Y *Y 1Y EX 3Y " " CZ IU 3" "X $^ @Y 8WEW !V '\\:V " " ;V " " 1W " " GZ 0Y @Z " " FWHX " " LT 'X +W 7W " " V 5b?c A[ " " -\\ ?e !f " " f " "/X 0g 9Y 8Y 4Y *Y " " 1Y EX 3Y CZ IU 3X " " 5Y " " NV &\\=X ;V " " " "1W GY /Y AZ " " EWHX " " LT &W ,X 7V " " V 3~T " " A] ,\\ @e !f " " d " " " " %e -Y Nd @c " " " " (m @c " " " " +u $b -Y 'X 0d 2^ " "/X 0_ 1Y 8Y 4Y *Y " " 1Y EX 3Y CZ IT 2X " " 5Y " "-c !q Hd " " >c " " $d ,Y Nd ?b " " " " " " %g =" "b *t #a " " ,Y 'X 0d " " ,X /X 0Y +Y 8Y 4Y *Y 1Y EX 3Y " " CZ '" "X 5Y -c Nm " " Fc " " =c " " $c +Y Nc " " >a " " " " M\\ 8a " " \"~Y 1" "r !` +Y 'X 0c 1X 1Y " " 8Y 4Y *Y 1Y EX 3Y " " CZ &W " " 5Y -b Lj " " Db " " std::printf(). \note If configuration macro \c cimg_strict_warnings is set, this function throws a \c CImgWarningException instead. \warning As the first argument is a format string, it is highly recommended to write \code cimg::warn("%s",warning_message); \endcode instead of \code cimg::warn(warning_message); \endcode if \c warning_message can be arbitrary, to prevent nasty memory access. **/ inline void warn(const char* const format, ...) { if (cimg::exception_mode() >= 1) { char* const message = new char[16384]; std::va_list ap; va_start(ap, format); cimg_vsnprintf(message, 16384, format, ap); va_end(ap); #ifdef cimg_strict_warnings throw CImgWarningException(message); #else std::fprintf(cimg::output(), "\n%s[CImg] *** Warning ***%s%s\n", cimg::t_red, cimg::t_normal, message); #endif delete[] message; } } // Execute an external system command. /** \param command C-string containing the command line to execute. \param module_name Module name. \return Status value of the executed command, whose meaning is OS-dependent. \note This function is similar to std::system() but it does not open an extra console windows on Windows-based systems. **/ inline int system(const char* const command, const char* const module_name = 0, const bool is_verbose = false) { cimg::unused(module_name); #ifdef cimg_no_system_calls return -1; #else if (is_verbose) return std::system(command); #if cimg_OS == 1 const unsigned int l = (unsigned int)std::strlen(command); if (l) { char* const ncommand = new char[l + 24]; std::memcpy(ncommand, command, l); std::strcpy(ncommand + l, " >/dev/null 2>&1"); // Make command silent const int out_val = std::system(ncommand); delete[] ncommand; return out_val; } else return -1; #elif cimg_OS == 2 PROCESS_INFORMATION pi; STARTUPINFO si; std::memset(&pi, 0, sizeof(PROCESS_INFORMATION)); std::memset(&si, 0, sizeof(STARTUPINFO)); GetStartupInfo(&si); si.cb = sizeof(si); si.wShowWindow = SW_HIDE; si.dwFlags |= SW_HIDE | STARTF_USESHOWWINDOW; const BOOL res = CreateProcess((LPCTSTR)module_name, (LPTSTR)command, 0, 0, FALSE, 0, 0, 0, &si, &pi); if (res) { WaitForSingleObject(pi.hProcess, INFINITE); CloseHandle(pi.hThread); CloseHandle(pi.hProcess); return 0; } else return std::system(command); #else return std::system(command); #endif #endif } //! Return a reference to a temporary variable of type T. template inline T& temporary(const T&) { static T temp; return temp; } //! Exchange values of variables \c a and \c b. template inline void swap(T& a, T& b) { T t = a; a = b; b = t; } //! Exchange values of variables (\c a1,\c a2) and (\c b1,\c b2). template inline void swap(T1& a1, T1& b1, T2& a2, T2& b2) { cimg::swap(a1, b1); cimg::swap(a2, b2); } //! Exchange values of variables (\c a1,\c a2,\c a3) and (\c b1,\c b2,\c b3). template inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3) { cimg::swap(a1, b1, a2, b2); cimg::swap(a3, b3); } //! Exchange values of variables (\c a1,\c a2,...,\c a4) and (\c b1,\c b2,...,\c //! b4). template inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4) { cimg::swap(a1, b1, a2, b2, a3, b3); cimg::swap(a4, b4); } //! Exchange values of variables (\c a1,\c a2,...,\c a5) and (\c b1,\c b2,...,\c //! b5). template inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5) { cimg::swap(a1, b1, a2, b2, a3, b3, a4, b4); cimg::swap(a5, b5); } //! Exchange values of variables (\c a1,\c a2,...,\c a6) and (\c b1,\c b2,...,\c //! b6). template inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6) { cimg::swap(a1, b1, a2, b2, a3, b3, a4, b4, a5, b5); cimg::swap(a6, b6); } //! Exchange values of variables (\c a1,\c a2,...,\c a7) and (\c b1,\c b2,...,\c //! b7). template inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6, T7& a7, T7& b7) { cimg::swap(a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6); cimg::swap(a7, b7); } //! Exchange values of variables (\c a1,\c a2,...,\c a8) and (\c b1,\c b2,...,\c //! b8). template inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6, T7& a7, T7& b7, T8& a8, T8& b8) { cimg::swap(a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7); cimg::swap(a8, b8); } //! Return the endianness of the current architecture. /** \return \c false for Little Endian or \c true for Big Endian. **/ inline bool endianness() { const int x = 1; return ((unsigned char*)&x)[0] ? false : true; } //! Reverse endianness of all elements in a memory buffer. /** \param[in,out] buffer Memory buffer whose endianness must be reversed. \param size Number of buffer elements to reverse. **/ template inline void invert_endianness(T* const buffer, const cimg_ulong size) { if (size) switch (sizeof(T)) { case 1: break; case 2: { for (unsigned short* ptr = (unsigned short*)buffer + size; ptr > (unsigned short*)buffer;) { const unsigned short val = *(--ptr); *ptr = (unsigned short)((val >> 8) | ((val << 8))); } } break; case 4: { for (unsigned int* ptr = (unsigned int*)buffer + size; ptr > (unsigned int*)buffer;) { const unsigned int val = *(--ptr); *ptr = (val >> 24) | ((val >> 8) & 0xff00) | ((val << 8) & 0xff0000) | (val << 24); } } break; case 8: { const cimg_uint64 m0 = (cimg_uint64)0xff, m1 = m0 << 8, m2 = m0 << 16, m3 = m0 << 24, m4 = m0 << 32, m5 = m0 << 40, m6 = m0 << 48, m7 = m0 << 56; for (cimg_uint64* ptr = (cimg_uint64*)buffer + size; ptr > (cimg_uint64*)buffer;) { const cimg_uint64 val = *(--ptr); *ptr = (((val & m7) >> 56) | ((val & m6) >> 40) | ((val & m5) >> 24) | ((val & m4) >> 8) | ((val & m3) << 8) | ((val & m2) << 24) | ((val & m1) << 40) | ((val & m0) << 56)); } } break; default: { for (T* ptr = buffer + size; ptr > buffer;) { unsigned char *pb = (unsigned char*)(--ptr), *pe = pb + sizeof(T); for (int i = 0; i < (int)sizeof(T) / 2; ++i) swap(*(pb++), *(--pe)); } } } } //! Reverse endianness of a single variable. /** \param[in,out] a Variable to reverse. \return Reference to reversed variable. **/ template inline T& invert_endianness(T& a) { invert_endianness(&a, 1); return a; } // Conversion functions to get more precision when trying to store unsigned ints // values as floats. inline unsigned int float2uint(const float f) { int tmp = 0; std::memcpy(&tmp, &f, sizeof(float)); if (tmp >= 0) return (unsigned int)f; unsigned int u; // use memcpy instead of assignment to avoid undesired optimizations by // C++-compiler. std::memcpy(&u, &f, sizeof(float)); return ((u) << 1) >> 1; // set sign bit to 0 } inline float uint2float(const unsigned int u) { if (u < (1U << 19)) return (float)u; // Consider safe storage of unsigned int as floats // until 19bits (i.e 524287) float f; const unsigned int v = u | (1U << (8 * sizeof(unsigned int) - 1)); // set sign bit to 1 // use memcpy instead of simple assignment to avoid undesired optimizations // by C++-compiler. std::memcpy(&f, &v, sizeof(float)); return f; } //! Return the value of a system timer, with a millisecond precision. /** \note The timer does not necessarily starts from \c 0. **/ inline cimg_ulong time() { #if cimg_OS == 1 struct timeval st_time; gettimeofday(&st_time, 0); return (cimg_ulong)(st_time.tv_usec / 1000 + st_time.tv_sec * 1000); #elif cimg_OS == 2 SYSTEMTIME st_time; GetLocalTime(&st_time); return (cimg_ulong)( st_time.wMilliseconds + 1000 * (st_time.wSecond + 60 * (st_time.wMinute + 60 * st_time.wHour))); #else return 0; #endif } // Implement a tic/toc mechanism to display elapsed time of algorithms. inline cimg_ulong tictoc(const bool is_tic); //! Start tic/toc timer for time measurement between code instructions. /** \return Current value of the timer (same value as time()). **/ inline cimg_ulong tic() { return cimg::tictoc(true); } //! End tic/toc timer and displays elapsed time from last call to tic(). /** \return Time elapsed (in ms) since last call to tic(). **/ inline cimg_ulong toc() { return cimg::tictoc(false); } //! Sleep for a given numbers of milliseconds. /** \param milliseconds Number of milliseconds to wait for. \note This function frees the CPU ressources during the sleeping time. It can be used to temporize your program properly, without wasting CPU time. **/ inline void sleep(const unsigned int milliseconds) { #if cimg_OS == 1 struct timespec tv; tv.tv_sec = milliseconds / 1000; tv.tv_nsec = (milliseconds % 1000) * 1000000; nanosleep(&tv, 0); #elif cimg_OS == 2 Sleep(milliseconds); #else cimg::unused(milliseconds); #endif } inline unsigned int wait(const unsigned int milliseconds, cimg_ulong* const p_timer) { if (!*p_timer) *p_timer = cimg::time(); const cimg_ulong current_time = cimg::time(); if (current_time >= *p_timer + milliseconds) { *p_timer = current_time; return 0; } const unsigned int time_diff = (unsigned int)(*p_timer + milliseconds - current_time); *p_timer = current_time + time_diff; cimg::sleep(time_diff); return time_diff; } //! Wait for a given number of milliseconds since the last call to wait(). /** \param milliseconds Number of milliseconds to wait for. \return Number of milliseconds elapsed since the last call to wait(). \note Same as sleep() with a waiting time computed with regard to the last call of wait(). It may be used to temporize your program properly, without wasting CPU time. **/ inline cimg_long wait(const unsigned int milliseconds) { cimg::mutex(3); static cimg_ulong timer = cimg::time(); cimg::mutex(3, 0); return cimg::wait(milliseconds, &timer); } // Custom random number generator (allow re-entrance). inline cimg_ulong& rng() { // Used as a shared global number for rng static cimg_ulong rng = 0xB16B00B5U; return rng; } inline unsigned int _rand(cimg_ulong* const p_rng) { *p_rng = *p_rng * 1103515245 + 12345U; return (unsigned int)*p_rng; } inline unsigned int _rand() { cimg::mutex(4); const unsigned int res = cimg::_rand(&cimg::rng()); cimg::mutex(4, 0); return res; } inline void srand(cimg_ulong* const p_rng) { #if cimg_OS == 1 *p_rng = cimg::time() + (cimg_ulong)getpid(); #elif cimg_OS == 2 *p_rng = cimg::time() + (cimg_ulong)_getpid(); #endif } inline void srand() { cimg::mutex(4); cimg::srand(&cimg::rng()); cimg::mutex(4, 0); } inline void srand(const cimg_ulong seed) { cimg::mutex(4); cimg::rng() = seed; cimg::mutex(4, 0); } inline double rand(const double val_min, const double val_max, cimg_ulong* const p_rng) { const double val = cimg::_rand(p_rng) / (double)~0U; return val_min + (val_max - val_min) * val; } inline double rand(const double val_min, const double val_max) { cimg::mutex(4); const double res = cimg::rand(val_min, val_max, &cimg::rng()); cimg::mutex(4, 0); return res; } inline double rand(const double val_max, cimg_ulong* const p_rng) { const double val = cimg::_rand(p_rng) / (double)~0U; return val_max * val; } inline double rand(const double val_max = 1) { cimg::mutex(4); const double res = cimg::rand(val_max, &cimg::rng()); cimg::mutex(4, 0); return res; } inline double grand(cimg_ulong* const p_rng) { double x1, w; do { const double x2 = cimg::rand(-1, 1, p_rng); x1 = cimg::rand(-1, 1, p_rng); w = x1 * x1 + x2 * x2; } while (w <= 0 || w >= 1.); return x1 * std::sqrt((-2 * std::log(w)) / w); } inline double grand() { cimg::mutex(4); const double res = cimg::grand(&cimg::rng()); cimg::mutex(4, 0); return res; } inline unsigned int prand(const double z, cimg_ulong* const p_rng) { if (z <= 1.e-10) return 0; if (z > 100) return (unsigned int)((std::sqrt(z) * cimg::grand(p_rng)) + z); unsigned int k = 0; const double y = std::exp(-z); for (double s = 1.; s >= y; ++k) s *= cimg::rand(1, p_rng); return k - 1; } inline unsigned int prand(const double z) { cimg::mutex(4); const unsigned int res = cimg::prand(z, &cimg::rng()); cimg::mutex(4, 0); return res; } //! Cut (i.e. clamp) value in specified interval. template inline T cut(const T& val, const t& val_min, const t& val_max) { return val <= val_min ? (T)val_min : val >= val_max ? (T)val_max : val; } //! Bitwise-rotate value on the left. template inline T rol(const T& a, const unsigned int n = 1) { return n ? (T)((a << n) | (a >> ((sizeof(T) << 3) - n))) : a; } inline float rol(const float a, const unsigned int n = 1) { return (float)rol((int)a, n); } inline double rol(const double a, const unsigned int n = 1) { return (double)rol((cimg_long)a, n); } inline double rol(const long double a, const unsigned int n = 1) { return (double)rol((cimg_long)a, n); } #ifdef cimg_use_half inline half rol(const half a, const unsigned int n = 1) { return (half)rol((int)a, n); } #endif //! Bitwise-rotate value on the right. template inline T ror(const T& a, const unsigned int n = 1) { return n ? (T)((a >> n) | (a << ((sizeof(T) << 3) - n))) : a; } inline float ror(const float a, const unsigned int n = 1) { return (float)ror((int)a, n); } inline double ror(const double a, const unsigned int n = 1) { return (double)ror((cimg_long)a, n); } inline double ror(const long double a, const unsigned int n = 1) { return (double)ror((cimg_long)a, n); } #ifdef cimg_use_half inline half ror(const half a, const unsigned int n = 1) { return (half)ror((int)a, n); } #endif //! Return absolute value of a value. template inline T abs(const T& a) { return a >= 0 ? a : -a; } inline bool abs(const bool a) { return a; } inline int abs(const unsigned char a) { return (int)a; } inline int abs(const unsigned short a) { return (int)a; } inline int abs(const unsigned int a) { return (int)a; } inline int abs(const int a) { return std::abs(a); } inline cimg_int64 abs(const cimg_uint64 a) { return (cimg_int64)a; } inline double abs(const double a) { return std::fabs(a); } inline float abs(const float a) { return (float)std::fabs((double)a); } //! Return hyperbolic arcosine of a value. inline double acosh(const double x) { #if cimg_use_cpp11 == 1 && !defined(_MSC_VER) return std::acosh(x); #else return std::log(x + std::sqrt(x * x - 1)); #endif } //! Return hyperbolic arcsine of a value. inline double asinh(const double x) { #if cimg_use_cpp11 == 1 && !defined(_MSC_VER) return std::asinh(x); #else return std::log(x + std::sqrt(x * x + 1)); #endif } //! Return hyperbolic arctangent of a value. inline double atanh(const double x) { #if cimg_use_cpp11 == 1 && !defined(_MSC_VER) return std::atanh(x); #else return 0.5 * std::log((1. + x) / (1. - x)); #endif } //! Return the sinc of a given value. inline double sinc(const double x) { return x ? std::sin(x) / x : 1; } //! Return base-2 logarithm of a value. inline double log2(const double x) { #if cimg_use_cpp11 == 1 && !defined(_MSC_VER) return std::log2(x); #else const double base2 = std::log(2.); return std::log(x) / base2; #endif } //! Return square of a value. template inline T sqr(const T& val) { return val * val; } //! Return cubic root of a value. template inline double cbrt(const T& x) { #if cimg_use_cpp11 == 1 return std::cbrt(x); #else return x >= 0 ? std::pow((double)x, 1. / 3) : -std::pow(-(double)x, 1. / 3); #endif } template inline T pow3(const T& val) { return val * val * val; } template inline T pow4(const T& val) { return val * val * val * val; } //! Return the minimum between three values. template inline t min(const t& a, const t& b, const t& c) { return std::min(std::min(a, b), c); } //! Return the minimum between four values. template inline t min(const t& a, const t& b, const t& c, const t& d) { return std::min(std::min(a, b), std::min(c, d)); } //! Return the maximum between three values. template inline t max(const t& a, const t& b, const t& c) { return std::max(std::max(a, b), c); } //! Return the maximum between four values. template inline t max(const t& a, const t& b, const t& c, const t& d) { return std::max(std::max(a, b), std::max(c, d)); } //! Return the sign of a value. template inline T sign(const T& x) { return (T)(cimg::type::is_nan(x) ? 0 : x < 0 ? -1 : x > 0); } //! Return the nearest power of 2 higher than given value. template inline cimg_ulong nearest_pow2(const T& x) { cimg_ulong i = 1; while (x > i) i <<= 1; return i; } //! Return the modulo of a value. /** \param x Input value. \param m Modulo value. \note This modulo function accepts negative and floating-points modulo numbers, as well as variables of any type. **/ template inline T mod(const T& x, const T& m) { const double dx = (double)x, dm = (double)m; return (T)(dx - dm * std::floor(dx / dm)); } inline int mod(const bool x, const bool m) { return m ? (x ? 1 : 0) : 0; } inline int mod(const unsigned char x, const unsigned char m) { return x % m; } inline int mod(const char x, const char m) { #if defined(CHAR_MAX) && CHAR_MAX == 255 return x % m; #else return x >= 0 ? x % m : (x % m ? m + x % m : 0); #endif } inline int mod(const unsigned short x, const unsigned short m) { return x % m; } inline int mod(const short x, const short m) { return x >= 0 ? x % m : (x % m ? m + x % m : 0); } inline int mod(const unsigned int x, const unsigned int m) { return (int)(x % m); } inline int mod(const int x, const int m) { return x >= 0 ? x % m : (x % m ? m + x % m : 0); } inline cimg_int64 mod(const cimg_uint64 x, const cimg_uint64 m) { return x % m; } inline cimg_int64 mod(const cimg_int64 x, const cimg_int64 m) { return x >= 0 ? x % m : (x % m ? m + x % m : 0); } //! Return the min-mod of two values. /** \note minmod(\p a,\p b) is defined to be: - minmod(\p a,\p b) = min(\p a,\p b), if \p a and \p b have the same sign. - minmod(\p a,\p b) = 0, if \p a and \p b have different signs. **/ template inline T minmod(const T& a, const T& b) { return a * b <= 0 ? 0 : (a > 0 ? (a < b ? a : b) : (a < b ? b : a)); } template inline T round(const T& x) { return (T)std::floor((_cimg_Tfloat)x + 0.5f); } template inline int uiround(const T x) { return cimg::type::is_float() ? (int)(x + 0.5f) : (int)x; } //! Return rounded value. /** \param x Value to be rounded. \param y Rounding precision. \param rounding_type Type of rounding operation (\c 0 = nearest, \c -1 = backward, \c 1 = forward). \return Rounded value, having the same type as input value \c x. **/ template inline T round(const T& x, const double y, const int rounding_type = 0) { if (y <= 0) return x; if (y == 1) switch (rounding_type) { case 0: return cimg::round(x); case 1: return (T)std::ceil((_cimg_Tfloat)x); default: return (T)std::floor((_cimg_Tfloat)x); } const double sx = (double)x / y, floor = std::floor(sx), delta = sx - floor; return (T)(y * (rounding_type < 0 ? floor : rounding_type > 0 ? std::ceil(sx) : delta < 0.5 ? floor : std::ceil(sx))); } // Code to compute fast median from 2,3,5,7,9,13,25 and 49 values. // (contribution by RawTherapee: http://rawtherapee.com/). template inline T median(T val0, T val1) { return (val0 + val1) / 2; } template inline T median(T val0, T val1, T val2) { return std::max(std::min(val0, val1), std::min(val2, std::max(val0, val1))); } template inline T median(T val0, T val1, T val2, T val3, T val4) { T tmp = std::min(val0, val1); val1 = std::max(val0, val1); val0 = tmp; tmp = std::min(val3, val4); val4 = std::max(val3, val4); val3 = std::max(val0, tmp); val1 = std::min(val1, val4); tmp = std::min(val1, val2); val2 = std::max(val1, val2); val1 = tmp; tmp = std::min(val2, val3); return std::max(val1, tmp); } template inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6) { T tmp = std::min(val0, val5); val5 = std::max(val0, val5); val0 = tmp; tmp = std::min(val0, val3); val3 = std::max(val0, val3); val0 = tmp; tmp = std::min(val1, val6); val6 = std::max(val1, val6); val1 = tmp; tmp = std::min(val2, val4); val4 = std::max(val2, val4); val2 = tmp; val1 = std::max(val0, val1); tmp = std::min(val3, val5); val5 = std::max(val3, val5); val3 = tmp; tmp = std::min(val2, val6); val6 = std::max(val2, val6); val3 = std::max(tmp, val3); val3 = std::min(val3, val6); tmp = std::min(val4, val5); val4 = std::max(val1, tmp); tmp = std::min(val1, tmp); val3 = std::max(tmp, val3); return std::min(val3, val4); } template inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, T val7, T val8) { T tmp = std::min(val1, val2); val2 = std::max(val1, val2); val1 = tmp; tmp = std::min(val4, val5); val5 = std::max(val4, val5); val4 = tmp; tmp = std::min(val7, val8); val8 = std::max(val7, val8); val7 = tmp; tmp = std::min(val0, val1); val1 = std::max(val0, val1); val0 = tmp; tmp = std::min(val3, val4); val4 = std::max(val3, val4); val3 = tmp; tmp = std::min(val6, val7); val7 = std::max(val6, val7); val6 = tmp; tmp = std::min(val1, val2); val2 = std::max(val1, val2); val1 = tmp; tmp = std::min(val4, val5); val5 = std::max(val4, val5); val4 = tmp; tmp = std::min(val7, val8); val8 = std::max(val7, val8); val3 = std::max(val0, val3); val5 = std::min(val5, val8); val7 = std::max(val4, tmp); tmp = std::min(val4, tmp); val6 = std::max(val3, val6); val4 = std::max(val1, tmp); val2 = std::min(val2, val5); val4 = std::min(val4, val7); tmp = std::min(val4, val2); val2 = std::max(val4, val2); val4 = std::max(val6, tmp); return std::min(val4, val2); } template inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, T val7, T val8, T val9, T val10, T val11, T val12) { T tmp = std::min(val1, val7); val7 = std::max(val1, val7); val1 = tmp; tmp = std::min(val9, val11); val11 = std::max(val9, val11); val9 = tmp; tmp = std::min(val3, val4); val4 = std::max(val3, val4); val3 = tmp; tmp = std::min(val5, val8); val8 = std::max(val5, val8); val5 = tmp; tmp = std::min(val0, val12); val12 = std::max(val0, val12); val0 = tmp; tmp = std::min(val2, val6); val6 = std::max(val2, val6); val2 = tmp; tmp = std::min(val0, val1); val1 = std::max(val0, val1); val0 = tmp; tmp = std::min(val2, val3); val3 = std::max(val2, val3); val2 = tmp; tmp = std::min(val4, val6); val6 = std::max(val4, val6); val4 = tmp; tmp = std::min(val8, val11); val11 = std::max(val8, val11); val8 = tmp; tmp = std::min(val7, val12); val12 = std::max(val7, val12); val7 = tmp; tmp = std::min(val5, val9); val9 = std::max(val5, val9); val5 = tmp; tmp = std::min(val0, val2); val2 = std::max(val0, val2); val0 = tmp; tmp = std::min(val3, val7); val7 = std::max(val3, val7); val3 = tmp; tmp = std::min(val10, val11); val11 = std::max(val10, val11); val10 = tmp; tmp = std::min(val1, val4); val4 = std::max(val1, val4); val1 = tmp; tmp = std::min(val6, val12); val12 = std::max(val6, val12); val6 = tmp; tmp = std::min(val7, val8); val8 = std::max(val7, val8); val7 = tmp; val11 = std::min(val11, val12); tmp = std::min(val4, val9); val9 = std::max(val4, val9); val4 = tmp; tmp = std::min(val6, val10); val10 = std::max(val6, val10); val6 = tmp; tmp = std::min(val3, val4); val4 = std::max(val3, val4); val3 = tmp; tmp = std::min(val5, val6); val6 = std::max(val5, val6); val5 = tmp; val8 = std::min(val8, val9); val10 = std::min(val10, val11); tmp = std::min(val1, val7); val7 = std::max(val1, val7); val1 = tmp; tmp = std::min(val2, val6); val6 = std::max(val2, val6); val2 = tmp; val3 = std::max(val1, val3); tmp = std::min(val4, val7); val7 = std::max(val4, val7); val4 = tmp; val8 = std::min(val8, val10); val5 = std::max(val0, val5); val5 = std::max(val2, val5); tmp = std::min(val6, val8); val8 = std::max(val6, val8); val5 = std::max(val3, val5); val7 = std::min(val7, val8); val6 = std::max(val4, tmp); tmp = std::min(val4, tmp); val5 = std::max(tmp, val5); val6 = std::min(val6, val7); return std::max(val5, val6); } template inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, T val7, T val8, T val9, T val10, T val11, T val12, T val13, T val14, T val15, T val16, T val17, T val18, T val19, T val20, T val21, T val22, T val23, T val24) { T tmp = std::min(val0, val1); val1 = std::max(val0, val1); val0 = tmp; tmp = std::min(val3, val4); val4 = std::max(val3, val4); val3 = tmp; tmp = std::min(val2, val4); val4 = std::max(val2, val4); val2 = std::min(tmp, val3); val3 = std::max(tmp, val3); tmp = std::min(val6, val7); val7 = std::max(val6, val7); val6 = tmp; tmp = std::min(val5, val7); val7 = std::max(val5, val7); val5 = std::min(tmp, val6); val6 = std::max(tmp, val6); tmp = std::min(val9, val10); val10 = std::max(val9, val10); val9 = tmp; tmp = std::min(val8, val10); val10 = std::max(val8, val10); val8 = std::min(tmp, val9); val9 = std::max(tmp, val9); tmp = std::min(val12, val13); val13 = std::max(val12, val13); val12 = tmp; tmp = std::min(val11, val13); val13 = std::max(val11, val13); val11 = std::min(tmp, val12); val12 = std::max(tmp, val12); tmp = std::min(val15, val16); val16 = std::max(val15, val16); val15 = tmp; tmp = std::min(val14, val16); val16 = std::max(val14, val16); val14 = std::min(tmp, val15); val15 = std::max(tmp, val15); tmp = std::min(val18, val19); val19 = std::max(val18, val19); val18 = tmp; tmp = std::min(val17, val19); val19 = std::max(val17, val19); val17 = std::min(tmp, val18); val18 = std::max(tmp, val18); tmp = std::min(val21, val22); val22 = std::max(val21, val22); val21 = tmp; tmp = std::min(val20, val22); val22 = std::max(val20, val22); val20 = std::min(tmp, val21); val21 = std::max(tmp, val21); tmp = std::min(val23, val24); val24 = std::max(val23, val24); val23 = tmp; tmp = std::min(val2, val5); val5 = std::max(val2, val5); val2 = tmp; tmp = std::min(val3, val6); val6 = std::max(val3, val6); val3 = tmp; tmp = std::min(val0, val6); val6 = std::max(val0, val6); val0 = std::min(tmp, val3); val3 = std::max(tmp, val3); tmp = std::min(val4, val7); val7 = std::max(val4, val7); val4 = tmp; tmp = std::min(val1, val7); val7 = std::max(val1, val7); val1 = std::min(tmp, val4); val4 = std::max(tmp, val4); tmp = std::min(val11, val14); val14 = std::max(val11, val14); val11 = tmp; tmp = std::min(val8, val14); val14 = std::max(val8, val14); val8 = std::min(tmp, val11); val11 = std::max(tmp, val11); tmp = std::min(val12, val15); val15 = std::max(val12, val15); val12 = tmp; tmp = std::min(val9, val15); val15 = std::max(val9, val15); val9 = std::min(tmp, val12); val12 = std::max(tmp, val12); tmp = std::min(val13, val16); val16 = std::max(val13, val16); val13 = tmp; tmp = std::min(val10, val16); val16 = std::max(val10, val16); val10 = std::min(tmp, val13); val13 = std::max(tmp, val13); tmp = std::min(val20, val23); val23 = std::max(val20, val23); val20 = tmp; tmp = std::min(val17, val23); val23 = std::max(val17, val23); val17 = std::min(tmp, val20); val20 = std::max(tmp, val20); tmp = std::min(val21, val24); val24 = std::max(val21, val24); val21 = tmp; tmp = std::min(val18, val24); val24 = std::max(val18, val24); val18 = std::min(tmp, val21); val21 = std::max(tmp, val21); tmp = std::min(val19, val22); val22 = std::max(val19, val22); val19 = tmp; val17 = std::max(val8, val17); tmp = std::min(val9, val18); val18 = std::max(val9, val18); val9 = tmp; tmp = std::min(val0, val18); val18 = std::max(val0, val18); val9 = std::max(tmp, val9); tmp = std::min(val10, val19); val19 = std::max(val10, val19); val10 = tmp; tmp = std::min(val1, val19); val19 = std::max(val1, val19); val1 = std::min(tmp, val10); val10 = std::max(tmp, val10); tmp = std::min(val11, val20); val20 = std::max(val11, val20); val11 = tmp; tmp = std::min(val2, val20); val20 = std::max(val2, val20); val11 = std::max(tmp, val11); tmp = std::min(val12, val21); val21 = std::max(val12, val21); val12 = tmp; tmp = std::min(val3, val21); val21 = std::max(val3, val21); val3 = std::min(tmp, val12); val12 = std::max(tmp, val12); tmp = std::min(val13, val22); val22 = std::max(val13, val22); val4 = std::min(val4, val22); val13 = std::max(val4, tmp); tmp = std::min(val4, tmp); val4 = tmp; tmp = std::min(val14, val23); val23 = std::max(val14, val23); val14 = tmp; tmp = std::min(val5, val23); val23 = std::max(val5, val23); val5 = std::min(tmp, val14); val14 = std::max(tmp, val14); tmp = std::min(val15, val24); val24 = std::max(val15, val24); val15 = tmp; val6 = std::min(val6, val24); tmp = std::min(val6, val15); val15 = std::max(val6, val15); val6 = tmp; tmp = std::min(val7, val16); val7 = std::min(tmp, val19); tmp = std::min(val13, val21); val15 = std::min(val15, val23); tmp = std::min(val7, tmp); val7 = std::min(tmp, val15); val9 = std::max(val1, val9); val11 = std::max(val3, val11); val17 = std::max(val5, val17); val17 = std::max(val11, val17); val17 = std::max(val9, val17); tmp = std::min(val4, val10); val10 = std::max(val4, val10); val4 = tmp; tmp = std::min(val6, val12); val12 = std::max(val6, val12); val6 = tmp; tmp = std::min(val7, val14); val14 = std::max(val7, val14); val7 = tmp; tmp = std::min(val4, val6); val6 = std::max(val4, val6); val7 = std::max(tmp, val7); tmp = std::min(val12, val14); val14 = std::max(val12, val14); val12 = tmp; val10 = std::min(val10, val14); tmp = std::min(val6, val7); val7 = std::max(val6, val7); val6 = tmp; tmp = std::min(val10, val12); val12 = std::max(val10, val12); val10 = std::max(val6, tmp); tmp = std::min(val6, tmp); val17 = std::max(tmp, val17); tmp = std::min(val12, val17); val17 = std::max(val12, val17); val12 = tmp; val7 = std::min(val7, val17); tmp = std::min(val7, val10); val10 = std::max(val7, val10); val7 = tmp; tmp = std::min(val12, val18); val18 = std::max(val12, val18); val12 = std::max(val7, tmp); val10 = std::min(val10, val18); tmp = std::min(val12, val20); val20 = std::max(val12, val20); val12 = tmp; tmp = std::min(val10, val20); return std::max(tmp, val12); } template inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, T val7, T val8, T val9, T val10, T val11, T val12, T val13, T val14, T val15, T val16, T val17, T val18, T val19, T val20, T val21, T val22, T val23, T val24, T val25, T val26, T val27, T val28, T val29, T val30, T val31, T val32, T val33, T val34, T val35, T val36, T val37, T val38, T val39, T val40, T val41, T val42, T val43, T val44, T val45, T val46, T val47, T val48) { T tmp = std::min(val0, val32); val32 = std::max(val0, val32); val0 = tmp; tmp = std::min(val1, val33); val33 = std::max(val1, val33); val1 = tmp; tmp = std::min(val2, val34); val34 = std::max(val2, val34); val2 = tmp; tmp = std::min(val3, val35); val35 = std::max(val3, val35); val3 = tmp; tmp = std::min(val4, val36); val36 = std::max(val4, val36); val4 = tmp; tmp = std::min(val5, val37); val37 = std::max(val5, val37); val5 = tmp; tmp = std::min(val6, val38); val38 = std::max(val6, val38); val6 = tmp; tmp = std::min(val7, val39); val39 = std::max(val7, val39); val7 = tmp; tmp = std::min(val8, val40); val40 = std::max(val8, val40); val8 = tmp; tmp = std::min(val9, val41); val41 = std::max(val9, val41); val9 = tmp; tmp = std::min(val10, val42); val42 = std::max(val10, val42); val10 = tmp; tmp = std::min(val11, val43); val43 = std::max(val11, val43); val11 = tmp; tmp = std::min(val12, val44); val44 = std::max(val12, val44); val12 = tmp; tmp = std::min(val13, val45); val45 = std::max(val13, val45); val13 = tmp; tmp = std::min(val14, val46); val46 = std::max(val14, val46); val14 = tmp; tmp = std::min(val15, val47); val47 = std::max(val15, val47); val15 = tmp; tmp = std::min(val16, val48); val48 = std::max(val16, val48); val16 = tmp; tmp = std::min(val0, val16); val16 = std::max(val0, val16); val0 = tmp; tmp = std::min(val1, val17); val17 = std::max(val1, val17); val1 = tmp; tmp = std::min(val2, val18); val18 = std::max(val2, val18); val2 = tmp; tmp = std::min(val3, val19); val19 = std::max(val3, val19); val3 = tmp; tmp = std::min(val4, val20); val20 = std::max(val4, val20); val4 = tmp; tmp = std::min(val5, val21); val21 = std::max(val5, val21); val5 = tmp; tmp = std::min(val6, val22); val22 = std::max(val6, val22); val6 = tmp; tmp = std::min(val7, val23); val23 = std::max(val7, val23); val7 = tmp; tmp = std::min(val8, val24); val24 = std::max(val8, val24); val8 = tmp; tmp = std::min(val9, val25); val25 = std::max(val9, val25); val9 = tmp; tmp = std::min(val10, val26); val26 = std::max(val10, val26); val10 = tmp; tmp = std::min(val11, val27); val27 = std::max(val11, val27); val11 = tmp; tmp = std::min(val12, val28); val28 = std::max(val12, val28); val12 = tmp; tmp = std::min(val13, val29); val29 = std::max(val13, val29); val13 = tmp; tmp = std::min(val14, val30); val30 = std::max(val14, val30); val14 = tmp; tmp = std::min(val15, val31); val31 = std::max(val15, val31); val15 = tmp; tmp = std::min(val32, val48); val48 = std::max(val32, val48); val32 = tmp; tmp = std::min(val16, val32); val32 = std::max(val16, val32); val16 = tmp; tmp = std::min(val17, val33); val33 = std::max(val17, val33); val17 = tmp; tmp = std::min(val18, val34); val34 = std::max(val18, val34); val18 = tmp; tmp = std::min(val19, val35); val35 = std::max(val19, val35); val19 = tmp; tmp = std::min(val20, val36); val36 = std::max(val20, val36); val20 = tmp; tmp = std::min(val21, val37); val37 = std::max(val21, val37); val21 = tmp; tmp = std::min(val22, val38); val38 = std::max(val22, val38); val22 = tmp; tmp = std::min(val23, val39); val39 = std::max(val23, val39); val23 = tmp; tmp = std::min(val24, val40); val40 = std::max(val24, val40); val24 = tmp; tmp = std::min(val25, val41); val41 = std::max(val25, val41); val25 = tmp; tmp = std::min(val26, val42); val42 = std::max(val26, val42); val26 = tmp; tmp = std::min(val27, val43); val43 = std::max(val27, val43); val27 = tmp; tmp = std::min(val28, val44); val44 = std::max(val28, val44); val28 = tmp; tmp = std::min(val29, val45); val45 = std::max(val29, val45); val29 = tmp; tmp = std::min(val30, val46); val46 = std::max(val30, val46); val30 = tmp; tmp = std::min(val31, val47); val47 = std::max(val31, val47); val31 = tmp; tmp = std::min(val0, val8); val8 = std::max(val0, val8); val0 = tmp; tmp = std::min(val1, val9); val9 = std::max(val1, val9); val1 = tmp; tmp = std::min(val2, val10); val10 = std::max(val2, val10); val2 = tmp; tmp = std::min(val3, val11); val11 = std::max(val3, val11); val3 = tmp; tmp = std::min(val4, val12); val12 = std::max(val4, val12); val4 = tmp; tmp = std::min(val5, val13); val13 = std::max(val5, val13); val5 = tmp; tmp = std::min(val6, val14); val14 = std::max(val6, val14); val6 = tmp; tmp = std::min(val7, val15); val15 = std::max(val7, val15); val7 = tmp; tmp = std::min(val16, val24); val24 = std::max(val16, val24); val16 = tmp; tmp = std::min(val17, val25); val25 = std::max(val17, val25); val17 = tmp; tmp = std::min(val18, val26); val26 = std::max(val18, val26); val18 = tmp; tmp = std::min(val19, val27); val27 = std::max(val19, val27); val19 = tmp; tmp = std::min(val20, val28); val28 = std::max(val20, val28); val20 = tmp; tmp = std::min(val21, val29); val29 = std::max(val21, val29); val21 = tmp; tmp = std::min(val22, val30); val30 = std::max(val22, val30); val22 = tmp; tmp = std::min(val23, val31); val31 = std::max(val23, val31); val23 = tmp; tmp = std::min(val32, val40); val40 = std::max(val32, val40); val32 = tmp; tmp = std::min(val33, val41); val41 = std::max(val33, val41); val33 = tmp; tmp = std::min(val34, val42); val42 = std::max(val34, val42); val34 = tmp; tmp = std::min(val35, val43); val43 = std::max(val35, val43); val35 = tmp; tmp = std::min(val36, val44); val44 = std::max(val36, val44); val36 = tmp; tmp = std::min(val37, val45); val45 = std::max(val37, val45); val37 = tmp; tmp = std::min(val38, val46); val46 = std::max(val38, val46); val38 = tmp; tmp = std::min(val39, val47); val47 = std::max(val39, val47); val39 = tmp; tmp = std::min(val8, val32); val32 = std::max(val8, val32); val8 = tmp; tmp = std::min(val9, val33); val33 = std::max(val9, val33); val9 = tmp; tmp = std::min(val10, val34); val34 = std::max(val10, val34); val10 = tmp; tmp = std::min(val11, val35); val35 = std::max(val11, val35); val11 = tmp; tmp = std::min(val12, val36); val36 = std::max(val12, val36); val12 = tmp; tmp = std::min(val13, val37); val37 = std::max(val13, val37); val13 = tmp; tmp = std::min(val14, val38); val38 = std::max(val14, val38); val14 = tmp; tmp = std::min(val15, val39); val39 = std::max(val15, val39); val15 = tmp; tmp = std::min(val24, val48); val48 = std::max(val24, val48); val24 = tmp; tmp = std::min(val8, val16); val16 = std::max(val8, val16); val8 = tmp; tmp = std::min(val9, val17); val17 = std::max(val9, val17); val9 = tmp; tmp = std::min(val10, val18); val18 = std::max(val10, val18); val10 = tmp; tmp = std::min(val11, val19); val19 = std::max(val11, val19); val11 = tmp; tmp = std::min(val12, val20); val20 = std::max(val12, val20); val12 = tmp; tmp = std::min(val13, val21); val21 = std::max(val13, val21); val13 = tmp; tmp = std::min(val14, val22); val22 = std::max(val14, val22); val14 = tmp; tmp = std::min(val15, val23); val23 = std::max(val15, val23); val15 = tmp; tmp = std::min(val24, val32); val32 = std::max(val24, val32); val24 = tmp; tmp = std::min(val25, val33); val33 = std::max(val25, val33); val25 = tmp; tmp = std::min(val26, val34); val34 = std::max(val26, val34); val26 = tmp; tmp = std::min(val27, val35); val35 = std::max(val27, val35); val27 = tmp; tmp = std::min(val28, val36); val36 = std::max(val28, val36); val28 = tmp; tmp = std::min(val29, val37); val37 = std::max(val29, val37); val29 = tmp; tmp = std::min(val30, val38); val38 = std::max(val30, val38); val30 = tmp; tmp = std::min(val31, val39); val39 = std::max(val31, val39); val31 = tmp; tmp = std::min(val40, val48); val48 = std::max(val40, val48); val40 = tmp; tmp = std::min(val0, val4); val4 = std::max(val0, val4); val0 = tmp; tmp = std::min(val1, val5); val5 = std::max(val1, val5); val1 = tmp; tmp = std::min(val2, val6); val6 = std::max(val2, val6); val2 = tmp; tmp = std::min(val3, val7); val7 = std::max(val3, val7); val3 = tmp; tmp = std::min(val8, val12); val12 = std::max(val8, val12); val8 = tmp; tmp = std::min(val9, val13); val13 = std::max(val9, val13); val9 = tmp; tmp = std::min(val10, val14); val14 = std::max(val10, val14); val10 = tmp; tmp = std::min(val11, val15); val15 = std::max(val11, val15); val11 = tmp; tmp = std::min(val16, val20); val20 = std::max(val16, val20); val16 = tmp; tmp = std::min(val17, val21); val21 = std::max(val17, val21); val17 = tmp; tmp = std::min(val18, val22); val22 = std::max(val18, val22); val18 = tmp; tmp = std::min(val19, val23); val23 = std::max(val19, val23); val19 = tmp; tmp = std::min(val24, val28); val28 = std::max(val24, val28); val24 = tmp; tmp = std::min(val25, val29); val29 = std::max(val25, val29); val25 = tmp; tmp = std::min(val26, val30); val30 = std::max(val26, val30); val26 = tmp; tmp = std::min(val27, val31); val31 = std::max(val27, val31); val27 = tmp; tmp = std::min(val32, val36); val36 = std::max(val32, val36); val32 = tmp; tmp = std::min(val33, val37); val37 = std::max(val33, val37); val33 = tmp; tmp = std::min(val34, val38); val38 = std::max(val34, val38); val34 = tmp; tmp = std::min(val35, val39); val39 = std::max(val35, val39); val35 = tmp; tmp = std::min(val40, val44); val44 = std::max(val40, val44); val40 = tmp; tmp = std::min(val41, val45); val45 = std::max(val41, val45); val41 = tmp; tmp = std::min(val42, val46); val46 = std::max(val42, val46); val42 = tmp; tmp = std::min(val43, val47); val47 = std::max(val43, val47); val43 = tmp; tmp = std::min(val4, val32); val32 = std::max(val4, val32); val4 = tmp; tmp = std::min(val5, val33); val33 = std::max(val5, val33); val5 = tmp; tmp = std::min(val6, val34); val34 = std::max(val6, val34); val6 = tmp; tmp = std::min(val7, val35); val35 = std::max(val7, val35); val7 = tmp; tmp = std::min(val12, val40); val40 = std::max(val12, val40); val12 = tmp; tmp = std::min(val13, val41); val41 = std::max(val13, val41); val13 = tmp; tmp = std::min(val14, val42); val42 = std::max(val14, val42); val14 = tmp; tmp = std::min(val15, val43); val43 = std::max(val15, val43); val15 = tmp; tmp = std::min(val20, val48); val48 = std::max(val20, val48); val20 = tmp; tmp = std::min(val4, val16); val16 = std::max(val4, val16); val4 = tmp; tmp = std::min(val5, val17); val17 = std::max(val5, val17); val5 = tmp; tmp = std::min(val6, val18); val18 = std::max(val6, val18); val6 = tmp; tmp = std::min(val7, val19); val19 = std::max(val7, val19); val7 = tmp; tmp = std::min(val12, val24); val24 = std::max(val12, val24); val12 = tmp; tmp = std::min(val13, val25); val25 = std::max(val13, val25); val13 = tmp; tmp = std::min(val14, val26); val26 = std::max(val14, val26); val14 = tmp; tmp = std::min(val15, val27); val27 = std::max(val15, val27); val15 = tmp; tmp = std::min(val20, val32); val32 = std::max(val20, val32); val20 = tmp; tmp = std::min(val21, val33); val33 = std::max(val21, val33); val21 = tmp; tmp = std::min(val22, val34); val34 = std::max(val22, val34); val22 = tmp; tmp = std::min(val23, val35); val35 = std::max(val23, val35); val23 = tmp; tmp = std::min(val28, val40); val40 = std::max(val28, val40); val28 = tmp; tmp = std::min(val29, val41); val41 = std::max(val29, val41); val29 = tmp; tmp = std::min(val30, val42); val42 = std::max(val30, val42); val30 = tmp; tmp = std::min(val31, val43); val43 = std::max(val31, val43); val31 = tmp; tmp = std::min(val36, val48); val48 = std::max(val36, val48); val36 = tmp; tmp = std::min(val4, val8); val8 = std::max(val4, val8); val4 = tmp; tmp = std::min(val5, val9); val9 = std::max(val5, val9); val5 = tmp; tmp = std::min(val6, val10); val10 = std::max(val6, val10); val6 = tmp; tmp = std::min(val7, val11); val11 = std::max(val7, val11); val7 = tmp; tmp = std::min(val12, val16); val16 = std::max(val12, val16); val12 = tmp; tmp = std::min(val13, val17); val17 = std::max(val13, val17); val13 = tmp; tmp = std::min(val14, val18); val18 = std::max(val14, val18); val14 = tmp; tmp = std::min(val15, val19); val19 = std::max(val15, val19); val15 = tmp; tmp = std::min(val20, val24); val24 = std::max(val20, val24); val20 = tmp; tmp = std::min(val21, val25); val25 = std::max(val21, val25); val21 = tmp; tmp = std::min(val22, val26); val26 = std::max(val22, val26); val22 = tmp; tmp = std::min(val23, val27); val27 = std::max(val23, val27); val23 = tmp; tmp = std::min(val28, val32); val32 = std::max(val28, val32); val28 = tmp; tmp = std::min(val29, val33); val33 = std::max(val29, val33); val29 = tmp; tmp = std::min(val30, val34); val34 = std::max(val30, val34); val30 = tmp; tmp = std::min(val31, val35); val35 = std::max(val31, val35); val31 = tmp; tmp = std::min(val36, val40); val40 = std::max(val36, val40); val36 = tmp; tmp = std::min(val37, val41); val41 = std::max(val37, val41); val37 = tmp; tmp = std::min(val38, val42); val42 = std::max(val38, val42); val38 = tmp; tmp = std::min(val39, val43); val43 = std::max(val39, val43); val39 = tmp; tmp = std::min(val44, val48); val48 = std::max(val44, val48); val44 = tmp; tmp = std::min(val0, val2); val2 = std::max(val0, val2); val0 = tmp; tmp = std::min(val1, val3); val3 = std::max(val1, val3); val1 = tmp; tmp = std::min(val4, val6); val6 = std::max(val4, val6); val4 = tmp; tmp = std::min(val5, val7); val7 = std::max(val5, val7); val5 = tmp; tmp = std::min(val8, val10); val10 = std::max(val8, val10); val8 = tmp; tmp = std::min(val9, val11); val11 = std::max(val9, val11); val9 = tmp; tmp = std::min(val12, val14); val14 = std::max(val12, val14); val12 = tmp; tmp = std::min(val13, val15); val15 = std::max(val13, val15); val13 = tmp; tmp = std::min(val16, val18); val18 = std::max(val16, val18); val16 = tmp; tmp = std::min(val17, val19); val19 = std::max(val17, val19); val17 = tmp; tmp = std::min(val20, val22); val22 = std::max(val20, val22); val20 = tmp; tmp = std::min(val21, val23); val23 = std::max(val21, val23); val21 = tmp; tmp = std::min(val24, val26); val26 = std::max(val24, val26); val24 = tmp; tmp = std::min(val25, val27); val27 = std::max(val25, val27); val25 = tmp; tmp = std::min(val28, val30); val30 = std::max(val28, val30); val28 = tmp; tmp = std::min(val29, val31); val31 = std::max(val29, val31); val29 = tmp; tmp = std::min(val32, val34); val34 = std::max(val32, val34); val32 = tmp; tmp = std::min(val33, val35); val35 = std::max(val33, val35); val33 = tmp; tmp = std::min(val36, val38); val38 = std::max(val36, val38); val36 = tmp; tmp = std::min(val37, val39); val39 = std::max(val37, val39); val37 = tmp; tmp = std::min(val40, val42); val42 = std::max(val40, val42); val40 = tmp; tmp = std::min(val41, val43); val43 = std::max(val41, val43); val41 = tmp; tmp = std::min(val44, val46); val46 = std::max(val44, val46); val44 = tmp; tmp = std::min(val45, val47); val47 = std::max(val45, val47); val45 = tmp; tmp = std::min(val2, val32); val32 = std::max(val2, val32); val2 = tmp; tmp = std::min(val3, val33); val33 = std::max(val3, val33); val3 = tmp; tmp = std::min(val6, val36); val36 = std::max(val6, val36); val6 = tmp; tmp = std::min(val7, val37); val37 = std::max(val7, val37); val7 = tmp; tmp = std::min(val10, val40); val40 = std::max(val10, val40); val10 = tmp; tmp = std::min(val11, val41); val41 = std::max(val11, val41); val11 = tmp; tmp = std::min(val14, val44); val44 = std::max(val14, val44); val14 = tmp; tmp = std::min(val15, val45); val45 = std::max(val15, val45); val15 = tmp; tmp = std::min(val18, val48); val48 = std::max(val18, val48); val18 = tmp; tmp = std::min(val2, val16); val16 = std::max(val2, val16); val2 = tmp; tmp = std::min(val3, val17); val17 = std::max(val3, val17); val3 = tmp; tmp = std::min(val6, val20); val20 = std::max(val6, val20); val6 = tmp; tmp = std::min(val7, val21); val21 = std::max(val7, val21); val7 = tmp; tmp = std::min(val10, val24); val24 = std::max(val10, val24); val10 = tmp; tmp = std::min(val11, val25); val25 = std::max(val11, val25); val11 = tmp; tmp = std::min(val14, val28); val28 = std::max(val14, val28); val14 = tmp; tmp = std::min(val15, val29); val29 = std::max(val15, val29); val15 = tmp; tmp = std::min(val18, val32); val32 = std::max(val18, val32); val18 = tmp; tmp = std::min(val19, val33); val33 = std::max(val19, val33); val19 = tmp; tmp = std::min(val22, val36); val36 = std::max(val22, val36); val22 = tmp; tmp = std::min(val23, val37); val37 = std::max(val23, val37); val23 = tmp; tmp = std::min(val26, val40); val40 = std::max(val26, val40); val26 = tmp; tmp = std::min(val27, val41); val41 = std::max(val27, val41); val27 = tmp; tmp = std::min(val30, val44); val44 = std::max(val30, val44); val30 = tmp; tmp = std::min(val31, val45); val45 = std::max(val31, val45); val31 = tmp; tmp = std::min(val34, val48); val48 = std::max(val34, val48); val34 = tmp; tmp = std::min(val2, val8); val8 = std::max(val2, val8); val2 = tmp; tmp = std::min(val3, val9); val9 = std::max(val3, val9); val3 = tmp; tmp = std::min(val6, val12); val12 = std::max(val6, val12); val6 = tmp; tmp = std::min(val7, val13); val13 = std::max(val7, val13); val7 = tmp; tmp = std::min(val10, val16); val16 = std::max(val10, val16); val10 = tmp; tmp = std::min(val11, val17); val17 = std::max(val11, val17); val11 = tmp; tmp = std::min(val14, val20); val20 = std::max(val14, val20); val14 = tmp; tmp = std::min(val15, val21); val21 = std::max(val15, val21); val15 = tmp; tmp = std::min(val18, val24); val24 = std::max(val18, val24); val18 = tmp; tmp = std::min(val19, val25); val25 = std::max(val19, val25); val19 = tmp; tmp = std::min(val22, val28); val28 = std::max(val22, val28); val22 = tmp; tmp = std::min(val23, val29); val29 = std::max(val23, val29); val23 = tmp; tmp = std::min(val26, val32); val32 = std::max(val26, val32); val26 = tmp; tmp = std::min(val27, val33); val33 = std::max(val27, val33); val27 = tmp; tmp = std::min(val30, val36); val36 = std::max(val30, val36); val30 = tmp; tmp = std::min(val31, val37); val37 = std::max(val31, val37); val31 = tmp; tmp = std::min(val34, val40); val40 = std::max(val34, val40); val34 = tmp; tmp = std::min(val35, val41); val41 = std::max(val35, val41); val35 = tmp; tmp = std::min(val38, val44); val44 = std::max(val38, val44); val38 = tmp; tmp = std::min(val39, val45); val45 = std::max(val39, val45); val39 = tmp; tmp = std::min(val42, val48); val48 = std::max(val42, val48); val42 = tmp; tmp = std::min(val2, val4); val4 = std::max(val2, val4); val2 = tmp; tmp = std::min(val3, val5); val5 = std::max(val3, val5); val3 = tmp; tmp = std::min(val6, val8); val8 = std::max(val6, val8); val6 = tmp; tmp = std::min(val7, val9); val9 = std::max(val7, val9); val7 = tmp; tmp = std::min(val10, val12); val12 = std::max(val10, val12); val10 = tmp; tmp = std::min(val11, val13); val13 = std::max(val11, val13); val11 = tmp; tmp = std::min(val14, val16); val16 = std::max(val14, val16); val14 = tmp; tmp = std::min(val15, val17); val17 = std::max(val15, val17); val15 = tmp; tmp = std::min(val18, val20); val20 = std::max(val18, val20); val18 = tmp; tmp = std::min(val19, val21); val21 = std::max(val19, val21); val19 = tmp; tmp = std::min(val22, val24); val24 = std::max(val22, val24); val22 = tmp; tmp = std::min(val23, val25); val25 = std::max(val23, val25); val23 = tmp; tmp = std::min(val26, val28); val28 = std::max(val26, val28); val26 = tmp; tmp = std::min(val27, val29); val29 = std::max(val27, val29); val27 = tmp; tmp = std::min(val30, val32); val32 = std::max(val30, val32); val30 = tmp; tmp = std::min(val31, val33); val33 = std::max(val31, val33); val31 = tmp; tmp = std::min(val34, val36); val36 = std::max(val34, val36); val34 = tmp; tmp = std::min(val35, val37); val37 = std::max(val35, val37); val35 = tmp; tmp = std::min(val38, val40); val40 = std::max(val38, val40); val38 = tmp; tmp = std::min(val39, val41); val41 = std::max(val39, val41); val39 = tmp; tmp = std::min(val42, val44); val44 = std::max(val42, val44); val42 = tmp; tmp = std::min(val43, val45); val45 = std::max(val43, val45); val43 = tmp; tmp = std::min(val46, val48); val48 = std::max(val46, val48); val46 = tmp; val1 = std::max(val0, val1); val3 = std::max(val2, val3); val5 = std::max(val4, val5); val7 = std::max(val6, val7); val9 = std::max(val8, val9); val11 = std::max(val10, val11); val13 = std::max(val12, val13); val15 = std::max(val14, val15); val17 = std::max(val16, val17); val19 = std::max(val18, val19); val21 = std::max(val20, val21); val23 = std::max(val22, val23); val24 = std::min(val24, val25); val26 = std::min(val26, val27); val28 = std::min(val28, val29); val30 = std::min(val30, val31); val32 = std::min(val32, val33); val34 = std::min(val34, val35); val36 = std::min(val36, val37); val38 = std::min(val38, val39); val40 = std::min(val40, val41); val42 = std::min(val42, val43); val44 = std::min(val44, val45); val46 = std::min(val46, val47); val32 = std::max(val1, val32); val34 = std::max(val3, val34); val36 = std::max(val5, val36); val38 = std::max(val7, val38); val9 = std::min(val9, val40); val11 = std::min(val11, val42); val13 = std::min(val13, val44); val15 = std::min(val15, val46); val17 = std::min(val17, val48); val24 = std::max(val9, val24); val26 = std::max(val11, val26); val28 = std::max(val13, val28); val30 = std::max(val15, val30); val17 = std::min(val17, val32); val19 = std::min(val19, val34); val21 = std::min(val21, val36); val23 = std::min(val23, val38); val24 = std::max(val17, val24); val26 = std::max(val19, val26); val21 = std::min(val21, val28); val23 = std::min(val23, val30); val24 = std::max(val21, val24); val23 = std::min(val23, val26); return std::max(val23, val24); } //! Return sqrt(x^2 + y^2). template inline T hypot(const T x, const T y) { return std::sqrt(x * x + y * y); } template inline T hypot(const T x, const T y, const T z) { return std::sqrt(x * x + y * y + z * z); } template inline T _hypot(const T x, const T y) { // Slower but more precise version T nx = cimg::abs(x), ny = cimg::abs(y), t; if (nx < ny) { t = nx; nx = ny; } else t = ny; if (nx > 0) { t /= nx; return nx * std::sqrt(1 + t * t); } return 0; } //! Return the factorial of n inline double factorial(const int n) { if (n < 0) return cimg::type::nan(); if (n < 2) return 1; double res = 2; for (int i = 3; i <= n; ++i) res *= i; return res; } //! Return the number of permutations of k objects in a set of n objects. inline double permutations(const int k, const int n, const bool with_order) { if (n < 0 || k < 0) return cimg::type::nan(); if (k > n) return 0; double res = 1; for (int i = n; i >= n - k + 1; --i) res *= i; return with_order ? res : res / cimg::factorial(k); } inline double _fibonacci(int exp) { double base = (1 + std::sqrt(5.)) / 2, result = 1 / std::sqrt(5.); while (exp) { if (exp & 1) result *= base; exp >>= 1; base *= base; } return result; } //! Calculate fibonacci number. // (Precise up to n = 78, less precise for n>78). inline double fibonacci(const int n) { if (n < 0) return cimg::type::nan(); if (n < 3) return 1; if (n < 11) { cimg_uint64 fn1 = 1, fn2 = 1, fn = 0; for (int i = 3; i <= n; ++i) { fn = fn1 + fn2; fn2 = fn1; fn1 = fn; } return (double)fn; } if (n < 75) // precise up to n = 74, faster than the integer calculation // above for n>10 return (double)((cimg_uint64)(_fibonacci(n) + 0.5)); if (n < 94) { // precise up to n = 78, less precise for n>78 up to n = 93, // overflows for n>93 cimg_uint64 fn1 = (cimg_uint64)1304969544928657ULL, fn2 = (cimg_uint64)806515533049393ULL, fn = 0; for (int i = 75; i <= n; ++i) { fn = fn1 + fn2; fn2 = fn1; fn1 = fn; } return (double)fn; } return _fibonacci( n); // Not precise, but better than the wrong overflowing calculation } //! Calculate greatest common divisor. inline long gcd(long a, long b) { while (a) { const long c = a; a = b % a; b = c; } return b; } //! Convert Ascii character to lower case. inline char lowercase(const char x) { return (char)((x < 'A' || x > 'Z') ? x : x - 'A' + 'a'); } inline double lowercase(const double x) { return (double)((x < 'A' || x > 'Z') ? x : x - 'A' + 'a'); } //! Convert C-string to lower case. inline void lowercase(char* const str) { if (str) for (char* ptr = str; *ptr; ++ptr) *ptr = lowercase(*ptr); } //! Convert Ascii character to upper case. inline char uppercase(const char x) { return (char)((x < 'a' || x > 'z') ? x : x - 'a' + 'A'); } inline double uppercase(const double x) { return (double)((x < 'a' || x > 'z') ? x : x - 'a' + 'A'); } //! Convert C-string to upper case. inline void uppercase(char* const str) { if (str) for (char* ptr = str; *ptr; ++ptr) *ptr = uppercase(*ptr); } //! Return \c true if input character is blank (space, tab, or non-printable //! character). inline bool is_blank(const char c) { return c >= 0 && c <= ' '; } //! Read value in a C-string. /** \param str C-string containing the float value to read. \return Read value. \note Same as std::atof() extended to manage the retrieval of fractions from C-strings, as in "1/2". **/ inline double atof(const char* const str) { double x = 0, y = 1; return str && cimg_sscanf(str, "%lf/%lf", &x, &y) > 0 ? x / y : 0; } //! Compare the first \p l characters of two C-strings, ignoring the case. /** \param str1 C-string. \param str2 C-string. \param l Number of characters to compare. \return \c 0 if the two strings are equal, something else otherwise. \note This function has to be defined since it is not provided by all C++-compilers (not ANSI). **/ inline int strncasecmp(const char* const str1, const char* const str2, const int l) { if (!l) return 0; if (!str1) return str2 ? -1 : 0; const char *nstr1 = str1, *nstr2 = str2; int k, diff = 0; for (k = 0; k < l && !(diff = lowercase(*nstr1) - lowercase(*nstr2)); ++k) { ++nstr1; ++nstr2; } return k != l ? diff : 0; } //! Compare two C-strings, ignoring the case. /** \param str1 C-string. \param str2 C-string. \return \c 0 if the two strings are equal, something else otherwise. \note This function has to be defined since it is not provided by all C++-compilers (not ANSI). **/ inline int strcasecmp(const char* const str1, const char* const str2) { if (!str1) return str2 ? -1 : 0; const int l1 = (int)std::strlen(str1), l2 = (int)std::strlen(str2); return cimg::strncasecmp(str1, str2, 1 + (l1 < l2 ? l1 : l2)); } //! Ellipsize a string. /** \param str C-string. \param l Max number of characters. \param is_ending Tell if the dots are placed at the end or at the center of the ellipsized string. **/ inline char* strellipsize(char* const str, const unsigned int l = 64, const bool is_ending = true) { if (!str) return str; const unsigned int nl = l < 5 ? 5 : l, ls = (unsigned int)std::strlen(str); if (ls <= nl) return str; if (is_ending) std::strcpy(str + nl - 5, "(...)"); else { const unsigned int ll = (nl - 5) / 2 + 1 - (nl % 2), lr = nl - ll - 5; std::strcpy(str + ll, "(...)"); std::memmove(str + ll + 5, str + ls - lr, lr); } str[nl] = 0; return str; } //! Ellipsize a string. /** \param str C-string. \param res output C-string. \param l Max number of characters. \param is_ending Tell if the dots are placed at the end or at the center of the ellipsized string. **/ inline char* strellipsize(const char* const str, char* const res, const unsigned int l = 64, const bool is_ending = true) { const unsigned int nl = l < 5 ? 5 : l, ls = (unsigned int)std::strlen(str); if (ls <= nl) { std::strcpy(res, str); return res; } if (is_ending) { std::strncpy(res, str, nl - 5); std::strcpy(res + nl - 5, "(...)"); } else { const unsigned int ll = (nl - 5) / 2 + 1 - (nl % 2), lr = nl - ll - 5; std::strncpy(res, str, ll); std::strcpy(res + ll, "(...)"); std::strncpy(res + ll + 5, str + ls - lr, lr); } res[nl] = 0; return res; } //! Remove delimiters on the start and/or end of a C-string. /** \param[in,out] str C-string to work with (modified at output). \param delimiter Delimiter character code to remove. \param is_symmetric Tells if the removal is done only if delimiters are symmetric (both at the beginning and the end of \c s). \param is_iterative Tells if the removal is done if several iterations are possible. \return \c true if delimiters have been removed, \c false otherwise. **/ inline bool strpare(char* const str, const char delimiter, const bool is_symmetric, const bool is_iterative) { if (!str) return false; const int l = (int)std::strlen(str); int p, q; if (is_symmetric) for (p = 0, q = l - 1; p < q && str[p] == delimiter && str[q] == delimiter;) { --q; ++p; if (!is_iterative) break; } else { for (p = 0; p < l && str[p] == delimiter;) { ++p; if (!is_iterative) break; } for (q = l - 1; q > p && str[q] == delimiter;) { --q; if (!is_iterative) break; } } const int n = q - p + 1; if (n != l) { std::memmove(str, str + p, (unsigned int)n); str[n] = 0; return true; } return false; } //! Remove white spaces on the start and/or end of a C-string. inline bool strpare(char* const str, const bool is_symmetric, const bool is_iterative) { if (!str) return false; const int l = (int)std::strlen(str); int p, q; if (is_symmetric) for (p = 0, q = l - 1; p < q && is_blank(str[p]) && is_blank(str[q]);) { --q; ++p; if (!is_iterative) break; } else { for (p = 0; p < l && is_blank(str[p]);) { ++p; if (!is_iterative) break; } for (q = l - 1; q > p && is_blank(str[q]);) { --q; if (!is_iterative) break; } } const int n = q - p + 1; if (n != l) { std::memmove(str, str + p, (unsigned int)n); str[n] = 0; return true; } return false; } //! Replace reserved characters (for Windows filename) by another character. /** \param[in,out] str C-string to work with (modified at output). \param[in] c Replacement character. **/ inline void strwindows_reserved(char* const str, const char c = '_') { for (char* s = str; *s; ++s) { const char i = *s; if (i == '<' || i == '>' || i == ':' || i == '\"' || i == '/' || i == '\\' || i == '|' || i == '?' || i == '*') *s = c; } } //! Replace escape sequences in C-strings by their binary Ascii values. /** \param[in,out] str C-string to work with (modified at output). **/ inline void strunescape(char* const str) { #define cimg_strunescape(ci, co) \ case ci: \ *nd = co; \ ++ns; \ break; unsigned int val = 0; for (char *ns = str, *nd = str; *ns || (bool)(*nd = 0); ++nd) if (*ns == '\\') switch (*(++ns)) { cimg_strunescape('a', '\a'); cimg_strunescape('b', '\b'); cimg_strunescape('e', 0x1B); cimg_strunescape('f', '\f'); cimg_strunescape('n', '\n'); cimg_strunescape('r', '\r'); cimg_strunescape('t', '\t'); cimg_strunescape('v', '\v'); cimg_strunescape('\\', '\\'); cimg_strunescape('\'', '\''); cimg_strunescape('\"', '\"'); cimg_strunescape('\?', '\?'); case 0: *nd = 0; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': cimg_sscanf(ns, "%o", &val); while (*ns >= '0' && *ns <= '7') ++ns; *nd = (char)val; break; case 'x': cimg_sscanf(++ns, "%x", &val); while ((*ns >= '0' && *ns <= '9') || (*ns >= 'a' && *ns <= 'f') || (*ns >= 'A' && *ns <= 'F')) ++ns; *nd = (char)val; break; default: *nd = *(ns++); } else *nd = *(ns++); } // Return a temporary string describing the size of a memory buffer. inline const char* strbuffersize(const cimg_ulong size); // Return string that identifies the running OS. inline const char* stros() { #if defined(linux) || defined(__linux) || defined(__linux__) static const char* const str = "Linux"; #elif defined(sun) || defined(__sun) static const char* const str = "Sun OS"; #elif defined(BSD) || defined(__OpenBSD__) || defined(__NetBSD__) || \ defined(__FreeBSD__) || defined(__DragonFly__) static const char* const str = "BSD"; #elif defined(sgi) || defined(__sgi) static const char* const str = "Irix"; #elif defined(__MACOSX__) || defined(__APPLE__) static const char* const str = "Mac OS"; #elif defined(unix) || defined(__unix) || defined(__unix__) static const char* const str = "Generic Unix"; #elif defined(_MSC_VER) || defined(WIN32) || defined(_WIN32) || \ defined(__WIN32__) || defined(WIN64) || defined(_WIN64) || \ defined(__WIN64__) static const char* const str = "Windows"; #else const char *const _str1 = std::getenv("OSTYPE"), *const _str2 = _str1 ? _str1 : std::getenv("OS"), *const str = _str2 ? _str2 : "Unknown OS"; #endif return str; } //! Return the basename of a filename. inline const char* basename(const char* const s, const char separator = cimg_file_separator) { const char *p = 0, *np = s; while (np >= s && (p = np)) np = std::strchr(np, separator) + 1; return p; } // Return a random filename. inline const char* filenamerand() { cimg::mutex(6); static char randomid[9]; for (unsigned int k = 0; k < 8; ++k) { const int v = (int)cimg::rand(65535) % 3; randomid[k] = (char)(v == 0 ? ('0' + ((int)cimg::rand(65535) % 10)) : (v == 1 ? ('a' + ((int)cimg::rand(65535) % 26)) : ('A' + ((int)cimg::rand(65535) % 26)))); } cimg::mutex(6, 0); return randomid; } // Convert filename as a Windows-style filename (short path name). inline void winformat_string(char* const str) { if (str && *str) { #if cimg_OS == 2 char* const nstr = new char[MAX_PATH]; if (GetShortPathNameA(str, nstr, MAX_PATH)) std::strcpy(str, nstr); delete[] nstr; #endif } } // Open a file (similar to std:: fopen(), but with wide character support on // Windows). inline std::FILE* std_fopen(const char* const path, const char* const mode); //! Open a file. /** \param path Path of the filename to open. \param mode C-string describing the opening mode. \return Opened file. \note Same as std::fopen() but throw a \c CImgIOException when the specified file cannot be opened, instead of returning \c 0. **/ inline std::FILE* fopen(const char* const path, const char* const mode) { if (!path) throw CImgArgumentException( "cimg::fopen(): Specified file path is (null)."); if (!mode) throw CImgArgumentException( "cimg::fopen(): File '%s', specified mode is (null).", path); std::FILE* res = 0; if (*path == '-' && (!path[1] || path[1] == '.')) { res = (*mode == 'r') ? cimg::_stdin() : cimg::_stdout(); #if cimg_OS == 2 if (*mode && mode[1] == 'b') { // Force stdin/stdout to be in binary mode #ifdef __BORLANDC__ if (setmode(_fileno(res), 0x8000) == -1) res = 0; #else if (_setmode(_fileno(res), 0x8000) == -1) res = 0; #endif } #endif } else res = cimg::std_fopen(path, mode); if (!res) throw CImgIOException( "cimg::fopen(): Failed to open file '%s' with mode '%s'.", path, mode); return res; } //! Close a file. /** \param file File to close. \return \c 0 if file has been closed properly, something else otherwise. \note Same as std::fclose() but display a warning message if the file has not been closed properly. **/ inline int fclose(std::FILE* file) { if (!file) { warn("cimg::fclose(): Specified file is (null)."); return 0; } if (file == cimg::_stdin(false) || file == cimg::_stdout(false)) return 0; const int errn = std::fclose(file); if (errn != 0) warn("cimg::fclose(): Error code %d returned during file closing.", errn); return errn; } //! Version of 'fseek()' that supports >=64bits offsets everywhere (for //! Windows). inline int fseek(FILE* stream, cimg_long offset, int origin) { #if defined(WIN64) || defined(_WIN64) || defined(__WIN64__) return _fseeki64(stream, (__int64)offset, origin); #else return std::fseek(stream, offset, origin); #endif } //! Version of 'ftell()' that supports >=64bits offsets everywhere (for //! Windows). inline cimg_long ftell(FILE* stream) { #if defined(WIN64) || defined(_WIN64) || defined(__WIN64__) return (cimg_long)_ftelli64(stream); #else return (cimg_long)std::ftell(stream); #endif } //! Check if a path is a directory. /** \param path Specified path to test. **/ inline bool is_directory(const char* const path) { if (!path || !*path) return false; #if cimg_OS == 1 struct stat st_buf; return (!stat(path, &st_buf) && S_ISDIR(st_buf.st_mode)); #elif cimg_OS == 2 const unsigned int res = (unsigned int)GetFileAttributesA(path); return res == INVALID_FILE_ATTRIBUTES ? false : (res & 16); #else return false; #endif } //! Check if a path is a file. /** \param path Specified path to test. **/ inline bool is_file(const char* const path) { if (!path || !*path) return false; std::FILE* const file = cimg::std_fopen(path, "rb"); if (!file) return false; cimg::fclose(file); return !is_directory(path); } //! Get file size. /** \param filename Specified filename to get size from. \return File size or '-1' if file does not exist. **/ inline cimg_int64 fsize(const char* const filename) { std::FILE* const file = cimg::std_fopen(filename, "rb"); if (!file) return (cimg_int64)-1; std::fseek(file, 0, SEEK_END); const cimg_int64 siz = (cimg_int64)std::ftell(file); cimg::fclose(file); return siz; } //! Get last write time of a given file or directory (multiple-attributes //! version). /** \param path Specified path to get attributes from. \param[in,out] attr Type of requested time attributes. Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second } Replaced by read attributes after return (or -1 if an error occured). \param nb_attr Number of attributes to read/write. \return Latest read attribute. **/ template inline int fdate(const char* const path, T* attr, const unsigned int nb_attr) { #define _cimg_fdate_err() \ for (unsigned int i = 0; i < nb_attr; ++i) attr[i] = (T)-1 int res = -1; if (!path || !*path) { _cimg_fdate_err(); return -1; } cimg::mutex(6); #if cimg_OS == 2 HANDLE file = CreateFileA(path, GENERIC_READ, 0, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0); if (file != INVALID_HANDLE_VALUE) { FILETIME _ft; SYSTEMTIME ft; if (GetFileTime(file, 0, 0, &_ft) && FileTimeToSystemTime(&_ft, &ft)) { for (unsigned int i = 0; i < nb_attr; ++i) { res = (int)(attr[i] == 0 ? ft.wYear : attr[i] == 1 ? ft.wMonth : attr[i] == 2 ? ft.wDay : attr[i] == 3 ? ft.wDayOfWeek : attr[i] == 4 ? ft.wHour : attr[i] == 5 ? ft.wMinute : attr[i] == 6 ? ft.wSecond : -1); attr[i] = (T)res; } } else _cimg_fdate_err(); CloseHandle(file); } else _cimg_fdate_err(); #elif cimg_OS == 1 struct stat st_buf; if (!stat(path, &st_buf)) { const time_t _ft = st_buf.st_mtime; const struct tm& ft = *std::localtime(&_ft); for (unsigned int i = 0; i < nb_attr; ++i) { res = (int)(attr[i] == 0 ? ft.tm_year + 1900 : attr[i] == 1 ? ft.tm_mon + 1 : attr[i] == 2 ? ft.tm_mday : attr[i] == 3 ? ft.tm_wday : attr[i] == 4 ? ft.tm_hour : attr[i] == 5 ? ft.tm_min : attr[i] == 6 ? ft.tm_sec : -1); attr[i] = (T)res; } } else _cimg_fdate_err(); #endif cimg::mutex(6, 0); return res; } //! Get last write time of a given file or directory (single-attribute version). /** \param path Specified path to get attributes from. \param attr Type of requested time attributes. Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second } \return Specified attribute or -1 if an error occured. **/ inline int fdate(const char* const path, unsigned int attr) { int out = (int)attr; return fdate(path, &out, 1); } //! Get current local time (multiple-attributes version). /** \param[in,out] attr Type of requested time attributes. Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second } Replaced by read attributes after return (or -1 if an error occured). \param nb_attr Number of attributes to read/write. \return Latest read attribute. **/ template inline int date(T* attr, const unsigned int nb_attr) { int res = -1; cimg::mutex(6); #if cimg_OS == 2 SYSTEMTIME st; GetLocalTime(&st); for (unsigned int i = 0; i < nb_attr; ++i) { res = (int)(attr[i] == 0 ? st.wYear : attr[i] == 1 ? st.wMonth : attr[i] == 2 ? st.wDay : attr[i] == 3 ? st.wDayOfWeek : attr[i] == 4 ? st.wHour : attr[i] == 5 ? st.wMinute : attr[i] == 6 ? st.wSecond : -1); attr[i] = (T)res; } #else time_t _st; std::time(&_st); struct tm* st = std::localtime(&_st); for (unsigned int i = 0; i < nb_attr; ++i) { res = (int)(attr[i] == 0 ? st->tm_year + 1900 : attr[i] == 1 ? st->tm_mon + 1 : attr[i] == 2 ? st->tm_mday : attr[i] == 3 ? st->tm_wday : attr[i] == 4 ? st->tm_hour : attr[i] == 5 ? st->tm_min : attr[i] == 6 ? st->tm_sec : -1); attr[i] = (T)res; } #endif cimg::mutex(6, 0); return res; } //! Get current local time (single-attribute version). /** \param attr Type of requested time attribute. Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second } \return Specified attribute or -1 if an error occured. **/ inline int date(unsigned int attr) { int out = (int)attr; return date(&out, 1); } // Get/set path to store temporary files. inline const char* temporary_path(const char* const user_path = 0, const bool reinit_path = false); // Get/set path to the Program Files/ directory (Windows only). #if cimg_OS == 2 inline const char* programfiles_path(const char* const user_path = 0, const bool reinit_path = false); #endif // Get/set path to the ImageMagick's \c convert binary. inline const char* imagemagick_path(const char* const user_path = 0, const bool reinit_path = false); // Get/set path to the GraphicsMagick's \c gm binary. inline const char* graphicsmagick_path(const char* const user_path = 0, const bool reinit_path = false); // Get/set path to the XMedcon's \c medcon binary. inline const char* medcon_path(const char* const user_path = 0, const bool reinit_path = false); // Get/set path to the FFMPEG's \c ffmpeg binary. inline const char* ffmpeg_path(const char* const user_path = 0, const bool reinit_path = false); // Get/set path to the \c gzip binary. inline const char* gzip_path(const char* const user_path = 0, const bool reinit_path = false); // Get/set path to the \c gunzip binary. inline const char* gunzip_path(const char* const user_path = 0, const bool reinit_path = false); // Get/set path to the \c dcraw binary. inline const char* dcraw_path(const char* const user_path = 0, const bool reinit_path = false); // Get/set path to the \c wget binary. inline const char* wget_path(const char* const user_path = 0, const bool reinit_path = false); // Get/set path to the \c curl binary. inline const char* curl_path(const char* const user_path = 0, const bool reinit_path = false); //! Split filename into two C-strings \c body and \c extension. /** filename and body must not overlap! **/ inline const char* split_filename(const char* const filename, char* const body = 0) { if (!filename) { if (body) *body = 0; return 0; } const char* p = 0; for (const char* np = filename; np >= filename && (p = np); np = std::strchr(np, '.') + 1) { } if (p == filename || std::strchr(p, '/') || std::strchr(p, '\\')) { if (body) std::strcpy(body, filename); return filename + std::strlen(filename); } const unsigned int l = (unsigned int)(p - filename - 1); if (body) { if (l) std::memcpy(body, filename, l); body[l] = 0; } return p; } //! Generate a numbered version of a filename. inline char* number_filename(const char* const filename, const int number, const unsigned int digits, char* const str) { if (!filename) { if (str) *str = 0; return 0; } char *const format = new char[1024], *const body = new char[1024]; const char* const ext = cimg::split_filename(filename, body); if (*ext) cimg_snprintf(format, 1024, "%%s_%%.%ud.%%s", digits); else cimg_snprintf(format, 1024, "%%s_%%.%ud", digits); cimg_sprintf(str, format, body, number, ext); delete[] format; delete[] body; return str; } //! Read data from file. /** \param[out] ptr Pointer to memory buffer that will contain the binary data read from file. \param nmemb Number of elements to read. \param stream File to read data from. \return Number of read elements. \note Same as std::fread() but may display warning message if all elements could not be read. **/ template inline size_t fread(T* const ptr, const size_t nmemb, std::FILE* stream) { if (!ptr || !stream) throw CImgArgumentException( "cimg::fread(): Invalid reading request of %u %s%s from file %p to " "buffer %p.", nmemb, cimg::type::string(), nmemb > 1 ? "s" : "", stream, ptr); if (!nmemb) return 0; const size_t wlimitT = 63 * 1024 * 1024, wlimit = wlimitT / sizeof(T); size_t to_read = nmemb, al_read = 0, l_to_read = 0, l_al_read = 0; do { l_to_read = (to_read * sizeof(T)) < wlimitT ? to_read : wlimit; l_al_read = std::fread((void*)(ptr + al_read), sizeof(T), l_to_read, stream); al_read += l_al_read; to_read -= l_al_read; } while (l_to_read == l_al_read && to_read > 0); if (to_read > 0) warn("cimg::fread(): Only %lu/%lu elements could be read from file.", (unsigned long)al_read, (unsigned long)nmemb); return al_read; } //! Write data to file. /** \param ptr Pointer to memory buffer containing the binary data to write on file. \param nmemb Number of elements to write. \param[out] stream File to write data on. \return Number of written elements. \note Similar to std::fwrite but may display warning messages if all elements could not be written. **/ template inline size_t fwrite(const T* ptr, const size_t nmemb, std::FILE* stream) { if (!ptr || !stream) throw CImgArgumentException( "cimg::fwrite(): Invalid writing request of %u %s%s from buffer %p " "to file %p.", nmemb, cimg::type::string(), nmemb > 1 ? "s" : "", ptr, stream); if (!nmemb) return 0; const size_t wlimitT = 63 * 1024 * 1024, wlimit = wlimitT / sizeof(T); size_t to_write = nmemb, al_write = 0, l_to_write = 0, l_al_write = 0; do { l_to_write = (to_write * sizeof(T)) < wlimitT ? to_write : wlimit; l_al_write = std::fwrite((void*)(ptr + al_write), sizeof(T), l_to_write, stream); al_write += l_al_write; to_write -= l_al_write; } while (l_to_write == l_al_write && to_write > 0); if (to_write > 0) warn("cimg::fwrite(): Only %lu/%lu elements could be written in file.", (unsigned long)al_write, (unsigned long)nmemb); return al_write; } //! Create an empty file. /** \param file Input file (can be \c 0 if \c filename is set). \param filename Filename, as a C-string (can be \c 0 if \c file is set). **/ inline void fempty(std::FILE* const file, const char* const filename) { if (!file && !filename) throw CImgArgumentException( "cimg::fempty(): Specified filename is (null)."); std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); if (!file) cimg::fclose(nfile); } // Try to guess format from an image file. inline const char* ftype(std::FILE* const file, const char* const filename); // Load file from network as a local temporary file. inline char* load_network(const char* const url, char* const filename_local, const unsigned int timeout = 0, const bool try_fallback = false, const char* const referer = 0); //! Return options specified on the command line. inline const char* option(const char* const name, const int argc, const char* const* const argv, const char* const defaut, const char* const usage, const bool reset_static) { static bool first = true, visu = false; if (reset_static) { first = true; return 0; } const char* res = 0; if (first) { first = false; visu = cimg::option("-h", argc, argv, (char*)0, (char*)0, false) != 0; visu |= cimg::option("-help", argc, argv, (char*)0, (char*)0, false) != 0; visu |= cimg::option("--help", argc, argv, (char*)0, (char*)0, false) != 0; } if (!name && visu) { if (usage) { std::fprintf(cimg::output(), "\n %s%s%s", cimg::t_red, cimg::basename(argv[0]), cimg::t_normal); std::fprintf(cimg::output(), ": %s", usage); std::fprintf(cimg::output(), " (%s, %s)\n\n", cimg_date, cimg_time); } if (defaut) std::fprintf(cimg::output(), "%s\n", defaut); } if (name) { if (argc > 0) { int k = 0; while (k < argc && std::strcmp(argv[k], name)) ++k; res = (k++ == argc ? defaut : (k == argc ? argv[--k] : argv[k])); } else res = defaut; if (visu && usage) std::fprintf(cimg::output(), " %s%-16s%s %-24s %s%s%s\n", cimg::t_bold, name, cimg::t_normal, res ? res : "0", cimg::t_green, usage, cimg::t_normal); } return res; } inline const char* option(const char* const name, const int argc, const char* const* const argv, const char* const defaut, const char* const usage = 0) { return option(name, argc, argv, defaut, usage, false); } inline bool option(const char* const name, const int argc, const char* const* const argv, const bool defaut, const char* const usage = 0) { const char* const s = cimg::option(name, argc, argv, (char*)0); const bool res = s ? (cimg::strcasecmp(s, "false") && cimg::strcasecmp(s, "off") && cimg::strcasecmp(s, "0")) : defaut; cimg::option(name, 0, 0, res ? "true" : "false", usage); return res; } inline int option(const char* const name, const int argc, const char* const* const argv, const int defaut, const char* const usage = 0) { const char* const s = cimg::option(name, argc, argv, (char*)0); const int res = s ? std::atoi(s) : defaut; char* const tmp = new char[256]; cimg_snprintf(tmp, 256, "%d", res); cimg::option(name, 0, 0, tmp, usage); delete[] tmp; return res; } inline char option(const char* const name, const int argc, const char* const* const argv, const char defaut, const char* const usage = 0) { const char* const s = cimg::option(name, argc, argv, (char*)0); const char res = s ? *s : defaut; char tmp[8]; *tmp = res; tmp[1] = 0; cimg::option(name, 0, 0, tmp, usage); return res; } inline float option(const char* const name, const int argc, const char* const* const argv, const float defaut, const char* const usage = 0) { const char* const s = cimg::option(name, argc, argv, (char*)0); const float res = s ? (float)cimg::atof(s) : defaut; char* const tmp = new char[256]; cimg_snprintf(tmp, 256, "%g", res); cimg::option(name, 0, 0, tmp, usage); delete[] tmp; return res; } inline double option(const char* const name, const int argc, const char* const* const argv, const double defaut, const char* const usage = 0) { const char* const s = cimg::option(name, argc, argv, (char*)0); const double res = s ? cimg::atof(s) : defaut; char* const tmp = new char[256]; cimg_snprintf(tmp, 256, "%g", res); cimg::option(name, 0, 0, tmp, usage); delete[] tmp; return res; } //! Print information about \CImg environement variables. /** \note Output is done on the default output stream. **/ inline void info() { std::fprintf(cimg::output(), "\n %s%sCImg Library %u.%u.%u%s, compiled %s ( %s ) with the " "following flags:\n\n", cimg::t_red, cimg::t_bold, cimg_version / 100, (cimg_version / 10) % 10, cimg_version % 10, cimg::t_normal, cimg_date, cimg_time); std::fprintf(cimg::output(), " > Operating System: %s%-13s%s %s('cimg_OS'=%d)%s\n", cimg::t_bold, cimg_OS == 1 ? "Unix" : (cimg_OS == 2 ? "Windows" : "Unknow"), cimg::t_normal, cimg::t_green, cimg_OS, cimg::t_normal); std::fprintf(cimg::output(), " > CPU endianness: %s%s Endian%s\n", cimg::t_bold, cimg::endianness() ? "Big" : "Little", cimg::t_normal); std::fprintf( cimg::output(), " > Verbosity mode: %s%-13s%s %s('cimg_verbosity'=%d)%s\n", cimg::t_bold, cimg_verbosity == 0 ? "Quiet" : cimg_verbosity == 1 ? "Console" : cimg_verbosity == 2 ? "Dialog" : cimg_verbosity == 3 ? "Console+Warnings" : "Dialog+Warnings", cimg::t_normal, cimg::t_green, cimg_verbosity, cimg::t_normal); std::fprintf(cimg::output(), " > Stricts warnings: %s%-13s%s " "%s('cimg_strict_warnings' %s)%s\n", cimg::t_bold, #ifdef cimg_strict_warnings "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); std::fprintf( cimg::output(), " > Support for C++11: %s%-13s%s %s('cimg_use_cpp11'=%d)%s\n", cimg::t_bold, cimg_use_cpp11 ? "Yes" : "No", cimg::t_normal, cimg::t_green, (int)cimg_use_cpp11, cimg::t_normal); std::fprintf( cimg::output(), " > Using VT100 messages: %s%-13s%s %s('cimg_use_vt100' %s)%s\n", cimg::t_bold, #ifdef cimg_use_vt100 "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); std::fprintf( cimg::output(), " > Display type: %s%-13s%s %s('cimg_display'=%d)%s\n", cimg::t_bold, cimg_display == 0 ? "No display" : cimg_display == 1 ? "X11" : cimg_display == 2 ? "Windows GDI" : "Unknown", cimg::t_normal, cimg::t_green, (int)cimg_display, cimg::t_normal); #if cimg_display == 1 std::fprintf( cimg::output(), " > Using XShm for X11: %s%-13s%s %s('cimg_use_xshm' %s)%s\n", cimg::t_bold, #ifdef cimg_use_xshm "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); std::fprintf( cimg::output(), " > Using XRand for X11: %s%-13s%s %s('cimg_use_xrandr' %s)%s\n", cimg::t_bold, #ifdef cimg_use_xrandr "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); #endif std::fprintf( cimg::output(), " > Using OpenMP: %s%-13s%s %s('cimg_use_openmp' %s)%s\n", cimg::t_bold, #if cimg_use_openmp != 0 "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); std::fprintf( cimg::output(), " > Using PNG library: %s%-13s%s %s('cimg_use_png' %s)%s\n", cimg::t_bold, #ifdef cimg_use_png "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); std::fprintf( cimg::output(), " > Using JPEG library: %s%-13s%s %s('cimg_use_jpeg' %s)%s\n", cimg::t_bold, #ifdef cimg_use_jpeg "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); std::fprintf( cimg::output(), " > Using TIFF library: %s%-13s%s %s('cimg_use_tiff' %s)%s\n", cimg::t_bold, #ifdef cimg_use_tiff "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); std::fprintf( cimg::output(), " > Using Magick++ library: %s%-13s%s %s('cimg_use_magick' %s)%s\n", cimg::t_bold, #ifdef cimg_use_magick "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); std::fprintf( cimg::output(), " > Using FFTW3 library: %s%-13s%s %s('cimg_use_fftw3' %s)%s\n", cimg::t_bold, #ifdef cimg_use_fftw3 "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); std::fprintf( cimg::output(), " > Using LAPACK library: %s%-13s%s %s('cimg_use_lapack' %s)%s\n", cimg::t_bold, #ifdef cimg_use_lapack "Yes", cimg::t_normal, cimg::t_green, "defined", #else "No", cimg::t_normal, cimg::t_green, "undefined", #endif cimg::t_normal); char* const tmp = new char[1024]; cimg_snprintf(tmp, 1024, "\"%.1020s\"", cimg::imagemagick_path()); std::fprintf(cimg::output(), " > Path of ImageMagick: %s%-13s%s\n", cimg::t_bold, tmp, cimg::t_normal); cimg_snprintf(tmp, 1024, "\"%.1020s\"", cimg::graphicsmagick_path()); std::fprintf(cimg::output(), " > Path of GraphicsMagick: %s%-13s%s\n", cimg::t_bold, tmp, cimg::t_normal); cimg_snprintf(tmp, 1024, "\"%.1020s\"", cimg::medcon_path()); std::fprintf(cimg::output(), " > Path of 'medcon': %s%-13s%s\n", cimg::t_bold, tmp, cimg::t_normal); cimg_snprintf(tmp, 1024, "\"%.1020s\"", cimg::temporary_path()); std::fprintf(cimg::output(), " > Temporary path: %s%-13s%s\n", cimg::t_bold, tmp, cimg::t_normal); std::fprintf(cimg::output(), "\n"); delete[] tmp; } // Declare LAPACK function signatures if LAPACK support is enabled. #ifdef cimg_use_lapack template inline void getrf(int& N, T* lapA, int* IPIV, int& INFO) { dgetrf_(&N, &N, lapA, &N, IPIV, &INFO); } inline void getrf(int& N, float* lapA, int* IPIV, int& INFO) { sgetrf_(&N, &N, lapA, &N, IPIV, &INFO); } template inline void getri(int& N, T* lapA, int* IPIV, T* WORK, int& LWORK, int& INFO) { dgetri_(&N, lapA, &N, IPIV, WORK, &LWORK, &INFO); } inline void getri(int& N, float* lapA, int* IPIV, float* WORK, int& LWORK, int& INFO) { sgetri_(&N, lapA, &N, IPIV, WORK, &LWORK, &INFO); } template inline void gesvd(char& JOB, int& M, int& N, T* lapA, int& MN, T* lapS, T* lapU, T* lapV, T* WORK, int& LWORK, int& INFO) { dgesvd_(&JOB, &JOB, &M, &N, lapA, &MN, lapS, lapU, &M, lapV, &N, WORK, &LWORK, &INFO); } inline void gesvd(char& JOB, int& M, int& N, float* lapA, int& MN, float* lapS, float* lapU, float* lapV, float* WORK, int& LWORK, int& INFO) { sgesvd_(&JOB, &JOB, &M, &N, lapA, &MN, lapS, lapU, &M, lapV, &N, WORK, &LWORK, &INFO); } template inline void getrs(char& TRANS, int& N, T* lapA, int* IPIV, T* lapB, int& INFO) { int one = 1; dgetrs_(&TRANS, &N, &one, lapA, &N, IPIV, lapB, &N, &INFO); } inline void getrs(char& TRANS, int& N, float* lapA, int* IPIV, float* lapB, int& INFO) { int one = 1; sgetrs_(&TRANS, &N, &one, lapA, &N, IPIV, lapB, &N, &INFO); } template inline void syev(char& JOB, char& UPLO, int& N, T* lapA, T* lapW, T* WORK, int& LWORK, int& INFO) { dsyev_(&JOB, &UPLO, &N, lapA, &N, lapW, WORK, &LWORK, &INFO); } inline void syev(char& JOB, char& UPLO, int& N, float* lapA, float* lapW, float* WORK, int& LWORK, int& INFO) { ssyev_(&JOB, &UPLO, &N, lapA, &N, lapW, WORK, &LWORK, &INFO); } template inline void sgels(char& TRANS, int& M, int& N, int& NRHS, T* lapA, int& LDA, T* lapB, int& LDB, T* WORK, int& LWORK, int& INFO) { dgels_(&TRANS, &M, &N, &NRHS, lapA, &LDA, lapB, &LDB, WORK, &LWORK, &INFO); } inline void sgels(char& TRANS, int& M, int& N, int& NRHS, float* lapA, int& LDA, float* lapB, int& LDB, float* WORK, int& LWORK, int& INFO) { sgels_(&TRANS, &M, &N, &NRHS, lapA, &LDA, lapB, &LDB, WORK, &LWORK, &INFO); } #endif } // namespace cimg /*------------------------------------------------ # # # Definition of mathematical operators and # external functions. # # -------------------------------------------------*/ #define _cimg_create_ext_operators(typ) \ template \ inline CImg::type> operator+( \ const typ val, const CImg& img) { \ return img + val; \ } \ template \ inline CImg::type> operator-( \ const typ val, const CImg& img) { \ typedef typename cimg::superset::type Tt; \ return CImg(img._width, img._height, img._depth, img._spectrum, \ val) -= img; \ } \ template \ inline CImg::type> operator*( \ const typ val, const CImg& img) { \ return img * val; \ } \ template \ inline CImg::type> operator/( \ const typ val, const CImg& img) { \ return val * img.get_invert(); \ } \ template \ inline CImg::type> operator&( \ const typ val, const CImg& img) { \ return img & val; \ } \ template \ inline CImg::type> operator|( \ const typ val, const CImg& img) { \ return img | val; \ } \ template \ inline CImg::type> operator^( \ const typ val, const CImg& img) { \ return img ^ val; \ } \ template \ inline bool operator==(const typ val, const CImg& img) { \ return img == val; \ } \ template \ inline bool operator!=(const typ val, const CImg& img) { \ return img != val; \ } _cimg_create_ext_operators(bool) _cimg_create_ext_operators(unsigned char) _cimg_create_ext_operators(char) _cimg_create_ext_operators(signed char) _cimg_create_ext_operators(unsigned short) _cimg_create_ext_operators(short) _cimg_create_ext_operators(unsigned int) _cimg_create_ext_operators(int) _cimg_create_ext_operators(cimg_uint64) _cimg_create_ext_operators(cimg_int64) _cimg_create_ext_operators(float) _cimg_create_ext_operators(double) _cimg_create_ext_operators(long double) template inline CImg<_cimg_Tfloat> operator+( const char* const expression, const CImg& img) { return img + expression; } template inline CImg<_cimg_Tfloat> operator-(const char* const expression, const CImg& img) { return CImg<_cimg_Tfloat>(img, false).fill(expression, true) -= img; } template inline CImg<_cimg_Tfloat> operator*(const char* const expression, const CImg& img) { return img * expression; } template inline CImg<_cimg_Tfloat> operator/(const char* const expression, const CImg& img) { return expression * img.get_invert(); } template inline CImg operator&(const char* const expression, const CImg& img) { return img & expression; } template inline CImg operator|(const char* const expression, const CImg& img) { return img | expression; } template inline CImg operator^(const char* const expression, const CImg& img) { return img ^ expression; } template inline bool operator==(const char* const expression, const CImg& img) { return img == expression; } template inline bool operator!=(const char* const expression, const CImg& img) { return img != expression; } template inline CImg transpose(const CImg& instance) { return instance.get_transpose(); } template inline CImg<_cimg_Tfloat> invert(const CImg& instance) { return instance.get_invert(); } template inline CImg<_cimg_Tfloat> pseudoinvert(const CImg& instance) { return instance.get_pseudoinvert(); } #define _cimg_create_ext_pointwise_function(name) \ template \ inline CImg<_cimg_Tfloat> name(const CImg& instance) { \ return instance.get_##name(); \ } _cimg_create_ext_pointwise_function(sqr) _cimg_create_ext_pointwise_function( sqrt) _cimg_create_ext_pointwise_function(exp) _cimg_create_ext_pointwise_function( log) _cimg_create_ext_pointwise_function(log2) _cimg_create_ext_pointwise_function( log10) _cimg_create_ext_pointwise_function(abs) _cimg_create_ext_pointwise_function( sign) _cimg_create_ext_pointwise_function(cos) _cimg_create_ext_pointwise_function( sin) _cimg_create_ext_pointwise_function(sinc) _cimg_create_ext_pointwise_function( tan) _cimg_create_ext_pointwise_function(acos) _cimg_create_ext_pointwise_function( asin) _cimg_create_ext_pointwise_function(atan) _cimg_create_ext_pointwise_function( cosh) _cimg_create_ext_pointwise_function(sinh) _cimg_create_ext_pointwise_function(tanh) _cimg_create_ext_pointwise_function(acosh) _cimg_create_ext_pointwise_function( asinh) _cimg_create_ext_pointwise_function( atanh) /*----------------------------------- # # Define the CImgDisplay structure # ----------------------------------*/ //! Allow the creation of windows, display images on them and manage user //! events (keyboard, mouse and windows events). /** CImgDisplay methods rely on a low-level graphic library to perform: it can be either \b X-Window (X11, for Unix-based systems) or \b GDI32 (for Windows-based systems). If both libraries are missing, CImgDisplay will not be able to display images on screen, and will enter a minimal mode where warning messages will be outputed each time the program is trying to call one of the CImgDisplay method. The configuration variable \c cimg_display tells about the graphic library used. It is set automatically by \CImg when one of these graphic libraries has been detected. But, you can override its value if necessary. Valid choices are: - 0: Disable display capabilities. - 1: Use \b X-Window (X11) library. - 2: Use \b GDI32 library. Remember to link your program against \b X11 or \b GDI32 libraries if you use CImgDisplay. **/ struct CImgDisplay { cimg_ulong _timer, _fps_frames, _fps_timer; unsigned int _width, _height, _normalization; float _fps_fps, _min, _max; bool _is_fullscreen; char* _title; unsigned int _window_width, _window_height, _button, *_keys, *_released_keys; int _window_x, _window_y, _mouse_x, _mouse_y, _wheel; bool _is_closed, _is_resized, _is_moved, _is_event, _is_keyESC, _is_keyF1, _is_keyF2, _is_keyF3, _is_keyF4, _is_keyF5, _is_keyF6, _is_keyF7, _is_keyF8, _is_keyF9, _is_keyF10, _is_keyF11, _is_keyF12, _is_keyPAUSE, _is_key1, _is_key2, _is_key3, _is_key4, _is_key5, _is_key6, _is_key7, _is_key8, _is_key9, _is_key0, _is_keyBACKSPACE, _is_keyINSERT, _is_keyHOME, _is_keyPAGEUP, _is_keyTAB, _is_keyQ, _is_keyW, _is_keyE, _is_keyR, _is_keyT, _is_keyY, _is_keyU, _is_keyI, _is_keyO, _is_keyP, _is_keyDELETE, _is_keyEND, _is_keyPAGEDOWN, _is_keyCAPSLOCK, _is_keyA, _is_keyS, _is_keyD, _is_keyF, _is_keyG, _is_keyH, _is_keyJ, _is_keyK, _is_keyL, _is_keyENTER, _is_keySHIFTLEFT, _is_keyZ, _is_keyX, _is_keyC, _is_keyV, _is_keyB, _is_keyN, _is_keyM, _is_keySHIFTRIGHT, _is_keyARROWUP, _is_keyCTRLLEFT, _is_keyAPPLEFT, _is_keyALT, _is_keySPACE, _is_keyALTGR, _is_keyAPPRIGHT, _is_keyMENU, _is_keyCTRLRIGHT, _is_keyARROWLEFT, _is_keyARROWDOWN, _is_keyARROWRIGHT, _is_keyPAD0, _is_keyPAD1, _is_keyPAD2, _is_keyPAD3, _is_keyPAD4, _is_keyPAD5, _is_keyPAD6, _is_keyPAD7, _is_keyPAD8, _is_keyPAD9, _is_keyPADADD, _is_keyPADSUB, _is_keyPADMUL, _is_keyPADDIV; //@} //--------------------------- // //! \name Plugins //@{ //--------------------------- #ifdef cimgdisplay_plugin #include cimgdisplay_plugin #endif #ifdef cimgdisplay_plugin1 #include cimgdisplay_plugin1 #endif #ifdef cimgdisplay_plugin2 #include cimgdisplay_plugin2 #endif #ifdef cimgdisplay_plugin3 #include cimgdisplay_plugin3 #endif #ifdef cimgdisplay_plugin4 #include cimgdisplay_plugin4 #endif #ifdef cimgdisplay_plugin5 #include cimgdisplay_plugin5 #endif #ifdef cimgdisplay_plugin6 #include cimgdisplay_plugin6 #endif #ifdef cimgdisplay_plugin7 #include cimgdisplay_plugin7 #endif #ifdef cimgdisplay_plugin8 #include cimgdisplay_plugin8 #endif //@} //-------------------------------------------------------- // //! \name Constructors / Destructor / Instance Management //@{ //-------------------------------------------------------- //! Destructor. /** \note If the associated window is visible on the screen, it is closed by the call to the destructor. **/ ~CImgDisplay() { assign(); delete[] _keys; delete[] _released_keys; } //! Construct an empty display. /** \note Constructing an empty CImgDisplay instance does not make a window appearing on the screen, until display of valid data is performed. \par Example \code CImgDisplay disp; // Does actually nothing ... disp.display(img); // Construct new window and display image in it \endcode **/ CImgDisplay() : _width(0), _height(0), _normalization(0), _min(0), _max(0), _is_fullscreen(false), _title(0), _window_width(0), _window_height(0), _button(0), _keys(new unsigned int[128]), _released_keys(new unsigned int[128]), _window_x(0), _window_y(0), _mouse_x(-1), _mouse_y(-1), _wheel(0), _is_closed(true), _is_resized(false), _is_moved(false), _is_event(false) { assign(); } //! Construct a display with specified dimensions. /** \param width Window width. \param height Window height. \param title Window title. \param normalization Normalization type (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()). \param is_fullscreen Tells if fullscreen mode is enabled. \param is_closed Tells if associated window is initially visible or not. \note A black background is initially displayed on the associated window. **/ CImgDisplay(const unsigned int width, const unsigned int height, const char* const title = 0, const unsigned int normalization = 3, const bool is_fullscreen = false, const bool is_closed = false) : _width(0), _height(0), _normalization(0), _min(0), _max(0), _is_fullscreen(false), _title(0), _window_width(0), _window_height(0), _button(0), _keys(new unsigned int[128]), _released_keys(new unsigned int[128]), _window_x(0), _window_y(0), _mouse_x(-1), _mouse_y(-1), _wheel(0), _is_closed(true), _is_resized(false), _is_moved(false), _is_event(false) { assign(width, height, title, normalization, is_fullscreen, is_closed); } //! Construct a display from an image. /** \param img Image used as a model to create the window. \param title Window title. \param normalization Normalization type (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()). \param is_fullscreen Tells if fullscreen mode is enabled. \param is_closed Tells if associated window is initially visible or not. \note The pixels of the input image are initially displayed on the associated window. **/ template explicit CImgDisplay(const CImg& img, const char* const title = 0, const unsigned int normalization = 3, const bool is_fullscreen = false, const bool is_closed = false) : _width(0), _height(0), _normalization(0), _min(0), _max(0), _is_fullscreen(false), _title(0), _window_width(0), _window_height(0), _button(0), _keys(new unsigned int[128]), _released_keys(new unsigned int[128]), _window_x(0), _window_y(0), _mouse_x(-1), _mouse_y(-1), _wheel(0), _is_closed(true), _is_resized(false), _is_moved(false), _is_event(false) { assign(img, title, normalization, is_fullscreen, is_closed); } //! Construct a display from an image list. /** \param list The images list to display. \param title Window title. \param normalization Normalization type (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()). \param is_fullscreen Tells if fullscreen mode is enabled. \param is_closed Tells if associated window is initially visible or not. \note All images of the list, appended along the X-axis, are initially displayed on the associated window. **/ template explicit CImgDisplay(const CImgList& list, const char* const title = 0, const unsigned int normalization = 3, const bool is_fullscreen = false, const bool is_closed = false) : _width(0), _height(0), _normalization(0), _min(0), _max(0), _is_fullscreen(false), _title(0), _window_width(0), _window_height(0), _button(0), _keys(new unsigned int[128]), _released_keys(new unsigned int[128]), _window_x(0), _window_y(0), _mouse_x(-1), _mouse_y(-1), _wheel(0), _is_closed(true), _is_resized(false), _is_moved(false), _is_event(false) { assign(list, title, normalization, is_fullscreen, is_closed); } //! Construct a display as a copy of an existing one. /** \param disp Display instance to copy. \note The pixel buffer of the input window is initially displayed on the associated window. **/ CImgDisplay(const CImgDisplay& disp) : _width(0), _height(0), _normalization(0), _min(0), _max(0), _is_fullscreen(false), _title(0), _window_width(0), _window_height(0), _button(0), _keys(new unsigned int[128]), _released_keys(new unsigned int[128]), _window_x(0), _window_y(0), _mouse_x(-1), _mouse_y(-1), _wheel(0), _is_closed(true), _is_resized(false), _is_moved(false), _is_event(false) { assign(disp); } //! Take a screenshot. /** \param[out] img Output screenshot. Can be empty on input **/ template static void screenshot(CImg& img) { return screenshot(0, 0, cimg::type::max(), cimg::type::max(), img); } #if cimg_display == 0 static void _no_display_exception() { throw CImgDisplayException("CImgDisplay(): No display available."); } //! Destructor - Empty constructor \inplace. /** \note Replace the current instance by an empty display. **/ CImgDisplay& assign() { return flush(); } //! Construct a display with specified dimensions \inplace. /** **/ CImgDisplay& assign(const unsigned int width, const unsigned int height, const char* const title = 0, const unsigned int normalization = 3, const bool is_fullscreen = false, const bool is_closed = false) { cimg::unused(width, height, title, normalization, is_fullscreen, is_closed); _no_display_exception(); return assign(); } //! Construct a display from an image \inplace. /** **/ template CImgDisplay& assign(const CImg& img, const char* const title = 0, const unsigned int normalization = 3, const bool is_fullscreen = false, const bool is_closed = false) { _no_display_exception(); return assign(img._width, img._height, title, normalization, is_fullscreen, is_closed); } //! Construct a display from an image list \inplace. /** **/ template CImgDisplay& assign(const CImgList& list, const char* const title = 0, const unsigned int normalization = 3, const bool is_fullscreen = false, const bool is_closed = false) { _no_display_exception(); return assign(list._width, list._width, title, normalization, is_fullscreen, is_closed); } //! Construct a display as a copy of another one \inplace. /** **/ CImgDisplay& assign(const CImgDisplay& disp) { _no_display_exception(); return assign(disp._width, disp._height); } #endif //! Return a reference to an empty display. /** \note Can be useful for writing function prototypes where one of the argument (of type CImgDisplay&) must have a default value. \par Example \code void foo(CImgDisplay& disp=CImgDisplay::empty()); \endcode **/ static CImgDisplay& empty() { static CImgDisplay _empty; return _empty.assign(); } //! Return a reference to an empty display \const. static const CImgDisplay& const_empty() { static const CImgDisplay _empty; return _empty; } #define cimg_fitscreen(dx, dy, dz) \ CImgDisplay::_fitscreen(dx, dy, dz, 128, -85, false), \ CImgDisplay::_fitscreen(dx, dy, dz, 128, -85, true) static unsigned int _fitscreen(const unsigned int dx, const unsigned int dy, const unsigned int dz, const int dmin, const int dmax, const bool return_y) { const int u = CImgDisplay::screen_width(), v = CImgDisplay::screen_height(); const float mw = dmin < 0 ? cimg::round(u * -dmin / 100.f) : (float)dmin, mh = dmin < 0 ? cimg::round(v * -dmin / 100.f) : (float)dmin, Mw = dmax < 0 ? cimg::round(u * -dmax / 100.f) : (float)dmax, Mh = dmax < 0 ? cimg::round(v * -dmax / 100.f) : (float)dmax; float w = (float)std::max(1U, dx), h = (float)std::max(1U, dy); if (dz > 1) { w += dz; h += dz; } if (w < mw) { h = h * mw / w; w = mw; } if (h < mh) { w = w * mh / h; h = mh; } if (w > Mw) { h = h * Mw / w; w = Mw; } if (h > Mh) { w = w * Mh / h; h = Mh; } if (w < mw) w = mw; if (h < mh) h = mh; return std::max(1U, (unsigned int)cimg::round(return_y ? h : w)); } //@} //------------------------------------------ // //! \name Overloaded Operators //@{ //------------------------------------------ //! Display image on associated window. /** \note disp = img is equivalent to disp.display(img). **/ template CImgDisplay& operator=(const CImg& img) { return display(img); } //! Display list of images on associated window. /** \note disp = list is equivalent to disp.display(list). **/ template CImgDisplay& operator=(const CImgList& list) { return display(list); } //! Construct a display as a copy of another one \inplace. /** \note Equivalent to assign(const CImgDisplay&). **/ CImgDisplay& operator=(const CImgDisplay& disp) { return assign(disp); } //! Return \c false if display is empty, \c true otherwise. /** \note if (disp) { ... } is equivalent to if (!disp.is_empty()) { ... }. **/ operator bool() const { return !is_empty(); } //@} //------------------------------------------ // //! \name Instance Checking //@{ //------------------------------------------ //! Return \c true if display is empty, \c false otherwise. /** **/ bool is_empty() const { return !(_width && _height); } //! Return \c true if display is closed (i.e. not visible on the screen), \c //! false otherwise. /** \note - When a user physically closes the associated window, the display is set to closed. - A closed display is not destroyed. Its associated window can be show again on the screen using show(). **/ bool is_closed() const { return _is_closed; } //! Return \c true if associated window has been resized on the screen, \c //! false otherwise. /** **/ bool is_resized() const { return _is_resized; } //! Return \c true if associated window has been moved on the screen, \c //! false otherwise. /** **/ bool is_moved() const { return _is_moved; } //! Return \c true if any event has occured on the associated window, \c //! false otherwise. /** **/ bool is_event() const { return _is_event; } //! Return \c true if current display is in fullscreen mode, \c false //! otherwise. /** **/ bool is_fullscreen() const { return _is_fullscreen; } //! Return \c true if any key is being pressed on the associated window, \c //! false otherwise. /** \note The methods below do the same only for specific keys. **/ bool is_key() const { return _is_keyESC || _is_keyF1 || _is_keyF2 || _is_keyF3 || _is_keyF4 || _is_keyF5 || _is_keyF6 || _is_keyF7 || _is_keyF8 || _is_keyF9 || _is_keyF10 || _is_keyF11 || _is_keyF12 || _is_keyPAUSE || _is_key1 || _is_key2 || _is_key3 || _is_key4 || _is_key5 || _is_key6 || _is_key7 || _is_key8 || _is_key9 || _is_key0 || _is_keyBACKSPACE || _is_keyINSERT || _is_keyHOME || _is_keyPAGEUP || _is_keyTAB || _is_keyQ || _is_keyW || _is_keyE || _is_keyR || _is_keyT || _is_keyY || _is_keyU || _is_keyI || _is_keyO || _is_keyP || _is_keyDELETE || _is_keyEND || _is_keyPAGEDOWN || _is_keyCAPSLOCK || _is_keyA || _is_keyS || _is_keyD || _is_keyF || _is_keyG || _is_keyH || _is_keyJ || _is_keyK || _is_keyL || _is_keyENTER || _is_keySHIFTLEFT || _is_keyZ || _is_keyX || _is_keyC || _is_keyV || _is_keyB || _is_keyN || _is_keyM || _is_keySHIFTRIGHT || _is_keyARROWUP || _is_keyCTRLLEFT || _is_keyAPPLEFT || _is_keyALT || _is_keySPACE || _is_keyALTGR || _is_keyAPPRIGHT || _is_keyMENU || _is_keyCTRLRIGHT || _is_keyARROWLEFT || _is_keyARROWDOWN || _is_keyARROWRIGHT || _is_keyPAD0 || _is_keyPAD1 || _is_keyPAD2 || _is_keyPAD3 || _is_keyPAD4 || _is_keyPAD5 || _is_keyPAD6 || _is_keyPAD7 || _is_keyPAD8 || _is_keyPAD9 || _is_keyPADADD || _is_keyPADSUB || _is_keyPADMUL || _is_keyPADDIV; } //! Return \c true if key specified by given keycode is being pressed on the //! associated window, \c false otherwise. /** \param keycode Keycode to test. \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC). \par Example \code CImgDisplay disp(400,400); while (!disp.is_closed()) { if (disp.key(cimg::keyTAB)) { ... } // Equivalent to 'if (disp.is_keyTAB())' disp.wait(); } \endcode **/ bool is_key(const unsigned int keycode) const { #define _cimg_iskey_test(k) \ if (keycode == cimg::key##k) return _is_key##k; _cimg_iskey_test(ESC); _cimg_iskey_test(F1); _cimg_iskey_test(F2); _cimg_iskey_test(F3); _cimg_iskey_test(F4); _cimg_iskey_test(F5); _cimg_iskey_test(F6); _cimg_iskey_test(F7); _cimg_iskey_test(F8); _cimg_iskey_test(F9); _cimg_iskey_test(F10); _cimg_iskey_test(F11); _cimg_iskey_test(F12); _cimg_iskey_test(PAUSE); _cimg_iskey_test(1); _cimg_iskey_test(2); _cimg_iskey_test(3); _cimg_iskey_test(4); _cimg_iskey_test(5); _cimg_iskey_test(6); _cimg_iskey_test(7); _cimg_iskey_test(8); _cimg_iskey_test(9); _cimg_iskey_test(0); _cimg_iskey_test(BACKSPACE); _cimg_iskey_test(INSERT); _cimg_iskey_test(HOME); _cimg_iskey_test(PAGEUP); _cimg_iskey_test(TAB); _cimg_iskey_test(Q); _cimg_iskey_test(W); _cimg_iskey_test(E); _cimg_iskey_test(R); _cimg_iskey_test(T); _cimg_iskey_test(Y); _cimg_iskey_test(U); _cimg_iskey_test(I); _cimg_iskey_test(O); _cimg_iskey_test(P); _cimg_iskey_test(DELETE); _cimg_iskey_test(END); _cimg_iskey_test(PAGEDOWN); _cimg_iskey_test(CAPSLOCK); _cimg_iskey_test(A); _cimg_iskey_test(S); _cimg_iskey_test(D); _cimg_iskey_test(F); _cimg_iskey_test(G); _cimg_iskey_test(H); _cimg_iskey_test(J); _cimg_iskey_test(K); _cimg_iskey_test(L); _cimg_iskey_test(ENTER); _cimg_iskey_test(SHIFTLEFT); _cimg_iskey_test(Z); _cimg_iskey_test(X); _cimg_iskey_test(C); _cimg_iskey_test(V); _cimg_iskey_test(B); _cimg_iskey_test(N); _cimg_iskey_test(M); _cimg_iskey_test(SHIFTRIGHT); _cimg_iskey_test(ARROWUP); _cimg_iskey_test(CTRLLEFT); _cimg_iskey_test(APPLEFT); _cimg_iskey_test(ALT); _cimg_iskey_test(SPACE); _cimg_iskey_test(ALTGR); _cimg_iskey_test(APPRIGHT); _cimg_iskey_test(MENU); _cimg_iskey_test(CTRLRIGHT); _cimg_iskey_test(ARROWLEFT); _cimg_iskey_test(ARROWDOWN); _cimg_iskey_test(ARROWRIGHT); _cimg_iskey_test(PAD0); _cimg_iskey_test(PAD1); _cimg_iskey_test(PAD2); _cimg_iskey_test(PAD3); _cimg_iskey_test(PAD4); _cimg_iskey_test(PAD5); _cimg_iskey_test(PAD6); _cimg_iskey_test(PAD7); _cimg_iskey_test(PAD8); _cimg_iskey_test(PAD9); _cimg_iskey_test(PADADD); _cimg_iskey_test(PADSUB); _cimg_iskey_test(PADMUL); _cimg_iskey_test(PADDIV); return false; } //! Return \c true if key specified by given keycode is being pressed on the //! associated window, \c false otherwise. /** \param keycode C-string containing the keycode label of the key to test. \note Use it when the key you want to test can be dynamically set by the user. \par Example \code CImgDisplay disp(400,400); const char *const keycode = "TAB"; while (!disp.is_closed()) { if (disp.is_key(keycode)) { ... } // Equivalent to 'if (disp.is_keyTAB())' disp.wait(); } \endcode **/ bool& is_key(const char* const keycode) { static bool f = false; f = false; #define _cimg_iskey_test2(k) \ if (!cimg::strcasecmp(keycode, #k)) return _is_key##k; _cimg_iskey_test2(ESC); _cimg_iskey_test2(F1); _cimg_iskey_test2(F2); _cimg_iskey_test2(F3); _cimg_iskey_test2(F4); _cimg_iskey_test2(F5); _cimg_iskey_test2(F6); _cimg_iskey_test2(F7); _cimg_iskey_test2(F8); _cimg_iskey_test2(F9); _cimg_iskey_test2(F10); _cimg_iskey_test2(F11); _cimg_iskey_test2(F12); _cimg_iskey_test2(PAUSE); _cimg_iskey_test2(1); _cimg_iskey_test2(2); _cimg_iskey_test2(3); _cimg_iskey_test2(4); _cimg_iskey_test2(5); _cimg_iskey_test2(6); _cimg_iskey_test2(7); _cimg_iskey_test2(8); _cimg_iskey_test2(9); _cimg_iskey_test2(0); _cimg_iskey_test2(BACKSPACE); _cimg_iskey_test2(INSERT); _cimg_iskey_test2(HOME); _cimg_iskey_test2(PAGEUP); _cimg_iskey_test2(TAB); _cimg_iskey_test2(Q); _cimg_iskey_test2(W); _cimg_iskey_test2(E); _cimg_iskey_test2(R); _cimg_iskey_test2(T); _cimg_iskey_test2(Y); _cimg_iskey_test2(U); _cimg_iskey_test2(I); _cimg_iskey_test2(O); _cimg_iskey_test2(P); _cimg_iskey_test2(DELETE); _cimg_iskey_test2(END); _cimg_iskey_test2(PAGEDOWN); _cimg_iskey_test2(CAPSLOCK); _cimg_iskey_test2(A); _cimg_iskey_test2(S); _cimg_iskey_test2(D); _cimg_iskey_test2(F); _cimg_iskey_test2(G); _cimg_iskey_test2(H); _cimg_iskey_test2(J); _cimg_iskey_test2(K); _cimg_iskey_test2(L); _cimg_iskey_test2(ENTER); _cimg_iskey_test2(SHIFTLEFT); _cimg_iskey_test2(Z); _cimg_iskey_test2(X); _cimg_iskey_test2(C); _cimg_iskey_test2(V); _cimg_iskey_test2(B); _cimg_iskey_test2(N); _cimg_iskey_test2(M); _cimg_iskey_test2(SHIFTRIGHT); _cimg_iskey_test2(ARROWUP); _cimg_iskey_test2(CTRLLEFT); _cimg_iskey_test2(APPLEFT); _cimg_iskey_test2(ALT); _cimg_iskey_test2(SPACE); _cimg_iskey_test2(ALTGR); _cimg_iskey_test2(APPRIGHT); _cimg_iskey_test2(MENU); _cimg_iskey_test2(CTRLRIGHT); _cimg_iskey_test2(ARROWLEFT); _cimg_iskey_test2(ARROWDOWN); _cimg_iskey_test2(ARROWRIGHT); _cimg_iskey_test2(PAD0); _cimg_iskey_test2(PAD1); _cimg_iskey_test2(PAD2); _cimg_iskey_test2(PAD3); _cimg_iskey_test2(PAD4); _cimg_iskey_test2(PAD5); _cimg_iskey_test2(PAD6); _cimg_iskey_test2(PAD7); _cimg_iskey_test2(PAD8); _cimg_iskey_test2(PAD9); _cimg_iskey_test2(PADADD); _cimg_iskey_test2(PADSUB); _cimg_iskey_test2(PADMUL); _cimg_iskey_test2(PADDIV); return f; } //! Return \c true if specified key sequence has been typed on the //! associated window, \c false otherwise. /** \param keycodes_sequence Buffer of keycodes to test. \param length Number of keys in the \c keycodes_sequence buffer. \param remove_sequence Tells if the key sequence must be removed from the key history, if found. \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC). \par Example \code CImgDisplay disp(400,400); const unsigned int key_seq[] = { cimg::keyCTRLLEFT, cimg::keyD }; while (!disp.is_closed()) { if (disp.is_key_sequence(key_seq,2)) { ... } // Test for the 'CTRL+D' keyboard event disp.wait(); } \endcode **/ bool is_key_sequence(const unsigned int* const keycodes_sequence, const unsigned int length, const bool remove_sequence = false) { if (keycodes_sequence && length) { const unsigned int *const ps_end = keycodes_sequence + length - 1, *const pk_end = (unsigned int*)_keys + 1 + 128 - length, k = *ps_end; for (unsigned int* pk = (unsigned int*)_keys; pk < pk_end;) { if (*(pk++) == k) { bool res = true; const unsigned int *ps = ps_end, *pk2 = pk; for (unsigned int i = 1; i < length; ++i) res = (*(--ps) == *(pk2++)); if (res) { if (remove_sequence) std::memset((void*)(pk - 1), 0, sizeof(unsigned int) * length); return true; } } } } return false; } #define _cimg_iskey_def(k) \ bool is_key##k() const { return _is_key##k; } //! Return \c true if the \c ESC key is being pressed on the associated //! window, \c false otherwise. /** \note Similar methods exist for all keys managed by \CImg (see cimg::keyESC). **/ _cimg_iskey_def(ESC); _cimg_iskey_def(F1); _cimg_iskey_def(F2); _cimg_iskey_def(F3); _cimg_iskey_def(F4); _cimg_iskey_def(F5); _cimg_iskey_def(F6); _cimg_iskey_def(F7); _cimg_iskey_def(F8); _cimg_iskey_def(F9); _cimg_iskey_def(F10); _cimg_iskey_def(F11); _cimg_iskey_def(F12); _cimg_iskey_def(PAUSE); _cimg_iskey_def(1); _cimg_iskey_def(2); _cimg_iskey_def(3); _cimg_iskey_def(4); _cimg_iskey_def(5); _cimg_iskey_def(6); _cimg_iskey_def(7); _cimg_iskey_def(8); _cimg_iskey_def(9); _cimg_iskey_def(0); _cimg_iskey_def(BACKSPACE); _cimg_iskey_def(INSERT); _cimg_iskey_def(HOME); _cimg_iskey_def(PAGEUP); _cimg_iskey_def(TAB); _cimg_iskey_def(Q); _cimg_iskey_def(W); _cimg_iskey_def(E); _cimg_iskey_def(R); _cimg_iskey_def(T); _cimg_iskey_def(Y); _cimg_iskey_def(U); _cimg_iskey_def(I); _cimg_iskey_def(O); _cimg_iskey_def(P); _cimg_iskey_def(DELETE); _cimg_iskey_def(END); _cimg_iskey_def(PAGEDOWN); _cimg_iskey_def(CAPSLOCK); _cimg_iskey_def(A); _cimg_iskey_def(S); _cimg_iskey_def(D); _cimg_iskey_def(F); _cimg_iskey_def(G); _cimg_iskey_def(H); _cimg_iskey_def(J); _cimg_iskey_def(K); _cimg_iskey_def(L); _cimg_iskey_def(ENTER); _cimg_iskey_def(SHIFTLEFT); _cimg_iskey_def(Z); _cimg_iskey_def(X); _cimg_iskey_def(C); _cimg_iskey_def(V); _cimg_iskey_def(B); _cimg_iskey_def(N); _cimg_iskey_def(M); _cimg_iskey_def(SHIFTRIGHT); _cimg_iskey_def(ARROWUP); _cimg_iskey_def(CTRLLEFT); _cimg_iskey_def(APPLEFT); _cimg_iskey_def(ALT); _cimg_iskey_def(SPACE); _cimg_iskey_def(ALTGR); _cimg_iskey_def(APPRIGHT); _cimg_iskey_def(MENU); _cimg_iskey_def(CTRLRIGHT); _cimg_iskey_def(ARROWLEFT); _cimg_iskey_def(ARROWDOWN); _cimg_iskey_def(ARROWRIGHT); _cimg_iskey_def(PAD0); _cimg_iskey_def(PAD1); _cimg_iskey_def(PAD2); _cimg_iskey_def(PAD3); _cimg_iskey_def(PAD4); _cimg_iskey_def(PAD5); _cimg_iskey_def(PAD6); _cimg_iskey_def(PAD7); _cimg_iskey_def(PAD8); _cimg_iskey_def(PAD9); _cimg_iskey_def(PADADD); _cimg_iskey_def(PADSUB); _cimg_iskey_def(PADMUL); _cimg_iskey_def(PADDIV); //@} //------------------------------------------ // //! \name Instance Characteristics //@{ //------------------------------------------ #if cimg_display == 0 //! Return width of the screen (current resolution along the X-axis). /** **/ static int screen_width() { _no_display_exception(); return 0; } //! Return height of the screen (current resolution along the Y-axis). /** **/ static int screen_height() { _no_display_exception(); return 0; } #endif //! Return display width. /** \note The width of the display (i.e. the width of the pixel data buffer associated to the CImgDisplay instance) may be different from the actual width of the associated window. **/ int width() const { return (int)_width; } //! Return display height. /** \note The height of the display (i.e. the height of the pixel data buffer associated to the CImgDisplay instance) may be different from the actual height of the associated window. **/ int height() const { return (int)_height; } //! Return normalization type of the display. /** The normalization type tells about how the values of an input image are normalized by the CImgDisplay to be correctly displayed. The range of values for pixels displayed on screen is [0,255]. If the range of values of the data to display is different, a normalization may be required for displaying the data in a correct way. The normalization type can be one of: - \c 0: Value normalization is disabled. It is then assumed that all input data to be displayed by the CImgDisplay instance have values in range [0,255]. - \c 1: Value normalization is always performed (this is the default behavior). Before displaying an input image, its values will be (virtually) stretched in range [0,255], so that the contrast of the displayed pixels will be maximum. Use this mode for images whose minimum and maximum values are not prescribed to known values (e.g. float-valued images). Note that when normalized versions of images are computed for display purposes, the actual values of these images are not modified. - \c 2: Value normalization is performed once (on the first image display), then the same normalization coefficients are kept for next displayed frames. - \c 3: Value normalization depends on the pixel type of the data to display. For integer pixel types, the normalization is done regarding the minimum/maximum values of the type (no normalization occurs then for unsigned char). For float-valued pixel types, the normalization is done regarding the minimum/maximum value of the image data instead. **/ unsigned int normalization() const { return _normalization; } //! Return title of the associated window as a C-string. /** \note Window title may be not visible, depending on the used window manager or if the current display is in fullscreen mode. **/ const char* title() const { return _title ? _title : ""; } //! Return width of the associated window. /** \note The width of the display (i.e. the width of the pixel data buffer associated to the CImgDisplay instance) may be different from the actual width of the associated window. **/ int window_width() const { return (int)_window_width; } //! Return height of the associated window. /** \note The height of the display (i.e. the height of the pixel data buffer associated to the CImgDisplay instance) may be different from the actual height of the associated window. **/ int window_height() const { return (int)_window_height; } //! Return X-coordinate of the associated window. /** \note The returned coordinate corresponds to the location of the upper-left corner of the associated window. **/ int window_x() const { return _window_x; } //! Return Y-coordinate of the associated window. /** \note The returned coordinate corresponds to the location of the upper-left corner of the associated window. **/ int window_y() const { return _window_y; } //! Return X-coordinate of the mouse pointer. /** \note - If the mouse pointer is outside window area, \c -1 is returned. - Otherwise, the returned value is in the range [0,width()-1]. **/ int mouse_x() const { return _mouse_x; } //! Return Y-coordinate of the mouse pointer. /** \note - If the mouse pointer is outside window area, \c -1 is returned. - Otherwise, the returned value is in the range [0,height()-1]. **/ int mouse_y() const { return _mouse_y; } //! Return current state of the mouse buttons. /** \note Three mouse buttons can be managed. If one button is pressed, its corresponding bit in the returned value is set: - bit \c 0 (value \c 0x1): State of the left mouse button. - bit \c 1 (value \c 0x2): State of the right mouse button. - bit \c 2 (value \c 0x4): State of the middle mouse button. Several bits can be activated if more than one button are pressed at the same time. \par Example \code CImgDisplay disp(400,400); while (!disp.is_closed()) { if (disp.button()&1) { // Left button clicked ... } if (disp.button()&2) { // Right button clicked ... } if (disp.button()&4) { // Middle button clicked ... } disp.wait(); } \endcode **/ unsigned int button() const { return _button; } //! Return current state of the mouse wheel. /** \note - The returned value can be positive or negative depending on whether the mouse wheel has been scrolled forward or backward. - Scrolling the wheel forward add \c 1 to the wheel value. - Scrolling the wheel backward substract \c 1 to the wheel value. - The returned value cumulates the number of forward of backward scrolls since the creation of the display, or since the last reset of the wheel value (using set_wheel()). It is strongly recommended to quickly reset the wheel counter when an action has been performed regarding the current wheel value. Otherwise, the returned wheel value may be for instance \c 0 despite the fact that many scrolls have been done (as many in forward as in backward directions). \par Example \code CImgDisplay disp(400,400); while (!disp.is_closed()) { if (disp.wheel()) { int counter = disp.wheel(); // Read the state of the mouse wheel ... // Do what you want with 'counter' disp.set_wheel(); // Reset the wheel value to 0 } disp.wait(); } \endcode **/ int wheel() const { return _wheel; } //! Return one entry from the pressed keys history. /** \param pos Index to read from the pressed keys history (index \c 0 corresponds to latest entry). \return Keycode of a pressed key or \c 0 for a released key. \note - Each CImgDisplay stores a history of the pressed keys in a buffer of size \c 128. When a new key is pressed, its keycode is stored in the pressed keys history. When a key is released, \c 0 is put instead. This means that up to the 64 last pressed keys may be read from the pressed keys history. When a new value is stored, the pressed keys history is shifted so that the latest entry is always stored at position \c 0. - Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC). **/ unsigned int key(const unsigned int pos = 0) const { return pos < 128 ? _keys[pos] : 0; } //! Return one entry from the released keys history. /** \param pos Index to read from the released keys history (index \c 0 corresponds to latest entry). \return Keycode of a released key or \c 0 for a pressed key. \note - Each CImgDisplay stores a history of the released keys in a buffer of size \c 128. When a new key is released, its keycode is stored in the pressed keys history. When a key is pressed, \c 0 is put instead. This means that up to the 64 last released keys may be read from the released keys history. When a new value is stored, the released keys history is shifted so that the latest entry is always stored at position \c 0. - Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC). **/ unsigned int released_key(const unsigned int pos = 0) const { return pos < 128 ? _released_keys[pos] : 0; } //! Return keycode corresponding to the specified string. /** \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC). \par Example \code const unsigned int keyTAB = CImgDisplay::keycode("TAB"); // Return cimg::keyTAB \endcode **/ static unsigned int keycode(const char* const keycode) { #define _cimg_keycode(k) \ if (!cimg::strcasecmp(keycode, #k)) return cimg::key##k; _cimg_keycode(ESC); _cimg_keycode(F1); _cimg_keycode(F2); _cimg_keycode(F3); _cimg_keycode(F4); _cimg_keycode(F5); _cimg_keycode(F6); _cimg_keycode(F7); _cimg_keycode(F8); _cimg_keycode(F9); _cimg_keycode(F10); _cimg_keycode(F11); _cimg_keycode(F12); _cimg_keycode(PAUSE); _cimg_keycode(1); _cimg_keycode(2); _cimg_keycode(3); _cimg_keycode(4); _cimg_keycode(5); _cimg_keycode(6); _cimg_keycode(7); _cimg_keycode(8); _cimg_keycode(9); _cimg_keycode(0); _cimg_keycode(BACKSPACE); _cimg_keycode(INSERT); _cimg_keycode(HOME); _cimg_keycode(PAGEUP); _cimg_keycode(TAB); _cimg_keycode(Q); _cimg_keycode(W); _cimg_keycode(E); _cimg_keycode(R); _cimg_keycode(T); _cimg_keycode(Y); _cimg_keycode(U); _cimg_keycode(I); _cimg_keycode(O); _cimg_keycode(P); _cimg_keycode(DELETE); _cimg_keycode(END); _cimg_keycode(PAGEDOWN); _cimg_keycode(CAPSLOCK); _cimg_keycode(A); _cimg_keycode(S); _cimg_keycode(D); _cimg_keycode(F); _cimg_keycode(G); _cimg_keycode(H); _cimg_keycode(J); _cimg_keycode(K); _cimg_keycode(L); _cimg_keycode(ENTER); _cimg_keycode(SHIFTLEFT); _cimg_keycode(Z); _cimg_keycode(X); _cimg_keycode(C); _cimg_keycode(V); _cimg_keycode(B); _cimg_keycode(N); _cimg_keycode(M); _cimg_keycode(SHIFTRIGHT); _cimg_keycode(ARROWUP); _cimg_keycode(CTRLLEFT); _cimg_keycode(APPLEFT); _cimg_keycode(ALT); _cimg_keycode(SPACE); _cimg_keycode(ALTGR); _cimg_keycode(APPRIGHT); _cimg_keycode(MENU); _cimg_keycode(CTRLRIGHT); _cimg_keycode(ARROWLEFT); _cimg_keycode(ARROWDOWN); _cimg_keycode(ARROWRIGHT); _cimg_keycode(PAD0); _cimg_keycode(PAD1); _cimg_keycode(PAD2); _cimg_keycode(PAD3); _cimg_keycode(PAD4); _cimg_keycode(PAD5); _cimg_keycode(PAD6); _cimg_keycode(PAD7); _cimg_keycode(PAD8); _cimg_keycode(PAD9); _cimg_keycode(PADADD); _cimg_keycode(PADSUB); _cimg_keycode(PADMUL); _cimg_keycode(PADDIV); return 0; } //! Return the current refresh rate, in frames per second. /** \note Returns a significant value when the current instance is used to display successive frames. It measures the delay between successive calls to frames_per_second(). **/ float frames_per_second() { if (!_fps_timer) _fps_timer = cimg::time(); const float delta = (cimg::time() - _fps_timer) / 1000.f; ++_fps_frames; if (delta >= 1) { _fps_fps = _fps_frames / delta; _fps_frames = 0; _fps_timer = cimg::time(); } return _fps_fps; } // Move current display window so that its content stays inside the current // screen. CImgDisplay& move_inside_screen() { if (is_empty()) return *this; const int x0 = window_x(), y0 = window_y(), x1 = x0 + window_width() - 1, y1 = y0 + window_height() - 1, sw = CImgDisplay::screen_width(), sh = CImgDisplay::screen_height(); if (x0 < 0 || y0 < 0 || x1 >= sw || y1 >= sh) move(std::max(0, std::min(x0, sw - x1 + x0)), std::max(0, std::min(y0, sh - y1 + y0))); return *this; } //@} //--------------------------------------- // //! \name Window Manipulation //@{ //--------------------------------------- #if cimg_display == 0 //! Display image on associated window. /** \param img Input image to display. \note This method returns immediately. **/ template CImgDisplay& display(const CImg& img) { return assign(img); } #endif //! Display list of images on associated window. /** \param list List of images to display. \param axis Axis used to append the images along, for the visualization (can be \c x, \c y, \c z or \c c). \param align Relative position of aligned images when displaying lists with images of different sizes (\c 0 for upper-left, \c 0.5 for centering and \c 1 for lower-right). \note This method returns immediately. **/ template CImgDisplay& display(const CImgList& list, const char axis = 'x', const float align = 0) { if (list._width == 1) { const CImg& img = list[0]; if (img._depth == 1 && (img._spectrum == 1 || img._spectrum >= 3) && _normalization != 1) return display(img); } CImgList::ucharT> visu(list._width); unsigned int dims = 0; cimglist_for(list, l) { const CImg& img = list._data[l]; img._get_select(*this, _normalization, (img._width - 1) / 2, (img._height - 1) / 2, (img._depth - 1) / 2) .move_to(visu[l]); dims = std::max(dims, visu[l]._spectrum); } cimglist_for(list, l) if (visu[l]._spectrum < dims) visu[l].resize( -100, -100, -100, dims, 1); visu.get_append(axis, align).display(*this); return *this; } #if cimg_display == 0 //! Show (closed) associated window on the screen. /** \note - Force the associated window of a display to be visible on the screen, even if it has been closed before. - Using show() on a visible display does nothing. **/ CImgDisplay& show() { return assign(); } //! Close (visible) associated window and make it disappear from the screen. /** \note - A closed display only means the associated window is not visible anymore. This does not mean the display has been destroyed. Use show() to make the associated window reappear. - Using close() on a closed display does nothing. **/ CImgDisplay& close() { return assign(); } //! Move associated window to a new location. /** \param pos_x X-coordinate of the new window location. \param pos_y Y-coordinate of the new window location. \note Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless). **/ CImgDisplay& move(const int pos_x, const int pos_y) { return assign(pos_x, pos_y); } #endif //! Resize display to the size of the associated window. /** \param force_redraw Tells if the previous window content must be updated and refreshed as well. \note - Calling this method ensures that width() and window_width() become equal, as well as height() and window_height(). - The associated window is also resized to specified dimensions. **/ CImgDisplay& resize(const bool force_redraw = true) { resize(window_width(), window_height(), force_redraw); return *this; } #if cimg_display == 0 //! Resize display to the specified size. /** \param width Requested display width. \param height Requested display height. \param force_redraw Tells if the previous window content must be updated and refreshed as well. \note The associated window is also resized to specified dimensions. **/ CImgDisplay& resize(const int width, const int height, const bool force_redraw = true) { return assign(width, height, 0, 3, force_redraw); } #endif //! Resize display to the size of an input image. /** \param img Input image to take size from. \param force_redraw Tells if the previous window content must be resized and updated as well. \note - Calling this method ensures that width() and img.width() become equal, as well as height() and img.height(). - The associated window is also resized to specified dimensions. **/ template CImgDisplay& resize(const CImg& img, const bool force_redraw = true) { return resize(img._width, img._height, force_redraw); } //! Resize display to the size of another CImgDisplay instance. /** \param disp Input display to take size from. \param force_redraw Tells if the previous window content must be resized and updated as well. \note - Calling this method ensures that width() and disp.width() become equal, as well as height() and disp.height(). - The associated window is also resized to specified dimensions. **/ CImgDisplay& resize(const CImgDisplay& disp, const bool force_redraw = true) { return resize(disp.width(), disp.height(), force_redraw); } // [internal] Render pixel buffer with size (wd,hd) from source buffer of // size (ws,hs). template static void _render_resize(const T* ptrs, const unsigned int ws, const unsigned int hs, t* ptrd, const unsigned int wd, const unsigned int hd) { typedef typename cimg::last::type ulongT; const ulongT one = (ulongT)1; CImg off_x(wd), off_y(hd + 1); if (wd == ws) off_x.fill(1); else { ulongT *poff_x = off_x._data, curr = 0; for (unsigned int x = 0; x < wd; ++x) { const ulongT old = curr; curr = (x + one) * ws / wd; *(poff_x++) = curr - old; } } if (hd == hs) off_y.fill(ws); else { ulongT *poff_y = off_y._data, curr = 0; for (unsigned int y = 0; y < hd; ++y) { const ulongT old = curr; curr = (y + one) * hs / hd; *(poff_y++) = ws * (curr - old); } *poff_y = 0; } ulongT* poff_y = off_y._data; for (unsigned int y = 0; y < hd;) { const T* ptr = ptrs; ulongT* poff_x = off_x._data; for (unsigned int x = 0; x < wd; ++x) { *(ptrd++) = *ptr; ptr += *(poff_x++); } ++y; ulongT dy = *(poff_y++); for (; !dy && y < hd; std::memcpy(ptrd, ptrd - wd, sizeof(t) * wd), ++y, ptrd += wd, dy = *(poff_y++)) { } ptrs += dy; } } //! Set normalization type. /** \param normalization New normalization mode. **/ CImgDisplay& set_normalization(const unsigned int normalization) { _normalization = normalization; _min = _max = 0; return *this; } #if cimg_display == 0 //! Set title of the associated window. /** \param format C-string containing the format of the title, as with std::printf(). \warning As the first argument is a format string, it is highly recommended to write \code disp.set_title("%s",window_title); \endcode instead of \code disp.set_title(window_title); \endcode if \c window_title can be arbitrary, to prevent nasty memory access. **/ CImgDisplay& set_title(const char* const format, ...) { return assign(0, 0, format); } #endif //! Enable or disable fullscreen mode. /** \param is_fullscreen Tells is the fullscreen mode must be activated or not. \param force_redraw Tells if the previous window content must be displayed as well. \note - When the fullscreen mode is enabled, the associated window fills the entire screen but the size of the current display is not modified. - The screen resolution may be switched to fit the associated window size and ensure it appears the largest as possible. For X-Window (X11) users, the configuration flag \c cimg_use_xrandr has to be set to allow the screen resolution change (requires the X11 extensions to be enabled). **/ CImgDisplay& set_fullscreen(const bool is_fullscreen, const bool force_redraw = true) { if (is_empty() || _is_fullscreen == is_fullscreen) return *this; return toggle_fullscreen(force_redraw); } #if cimg_display == 0 //! Toggle fullscreen mode. /** \param force_redraw Tells if the previous window content must be displayed as well. \note Enable fullscreen mode if it was not enabled, and disable it otherwise. **/ CImgDisplay& toggle_fullscreen(const bool force_redraw = true) { return assign(_width, _height, 0, 3, force_redraw); } //! Show mouse pointer. /** \note Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless). **/ CImgDisplay& show_mouse() { return assign(); } //! Hide mouse pointer. /** \note Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless). **/ CImgDisplay& hide_mouse() { return assign(); } //! Move mouse pointer to a specified location. /** \note Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless). **/ CImgDisplay& set_mouse(const int pos_x, const int pos_y) { return assign(pos_x, pos_y); } #endif //! Simulate a mouse button release event. /** \note All mouse buttons are considered released at the same time. **/ CImgDisplay& set_button() { _button = 0; _is_event = true; #if cimg_display == 1 pthread_cond_broadcast(&cimg::X11_attr().wait_event); #elif cimg_display == 2 SetEvent(cimg::Win32_attr().wait_event); #endif return *this; } //! Simulate a mouse button press or release event. /** \param button Buttons event code, where each button is associated to a single bit. \param is_pressed Tells if the mouse button is considered as pressed or released. **/ CImgDisplay& set_button(const unsigned int button, const bool is_pressed = true) { const unsigned int buttoncode = button == 1U ? 1U : button == 2U ? 2U : button == 3U ? 4U : 0U; if (is_pressed) _button |= buttoncode; else _button &= ~buttoncode; _is_event = buttoncode ? true : false; if (buttoncode) { #if cimg_display == 1 pthread_cond_broadcast(&cimg::X11_attr().wait_event); #elif cimg_display == 2 SetEvent(cimg::Win32_attr().wait_event); #endif } return *this; } //! Flush all mouse wheel events. /** \note Make wheel() to return \c 0, if called afterwards. **/ CImgDisplay& set_wheel() { _wheel = 0; _is_event = true; #if cimg_display == 1 pthread_cond_broadcast(&cimg::X11_attr().wait_event); #elif cimg_display == 2 SetEvent(cimg::Win32_attr().wait_event); #endif return *this; } //! Simulate a wheel event. /** \param amplitude Amplitude of the wheel scrolling to simulate. \note Make wheel() to return \c amplitude, if called afterwards. **/ CImgDisplay& set_wheel(const int amplitude) { _wheel += amplitude; _is_event = amplitude ? true : false; if (amplitude) { #if cimg_display == 1 pthread_cond_broadcast(&cimg::X11_attr().wait_event); #elif cimg_display == 2 SetEvent(cimg::Win32_attr().wait_event); #endif } return *this; } //! Flush all key events. /** \note Make key() to return \c 0, if called afterwards. **/ CImgDisplay& set_key() { std::memset((void*)_keys, 0, 128 * sizeof(unsigned int)); std::memset((void*)_released_keys, 0, 128 * sizeof(unsigned int)); _is_keyESC = _is_keyF1 = _is_keyF2 = _is_keyF3 = _is_keyF4 = _is_keyF5 = _is_keyF6 = _is_keyF7 = _is_keyF8 = _is_keyF9 = _is_keyF10 = _is_keyF11 = _is_keyF12 = _is_keyPAUSE = _is_key1 = _is_key2 = _is_key3 = _is_key4 = _is_key5 = _is_key6 = _is_key7 = _is_key8 = _is_key9 = _is_key0 = _is_keyBACKSPACE = _is_keyINSERT = _is_keyHOME = _is_keyPAGEUP = _is_keyTAB = _is_keyQ = _is_keyW = _is_keyE = _is_keyR = _is_keyT = _is_keyY = _is_keyU = _is_keyI = _is_keyO = _is_keyP = _is_keyDELETE = _is_keyEND = _is_keyPAGEDOWN = _is_keyCAPSLOCK = _is_keyA = _is_keyS = _is_keyD = _is_keyF = _is_keyG = _is_keyH = _is_keyJ = _is_keyK = _is_keyL = _is_keyENTER = _is_keySHIFTLEFT = _is_keyZ = _is_keyX = _is_keyC = _is_keyV = _is_keyB = _is_keyN = _is_keyM = _is_keySHIFTRIGHT = _is_keyARROWUP = _is_keyCTRLLEFT = _is_keyAPPLEFT = _is_keyALT = _is_keySPACE = _is_keyALTGR = _is_keyAPPRIGHT = _is_keyMENU = _is_keyCTRLRIGHT = _is_keyARROWLEFT = _is_keyARROWDOWN = _is_keyARROWRIGHT = _is_keyPAD0 = _is_keyPAD1 = _is_keyPAD2 = _is_keyPAD3 = _is_keyPAD4 = _is_keyPAD5 = _is_keyPAD6 = _is_keyPAD7 = _is_keyPAD8 = _is_keyPAD9 = _is_keyPADADD = _is_keyPADSUB = _is_keyPADMUL = _is_keyPADDIV = false; _is_event = true; #if cimg_display == 1 pthread_cond_broadcast(&cimg::X11_attr().wait_event); #elif cimg_display == 2 SetEvent(cimg::Win32_attr().wait_event); #endif return *this; } //! Simulate a keyboard press/release event. /** \param keycode Keycode of the associated key. \param is_pressed Tells if the key is considered as pressed or released. \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC). **/ CImgDisplay& set_key(const unsigned int keycode, const bool is_pressed = true) { #define _cimg_set_key(k) \ if (keycode == cimg::key##k) _is_key##k = is_pressed; _cimg_set_key(ESC); _cimg_set_key(F1); _cimg_set_key(F2); _cimg_set_key(F3); _cimg_set_key(F4); _cimg_set_key(F5); _cimg_set_key(F6); _cimg_set_key(F7); _cimg_set_key(F8); _cimg_set_key(F9); _cimg_set_key(F10); _cimg_set_key(F11); _cimg_set_key(F12); _cimg_set_key(PAUSE); _cimg_set_key(1); _cimg_set_key(2); _cimg_set_key(3); _cimg_set_key(4); _cimg_set_key(5); _cimg_set_key(6); _cimg_set_key(7); _cimg_set_key(8); _cimg_set_key(9); _cimg_set_key(0); _cimg_set_key(BACKSPACE); _cimg_set_key(INSERT); _cimg_set_key(HOME); _cimg_set_key(PAGEUP); _cimg_set_key(TAB); _cimg_set_key(Q); _cimg_set_key(W); _cimg_set_key(E); _cimg_set_key(R); _cimg_set_key(T); _cimg_set_key(Y); _cimg_set_key(U); _cimg_set_key(I); _cimg_set_key(O); _cimg_set_key(P); _cimg_set_key(DELETE); _cimg_set_key(END); _cimg_set_key(PAGEDOWN); _cimg_set_key(CAPSLOCK); _cimg_set_key(A); _cimg_set_key(S); _cimg_set_key(D); _cimg_set_key(F); _cimg_set_key(G); _cimg_set_key(H); _cimg_set_key(J); _cimg_set_key(K); _cimg_set_key(L); _cimg_set_key(ENTER); _cimg_set_key(SHIFTLEFT); _cimg_set_key(Z); _cimg_set_key(X); _cimg_set_key(C); _cimg_set_key(V); _cimg_set_key(B); _cimg_set_key(N); _cimg_set_key(M); _cimg_set_key(SHIFTRIGHT); _cimg_set_key(ARROWUP); _cimg_set_key(CTRLLEFT); _cimg_set_key(APPLEFT); _cimg_set_key(ALT); _cimg_set_key(SPACE); _cimg_set_key(ALTGR); _cimg_set_key(APPRIGHT); _cimg_set_key(MENU); _cimg_set_key(CTRLRIGHT); _cimg_set_key(ARROWLEFT); _cimg_set_key(ARROWDOWN); _cimg_set_key(ARROWRIGHT); _cimg_set_key(PAD0); _cimg_set_key(PAD1); _cimg_set_key(PAD2); _cimg_set_key(PAD3); _cimg_set_key(PAD4); _cimg_set_key(PAD5); _cimg_set_key(PAD6); _cimg_set_key(PAD7); _cimg_set_key(PAD8); _cimg_set_key(PAD9); _cimg_set_key(PADADD); _cimg_set_key(PADSUB); _cimg_set_key(PADMUL); _cimg_set_key(PADDIV); if (is_pressed) { if (*_keys) std::memmove((void*)(_keys + 1), (void*)_keys, 127 * sizeof(unsigned int)); *_keys = keycode; if (*_released_keys) { std::memmove((void*)(_released_keys + 1), (void*)_released_keys, 127 * sizeof(unsigned int)); *_released_keys = 0; } } else { if (*_keys) { std::memmove((void*)(_keys + 1), (void*)_keys, 127 * sizeof(unsigned int)); *_keys = 0; } if (*_released_keys) std::memmove((void*)(_released_keys + 1), (void*)_released_keys, 127 * sizeof(unsigned int)); *_released_keys = keycode; } _is_event = keycode ? true : false; if (keycode) { #if cimg_display == 1 pthread_cond_broadcast(&cimg::X11_attr().wait_event); #elif cimg_display == 2 SetEvent(cimg::Win32_attr().wait_event); #endif } return *this; } //! Flush all display events. /** \note Remove all passed events from the current display. **/ CImgDisplay& flush() { set_key().set_button().set_wheel(); _is_resized = _is_moved = _is_event = false; _fps_timer = _fps_frames = _timer = 0; _fps_fps = 0; return *this; } //! Wait for any user event occuring on the current display. CImgDisplay& wait() { wait(*this); return *this; } //! Wait for a given number of milliseconds since the last call to wait(). /** \param milliseconds Number of milliseconds to wait for. \note Similar to cimg::wait(). **/ CImgDisplay& wait(const unsigned int milliseconds) { cimg::wait(milliseconds, &_timer); return *this; } //! Wait for any event occuring on the display \c disp1. static void wait(CImgDisplay& disp1) { disp1._is_event = false; while (!disp1._is_closed && !disp1._is_event) wait_all(); } //! Wait for any event occuring either on the display \c disp1 or \c disp2. static void wait(CImgDisplay& disp1, CImgDisplay& disp2) { disp1._is_event = disp2._is_event = false; while ((!disp1._is_closed || !disp2._is_closed) && !disp1._is_event && !disp2._is_event) wait_all(); } //! Wait for any event occuring either on the display \c disp1, \c disp2 or //! \c disp3. static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3) { disp1._is_event = disp2._is_event = disp3._is_event = false; while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed) && !disp1._is_event && !disp2._is_event && !disp3._is_event) wait_all(); } //! Wait for any event occuring either on the display \c disp1, \c disp2, \c //! disp3 or \c disp4. static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4) { disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = false; while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed) && !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event) wait_all(); } //! Wait for any event occuring either on the display \c disp1, \c disp2, \c //! disp3, \c disp4 or \c disp5. static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5) { disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = false; while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed) && !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event) wait_all(); } //! Wait for any event occuring either on the display \c disp1, \c disp2, \c //! disp3, \c disp4, ... \c disp6. static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, CImgDisplay& disp6) { disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = disp6._is_event = false; while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || !disp6._is_closed) && !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && !disp6._is_event) wait_all(); } //! Wait for any event occuring either on the display \c disp1, \c disp2, \c //! disp3, \c disp4, ... \c disp7. static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, CImgDisplay& disp6, CImgDisplay& disp7) { disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = disp6._is_event = disp7._is_event = false; while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || !disp6._is_closed || !disp7._is_closed) && !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && !disp6._is_event && !disp7._is_event) wait_all(); } //! Wait for any event occuring either on the display \c disp1, \c disp2, \c //! disp3, \c disp4, ... \c disp8. static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8) { disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = disp6._is_event = disp7._is_event = disp8._is_event = false; while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || !disp6._is_closed || !disp7._is_closed || !disp8._is_closed) && !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && !disp6._is_event && !disp7._is_event && !disp8._is_event) wait_all(); } //! Wait for any event occuring either on the display \c disp1, \c disp2, \c //! disp3, \c disp4, ... \c disp9. static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8, CImgDisplay& disp9) { disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = disp6._is_event = disp7._is_event = disp8._is_event = disp9._is_event = false; while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || !disp6._is_closed || !disp7._is_closed || !disp8._is_closed || !disp9._is_closed) && !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && !disp6._is_event && !disp7._is_event && !disp8._is_event && !disp9._is_event) wait_all(); } //! Wait for any event occuring either on the display \c disp1, \c disp2, \c //! disp3, \c disp4, ... \c disp10. static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8, CImgDisplay& disp9, CImgDisplay& disp10) { disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = disp6._is_event = disp7._is_event = disp8._is_event = disp9._is_event = disp10._is_event = false; while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || !disp6._is_closed || !disp7._is_closed || !disp8._is_closed || !disp9._is_closed || !disp10._is_closed) && !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && !disp6._is_event && !disp7._is_event && !disp8._is_event && !disp9._is_event && !disp10._is_event) wait_all(); } #if cimg_display == 0 //! Wait for any window event occuring in any opened CImgDisplay. static void wait_all() { return _no_display_exception(); } //! Render image into internal display buffer. /** \param img Input image data to render. \note - Convert image data representation into the internal display buffer (architecture-dependent structure). - The content of the associated window is not modified, until paint() is called. - Should not be used for common CImgDisplay uses, since display() is more useful. **/ template CImgDisplay& render(const CImg& img) { return assign(img); } //! Paint internal display buffer on associated window. /** \note - Update the content of the associated window with the internal display buffer, e.g. after a render() call. - Should not be used for common CImgDisplay uses, since display() is more useful. **/ CImgDisplay& paint() { return assign(); } //! Take a snapshot of the current screen content. /** \param x0 X-coordinate of the upper left corner. \param y0 Y-coordinate of the upper left corner. \param x1 X-coordinate of the lower right corner. \param y1 Y-coordinate of the lower right corner. \param[out] img Output screenshot. Can be empty on input **/ template static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg& img) { cimg::unused(x0, y0, x1, y1, &img); _no_display_exception(); } //! Take a snapshot of the associated window content. /** \param[out] img Output snapshot. Can be empty on input. **/ template const CImgDisplay& snapshot(CImg& img) const { cimg::unused(img); _no_display_exception(); return *this; } #endif // X11-based implementation //-------------------------- #if cimg_display == 1 Atom _wm_window_atom, _wm_protocol_atom; Window _window, _background_window; Colormap _colormap; XImage* _image; void* _data; #ifdef cimg_use_xshm XShmSegmentInfo* _shminfo; #endif static int screen_width() { Display* const dpy = cimg::X11_attr().display; int res = 0; if (!dpy) { Display* const _dpy = XOpenDisplay(0); if (!_dpy) throw CImgDisplayException( "CImgDisplay::screen_width(): Failed to open X11 display."); res = DisplayWidth(_dpy, DefaultScreen(_dpy)); XCloseDisplay(_dpy); } else { #ifdef cimg_use_xrandr if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution) res = cimg::X11_attr() .resolutions[cimg::X11_attr().curr_resolution] .width; else res = DisplayWidth(dpy, DefaultScreen(dpy)); #else res = DisplayWidth(dpy, DefaultScreen(dpy)); #endif } return res; } static int screen_height() { Display* const dpy = cimg::X11_attr().display; int res = 0; if (!dpy) { Display* const _dpy = XOpenDisplay(0); if (!_dpy) throw CImgDisplayException( "CImgDisplay::screen_height(): Failed to open X11 " "display."); res = DisplayHeight(_dpy, DefaultScreen(_dpy)); XCloseDisplay(_dpy); } else { #ifdef cimg_use_xrandr if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution) res = cimg::X11_attr() .resolutions[cimg::X11_attr().curr_resolution] .height; else res = DisplayHeight(dpy, DefaultScreen(dpy)); #else res = DisplayHeight(dpy, DefaultScreen(dpy)); #endif } return res; } static void wait_all() { if (!cimg::X11_attr().display) return; pthread_mutex_lock(&cimg::X11_attr().wait_event_mutex); pthread_cond_wait(&cimg::X11_attr().wait_event, &cimg::X11_attr().wait_event_mutex); pthread_mutex_unlock(&cimg::X11_attr().wait_event_mutex); } void _handle_events(const XEvent* const pevent) { Display* const dpy = cimg::X11_attr().display; XEvent event = *pevent; switch (event.type) { case ClientMessage: { if ((int)event.xclient.message_type == (int)_wm_protocol_atom && (int)event.xclient.data.l[0] == (int)_wm_window_atom) { XUnmapWindow(cimg::X11_attr().display, _window); _is_closed = _is_event = true; pthread_cond_broadcast(&cimg::X11_attr().wait_event); } } break; case ConfigureNotify: { while (XCheckWindowEvent(dpy, _window, StructureNotifyMask, &event)) { } const unsigned int nw = event.xconfigure.width, nh = event.xconfigure.height; const int nx = event.xconfigure.x, ny = event.xconfigure.y; if (nw && nh && (nw != _window_width || nh != _window_height)) { _window_width = nw; _window_height = nh; _mouse_x = _mouse_y = -1; XResizeWindow(dpy, _window, _window_width, _window_height); _is_resized = _is_event = true; pthread_cond_broadcast(&cimg::X11_attr().wait_event); } if (nx != _window_x || ny != _window_y) { _window_x = nx; _window_y = ny; _is_moved = _is_event = true; pthread_cond_broadcast(&cimg::X11_attr().wait_event); } } break; case Expose: { while (XCheckWindowEvent(dpy, _window, ExposureMask, &event)) { } _paint(false); if (_is_fullscreen) { XWindowAttributes attr; XGetWindowAttributes(dpy, _window, &attr); while (attr.map_state != IsViewable) XSync(dpy, 0); XSetInputFocus(dpy, _window, RevertToParent, CurrentTime); } } break; case ButtonPress: { do { _mouse_x = event.xmotion.x; _mouse_y = event.xmotion.y; if (_mouse_x < 0 || _mouse_y < 0 || _mouse_x >= width() || _mouse_y >= height()) _mouse_x = _mouse_y = -1; switch (event.xbutton.button) { case 1: set_button(1); break; case 3: set_button(2); break; case 2: set_button(3); break; } } while ( XCheckWindowEvent(dpy, _window, ButtonPressMask, &event)); } break; case ButtonRelease: { do { _mouse_x = event.xmotion.x; _mouse_y = event.xmotion.y; if (_mouse_x < 0 || _mouse_y < 0 || _mouse_x >= width() || _mouse_y >= height()) _mouse_x = _mouse_y = -1; switch (event.xbutton.button) { case 1: set_button(1, false); break; case 3: set_button(2, false); break; case 2: set_button(3, false); break; case 4: set_wheel(1); break; case 5: set_wheel(-1); break; } } while ( XCheckWindowEvent(dpy, _window, ButtonReleaseMask, &event)); } break; case KeyPress: { char tmp = 0; KeySym ksym; XLookupString(&event.xkey, &tmp, 1, &ksym, 0); set_key((unsigned int)ksym, true); } break; case KeyRelease: { char keys_return[32]; // Check that the key has been physically // unpressed XQueryKeymap(dpy, keys_return); const unsigned int kc = event.xkey.keycode, kc1 = kc / 8, kc2 = kc % 8; const bool is_key_pressed = kc1 >= 32 ? false : (keys_return[kc1] >> kc2) & 1; if (!is_key_pressed) { char tmp = 0; KeySym ksym; XLookupString(&event.xkey, &tmp, 1, &ksym, 0); set_key((unsigned int)ksym, false); } } break; case EnterNotify: { while ( XCheckWindowEvent(dpy, _window, EnterWindowMask, &event)) { } _mouse_x = event.xmotion.x; _mouse_y = event.xmotion.y; if (_mouse_x < 0 || _mouse_y < 0 || _mouse_x >= width() || _mouse_y >= height()) _mouse_x = _mouse_y = -1; } break; case LeaveNotify: { while ( XCheckWindowEvent(dpy, _window, LeaveWindowMask, &event)) { } _mouse_x = _mouse_y = -1; _is_event = true; pthread_cond_broadcast(&cimg::X11_attr().wait_event); } break; case MotionNotify: { while (XCheckWindowEvent(dpy, _window, PointerMotionMask, &event)) { } _mouse_x = event.xmotion.x; _mouse_y = event.xmotion.y; if (_mouse_x < 0 || _mouse_y < 0 || _mouse_x >= width() || _mouse_y >= height()) _mouse_x = _mouse_y = -1; _is_event = true; pthread_cond_broadcast(&cimg::X11_attr().wait_event); } break; } } static void* _events_thread( void* arg) { // Thread to manage events for all opened display windows Display* const dpy = cimg::X11_attr().display; XEvent event; pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, 0); pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, 0); if (!arg) for (;;) { cimg_lock_display(); bool event_flag = XCheckTypedEvent(dpy, ClientMessage, &event); if (!event_flag) event_flag = XCheckMaskEvent( dpy, ExposureMask | StructureNotifyMask | ButtonPressMask | KeyPressMask | PointerMotionMask | EnterWindowMask | LeaveWindowMask | ButtonReleaseMask | KeyReleaseMask, &event); if (event_flag) for (unsigned int i = 0; i < cimg::X11_attr().nb_wins; ++i) if (!cimg::X11_attr().wins[i]->_is_closed && event.xany.window == cimg::X11_attr().wins[i]->_window) cimg::X11_attr().wins[i]->_handle_events(&event); cimg_unlock_display(); pthread_testcancel(); cimg::sleep(8); } return 0; } void _set_colormap(Colormap& cmap, const unsigned int dim) { XColor* const colormap = new XColor[256]; switch (dim) { case 1: { // colormap for greyscale images for (unsigned int index = 0; index < 256; ++index) { colormap[index].pixel = index; colormap[index].red = colormap[index].green = colormap[index].blue = (unsigned short)(index << 8); colormap[index].flags = DoRed | DoGreen | DoBlue; } } break; case 2: { // colormap for RG images for (unsigned int index = 0, r = 8; r < 256; r += 16) for (unsigned int g = 8; g < 256; g += 16) { colormap[index].pixel = index; colormap[index].red = colormap[index].blue = (unsigned short)(r << 8); colormap[index].green = (unsigned short)(g << 8); colormap[index++].flags = DoRed | DoGreen | DoBlue; } } break; default: { // colormap for RGB images for (unsigned int index = 0, r = 16; r < 256; r += 32) for (unsigned int g = 16; g < 256; g += 32) for (unsigned int b = 32; b < 256; b += 64) { colormap[index].pixel = index; colormap[index].red = (unsigned short)(r << 8); colormap[index].green = (unsigned short)(g << 8); colormap[index].blue = (unsigned short)(b << 8); colormap[index++].flags = DoRed | DoGreen | DoBlue; } } } XStoreColors(cimg::X11_attr().display, cmap, colormap, 256); delete[] colormap; } void _map_window() { Display* const dpy = cimg::X11_attr().display; bool is_exposed = false, is_mapped = false; XWindowAttributes attr; XEvent event; XMapRaised(dpy, _window); do { // Wait for the window to be mapped XWindowEvent(dpy, _window, StructureNotifyMask | ExposureMask, &event); switch (event.type) { case MapNotify: is_mapped = true; break; case Expose: is_exposed = true; break; } } while (!is_exposed || !is_mapped); do { // Wait for the window to be visible XGetWindowAttributes(dpy, _window, &attr); if (attr.map_state != IsViewable) { XSync(dpy, 0); cimg::sleep(10); } } while (attr.map_state != IsViewable); _window_x = attr.x; _window_y = attr.y; } void _paint(const bool wait_expose = true) { if (_is_closed || !_image) return; Display* const dpy = cimg::X11_attr().display; if (wait_expose) { // Send an expose event sticked to display window to // force repaint XEvent event; event.xexpose.type = Expose; event.xexpose.serial = 0; event.xexpose.send_event = 1; event.xexpose.display = dpy; event.xexpose.window = _window; event.xexpose.x = 0; event.xexpose.y = 0; event.xexpose.width = width(); event.xexpose.height = height(); event.xexpose.count = 0; XSendEvent(dpy, _window, 0, 0, &event); } else { // Repaint directly (may be called from the expose event) GC gc = DefaultGC(dpy, DefaultScreen(dpy)); #ifdef cimg_use_xshm if (_shminfo) XShmPutImage(dpy, _window, gc, _image, 0, 0, 0, 0, _width, _height, 1); else XPutImage(dpy, _window, gc, _image, 0, 0, 0, 0, _width, _height); #else XPutImage(dpy, _window, gc, _image, 0, 0, 0, 0, _width, _height); #endif } } template void _resize(T pixel_type, const unsigned int ndimx, const unsigned int ndimy, const bool force_redraw) { Display* const dpy = cimg::X11_attr().display; cimg::unused(pixel_type); #ifdef cimg_use_xshm if (_shminfo) { XShmSegmentInfo* const nshminfo = new XShmSegmentInfo; XImage* const nimage = XShmCreateImage( dpy, DefaultVisual(dpy, DefaultScreen(dpy)), cimg::X11_attr().nb_bits, ZPixmap, 0, nshminfo, ndimx, ndimy); if (!nimage) { delete nshminfo; return; } else { nshminfo->shmid = shmget(IPC_PRIVATE, ndimx * ndimy * sizeof(T), IPC_CREAT | 0777); if (nshminfo->shmid == -1) { XDestroyImage(nimage); delete nshminfo; return; } else { nshminfo->shmaddr = nimage->data = (char*)shmat(nshminfo->shmid, 0, 0); if (nshminfo->shmaddr == (char*)-1) { shmctl(nshminfo->shmid, IPC_RMID, 0); XDestroyImage(nimage); delete nshminfo; return; } else { nshminfo->readOnly = 0; cimg::X11_attr().is_shm_enabled = true; XErrorHandler oldXErrorHandler = XSetErrorHandler(_assign_xshm); XShmAttach(dpy, nshminfo); XFlush(dpy); XSetErrorHandler(oldXErrorHandler); if (!cimg::X11_attr().is_shm_enabled) { shmdt(nshminfo->shmaddr); shmctl(nshminfo->shmid, IPC_RMID, 0); XDestroyImage(nimage); delete nshminfo; return; } else { T* const ndata = (T*)nimage->data; if (force_redraw) _render_resize((T*)_data, _width, _height, ndata, ndimx, ndimy); else std::memset(ndata, 0, sizeof(T) * ndimx * ndimy); XShmDetach(dpy, _shminfo); XDestroyImage(_image); shmdt(_shminfo->shmaddr); shmctl(_shminfo->shmid, IPC_RMID, 0); delete _shminfo; _shminfo = nshminfo; _image = nimage; _data = (void*)ndata; } } } } } else #endif { T* ndata = (T*)std::malloc(ndimx * ndimy * sizeof(T)); if (force_redraw) _render_resize((T*)_data, _width, _height, ndata, ndimx, ndimy); else std::memset(ndata, 0, sizeof(T) * ndimx * ndimy); _data = (void*)ndata; XDestroyImage(_image); _image = XCreateImage(dpy, DefaultVisual(dpy, DefaultScreen(dpy)), cimg::X11_attr().nb_bits, ZPixmap, 0, (char*)_data, ndimx, ndimy, 8, 0); } } void _init_fullscreen() { if (!_is_fullscreen || _is_closed) return; Display* const dpy = cimg::X11_attr().display; _background_window = 0; #ifdef cimg_use_xrandr int foo; if (XRRQueryExtension(dpy, &foo, &foo)) { XRRRotations(dpy, DefaultScreen(dpy), &cimg::X11_attr().curr_rotation); if (!cimg::X11_attr().resolutions) { cimg::X11_attr().resolutions = XRRSizes(dpy, DefaultScreen(dpy), &foo); cimg::X11_attr().nb_resolutions = (unsigned int)foo; } if (cimg::X11_attr().resolutions) { cimg::X11_attr().curr_resolution = 0; for (unsigned int i = 0; i < cimg::X11_attr().nb_resolutions; ++i) { const unsigned int nw = (unsigned int)(cimg::X11_attr() .resolutions[i] .width), nh = (unsigned int)(cimg::X11_attr() .resolutions[i] .height); if (nw >= _width && nh >= _height && nw <= (unsigned int)(cimg::X11_attr() .resolutions [cimg::X11_attr() .curr_resolution] .width) && nh <= (unsigned int)(cimg::X11_attr() .resolutions [cimg::X11_attr() .curr_resolution] .height)) cimg::X11_attr().curr_resolution = i; } if (cimg::X11_attr().curr_resolution > 0) { XRRScreenConfiguration* config = XRRGetScreenInfo(dpy, DefaultRootWindow(dpy)); XRRSetScreenConfig(dpy, config, DefaultRootWindow(dpy), cimg::X11_attr().curr_resolution, cimg::X11_attr().curr_rotation, CurrentTime); XRRFreeScreenConfigInfo(config); XSync(dpy, 0); } } } if (!cimg::X11_attr().resolutions) cimg::warn(_cimgdisplay_instance "init_fullscreen(): Xrandr extension not supported by " "the X server.", cimgdisplay_instance); #endif const unsigned int sx = screen_width(), sy = screen_height(); if (sx == _width && sy == _height) return; XSetWindowAttributes winattr; winattr.override_redirect = 1; _background_window = XCreateWindow( dpy, DefaultRootWindow(dpy), 0, 0, sx, sy, 0, 0, InputOutput, CopyFromParent, CWOverrideRedirect, &winattr); const cimg_ulong buf_size = (cimg_ulong)sx * sy * (cimg::X11_attr().nb_bits == 8 ? 1 : (cimg::X11_attr().nb_bits == 16 ? 2 : 4)); void* background_data = std::malloc(buf_size); std::memset(background_data, 0, buf_size); XImage* background_image = XCreateImage(dpy, DefaultVisual(dpy, DefaultScreen(dpy)), cimg::X11_attr().nb_bits, ZPixmap, 0, (char*)background_data, sx, sy, 8, 0); XEvent event; XSelectInput(dpy, _background_window, StructureNotifyMask); XMapRaised(dpy, _background_window); do XWindowEvent(dpy, _background_window, StructureNotifyMask, &event); while (event.type != MapNotify); GC gc = DefaultGC(dpy, DefaultScreen(dpy)); #ifdef cimg_use_xshm if (_shminfo) XShmPutImage(dpy, _background_window, gc, background_image, 0, 0, 0, 0, sx, sy, 0); else XPutImage(dpy, _background_window, gc, background_image, 0, 0, 0, 0, sx, sy); #else XPutImage(dpy, _background_window, gc, background_image, 0, 0, 0, 0, sx, sy); #endif XWindowAttributes attr; XGetWindowAttributes(dpy, _background_window, &attr); while (attr.map_state != IsViewable) XSync(dpy, 0); XDestroyImage(background_image); } void _desinit_fullscreen() { if (!_is_fullscreen) return; Display* const dpy = cimg::X11_attr().display; XUngrabKeyboard(dpy, CurrentTime); #ifdef cimg_use_xrandr if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution) { XRRScreenConfiguration* config = XRRGetScreenInfo(dpy, DefaultRootWindow(dpy)); XRRSetScreenConfig(dpy, config, DefaultRootWindow(dpy), 0, cimg::X11_attr().curr_rotation, CurrentTime); XRRFreeScreenConfigInfo(config); XSync(dpy, 0); cimg::X11_attr().curr_resolution = 0; } #endif if (_background_window) XDestroyWindow(dpy, _background_window); _background_window = 0; _is_fullscreen = false; } static int _assign_xshm(Display* dpy, XErrorEvent* error) { cimg::unused(dpy, error); cimg::X11_attr().is_shm_enabled = false; return 0; } void _assign(const unsigned int dimw, const unsigned int dimh, const char* const ptitle = 0, const unsigned int normalization_type = 3, const bool fullscreen_flag = false, const bool closed_flag = false) { cimg::mutex(14); // Allocate space for window title const char* const nptitle = ptitle ? ptitle : ""; const unsigned int s = (unsigned int)std::strlen(nptitle) + 1; char* const tmp_title = s ? new char[s] : 0; if (s) std::memcpy(tmp_title, nptitle, s * sizeof(char)); // Destroy previous display window if existing if (!is_empty()) assign(); // Open X11 display and retrieve graphical properties. Display*& dpy = cimg::X11_attr().display; if (!dpy) { dpy = XOpenDisplay(0); if (!dpy) throw CImgDisplayException( _cimgdisplay_instance "assign(): Failed to open X11 display.", cimgdisplay_instance); cimg::X11_attr().nb_bits = DefaultDepth(dpy, DefaultScreen(dpy)); if (cimg::X11_attr().nb_bits != 8 && cimg::X11_attr().nb_bits != 16 && cimg::X11_attr().nb_bits != 24 && cimg::X11_attr().nb_bits != 32) throw CImgDisplayException( _cimgdisplay_instance "assign(): Invalid %u bits screen mode detected " "(only 8, 16, 24 and 32 bits modes are managed).", cimgdisplay_instance, cimg::X11_attr().nb_bits); XVisualInfo vtemplate; vtemplate.visualid = XVisualIDFromVisual(DefaultVisual(dpy, DefaultScreen(dpy))); int nb_visuals; XVisualInfo* vinfo = XGetVisualInfo(dpy, VisualIDMask, &vtemplate, &nb_visuals); if (vinfo && vinfo->red_mask < vinfo->blue_mask) cimg::X11_attr().is_blue_first = true; cimg::X11_attr().byte_order = ImageByteOrder(dpy); XFree(vinfo); cimg_lock_display(); cimg::X11_attr().events_thread = new pthread_t; pthread_create(cimg::X11_attr().events_thread, 0, _events_thread, 0); } else cimg_lock_display(); // Set display variables. _width = std::min(dimw, (unsigned int)screen_width()); _height = std::min(dimh, (unsigned int)screen_height()); _normalization = normalization_type < 4 ? normalization_type : 3; _is_fullscreen = fullscreen_flag; _window_x = _window_y = 0; _is_closed = closed_flag; _title = tmp_title; flush(); // Create X11 window (and LUT, if 8bits display) if (_is_fullscreen) { if (!_is_closed) _init_fullscreen(); const unsigned int sx = screen_width(), sy = screen_height(); XSetWindowAttributes winattr; winattr.override_redirect = 1; _window = XCreateWindow( dpy, DefaultRootWindow(dpy), (sx - _width) / 2, (sy - _height) / 2, _width, _height, 0, 0, InputOutput, CopyFromParent, CWOverrideRedirect, &winattr); } else _window = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), 0, 0, _width, _height, 0, 0L, 0L); XSelectInput(dpy, _window, ExposureMask | StructureNotifyMask | ButtonPressMask | KeyPressMask | PointerMotionMask | EnterWindowMask | LeaveWindowMask | ButtonReleaseMask | KeyReleaseMask); XStoreName(dpy, _window, _title ? _title : " "); if (cimg::X11_attr().nb_bits == 8) { _colormap = XCreateColormap( dpy, _window, DefaultVisual(dpy, DefaultScreen(dpy)), AllocAll); _set_colormap(_colormap, 3); XSetWindowColormap(dpy, _window, _colormap); } static const char* const _window_class = cimg_appname; XClassHint* const window_class = XAllocClassHint(); window_class->res_name = (char*)_window_class; window_class->res_class = (char*)_window_class; XSetClassHint(dpy, _window, window_class); XFree(window_class); _window_width = _width; _window_height = _height; // Create XImage #ifdef cimg_use_xshm _shminfo = 0; if (XShmQueryExtension(dpy)) { _shminfo = new XShmSegmentInfo; _image = XShmCreateImage(dpy, DefaultVisual(dpy, DefaultScreen(dpy)), cimg::X11_attr().nb_bits, ZPixmap, 0, _shminfo, _width, _height); if (!_image) { delete _shminfo; _shminfo = 0; } else { _shminfo->shmid = shmget(IPC_PRIVATE, _image->bytes_per_line * _image->height, IPC_CREAT | 0777); if (_shminfo->shmid == -1) { XDestroyImage(_image); delete _shminfo; _shminfo = 0; } else { _shminfo->shmaddr = _image->data = (char*)(_data = shmat(_shminfo->shmid, 0, 0)); if (_shminfo->shmaddr == (char*)-1) { shmctl(_shminfo->shmid, IPC_RMID, 0); XDestroyImage(_image); delete _shminfo; _shminfo = 0; } else { _shminfo->readOnly = 0; cimg::X11_attr().is_shm_enabled = true; XErrorHandler oldXErrorHandler = XSetErrorHandler(_assign_xshm); XShmAttach(dpy, _shminfo); XSync(dpy, 0); XSetErrorHandler(oldXErrorHandler); if (!cimg::X11_attr().is_shm_enabled) { shmdt(_shminfo->shmaddr); shmctl(_shminfo->shmid, IPC_RMID, 0); XDestroyImage(_image); delete _shminfo; _shminfo = 0; } } } } } if (!_shminfo) #endif { const cimg_ulong buf_size = (cimg_ulong)_width * _height * (cimg::X11_attr().nb_bits == 8 ? 1 : (cimg::X11_attr().nb_bits == 16 ? 2 : 4)); _data = std::malloc(buf_size); _image = XCreateImage(dpy, DefaultVisual(dpy, DefaultScreen(dpy)), cimg::X11_attr().nb_bits, ZPixmap, 0, (char*)_data, _width, _height, 8, 0); } _wm_window_atom = XInternAtom(dpy, "WM_DELETE_WINDOW", 0); _wm_protocol_atom = XInternAtom(dpy, "WM_PROTOCOLS", 0); XSetWMProtocols(dpy, _window, &_wm_window_atom, 1); if (_is_fullscreen) XGrabKeyboard(dpy, _window, 1, GrabModeAsync, GrabModeAsync, CurrentTime); cimg::X11_attr().wins[cimg::X11_attr().nb_wins++] = this; if (!_is_closed) _map_window(); else { _window_x = _window_y = cimg::type::min(); } cimg_unlock_display(); cimg::mutex(14, 0); } CImgDisplay& assign() { if (is_empty()) return flush(); Display* const dpy = cimg::X11_attr().display; cimg_lock_display(); // Remove display window from event thread list. unsigned int i; for (i = 0; i < cimg::X11_attr().nb_wins && cimg::X11_attr().wins[i] != this; ++i) { } for (; i < cimg::X11_attr().nb_wins - 1; ++i) cimg::X11_attr().wins[i] = cimg::X11_attr().wins[i + 1]; --cimg::X11_attr().nb_wins; // Destroy window, image, colormap and title. if (_is_fullscreen && !_is_closed) _desinit_fullscreen(); XDestroyWindow(dpy, _window); _window = 0; #ifdef cimg_use_xshm if (_shminfo) { XShmDetach(dpy, _shminfo); XDestroyImage(_image); shmdt(_shminfo->shmaddr); shmctl(_shminfo->shmid, IPC_RMID, 0); delete _shminfo; _shminfo = 0; } else #endif XDestroyImage(_image); _data = 0; _image = 0; if (cimg::X11_attr().nb_bits == 8) XFreeColormap(dpy, _colormap); _colormap = 0; XSync(dpy, 0); // Reset display variables. delete[] _title; _width = _height = _normalization = _window_width = _window_height = 0; _window_x = _window_y = 0; _is_fullscreen = false; _is_closed = true; _min = _max = 0; _title = 0; flush(); cimg_unlock_display(); return *this; } CImgDisplay& assign(const unsigned int dimw, const unsigned int dimh, const char* const title = 0, const unsigned int normalization_type = 3, const bool fullscreen_flag = false, const bool closed_flag = false) { if (!dimw || !dimh) return assign(); _assign(dimw, dimh, title, normalization_type, fullscreen_flag, closed_flag); _min = _max = 0; std::memset( _data, 0, (cimg::X11_attr().nb_bits == 8 ? sizeof(unsigned char) : (cimg::X11_attr().nb_bits == 16 ? sizeof(unsigned short) : sizeof(unsigned int))) * (size_t)_width * _height); return paint(); } template CImgDisplay& assign(const CImg& img, const char* const title = 0, const unsigned int normalization_type = 3, const bool fullscreen_flag = false, const bool closed_flag = false) { if (!img) return assign(); CImg tmp; const CImg& nimg = (img._depth == 1) ? img : (tmp = img.get_projections2d((img._width - 1) / 2, (img._height - 1) / 2, (img._depth - 1) / 2)); _assign(nimg._width, nimg._height, title, normalization_type, fullscreen_flag, closed_flag); if (_normalization == 2) _min = (float)nimg.min_max(_max); return render(nimg).paint(); } template CImgDisplay& assign(const CImgList& list, const char* const title = 0, const unsigned int normalization_type = 3, const bool fullscreen_flag = false, const bool closed_flag = false) { if (!list) return assign(); CImg tmp; const CImg img = list > 'x', &nimg = (img._depth == 1) ? img : (tmp = img.get_projections2d( (img._width - 1) / 2, (img._height - 1) / 2, (img._depth - 1) / 2)); _assign(nimg._width, nimg._height, title, normalization_type, fullscreen_flag, closed_flag); if (_normalization == 2) _min = (float)nimg.min_max(_max); return render(nimg).paint(); } CImgDisplay& assign(const CImgDisplay& disp) { if (!disp) return assign(); _assign(disp._width, disp._height, disp._title, disp._normalization, disp._is_fullscreen, disp._is_closed); std::memcpy( _data, disp._data, (cimg::X11_attr().nb_bits == 8 ? sizeof(unsigned char) : cimg::X11_attr().nb_bits == 16 ? sizeof(unsigned short) : sizeof(unsigned int)) * (size_t)_width * _height); return paint(); } CImgDisplay& resize(const int nwidth, const int nheight, const bool force_redraw = true) { if (!nwidth || !nheight || (is_empty() && (nwidth < 0 || nheight < 0))) return assign(); if (is_empty()) return assign(nwidth, nheight); Display* const dpy = cimg::X11_attr().display; const unsigned int tmpdimx = (nwidth > 0) ? nwidth : (-nwidth * width() / 100), tmpdimy = (nheight > 0) ? nheight : (-nheight * height() / 100), dimx = tmpdimx ? tmpdimx : 1, dimy = tmpdimy ? tmpdimy : 1; if (_width != dimx || _height != dimy || _window_width != dimx || _window_height != dimy) { show(); cimg_lock_display(); if (_window_width != dimx || _window_height != dimy) { XWindowAttributes attr; for (unsigned int i = 0; i < 10; ++i) { XResizeWindow(dpy, _window, dimx, dimy); XGetWindowAttributes(dpy, _window, &attr); if (attr.width == (int)dimx && attr.height == (int)dimy) break; cimg::wait(5, &_timer); } } if (_width != dimx || _height != dimy) switch (cimg::X11_attr().nb_bits) { case 8: { unsigned char pixel_type = 0; _resize(pixel_type, dimx, dimy, force_redraw); } break; case 16: { unsigned short pixel_type = 0; _resize(pixel_type, dimx, dimy, force_redraw); } break; default: { unsigned int pixel_type = 0; _resize(pixel_type, dimx, dimy, force_redraw); } } _window_width = _width = dimx; _window_height = _height = dimy; cimg_unlock_display(); } _is_resized = false; if (_is_fullscreen) move((screen_width() - _width) / 2, (screen_height() - _height) / 2); if (force_redraw) return paint(); return *this; } CImgDisplay& toggle_fullscreen(const bool force_redraw = true) { if (is_empty()) return *this; if (force_redraw) { const cimg_ulong buf_size = (cimg_ulong)_width * _height * (cimg::X11_attr().nb_bits == 8 ? 1 : (cimg::X11_attr().nb_bits == 16 ? 2 : 4)); void* image_data = std::malloc(buf_size); std::memcpy(image_data, _data, buf_size); assign(_width, _height, _title, _normalization, !_is_fullscreen, false); std::memcpy(_data, image_data, buf_size); std::free(image_data); return paint(); } return assign(_width, _height, _title, _normalization, !_is_fullscreen, false); } CImgDisplay& show() { if (is_empty() || !_is_closed) return *this; cimg_lock_display(); if (_is_fullscreen) _init_fullscreen(); _map_window(); _is_closed = false; cimg_unlock_display(); return paint(); } CImgDisplay& close() { if (is_empty() || _is_closed) return *this; Display* const dpy = cimg::X11_attr().display; cimg_lock_display(); if (_is_fullscreen) _desinit_fullscreen(); XUnmapWindow(dpy, _window); _window_x = _window_y = -1; _is_closed = true; cimg_unlock_display(); return *this; } CImgDisplay& move(const int posx, const int posy) { if (is_empty()) return *this; if (_window_x != posx || _window_y != posy) { show(); Display* const dpy = cimg::X11_attr().display; cimg_lock_display(); XMoveWindow(dpy, _window, posx, posy); _window_x = posx; _window_y = posy; cimg_unlock_display(); } _is_moved = false; return paint(); } CImgDisplay& show_mouse() { if (is_empty()) return *this; Display* const dpy = cimg::X11_attr().display; cimg_lock_display(); XUndefineCursor(dpy, _window); cimg_unlock_display(); return *this; } CImgDisplay& hide_mouse() { if (is_empty()) return *this; Display* const dpy = cimg::X11_attr().display; cimg_lock_display(); static const char pix_data[8] = {0}; XColor col; col.red = col.green = col.blue = 0; Pixmap pix = XCreateBitmapFromData(dpy, _window, pix_data, 8, 8); Cursor cur = XCreatePixmapCursor(dpy, pix, pix, &col, &col, 0, 0); XFreePixmap(dpy, pix); XDefineCursor(dpy, _window, cur); cimg_unlock_display(); return *this; } CImgDisplay& set_mouse(const int posx, const int posy) { if (is_empty() || _is_closed) return *this; Display* const dpy = cimg::X11_attr().display; cimg_lock_display(); XWarpPointer(dpy, 0L, _window, 0, 0, 0, 0, posx, posy); _mouse_x = posx; _mouse_y = posy; _is_moved = false; XSync(dpy, 0); cimg_unlock_display(); return *this; } CImgDisplay& set_title(const char* const format, ...) { if (is_empty()) return *this; char* const tmp = new char[1024]; va_list ap; va_start(ap, format); cimg_vsnprintf(tmp, 1024, format, ap); va_end(ap); if (!std::strcmp(_title, tmp)) { delete[] tmp; return *this; } delete[] _title; const unsigned int s = (unsigned int)std::strlen(tmp) + 1; _title = new char[s]; std::memcpy(_title, tmp, s * sizeof(char)); Display* const dpy = cimg::X11_attr().display; cimg_lock_display(); XStoreName(dpy, _window, tmp); cimg_unlock_display(); delete[] tmp; return *this; } template CImgDisplay& display(const CImg& img) { if (!img) throw CImgArgumentException(_cimgdisplay_instance "display(): Empty specified image.", cimgdisplay_instance); if (is_empty()) return assign(img); return render(img).paint(false); } CImgDisplay& paint(const bool wait_expose = true) { if (is_empty()) return *this; cimg_lock_display(); _paint(wait_expose); cimg_unlock_display(); return *this; } template CImgDisplay& render(const CImg& img, const bool flag8 = false) { if (!img) throw CImgArgumentException(_cimgdisplay_instance "render(): Empty specified image.", cimgdisplay_instance); if (is_empty()) return *this; if (img._depth != 1) return render(img.get_projections2d((img._width - 1) / 2, (img._height - 1) / 2, (img._depth - 1) / 2)); if (cimg::X11_attr().nb_bits == 8 && (img._width != _width || img._height != _height)) return render(img.get_resize(_width, _height, 1, -100, 1)); if (cimg::X11_attr().nb_bits == 8 && !flag8 && img._spectrum == 3) { static const CImg::ucharT> default_colormap = CImg::ucharT>::default_LUT256(); return render(img.get_index(default_colormap, 1, false)); } const T *data1 = img._data, *data2 = (img._spectrum > 1) ? img.data(0, 0, 0, 1) : data1, *data3 = (img._spectrum > 2) ? img.data(0, 0, 0, 2) : data1; if (cimg::X11_attr().is_blue_first) cimg::swap(data1, data3); cimg_lock_display(); if (!_normalization || (_normalization == 3 && cimg::type::string() == cimg::type::string())) { _min = _max = 0; switch (cimg::X11_attr().nb_bits) { case 8: { // 256 colormap, no normalization _set_colormap(_colormap, img._spectrum); unsigned char *const ndata = (img._width == _width && img._height == _height) ? (unsigned char*)_data : new unsigned char[(size_t)img._width * img._height], *ptrd = (unsigned char*)ndata; switch (img._spectrum) { case 1: for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) (*ptrd++) = (unsigned char)*(data1++); break; case 2: for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char R = (unsigned char)*( data1++), G = (unsigned char)*( data2++); (*ptrd++) = (R & 0xf0) | (G >> 4); } break; default: for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char R = (unsigned char)*( data1++), G = (unsigned char)*( data2++), B = (unsigned char)*( data3++); (*ptrd++) = (R & 0xe0) | ((G >> 5) << 2) | (B >> 6); } } if (ndata != _data) { _render_resize(ndata, img._width, img._height, (unsigned char*)_data, _width, _height); delete[] ndata; } } break; case 16: { // 16 bits colors, no normalization unsigned short* const ndata = (img._width == _width && img._height == _height) ? (unsigned short*)_data : new unsigned short[(size_t)img._width * img._height]; unsigned char* ptrd = (unsigned char*)ndata; const unsigned int M = 248; switch (img._spectrum) { case 1: if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)*( data1++), G = val >> 2; ptrd[0] = (val & M) | (G >> 3); ptrd[1] = (G << 5) | (G >> 1); ptrd += 2; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)*( data1++), G = val >> 2; ptrd[0] = (G << 5) | (G >> 1); ptrd[1] = (val & M) | (G >> 3); ptrd += 2; } break; case 2: if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char G = (unsigned char)*(data2++) >> 2; ptrd[0] = ((unsigned char)*(data1++) & M) | (G >> 3); ptrd[1] = (G << 5); ptrd += 2; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char G = (unsigned char)*(data2++) >> 2; ptrd[0] = (G << 5); ptrd[1] = ((unsigned char)*(data1++) & M) | (G >> 3); ptrd += 2; } break; default: if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char G = (unsigned char)*(data2++) >> 2; ptrd[0] = ((unsigned char)*(data1++) & M) | (G >> 3); ptrd[1] = (G << 5) | ((unsigned char)*(data3++) >> 3); ptrd += 2; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char G = (unsigned char)*(data2++) >> 2; ptrd[0] = (G << 5) | ((unsigned char)*(data3++) >> 3); ptrd[1] = ((unsigned char)*(data1++) & M) | (G >> 3); ptrd += 2; } } if (ndata != _data) { _render_resize(ndata, img._width, img._height, (unsigned short*)_data, _width, _height); delete[] ndata; } } break; default: { // 24 bits colors, no normalization unsigned int* const ndata = (img._width == _width && img._height == _height) ? (unsigned int*)_data : new unsigned int[(size_t)img._width * img._height]; if (sizeof(int) == 4) { // 32 bits int uses optimized version unsigned int* ptrd = ndata; switch (img._spectrum) { case 1: if (cimg::X11_attr().byte_order == cimg::endianness()) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)*(data1++); *(ptrd++) = (val << 16) | (val << 8) | val; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)*(data1++); *(ptrd++) = (val << 16) | (val << 8) | val; } break; case 2: if (cimg::X11_attr().byte_order == cimg::endianness()) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) *(ptrd++) = ((unsigned char)*(data1++) << 16) | ((unsigned char)*(data2++) << 8); else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) *(ptrd++) = ((unsigned char)*(data2++) << 16) | ((unsigned char)*(data1++) << 8); break; default: if (cimg::X11_attr().byte_order == cimg::endianness()) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) *(ptrd++) = ((unsigned char)*(data1++) << 16) | ((unsigned char)*(data2++) << 8) | (unsigned char)*(data3++); else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) *(ptrd++) = ((unsigned char)*(data3++) << 24) | ((unsigned char)*(data2++) << 16) | ((unsigned char)*(data1++) << 8); } } else { unsigned char* ptrd = (unsigned char*)ndata; switch (img._spectrum) { case 1: if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { ptrd[0] = 0; ptrd[1] = (unsigned char)*(data1++); ptrd[2] = 0; ptrd[3] = 0; ptrd += 4; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { ptrd[0] = 0; ptrd[1] = 0; ptrd[2] = (unsigned char)*(data1++); ptrd[3] = 0; ptrd += 4; } break; case 2: if (cimg::X11_attr().byte_order) cimg::swap(data1, data2); for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { ptrd[0] = 0; ptrd[1] = (unsigned char)*(data2++); ptrd[2] = (unsigned char)*(data1++); ptrd[3] = 0; ptrd += 4; } break; default: if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { ptrd[0] = 0; ptrd[1] = (unsigned char)*(data1++); ptrd[2] = (unsigned char)*(data2++); ptrd[3] = (unsigned char)*(data3++); ptrd += 4; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { ptrd[0] = (unsigned char)*(data3++); ptrd[1] = (unsigned char)*(data2++); ptrd[2] = (unsigned char)*(data1++); ptrd[3] = 0; ptrd += 4; } } } if (ndata != _data) { _render_resize(ndata, img._width, img._height, (unsigned int*)_data, _width, _height); delete[] ndata; } } } } else { if (_normalization == 3) { if (cimg::type::is_float()) _min = (float)img.min_max(_max); else { _min = (float)cimg::type::min(); _max = (float)cimg::type::max(); } } else if ((_min > _max) || _normalization == 1) _min = (float)img.min_max(_max); const float delta = _max - _min, mm = 255 / (delta ? delta : 1.f); switch (cimg::X11_attr().nb_bits) { case 8: { // 256 colormap, with normalization _set_colormap(_colormap, img._spectrum); unsigned char* const ndata = (img._width == _width && img._height == _height) ? (unsigned char*)_data : new unsigned char[(size_t)img._width * img._height]; unsigned char* ptrd = (unsigned char*)ndata; switch (img._spectrum) { case 1: for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char R = (unsigned char)((*(data1++) - _min) * mm); *(ptrd++) = R; } break; case 2: for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char R = (unsigned char)((*(data1++) - _min) * mm), G = (unsigned char)((*(data2++) - _min) * mm); (*ptrd++) = (R & 0xf0) | (G >> 4); } break; default: for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char R = (unsigned char)((*(data1++) - _min) * mm), G = (unsigned char)((*(data2++) - _min) * mm), B = (unsigned char)((*(data3++) - _min) * mm); *(ptrd++) = (R & 0xe0) | ((G >> 5) << 2) | (B >> 6); } } if (ndata != _data) { _render_resize(ndata, img._width, img._height, (unsigned char*)_data, _width, _height); delete[] ndata; } } break; case 16: { // 16 bits colors, with normalization unsigned short* const ndata = (img._width == _width && img._height == _height) ? (unsigned short*)_data : new unsigned short[(size_t)img._width * img._height]; unsigned char* ptrd = (unsigned char*)ndata; const unsigned int M = 248; switch (img._spectrum) { case 1: if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)((*(data1++) - _min) * mm), G = val >> 2; ptrd[0] = (val & M) | (G >> 3); ptrd[1] = (G << 5) | (val >> 3); ptrd += 2; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)((*(data1++) - _min) * mm), G = val >> 2; ptrd[0] = (G << 5) | (val >> 3); ptrd[1] = (val & M) | (G >> 3); ptrd += 2; } break; case 2: if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char G = (unsigned char)((*(data2++) - _min) * mm) >> 2; ptrd[0] = ((unsigned char)((*(data1++) - _min) * mm) & M) | (G >> 3); ptrd[1] = (G << 5); ptrd += 2; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char G = (unsigned char)((*(data2++) - _min) * mm) >> 2; ptrd[0] = (G << 5); ptrd[1] = ((unsigned char)((*(data1++) - _min) * mm) & M) | (G >> 3); ptrd += 2; } break; default: if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char G = (unsigned char)((*(data2++) - _min) * mm) >> 2; ptrd[0] = ((unsigned char)((*(data1++) - _min) * mm) & M) | (G >> 3); ptrd[1] = (G << 5) | ((unsigned char)((*(data3++) - _min) * mm) >> 3); ptrd += 2; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char G = (unsigned char)((*(data2++) - _min) * mm) >> 2; ptrd[0] = (G << 5) | ((unsigned char)((*(data3++) - _min) * mm) >> 3); ptrd[1] = ((unsigned char)((*(data1++) - _min) * mm) & M) | (G >> 3); ptrd += 2; } } if (ndata != _data) { _render_resize(ndata, img._width, img._height, (unsigned short*)_data, _width, _height); delete[] ndata; } } break; default: { // 24 bits colors, with normalization unsigned int* const ndata = (img._width == _width && img._height == _height) ? (unsigned int*)_data : new unsigned int[(size_t)img._width * img._height]; if (sizeof(int) == 4) { // 32 bits int uses optimized version unsigned int* ptrd = ndata; switch (img._spectrum) { case 1: if (cimg::X11_attr().byte_order == cimg::endianness()) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)((*(data1++) - _min) * mm); *(ptrd++) = (val << 16) | (val << 8) | val; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)((*(data1++) - _min) * mm); *(ptrd++) = (val << 24) | (val << 16) | (val << 8); } break; case 2: if (cimg::X11_attr().byte_order == cimg::endianness()) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) *(ptrd++) = ((unsigned char)((*(data1++) - _min) * mm) << 16) | ((unsigned char)((*(data2++) - _min) * mm) << 8); else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) *(ptrd++) = ((unsigned char)((*(data2++) - _min) * mm) << 16) | ((unsigned char)((*(data1++) - _min) * mm) << 8); break; default: if (cimg::X11_attr().byte_order == cimg::endianness()) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) *(ptrd++) = ((unsigned char)((*(data1++) - _min) * mm) << 16) | ((unsigned char)((*(data2++) - _min) * mm) << 8) | (unsigned char)((*(data3++) - _min) * mm); else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) *(ptrd++) = ((unsigned char)((*(data3++) - _min) * mm) << 24) | ((unsigned char)((*(data2++) - _min) * mm) << 16) | ((unsigned char)((*(data1++) - _min) * mm) << 8); } } else { unsigned char* ptrd = (unsigned char*)ndata; switch (img._spectrum) { case 1: if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)((*(data1++) - _min) * mm); ptrd[0] = 0; ptrd[1] = val; ptrd[2] = val; ptrd[3] = val; ptrd += 4; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)((*(data1++) - _min) * mm); ptrd[0] = val; ptrd[1] = val; ptrd[2] = val; ptrd[3] = 0; ptrd += 4; } break; case 2: if (cimg::X11_attr().byte_order) cimg::swap(data1, data2); for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { ptrd[0] = 0; ptrd[1] = (unsigned char)((*(data2++) - _min) * mm); ptrd[2] = (unsigned char)((*(data1++) - _min) * mm); ptrd[3] = 0; ptrd += 4; } break; default: if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { ptrd[0] = 0; ptrd[1] = (unsigned char)((*(data1++) - _min) * mm); ptrd[2] = (unsigned char)((*(data2++) - _min) * mm); ptrd[3] = (unsigned char)((*(data3++) - _min) * mm); ptrd += 4; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { ptrd[0] = (unsigned char)((*(data3++) - _min) * mm); ptrd[1] = (unsigned char)((*(data2++) - _min) * mm); ptrd[2] = (unsigned char)((*(data1++) - _min) * mm); ptrd[3] = 0; ptrd += 4; } } } if (ndata != _data) { _render_resize(ndata, img._width, img._height, (unsigned int*)_data, _width, _height); delete[] ndata; } } } } cimg_unlock_display(); return *this; } template static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg& img) { img.assign(); Display* dpy = cimg::X11_attr().display; cimg_lock_display(); if (!dpy) { dpy = XOpenDisplay(0); if (!dpy) throw CImgDisplayException( "CImgDisplay::screenshot(): Failed to open X11 display."); } Window root = DefaultRootWindow(dpy); XWindowAttributes gwa; XGetWindowAttributes(dpy, root, &gwa); const int width = gwa.width, height = gwa.height; int _x0 = x0, _y0 = y0, _x1 = x1, _y1 = y1; if (_x0 > _x1) cimg::swap(_x0, _x1); if (_y0 > _y1) cimg::swap(_y0, _y1); XImage* image = 0; if (_x1 >= 0 && _x0 < width && _y1 >= 0 && _y0 < height) { _x0 = std::max(_x0, 0); _y0 = std::max(_y0, 0); _x1 = std::min(_x1, width - 1); _y1 = std::min(_y1, height - 1); image = XGetImage(dpy, root, _x0, _y0, _x1 - _x0 + 1, _y1 - _y0 + 1, AllPlanes, ZPixmap); if (image) { const unsigned long red_mask = image->red_mask, green_mask = image->green_mask, blue_mask = image->blue_mask; img.assign(image->width, image->height, 1, 3); T *pR = img.data(0, 0, 0, 0), *pG = img.data(0, 0, 0, 1), *pB = img.data(0, 0, 0, 2); cimg_forXY(img, x, y) { const unsigned long pixel = XGetPixel(image, x, y); *(pR++) = (T)((pixel & red_mask) >> 16); *(pG++) = (T)((pixel & green_mask) >> 8); *(pB++) = (T)(pixel & blue_mask); } XDestroyImage(image); } } if (!cimg::X11_attr().display) XCloseDisplay(dpy); cimg_unlock_display(); if (img.is_empty()) throw CImgDisplayException( "CImgDisplay::screenshot(): Failed to take screenshot " "with coordinates (%d,%d)-(%d,%d).", x0, y0, x1, y1); } template const CImgDisplay& snapshot(CImg& img) const { if (is_empty()) { img.assign(); return *this; } const unsigned char* ptrs = (unsigned char*)_data; img.assign(_width, _height, 1, 3); T *data1 = img.data(0, 0, 0, 0), *data2 = img.data(0, 0, 0, 1), *data3 = img.data(0, 0, 0, 2); if (cimg::X11_attr().is_blue_first) cimg::swap(data1, data3); switch (cimg::X11_attr().nb_bits) { case 8: { for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = *(ptrs++); *(data1++) = (T)(val & 0xe0); *(data2++) = (T)((val & 0x1c) << 3); *(data3++) = (T)(val << 6); } } break; case 16: { if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val0 = ptrs[0], val1 = ptrs[1]; ptrs += 2; *(data1++) = (T)(val0 & 0xf8); *(data2++) = (T)((val0 << 5) | ((val1 & 0xe0) >> 5)); *(data3++) = (T)(val1 << 3); } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned short val0 = ptrs[0], val1 = ptrs[1]; ptrs += 2; *(data1++) = (T)(val1 & 0xf8); *(data2++) = (T)((val1 << 5) | ((val0 & 0xe0) >> 5)); *(data3++) = (T)(val0 << 3); } } break; default: { if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { ++ptrs; *(data1++) = (T)ptrs[0]; *(data2++) = (T)ptrs[1]; *(data3++) = (T)ptrs[2]; ptrs += 3; } else for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { *(data3++) = (T)ptrs[0]; *(data2++) = (T)ptrs[1]; *(data1++) = (T)ptrs[2]; ptrs += 3; ++ptrs; } } } return *this; } // Windows-based implementation. //------------------------------- #elif cimg_display == 2 bool _is_mouse_tracked, _is_cursor_visible; HANDLE _thread, _is_created, _mutex; HWND _window, _background_window; CLIENTCREATESTRUCT _ccs; unsigned int* _data; DEVMODE _curr_mode; BITMAPINFO _bmi; HDC _hdc; static int screen_width() { DEVMODE mode; mode.dmSize = sizeof(DEVMODE); mode.dmDriverExtra = 0; EnumDisplaySettings(0, ENUM_CURRENT_SETTINGS, &mode); return (int)mode.dmPelsWidth; } static int screen_height() { DEVMODE mode; mode.dmSize = sizeof(DEVMODE); mode.dmDriverExtra = 0; EnumDisplaySettings(0, ENUM_CURRENT_SETTINGS, &mode); return (int)mode.dmPelsHeight; } static void wait_all() { WaitForSingleObject(cimg::Win32_attr().wait_event, INFINITE); } static LRESULT APIENTRY _handle_events(HWND window, UINT msg, WPARAM wParam, LPARAM lParam) { #ifdef _WIN64 CImgDisplay* const disp = (CImgDisplay*)GetWindowLongPtr(window, GWLP_USERDATA); #else CImgDisplay* const disp = (CImgDisplay*)GetWindowLong(window, GWL_USERDATA); #endif MSG st_msg; switch (msg) { case WM_CLOSE: disp->_mouse_x = disp->_mouse_y = -1; disp->_window_x = disp->_window_y = 0; disp->set_button().set_key(0).set_key(0, false)._is_closed = true; ReleaseMutex(disp->_mutex); ShowWindow(disp->_window, SW_HIDE); disp->_is_event = true; SetEvent(cimg::Win32_attr().wait_event); return 0; case WM_SIZE: { while ( PeekMessage(&st_msg, window, WM_SIZE, WM_SIZE, PM_REMOVE)) { } WaitForSingleObject(disp->_mutex, INFINITE); const unsigned int nw = LOWORD(lParam), nh = HIWORD(lParam); if (nw && nh && (nw != disp->_width || nh != disp->_height)) { disp->_window_width = nw; disp->_window_height = nh; disp->_mouse_x = disp->_mouse_y = -1; disp->_is_resized = disp->_is_event = true; SetEvent(cimg::Win32_attr().wait_event); } ReleaseMutex(disp->_mutex); } break; case WM_MOVE: { while ( PeekMessage(&st_msg, window, WM_SIZE, WM_SIZE, PM_REMOVE)) { } WaitForSingleObject(disp->_mutex, INFINITE); const int nx = (int)(short)(LOWORD(lParam)), ny = (int)(short)(HIWORD(lParam)); if (nx != disp->_window_x || ny != disp->_window_y) { disp->_window_x = nx; disp->_window_y = ny; disp->_is_moved = disp->_is_event = true; SetEvent(cimg::Win32_attr().wait_event); } ReleaseMutex(disp->_mutex); } break; case WM_PAINT: disp->paint(); cimg_lock_display(); if (disp->_is_cursor_visible) while (ShowCursor(TRUE) < 0) ; else while (ShowCursor(FALSE) >= 0) ; cimg_unlock_display(); break; case WM_ERASEBKGND: // return 0; break; case WM_KEYDOWN: disp->set_key((unsigned int)wParam); SetEvent(cimg::Win32_attr().wait_event); break; case WM_KEYUP: disp->set_key((unsigned int)wParam, false); SetEvent(cimg::Win32_attr().wait_event); break; case WM_MOUSEMOVE: { while (PeekMessage(&st_msg, window, WM_MOUSEMOVE, WM_MOUSEMOVE, PM_REMOVE)) { } disp->_mouse_x = LOWORD(lParam); disp->_mouse_y = HIWORD(lParam); #if (_WIN32_WINNT >= 0x0400) && !defined(NOTRACKMOUSEEVENT) if (!disp->_is_mouse_tracked) { TRACKMOUSEEVENT tme; tme.cbSize = sizeof(TRACKMOUSEEVENT); tme.dwFlags = TME_LEAVE; tme.hwndTrack = disp->_window; if (TrackMouseEvent(&tme)) disp->_is_mouse_tracked = true; } #endif if (disp->_mouse_x < 0 || disp->_mouse_y < 0 || disp->_mouse_x >= disp->width() || disp->_mouse_y >= disp->height()) disp->_mouse_x = disp->_mouse_y = -1; disp->_is_event = true; SetEvent(cimg::Win32_attr().wait_event); cimg_lock_display(); if (disp->_is_cursor_visible) while (ShowCursor(TRUE) < 0) ; else while (ShowCursor(FALSE) >= 0) ; cimg_unlock_display(); } break; case WM_MOUSELEAVE: { disp->_mouse_x = disp->_mouse_y = -1; disp->_is_mouse_tracked = false; cimg_lock_display(); while (ShowCursor(TRUE) < 0) { } cimg_unlock_display(); } break; case WM_LBUTTONDOWN: disp->set_button(1); SetEvent(cimg::Win32_attr().wait_event); break; case WM_RBUTTONDOWN: disp->set_button(2); SetEvent(cimg::Win32_attr().wait_event); break; case WM_MBUTTONDOWN: disp->set_button(3); SetEvent(cimg::Win32_attr().wait_event); break; case WM_LBUTTONUP: disp->set_button(1, false); SetEvent(cimg::Win32_attr().wait_event); break; case WM_RBUTTONUP: disp->set_button(2, false); SetEvent(cimg::Win32_attr().wait_event); break; case WM_MBUTTONUP: disp->set_button(3, false); SetEvent(cimg::Win32_attr().wait_event); break; case 0x020A: // WM_MOUSEWHEEL: disp->set_wheel((int)((short)HIWORD(wParam)) / 120); SetEvent(cimg::Win32_attr().wait_event); } return DefWindowProc(window, msg, wParam, lParam); } static DWORD WINAPI _events_thread(void* arg) { CImgDisplay* const disp = (CImgDisplay*)(((void**)arg)[0]); const char* const title = (const char*)(((void**)arg)[1]); MSG msg; delete[](void**) arg; disp->_bmi.bmiHeader.biSize = sizeof(BITMAPINFOHEADER); disp->_bmi.bmiHeader.biWidth = disp->width(); disp->_bmi.bmiHeader.biHeight = -disp->height(); disp->_bmi.bmiHeader.biPlanes = 1; disp->_bmi.bmiHeader.biBitCount = 32; disp->_bmi.bmiHeader.biCompression = BI_RGB; disp->_bmi.bmiHeader.biSizeImage = 0; disp->_bmi.bmiHeader.biXPelsPerMeter = 1; disp->_bmi.bmiHeader.biYPelsPerMeter = 1; disp->_bmi.bmiHeader.biClrUsed = 0; disp->_bmi.bmiHeader.biClrImportant = 0; disp->_data = new unsigned int[(size_t)disp->_width * disp->_height]; if (!disp->_is_fullscreen) { // Normal window RECT rect; rect.left = rect.top = 0; rect.right = (LONG)disp->_width - 1; rect.bottom = (LONG)disp->_height - 1; AdjustWindowRect(&rect, WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX, false); const int border1 = (int)((rect.right - rect.left + 1 - disp->_width) / 2), border2 = (int)(rect.bottom - rect.top + 1 - disp->_height - border1), ww = disp->_width + 2 * border1, wh = disp->_height + border1 + border2, sw = CImgDisplay::screen_width(), sh = CImgDisplay::screen_height(); int wx = (int)cimg::round(cimg::rand(0, sw - ww - 1)), wy = (int)cimg::round(cimg::rand(64, sh - wh - 65)); if (wx + ww >= sw) wx = sw - ww; if (wy + wh >= sh) wy = sh - wh; if (wx < 0) wx = 0; if (wy < 0) wy = 0; disp->_window = CreateWindowA( "MDICLIENT", title ? title : " ", WS_OVERLAPPEDWINDOW | (disp->_is_closed ? 0 : WS_VISIBLE), wx, wy, ww, wh, 0, 0, 0, &(disp->_ccs)); if (!disp->_is_closed) { GetWindowRect(disp->_window, &rect); disp->_window_x = rect.left + border1; disp->_window_y = rect.top + border2; } else disp->_window_x = disp->_window_y = 0; } else { // Fullscreen window const unsigned int sx = (unsigned int)screen_width(), sy = (unsigned int)screen_height(); disp->_window = CreateWindowA( "MDICLIENT", title ? title : " ", WS_POPUP | (disp->_is_closed ? 0 : WS_VISIBLE), (sx - disp->_width) / 2, (sy - disp->_height) / 2, disp->_width, disp->_height, 0, 0, 0, &(disp->_ccs)); disp->_window_x = disp->_window_y = 0; } SetForegroundWindow(disp->_window); disp->_hdc = GetDC(disp->_window); disp->_window_width = disp->_width; disp->_window_height = disp->_height; disp->flush(); #ifdef _WIN64 SetWindowLongPtr(disp->_window, GWLP_USERDATA, (LONG_PTR)disp); SetWindowLongPtr(disp->_window, GWLP_WNDPROC, (LONG_PTR)_handle_events); #else SetWindowLong(disp->_window, GWL_USERDATA, (LONG)disp); SetWindowLong(disp->_window, GWL_WNDPROC, (LONG)_handle_events); #endif SetEvent(disp->_is_created); while (GetMessage(&msg, 0, 0, 0)) DispatchMessage(&msg); return 0; } CImgDisplay& _update_window_pos() { if (_is_closed) _window_x = _window_y = -1; else { RECT rect; rect.left = rect.top = 0; rect.right = (LONG)_width - 1; rect.bottom = (LONG)_height - 1; AdjustWindowRect(&rect, WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX, false); const int border1 = (int)((rect.right - rect.left + 1 - _width) / 2), border2 = (int)(rect.bottom - rect.top + 1 - _height - border1); GetWindowRect(_window, &rect); _window_x = rect.left + border1; _window_y = rect.top + border2; } return *this; } void _init_fullscreen() { _background_window = 0; if (!_is_fullscreen || _is_closed) _curr_mode.dmSize = 0; else { DEVMODE mode; unsigned int imode = 0, ibest = 0, bestbpp = 0, bw = ~0U, bh = ~0U; for (mode.dmSize = sizeof(DEVMODE), mode.dmDriverExtra = 0; EnumDisplaySettings(0, imode, &mode); ++imode) { const unsigned int nw = mode.dmPelsWidth, nh = mode.dmPelsHeight; if (nw >= _width && nh >= _height && mode.dmBitsPerPel >= bestbpp && nw <= bw && nh <= bh) { bestbpp = mode.dmBitsPerPel; ibest = imode; bw = nw; bh = nh; } } if (bestbpp) { _curr_mode.dmSize = sizeof(DEVMODE); _curr_mode.dmDriverExtra = 0; EnumDisplaySettings(0, ENUM_CURRENT_SETTINGS, &_curr_mode); EnumDisplaySettings(0, ibest, &mode); ChangeDisplaySettings(&mode, 0); } else _curr_mode.dmSize = 0; const unsigned int sx = (unsigned int)screen_width(), sy = (unsigned int)screen_height(); if (sx != _width || sy != _height) { CLIENTCREATESTRUCT background_ccs; _background_window = CreateWindowA("MDICLIENT", "", WS_POPUP | WS_VISIBLE, 0, 0, sx, sy, 0, 0, 0, &background_ccs); SetForegroundWindow(_background_window); } } } void _desinit_fullscreen() { if (!_is_fullscreen) return; if (_background_window) DestroyWindow(_background_window); _background_window = 0; if (_curr_mode.dmSize) ChangeDisplaySettings(&_curr_mode, 0); _is_fullscreen = false; } CImgDisplay& _assign(const unsigned int dimw, const unsigned int dimh, const char* const ptitle = 0, const unsigned int normalization_type = 3, const bool fullscreen_flag = false, const bool closed_flag = false) { // Allocate space for window title const char* const nptitle = ptitle ? ptitle : ""; const unsigned int s = (unsigned int)std::strlen(nptitle) + 1; char* const tmp_title = s ? new char[s] : 0; if (s) std::memcpy(tmp_title, nptitle, s * sizeof(char)); // Destroy previous window if existing if (!is_empty()) assign(); // Set display variables _width = std::min(dimw, (unsigned int)screen_width()); _height = std::min(dimh, (unsigned int)screen_height()); _normalization = normalization_type < 4 ? normalization_type : 3; _is_fullscreen = fullscreen_flag; _window_x = _window_y = 0; _is_closed = closed_flag; _is_cursor_visible = true; _is_mouse_tracked = false; _title = tmp_title; flush(); if (_is_fullscreen) _init_fullscreen(); // Create event thread void* const arg = (void*)(new void*[2]); ((void**)arg)[0] = (void*)this; ((void**)arg)[1] = (void*)_title; _mutex = CreateMutex(0, FALSE, 0); _is_created = CreateEvent(0, FALSE, FALSE, 0); _thread = CreateThread(0, 0, _events_thread, arg, 0, 0); WaitForSingleObject(_is_created, INFINITE); return *this; } CImgDisplay& assign() { if (is_empty()) return flush(); DestroyWindow(_window); TerminateThread(_thread, 0); delete[] _data; delete[] _title; _data = 0; _title = 0; if (_is_fullscreen) _desinit_fullscreen(); _width = _height = _normalization = _window_width = _window_height = 0; _window_x = _window_y = 0; _is_fullscreen = false; _is_closed = true; _min = _max = 0; _title = 0; flush(); return *this; } CImgDisplay& assign(const unsigned int dimw, const unsigned int dimh, const char* const title = 0, const unsigned int normalization_type = 3, const bool fullscreen_flag = false, const bool closed_flag = false) { if (!dimw || !dimh) return assign(); _assign(dimw, dimh, title, normalization_type, fullscreen_flag, closed_flag); _min = _max = 0; std::memset(_data, 0, sizeof(unsigned int) * _width * _height); return paint(); } template CImgDisplay& assign(const CImg& img, const char* const title = 0, const unsigned int normalization_type = 3, const bool fullscreen_flag = false, const bool closed_flag = false) { if (!img) return assign(); CImg tmp; const CImg& nimg = (img._depth == 1) ? img : (tmp = img.get_projections2d((img._width - 1) / 2, (img._height - 1) / 2, (img._depth - 1) / 2)); _assign(nimg._width, nimg._height, title, normalization_type, fullscreen_flag, closed_flag); if (_normalization == 2) _min = (float)nimg.min_max(_max); return display(nimg); } template CImgDisplay& assign(const CImgList& list, const char* const title = 0, const unsigned int normalization_type = 3, const bool fullscreen_flag = false, const bool closed_flag = false) { if (!list) return assign(); CImg tmp; const CImg img = list > 'x', &nimg = (img._depth == 1) ? img : (tmp = img.get_projections2d( (img._width - 1) / 2, (img._height - 1) / 2, (img._depth - 1) / 2)); _assign(nimg._width, nimg._height, title, normalization_type, fullscreen_flag, closed_flag); if (_normalization == 2) _min = (float)nimg.min_max(_max); return display(nimg); } CImgDisplay& assign(const CImgDisplay& disp) { if (!disp) return assign(); _assign(disp._width, disp._height, disp._title, disp._normalization, disp._is_fullscreen, disp._is_closed); std::memcpy(_data, disp._data, sizeof(unsigned int) * _width * _height); return paint(); } CImgDisplay& resize(const int nwidth, const int nheight, const bool force_redraw = true) { if (!nwidth || !nheight || (is_empty() && (nwidth < 0 || nheight < 0))) return assign(); if (is_empty()) return assign(nwidth, nheight); const unsigned int tmpdimx = (nwidth > 0) ? nwidth : (-nwidth * _width / 100), tmpdimy = (nheight > 0) ? nheight : (-nheight * _height / 100), dimx = tmpdimx ? tmpdimx : 1, dimy = tmpdimy ? tmpdimy : 1; if (_width != dimx || _height != dimy || _window_width != dimx || _window_height != dimy) { if (_window_width != dimx || _window_height != dimy) { RECT rect; rect.left = rect.top = 0; rect.right = (LONG)dimx - 1; rect.bottom = (LONG)dimy - 1; AdjustWindowRect(&rect, WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX, false); const int cwidth = rect.right - rect.left + 1, cheight = rect.bottom - rect.top + 1; SetWindowPos(_window, 0, 0, 0, cwidth, cheight, SWP_NOMOVE | SWP_NOZORDER | SWP_NOCOPYBITS); } if (_width != dimx || _height != dimy) { unsigned int* const ndata = new unsigned int[dimx * dimy]; if (force_redraw) _render_resize(_data, _width, _height, ndata, dimx, dimy); else std::memset(ndata, 0x80, sizeof(unsigned int) * dimx * dimy); delete[] _data; _data = ndata; _bmi.bmiHeader.biWidth = (LONG)dimx; _bmi.bmiHeader.biHeight = -(int)dimy; _width = dimx; _height = dimy; } _window_width = dimx; _window_height = dimy; show(); } _is_resized = false; if (_is_fullscreen) move((screen_width() - width()) / 2, (screen_height() - height()) / 2); if (force_redraw) return paint(); return *this; } CImgDisplay& toggle_fullscreen(const bool force_redraw = true) { if (is_empty()) return *this; if (force_redraw) { const cimg_ulong buf_size = (cimg_ulong)_width * _height * 4; void* odata = std::malloc(buf_size); if (odata) { std::memcpy(odata, _data, buf_size); assign(_width, _height, _title, _normalization, !_is_fullscreen, false); std::memcpy(_data, odata, buf_size); std::free(odata); } return paint(); } return assign(_width, _height, _title, _normalization, !_is_fullscreen, false); } CImgDisplay& show() { if (is_empty() || !_is_closed) return *this; _is_closed = false; if (_is_fullscreen) _init_fullscreen(); ShowWindow(_window, SW_SHOW); _update_window_pos(); return paint(); } CImgDisplay& close() { if (is_empty() || _is_closed) return *this; _is_closed = true; if (_is_fullscreen) _desinit_fullscreen(); ShowWindow(_window, SW_HIDE); _window_x = _window_y = 0; return *this; } CImgDisplay& move(const int posx, const int posy) { if (is_empty()) return *this; if (_window_x != posx || _window_y != posy) { if (!_is_fullscreen) { RECT rect; rect.left = rect.top = 0; rect.right = (LONG)_window_width - 1; rect.bottom = (LONG)_window_height - 1; AdjustWindowRect(&rect, WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX, false); const int border1 = (int)((rect.right - rect.left + 1 - _width) / 2), border2 = (int)(rect.bottom - rect.top + 1 - _height - border1); SetWindowPos(_window, 0, posx - border1, posy - border2, 0, 0, SWP_NOSIZE | SWP_NOZORDER); } else SetWindowPos(_window, 0, posx, posy, 0, 0, SWP_NOSIZE | SWP_NOZORDER); _window_x = posx; _window_y = posy; show(); } _is_moved = false; return *this; } CImgDisplay& show_mouse() { if (is_empty()) return *this; _is_cursor_visible = true; return *this; } CImgDisplay& hide_mouse() { if (is_empty()) return *this; _is_cursor_visible = false; return *this; } CImgDisplay& set_mouse(const int posx, const int posy) { if (is_empty() || _is_closed || posx < 0 || posy < 0) return *this; _update_window_pos(); const int res = (int)SetCursorPos(_window_x + posx, _window_y + posy); if (res) { _mouse_x = posx; _mouse_y = posy; } return *this; } CImgDisplay& set_title(const char* const format, ...) { if (is_empty()) return *this; char* const tmp = new char[1024]; va_list ap; va_start(ap, format); cimg_vsnprintf(tmp, 1024, format, ap); va_end(ap); if (!std::strcmp(_title, tmp)) { delete[] tmp; return *this; } delete[] _title; const unsigned int s = (unsigned int)std::strlen(tmp) + 1; _title = new char[s]; std::memcpy(_title, tmp, s * sizeof(char)); SetWindowTextA(_window, tmp); delete[] tmp; return *this; } template CImgDisplay& display(const CImg& img) { if (!img) throw CImgArgumentException(_cimgdisplay_instance "display(): Empty specified image.", cimgdisplay_instance); if (is_empty()) return assign(img); return render(img).paint(); } CImgDisplay& paint() { if (_is_closed) return *this; WaitForSingleObject(_mutex, INFINITE); SetDIBitsToDevice(_hdc, 0, 0, _width, _height, 0, 0, 0, _height, _data, &_bmi, DIB_RGB_COLORS); ReleaseMutex(_mutex); return *this; } template CImgDisplay& render(const CImg& img) { if (!img) throw CImgArgumentException(_cimgdisplay_instance "render(): Empty specified image.", cimgdisplay_instance); if (is_empty()) return *this; if (img._depth != 1) return render(img.get_projections2d((img._width - 1) / 2, (img._height - 1) / 2, (img._depth - 1) / 2)); const T *data1 = img._data, *data2 = (img._spectrum >= 2) ? img.data(0, 0, 0, 1) : data1, *data3 = (img._spectrum >= 3) ? img.data(0, 0, 0, 2) : data1; WaitForSingleObject(_mutex, INFINITE); unsigned int *const ndata = (img._width == _width && img._height == _height) ? _data : new unsigned int[(size_t)img._width * img._height], *ptrd = ndata; if (!_normalization || (_normalization == 3 && cimg::type::string() == cimg::type::string())) { _min = _max = 0; switch (img._spectrum) { case 1: { for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)*(data1++); *(ptrd++) = (unsigned int)((val << 16) | (val << 8) | val); } } break; case 2: { for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char R = (unsigned char)*(data1++), G = (unsigned char)*(data2++); *(ptrd++) = (unsigned int)((R << 16) | (G << 8)); } } break; default: { for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char R = (unsigned char)*(data1++), G = (unsigned char)*(data2++), B = (unsigned char)*(data3++); *(ptrd++) = (unsigned int)((R << 16) | (G << 8) | B); } } } } else { if (_normalization == 3) { if (cimg::type::is_float()) _min = (float)img.min_max(_max); else { _min = (float)cimg::type::min(); _max = (float)cimg::type::max(); } } else if ((_min > _max) || _normalization == 1) _min = (float)img.min_max(_max); const float delta = _max - _min, mm = 255 / (delta ? delta : 1.f); switch (img._spectrum) { case 1: { for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char val = (unsigned char)((*(data1++) - _min) * mm); *(ptrd++) = (unsigned int)((val << 16) | (val << 8) | val); } } break; case 2: { for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char R = (unsigned char)((*(data1++) - _min) * mm), G = (unsigned char)((*(data2++) - _min) * mm); *(ptrd++) = (unsigned int)((R << 16) | (G << 8)); } } break; default: { for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned char R = (unsigned char)((*(data1++) - _min) * mm), G = (unsigned char)((*(data2++) - _min) * mm), B = (unsigned char)((*(data3++) - _min) * mm); *(ptrd++) = (unsigned int)((R << 16) | (G << 8) | B); } } } } if (ndata != _data) { _render_resize(ndata, img._width, img._height, _data, _width, _height); delete[] ndata; } ReleaseMutex(_mutex); return *this; } template static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg& img) { img.assign(); HDC hScreen = GetDC(GetDesktopWindow()); if (hScreen) { const int width = GetDeviceCaps(hScreen, HORZRES), height = GetDeviceCaps(hScreen, VERTRES); int _x0 = x0, _y0 = y0, _x1 = x1, _y1 = y1; if (_x0 > _x1) cimg::swap(_x0, _x1); if (_y0 > _y1) cimg::swap(_y0, _y1); if (_x1 >= 0 && _x0 < width && _y1 >= 0 && _y0 < height) { _x0 = std::max(_x0, 0); _y0 = std::max(_y0, 0); _x1 = std::min(_x1, width - 1); _y1 = std::min(_y1, height - 1); const int bw = _x1 - _x0 + 1, bh = _y1 - _y0 + 1; HDC hdcMem = CreateCompatibleDC(hScreen); if (hdcMem) { HBITMAP hBitmap = CreateCompatibleBitmap(hScreen, bw, bh); if (hBitmap) { HGDIOBJ hOld = SelectObject(hdcMem, hBitmap); if (hOld && BitBlt(hdcMem, 0, 0, bw, bh, hScreen, _x0, _y0, SRCCOPY) && SelectObject(hdcMem, hOld)) { BITMAPINFOHEADER bmi; bmi.biSize = sizeof(BITMAPINFOHEADER); bmi.biWidth = bw; bmi.biHeight = -bh; bmi.biPlanes = 1; bmi.biBitCount = 32; bmi.biCompression = BI_RGB; bmi.biSizeImage = 0; bmi.biXPelsPerMeter = bmi.biYPelsPerMeter = 0; bmi.biClrUsed = bmi.biClrImportant = 0; unsigned char* buf = new unsigned char[4 * bw * bh]; if (GetDIBits(hdcMem, hBitmap, 0, bh, buf, (BITMAPINFO*)&bmi, DIB_RGB_COLORS)) { img.assign(bw, bh, 1, 3); const unsigned char* ptrs = buf; T *pR = img.data(0, 0, 0, 0), *pG = img.data(0, 0, 0, 1), *pB = img.data(0, 0, 0, 2); cimg_forXY(img, x, y) { *(pR++) = (T)ptrs[2]; *(pG++) = (T)ptrs[1]; *(pB++) = (T)ptrs[0]; ptrs += 4; } } delete[] buf; } DeleteObject(hBitmap); } DeleteDC(hdcMem); } } ReleaseDC(GetDesktopWindow(), hScreen); } if (img.is_empty()) throw CImgDisplayException( "CImgDisplay::screenshot(): Failed to take screenshot " "with coordinates (%d,%d)-(%d,%d).", x0, y0, x1, y1); } template const CImgDisplay& snapshot(CImg& img) const { if (is_empty()) { img.assign(); return *this; } const unsigned int* ptrs = _data; img.assign(_width, _height, 1, 3); T *data1 = img.data(0, 0, 0, 0), *data2 = img.data(0, 0, 0, 1), *data3 = img.data(0, 0, 0, 2); for (cimg_ulong xy = (cimg_ulong)img._width * img._height; xy > 0; --xy) { const unsigned int val = *(ptrs++); *(data1++) = (T)(unsigned char)(val >> 16); *(data2++) = (T)(unsigned char)((val >> 8) & 0xFF); *(data3++) = (T)(unsigned char)(val & 0xFF); } return *this; } #endif //@} }; // struct CImgDisplay { ... /* #-------------------------------------- # # # # Definition of the CImg structure # # # #-------------------------------------- */ //! Class representing an image (up to 4 dimensions wide), each pixel being of //! type \c T. /** This is the main class of the %CImg Library. It declares and constructs an image, allows access to its pixel values, and is able to perform various image operations. \par Image representation A %CImg image is defined as an instance of the container \c CImg, which contains a regular grid of pixels, each pixel value being of type \c T. The image grid can have up to 4 dimensions: width, height, depth and number of channels. Usually, the three first dimensions are used to describe spatial coordinates (x,y,z), while the number of channels is rather used as a vector-valued dimension (it may describe the R,G,B color channels for instance). If you need a fifth dimension, you can use image lists \c CImgList rather than simple images \c CImg. Thus, the \c CImg class is able to represent volumetric images of vector-valued pixels, as well as images with less dimensions (1D scalar signal, 2D color images, ...). Most member functions of the class CImg<\c T> are designed to handle this maximum case of (3+1) dimensions. Concerning the pixel value type \c T: fully supported template types are the basic C++ types: unsigned char, char, short, unsigned int, int, unsigned long, long, float, double, ... . Typically, fast image display can be done using CImg images, while complex image processing algorithms may be rather coded using CImg or CImg images that have floating-point pixel values. The default value for the template T is \c float. Using your own template types may be possible. However, you will certainly have to define the complete set of arithmetic and logical operators for your class. \par Image structure The \c CImg structure contains \e six fields: - \c _width defines the number of \a columns of the image (size along the X-axis). - \c _height defines the number of \a rows of the image (size along the Y-axis). - \c _depth defines the number of \a slices of the image (size along the Z-axis). - \c _spectrum defines the number of \a channels of the image (size along the C-axis). - \c _data defines a \a pointer to the \a pixel \a data (of type \c T). - \c _is_shared is a boolean that tells if the memory buffer \c data is shared with another image. You can access these fields publicly although it is recommended to use the dedicated functions width(), height(), depth(), spectrum() and ptr() to do so. Image dimensions are not limited to a specific range (as long as you got enough available memory). A value of \e 1 usually means that the corresponding dimension is \a flat. If one of the dimensions is \e 0, or if the data pointer is null, the image is considered as \e empty. Empty images should not contain any pixel data and thus, will not be processed by CImg member functions (a CImgInstanceException will be thrown instead). Pixel data are stored in memory, in a non interlaced mode (See \ref cimg_storage). \par Image declaration and construction Declaring an image can be done by using one of the several available constructors. Here is a list of the most used: - Construct images from arbitrary dimensions: - CImg img; declares an empty image. - CImg img(128,128); declares a 128x128 greyscale image with \c unsigned \c char pixel values. - CImg img(3,3); declares a 3x3 matrix with \c double coefficients. - CImg img(256,256,1,3); declares a 256x256x1x3 (color) image (colors are stored as an image with three channels). - CImg img(128,128,128); declares a 128x128x128 volumetric and greyscale image (with \c double pixel values). - CImg<> img(128,128,128,3); declares a 128x128x128 volumetric color image (with \c float pixels, which is the default value of the template parameter \c T). - \b Note: images pixels are not automatically initialized to 0. You may use the function \c fill() to do it, or use the specific constructor taking 5 parameters like this: CImg<> img(128,128,128,3,0); declares a 128x128x128 volumetric color image with all pixel values to 0. - Construct images from filenames: - CImg img("image.jpg"); reads a JPEG color image from the file "image.jpg". - CImg img("analyze.hdr"); reads a volumetric image (ANALYZE7.5 format) from the file "analyze.hdr". - \b Note: You need to install ImageMagick to be able to read common compressed image formats (JPG,PNG, ...) (See \ref cimg_files_io). - Construct images from C-style arrays: - CImg img(data_buffer,256,256); constructs a 256x256 greyscale image from a \c int* buffer \c data_buffer (of size 256x256=65536). - CImg img(data_buffer,256,256,1,3); constructs a 256x256 color image from a \c unsigned \c char* buffer \c data_buffer (where R,G,B channels follow each others). The complete list of constructors can be found here. \par Most useful functions The \c CImg class contains a lot of functions that operates on images. Some of the most useful are: - operator()(): Read or write pixel values. - display(): displays the image in a new window. **/ template struct CImg { unsigned int _width, _height, _depth, _spectrum; bool _is_shared; T* _data; //! Simple iterator type, to loop through each pixel value of an image //! instance. /** \note - The \c CImg::iterator type is defined to be a T*. - You will seldom have to use iterators in %CImg, most classical operations being achieved (often in a faster way) using methods of \c CImg. \par Example \code CImg img("reference.jpg"); // Load image from file // Set all pixels to '0', with a CImg iterator. for (CImg::iterator it = img.begin(), it::const_iterator type is defined to be a \c const \c T*. - You will seldom have to use iterators in %CImg, most classical operations being achieved (often in a faster way) using methods of \c CImg. \par Example \code const CImg img("reference.jpg"); // Load image from file float sum = 0; // Compute sum of all pixel values, with a CImg iterator. for (CImg::iterator it = img.begin(), it::value_type type of a \c CImg is defined to be a \c T. - \c CImg::value_type is actually not used in %CImg methods. It has been mainly defined for compatibility with STL naming conventions. **/ typedef T value_type; // Define common types related to template type T. typedef typename cimg::superset::type Tbool; typedef typename cimg::superset::type Tuchar; typedef typename cimg::superset::type Tchar; typedef typename cimg::superset::type Tushort; typedef typename cimg::superset::type Tshort; typedef typename cimg::superset::type Tuint; typedef typename cimg::superset::type Tint; typedef typename cimg::superset::type Tulong; typedef typename cimg::superset::type Tlong; typedef typename cimg::superset::type Tfloat; typedef typename cimg::superset::type Tdouble; typedef typename cimg::last::type boolT; typedef typename cimg::last::type ucharT; typedef typename cimg::last::type charT; typedef typename cimg::last::type ushortT; typedef typename cimg::last::type shortT; typedef typename cimg::last::type uintT; typedef typename cimg::last::type intT; typedef typename cimg::last::type ulongT; typedef typename cimg::last::type longT; typedef typename cimg::last::type uint64T; typedef typename cimg::last::type int64T; typedef typename cimg::last::type floatT; typedef typename cimg::last::type doubleT; //@} //--------------------------- // //! \name Plugins //@{ //--------------------------- #ifdef cimg_plugin #include cimg_plugin #endif #ifdef cimg_plugin1 #include cimg_plugin1 #endif #ifdef cimg_plugin2 #include cimg_plugin2 #endif #ifdef cimg_plugin3 #include cimg_plugin3 #endif #ifdef cimg_plugin4 #include cimg_plugin4 #endif #ifdef cimg_plugin5 #include cimg_plugin5 #endif #ifdef cimg_plugin6 #include cimg_plugin6 #endif #ifdef cimg_plugin7 #include cimg_plugin7 #endif #ifdef cimg_plugin8 #include cimg_plugin8 #endif //@} //--------------------------------------------------------- // //! \name Constructors / Destructor / Instance Management //@{ //--------------------------------------------------------- //! Destroy image. /** \note - The pixel buffer data() is deallocated if necessary, e.g. for non-empty and non-shared image instances. - Destroying an empty or shared image does nothing actually. \warning - When destroying a non-shared image, make sure that you will \e not operate on a remaining shared image that shares its buffer with the destroyed instance, in order to avoid further invalid memory access (to a deallocated buffer). **/ ~CImg() { if (!_is_shared) delete[] _data; } //! Construct empty image. /** \note - An empty image has no pixel data and all of its dimensions width(), height(), depth(), spectrum() are set to \c 0, as well as its pixel buffer pointer data(). - An empty image may be re-assigned afterwards, e.g. with the family of assign(unsigned int,unsigned int,unsigned int,unsigned int) methods, or by operator=(const CImg&). In all cases, the type of pixels stays \c T. - An empty image is never shared. \par Example \code CImg img1, img2; // Construct two empty images img1.assign(256,256,1,3); // Re-assign 'img1' to be a 256x256x1x3 (color) image img2 = img1.get_rand(0,255); // Re-assign 'img2' to be a random-valued version of 'img1' img2.assign(); // Re-assign 'img2' to be an empty image again \endcode **/ CImg() : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) {} //! Construct image with specified size. /** \param size_x Image width(). \param size_y Image height(). \param size_z Image depth(). \param size_c Image spectrum() (number of channels). \note - It is able to create only \e non-shared images, and allocates thus a pixel buffer data() for each constructed image instance. - Setting one dimension \c size_x,\c size_y,\c size_z or \c size_c to \c 0 leads to the construction of an \e empty image. - A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated (e.g. when requested size is too big for available memory). \warning - The allocated pixel buffer is \e not filled with a default value, and is likely to contain garbage values. In order to initialize pixel values during construction (e.g. with \c 0), use constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,T) instead. \par Example \code CImg img1(256,256,1,3); // Construct a 256x256x1x3 (color) image, filled with garbage values CImg img2(256,256,1,3,0); // Construct a 256x256x1x3 (color) image, filled with value '0' \endcode **/ explicit CImg(const unsigned int size_x, const unsigned int size_y = 1, const unsigned int size_z = 1, const unsigned int size_c = 1) : _is_shared(false) { size_t siz = (size_t)size_x * size_y * size_z * size_c; if (siz) { _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; try { _data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "CImg(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * size_x * size_y * size_z * size_c), size_x, size_y, size_z, size_c); } } else { _width = _height = _depth = _spectrum = 0; _data = 0; } } //! Construct image with specified size and initialize pixel values. /** \param size_x Image width(). \param size_y Image height(). \param size_z Image depth(). \param size_c Image spectrum() (number of channels). \param value Initialization value. \note - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills the pixel buffer with the specified \c value. \warning - It cannot be used to construct a vector-valued image and initialize it with \e vector-valued pixels (e.g. RGB vector, for color images). For this task, you may use fillC() after construction. **/ CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const T& value) : _is_shared(false) { const size_t siz = (size_t)size_x * size_y * size_z * size_c; if (siz) { _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; try { _data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "CImg(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * size_x * size_y * size_z * size_c), size_x, size_y, size_z, size_c); } fill(value); } else { _width = _height = _depth = _spectrum = 0; _data = 0; } } //! Construct image with specified size and initialize pixel values from a //! sequence of integers. /** Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, and initialize pixel values from the specified sequence of integers \c value0,\c value1,\c ... \param size_x Image width(). \param size_y Image height(). \param size_z Image depth(). \param size_c Image spectrum() (number of channels). \param value0 First value of the initialization sequence (must be an \e integer). \param value1 Second value of the initialization sequence (must be an \e integer). \param ... \note - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills the pixel buffer with a sequence of specified integer values. \warning - You must specify \e exactly \c size_x*\c size_y*\c size_z*\c size_c integers in the initialization sequence. Otherwise, the constructor may crash or fill your image pixels with garbage. \par Example \code const CImg img(2,2,1,3, // Construct a 2x2 color (RGB) image 0,255,0,255, // Set the 4 values for the red component 0,0,255,255, // Set the 4 values for the green component 64,64,64,64); // Set the 4 values for the blue component img.resize(150,150).display(); \endcode \image html ref_constructor1.jpg **/ CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const int value0, const int value1, ...) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { #define _CImg_stdarg(img, a0, a1, N, t) \ { \ size_t _siz = (size_t)N; \ if (_siz--) { \ va_list ap; \ va_start(ap, a1); \ T* ptrd = (img)._data; \ *(ptrd++) = (T)a0; \ if (_siz--) { \ *(ptrd++) = (T)a1; \ for (; _siz; --_siz) *(ptrd++) = (T)va_arg(ap, t); \ } \ va_end(ap); \ } \ } assign(size_x, size_y, size_z, size_c); _CImg_stdarg(*this, value0, value1, (size_t)size_x * size_y * size_z * size_c, int); } #if cimg_use_cpp11 == 1 //! Construct image with specified size and initialize pixel values from an //! initializer list of integers. /** Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, and initialize pixel values from the specified initializer list of integers { \c value0,\c value1,\c ... } \param size_x Image width(). \param size_y Image height(). \param size_z Image depth(). \param size_c Image spectrum() (number of channels). \param { value0, value1, ... } Initialization list \param repeat_values Tells if the value filling process is repeated over the image. \note - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills the pixel buffer with a sequence of specified integer values. \par Example \code const CImg img(2,2,1,3, // Construct a 2x2 color (RGB) image { 0,255,0,255, // Set the 4 values for the red component 0,0,255,255, // Set the 4 values for the green component 64,64,64,64 }); // Set the 4 values for the blue component img.resize(150,150).display(); \endcode \image html ref_constructor1.jpg **/ template CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const std::initializer_list values, const bool repeat_values = true) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { #define _cimg_constructor_cpp11(repeat_values) \ auto it = values.begin(); \ size_t siz = size(); \ if (repeat_values) \ for (T* ptrd = _data; siz--;) { \ *(ptrd++) = (T)(*(it++)); \ if (it == values.end()) it = values.begin(); \ } \ else { \ siz = std::min(siz, values.size()); \ for (T* ptrd = _data; siz--;) *(ptrd++) = (T)(*(it++)); \ } assign(size_x, size_y, size_z, size_c); _cimg_constructor_cpp11(repeat_values); } template CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, std::initializer_list values, const bool repeat_values = true) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { assign(size_x, size_y, size_z); _cimg_constructor_cpp11(repeat_values); } template CImg(const unsigned int size_x, const unsigned int size_y, std::initializer_list values, const bool repeat_values = true) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { assign(size_x, size_y); _cimg_constructor_cpp11(repeat_values); } template CImg(const unsigned int size_x, std::initializer_list values, const bool repeat_values = true) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { assign(size_x); _cimg_constructor_cpp11(repeat_values); } //! Construct single channel 1D image with pixel values and width obtained //! from an initializer list of integers. /** Construct a new image instance of size \c width x \c 1 x \c 1 x \c 1, with pixels of type \c T, and initialize pixel values from the specified initializer list of integers { \c value0,\c value1,\c ... }. Image width is given by the size of the initializer list. \param { value0, value1, ... } Initialization list \note - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int) with height=1, depth=1, and spectrum=1, but it also fills the pixel buffer with a sequence of specified integer values. \par Example \code const CImg img = {10,20,30,20,10 }; // Construct a 5x1 image with one channel, and set its pixel values img.resize(150,150).display(); \endcode \image html ref_constructor1.jpg **/ template CImg(const std::initializer_list values) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { assign(values.size(), 1, 1, 1); auto it = values.begin(); unsigned int siz = _width; for (T* ptrd = _data; siz--;) *(ptrd++) = (T)(*(it++)); } template CImg& operator=(std::initializer_list values) { _cimg_constructor_cpp11(siz > values.size()); return *this; } #endif //! Construct image with specified size and initialize pixel values from a //! sequence of doubles. /** Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, and initialize pixel values from the specified sequence of doubles \c value0,\c value1,\c ... \param size_x Image width(). \param size_y Image height(). \param size_z Image depth(). \param size_c Image spectrum() (number of channels). \param value0 First value of the initialization sequence (must be a \e double). \param value1 Second value of the initialization sequence (must be a \e double). \param ... \note - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...), but takes a sequence of double values instead of integers. \warning - You must specify \e exactly \c dx*\c dy*\c dz*\c dc doubles in the initialization sequence. Otherwise, the constructor may crash or fill your image with garbage. For instance, the code below will probably crash on most platforms: \code const CImg img(2,2,1,1, 0.5,0.5,255,255); // FAIL: The two last arguments are 'int', not 'double'! \endcode **/ CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const double value0, const double value1, ...) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { assign(size_x, size_y, size_z, size_c); _CImg_stdarg(*this, value0, value1, (size_t)size_x * size_y * size_z * size_c, double); } //! Construct image with specified size and initialize pixel values from a //! value string. /** Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, and initializes pixel values from the specified string \c values. \param size_x Image width(). \param size_y Image height(). \param size_z Image depth(). \param size_c Image spectrum() (number of channels). \param values Value string describing the way pixel values are set. \param repeat_values Tells if the value filling process is repeated over the image. \note - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills the pixel buffer with values described in the value string \c values. - Value string \c values may describe two different filling processes: - Either \c values is a sequences of values assigned to the image pixels, as in "1,2,3,7,8,2". In this case, set \c repeat_values to \c true to periodically fill the image with the value sequence. - Either, \c values is a formula, as in "cos(x/10)*sin(y/20)". In this case, parameter \c repeat_values is pointless. - For both cases, specifying \c repeat_values is mandatory. It disambiguates the possible overloading of constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,T) with \c T being a const char*. - A \c CImgArgumentException is thrown when an invalid value string \c values is specified. \par Example \code const CImg img1(129,129,1,3,"0,64,128,192,255",true), // Construct image from a value sequence img2(129,129,1,3,"if(c==0,255*abs(cos(x/10)),1.8*y)",false); // Construct image from a formula (img1,img2).display(); \endcode \image html ref_constructor2.jpg **/ CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const char* const values, const bool repeat_values) : _is_shared(false) { const size_t siz = (size_t)size_x * size_y * size_z * size_c; if (siz) { _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; try { _data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "CImg(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * size_x * size_y * size_z * size_c), size_x, size_y, size_z, size_c); } fill(values, repeat_values); } else { _width = _height = _depth = _spectrum = 0; _data = 0; } } //! Construct image with specified size and initialize pixel values from a //! memory buffer. /** Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, and initializes pixel values from the specified \c t* memory buffer. \param values Pointer to the input memory buffer. \param size_x Image width(). \param size_y Image height(). \param size_z Image depth(). \param size_c Image spectrum() (number of channels). \param is_shared Tells if input memory buffer must be shared by the current instance. \note - If \c is_shared is \c false, the image instance allocates its own pixel buffer, and values from the specified input buffer are copied to the instance buffer. If buffer types \c T and \c t are different, a regular static cast is performed during buffer copy. - Otherwise, the image instance does \e not allocate a new buffer, and uses the input memory buffer as its own pixel buffer. This case requires that types \c T and \c t are the same. Later, destroying such a shared image will not deallocate the pixel buffer, this task being obviously charged to the initial buffer allocator. - A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated (e.g. when requested size is too big for available memory). \warning - You must take care when operating on a shared image, since it may have an invalid pixel buffer pointer data() (e.g. already deallocated). \par Example \code unsigned char tab[256*256] = { 0 }; CImg img1(tab,256,256,1,1,false), // Construct new non-shared image from buffer 'tab' img2(tab,256,256,1,1,true); // Construct new shared-image from buffer 'tab' tab[1024] = 255; // Here, 'img2' is indirectly modified, but not 'img1' \endcode **/ template CImg(const t* const values, const unsigned int size_x, const unsigned int size_y = 1, const unsigned int size_z = 1, const unsigned int size_c = 1, const bool is_shared = false) : _is_shared(false) { if (is_shared) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgArgumentException( _cimg_instance "CImg(): Invalid construction request of a (%u,%u,%u,%u) " "shared instance " "from a (%s*) buffer (pixel types are different).", cimg_instance, size_x, size_y, size_z, size_c, CImg::pixel_type()); } const size_t siz = (size_t)size_x * size_y * size_z * size_c; if (values && siz) { _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; try { _data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "CImg(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * size_x * size_y * size_z * size_c), size_x, size_y, size_z, size_c); } const t* ptrs = values; cimg_for(*this, ptrd, T)* ptrd = (T) * (ptrs++); } else { _width = _height = _depth = _spectrum = 0; _data = 0; } } //! Construct image with specified size and initialize pixel values from a //! memory buffer \specialization. CImg(const T* const values, const unsigned int size_x, const unsigned int size_y = 1, const unsigned int size_z = 1, const unsigned int size_c = 1, const bool is_shared = false) { const size_t siz = (size_t)size_x * size_y * size_z * size_c; if (values && siz) { _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; _is_shared = is_shared; if (_is_shared) _data = const_cast(values); else { try { _data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "CImg(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * size_x * size_y * size_z * size_c), size_x, size_y, size_z, size_c); } std::memcpy(_data, values, siz * sizeof(T)); } } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } } //! Construct image from memory buffer with specified size and pixel //! ordering scheme. template CImg(const t* const values, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const char* const axes_order) : _is_shared(false) { const size_t siz = (size_t)size_x * size_y * size_z * size_c; if (values && siz) { unsigned char s_code[4] = {0, 1, 2, 3}, n_code[4] = {0}; for (unsigned int l = 0; axes_order[l]; ++l) { int c = cimg::lowercase(axes_order[l]); if (l >= 4 || (c != 'x' && c != 'y' && c != 'z' && c != 'c')) { *s_code = 4; break; } else { ++n_code[c %= 4]; s_code[l] = c; } } if (*axes_order && *s_code < 4 && *n_code <= 1 && n_code[1] <= 1 && n_code[2] <= 1 && n_code[3] <= 1) { const unsigned int code = (s_code[0] << 12) | (s_code[1] << 8) | (s_code[2] << 4) | (s_code[3]); int s0 = 0, s1 = 0, s2 = 0, s3 = 0; const char* inv_order = 0; switch (code) { case 0x0123: inv_order = "xyzc"; s0 = size_x; s1 = size_y; s2 = size_z; s3 = size_c; break; // xyzc case 0x0132: inv_order = "xyzc"; s0 = size_x; s1 = size_y; s2 = size_c; s3 = size_z; break; // xycz case 0x0213: inv_order = "xzyc"; s0 = size_x; s1 = size_z; s2 = size_y; s3 = size_c; break; // xzyc case 0x0231: inv_order = "xcyz"; s0 = size_x; s1 = size_z; s2 = size_c; s3 = size_y; break; // xzcy case 0x0312: inv_order = "xzcy"; s0 = size_x; s1 = size_c; s2 = size_y; s3 = size_z; break; // xcyz case 0x0321: inv_order = "xczy"; s0 = size_x; s1 = size_c; s2 = size_z; s3 = size_y; break; // xczy case 0x1023: inv_order = "yxzc"; s0 = size_y; s1 = size_x; s2 = size_z; s3 = size_c; break; // yxzc case 0x1032: inv_order = "yxcz"; s0 = size_y; s1 = size_x; s2 = size_c; s3 = size_z; break; // yxcz case 0x1203: inv_order = "zxyc"; s0 = size_y; s1 = size_z; s2 = size_x; s3 = size_c; break; // yzxc case 0x1230: inv_order = "cxyz"; s0 = size_y; s1 = size_z; s2 = size_c; s3 = size_x; break; // yzcx case 0x1302: inv_order = "zxcy"; s0 = size_y; s1 = size_c; s2 = size_x; s3 = size_z; break; // ycxz case 0x1320: inv_order = "cxzy"; s0 = size_y; s1 = size_c; s2 = size_z; s3 = size_x; break; // yczx case 0x2013: inv_order = "yzxc"; s0 = size_z; s1 = size_x; s2 = size_y; s3 = size_c; break; // zxyc case 0x2031: inv_order = "ycxz"; s0 = size_z; s1 = size_x; s2 = size_c; s3 = size_y; break; // zxcy case 0x2103: inv_order = "zyxc"; s0 = size_z; s1 = size_y; s2 = size_x; s3 = size_c; break; // zyxc case 0x2130: inv_order = "cyxz"; s0 = size_z; s1 = size_y; s2 = size_c; s3 = size_x; break; // zycx case 0x2301: inv_order = "zcxy"; s0 = size_z; s1 = size_c; s2 = size_x; s3 = size_y; break; // zcxy case 0x2310: inv_order = "czxy"; s0 = size_z; s1 = size_c; s2 = size_y; s3 = size_x; break; // zcyx case 0x3012: inv_order = "yzcx"; s0 = size_c; s1 = size_x; s2 = size_y; s3 = size_z; break; // cxyz case 0x3021: inv_order = "yczx"; s0 = size_c; s1 = size_x; s2 = size_z; s3 = size_y; break; // cxzy case 0x3102: inv_order = "zycx"; s0 = size_c; s1 = size_y; s2 = size_x; s3 = size_z; break; // cyxz case 0x3120: inv_order = "cyzx"; s0 = size_c; s1 = size_y; s2 = size_z; s3 = size_x; break; // cyzx case 0x3201: inv_order = "zcyx"; s0 = size_c; s1 = size_z; s2 = size_x; s3 = size_y; break; // czxy case 0x3210: inv_order = "czyx"; s0 = size_c; s1 = size_z; s2 = size_y; s3 = size_x; break; // czyx } CImg(values, s0, s1, s2, s3, true) .get_permute_axes(inv_order) .move_to(*this); } else { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgArgumentException( _cimg_instance "CImg(): Invalid specified axes order '%s'.", cimg_instance, axes_order); } } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } } //! Construct image from reading an image file. /** Construct a new image instance with pixels of type \c T, and initialize pixel values with the data read from an image file. \param filename Filename, as a C-string. \note - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it reads the image dimensions and pixel values from the specified image file. - The recognition of the image file format by %CImg higly depends on the tools installed on your system and on the external libraries you used to link your code against. - Considered pixel type \c T should better fit the file format specification, or data loss may occur during file load (e.g. constructing a \c CImg from a float-valued image file). - A \c CImgIOException is thrown when the specified \c filename cannot be read, or if the file format is not recognized. \par Example \code const CImg img("reference.jpg"); img.display(); \endcode \image html ref_image.jpg **/ explicit CImg(const char* const filename) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { assign(filename); } //! Construct image copy. /** Construct a new image instance with pixels of type \c T, as a copy of an existing \c CImg instance. \param img Input image to copy. \note - Constructed copy has the same size width() x height() x depth() x spectrum() and pixel values as the input image \c img. - If input image \c img is \e shared and if types \c T and \c t are the same, the constructed copy is also \e shared, and shares its pixel buffer with \c img. Modifying a pixel value in the constructed copy will thus also modifies it in the input image \c img. This behavior is needful to allow functions to return shared images. - Otherwise, the constructed copy allocates its own pixel buffer, and copies pixel values from the input image \c img into its buffer. The copied pixel values may be eventually statically casted if types \c T and \c t are different. - Constructing a copy from an image \c img when types \c t and \c T are the same is significantly faster than with different types. - A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated (e.g. not enough available memory). **/ template CImg(const CImg& img) : _is_shared(false) { const size_t siz = (size_t)img.size(); if (img._data && siz) { _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; try { _data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "CImg(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * img._width * img._height * img._depth * img._spectrum), img._width, img._height, img._depth, img._spectrum); } const t* ptrs = img._data; cimg_for(*this, ptrd, T)* ptrd = (T) * (ptrs++); } else { _width = _height = _depth = _spectrum = 0; _data = 0; } } //! Construct image copy \specialization. CImg(const CImg& img) { const size_t siz = (size_t)img.size(); if (img._data && siz) { _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; _is_shared = img._is_shared; if (_is_shared) _data = const_cast(img._data); else { try { _data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "CImg(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * img._width * img._height * img._depth * img._spectrum), img._width, img._height, img._depth, img._spectrum); } std::memcpy(_data, img._data, siz * sizeof(T)); } } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } } //! Advanced copy constructor. /** Construct a new image instance with pixels of type \c T, as a copy of an existing \c CImg instance, while forcing the shared state of the constructed copy. \param img Input image to copy. \param is_shared Tells about the shared state of the constructed copy. \note - Similar to CImg(const CImg&), except that it allows to decide the shared state of the constructed image, which does not depend anymore on the shared state of the input image \c img: - If \c is_shared is \c true, the constructed copy will share its pixel buffer with the input image \c img. For that case, the pixel types \c T and \c t \e must be the same. - If \c is_shared is \c false, the constructed copy will allocate its own pixel buffer, whether the input image \c img is shared or not. - A \c CImgArgumentException is thrown when a shared copy is requested with different pixel types \c T and \c t. **/ template CImg(const CImg& img, const bool is_shared) : _is_shared(false) { if (is_shared) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgArgumentException( _cimg_instance "CImg(): Invalid construction request of a shared instance " "from a " "CImg<%s> image (%u,%u,%u,%u,%p) (pixel types are different).", cimg_instance, CImg::pixel_type(), img._width, img._height, img._depth, img._spectrum, img._data); } const size_t siz = (size_t)img.size(); if (img._data && siz) { _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; try { _data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "CImg(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * img._width * img._height * img._depth * img._spectrum), img._width, img._height, img._depth, img._spectrum); } const t* ptrs = img._data; cimg_for(*this, ptrd, T)* ptrd = (T) * (ptrs++); } else { _width = _height = _depth = _spectrum = 0; _data = 0; } } //! Advanced copy constructor \specialization. CImg(const CImg& img, const bool is_shared) { const size_t siz = (size_t)img.size(); if (img._data && siz) { _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; _is_shared = is_shared; if (_is_shared) _data = const_cast(img._data); else { try { _data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "CImg(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * img._width * img._height * img._depth * img._spectrum), img._width, img._height, img._depth, img._spectrum); } std::memcpy(_data, img._data, siz * sizeof(T)); } } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } } //! Construct image with dimensions borrowed from another image. /** Construct a new image instance with pixels of type \c T, and size get from some dimensions of an existing \c CImg instance. \param img Input image from which dimensions are borrowed. \param dimensions C-string describing the image size along the X,Y,Z and C-dimensions. \note - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it takes the image dimensions (\e not its pixel values) from an existing \c CImg instance. - The allocated pixel buffer is \e not filled with a default value, and is likely to contain garbage values. In order to initialize pixel values (e.g. with \c 0), use constructor CImg(const CImg&,const char*,T) instead. \par Example \code const CImg img1(256,128,1,3), // 'img1' is a 256x128x1x3 image img2(img1,"xyzc"), // 'img2' is a 256x128x1x3 image img3(img1,"y,x,z,c"), // 'img3' is a 128x256x1x3 image img4(img1,"c,x,y,3",0), // 'img4' is a 3x128x256x3 image (with pixels initialized to '0') \endcode **/ template CImg(const CImg& img, const char* const dimensions) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { assign(img, dimensions); } //! Construct image with dimensions borrowed from another image and //! initialize pixel values. /** Construct a new image instance with pixels of type \c T, and size get from the dimensions of an existing \c CImg instance, and set all pixel values to specified \c value. \param img Input image from which dimensions are borrowed. \param dimensions String describing the image size along the X,Y,Z and V-dimensions. \param value Value used for initialization. \note - Similar to CImg(const CImg&,const char*), but it also fills the pixel buffer with the specified \c value. **/ template CImg(const CImg& img, const char* const dimensions, const T& value) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { assign(img, dimensions).fill(value); } //! Construct image from a display window. /** Construct a new image instance with pixels of type \c T, as a snapshot of an existing \c CImgDisplay instance. \param disp Input display window. \note - The width() and height() of the constructed image instance are the same as the specified \c CImgDisplay. - The depth() and spectrum() of the constructed image instance are respectively set to \c 1 and \c 3 (i.e. a 2D color image). - The image pixels are read as 8-bits RGB values. **/ explicit CImg(const CImgDisplay& disp) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { disp.snapshot(*this); } // Constructor and assignment operator for rvalue references (c++11). // This avoids an additional image copy for methods returning new images. // Can save RAM for big images ! #if cimg_use_cpp11 == 1 CImg(CImg&& img) : _width(0), _height(0), _depth(0), _spectrum(0), _is_shared(false), _data(0) { swap(img); } CImg& operator=(CImg&& img) { if (_is_shared) return assign(img); return img.swap(*this); } #endif //! Construct empty image \inplace. /** In-place version of the default constructor CImg(). It simply resets the instance to an empty image. **/ CImg& assign() { if (!_is_shared) delete[] _data; _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; return *this; } //! Construct image with specified size \inplace. /** In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int). **/ CImg& assign(const unsigned int size_x, const unsigned int size_y = 1, const unsigned int size_z = 1, const unsigned int size_c = 1) { const size_t siz = (size_t)size_x * size_y * size_z * size_c; if (!siz) return assign(); const size_t curr_siz = (size_t)size(); if (siz != curr_siz) { if (_is_shared) throw CImgArgumentException( _cimg_instance "assign(): Invalid assignement request of shared instance " "from specified " "image (%u,%u,%u,%u).", cimg_instance, size_x, size_y, size_z, size_c); else { delete[] _data; try { _data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "assign(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * size_x * size_y * size_z * size_c), size_x, size_y, size_z, size_c); } } } _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; return *this; } //! Construct image with specified size and initialize pixel values //! \inplace. /** In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,T). **/ CImg& assign(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const T& value) { return assign(size_x, size_y, size_z, size_c).fill(value); } //! Construct image with specified size and initialize pixel values from a //! sequence of integers \inplace. /** In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...). **/ CImg& assign(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const int value0, const int value1, ...) { assign(size_x, size_y, size_z, size_c); _CImg_stdarg(*this, value0, value1, (size_t)size_x * size_y * size_z * size_c, int); return *this; } //! Construct image with specified size and initialize pixel values from a //! sequence of doubles \inplace. /** In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,double,double,...). **/ CImg& assign(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const double value0, const double value1, ...) { assign(size_x, size_y, size_z, size_c); _CImg_stdarg(*this, value0, value1, (size_t)size_x * size_y * size_z * size_c, double); return *this; } //! Construct image with specified size and initialize pixel values from a //! value string \inplace. /** In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,const char*,bool). **/ CImg& assign(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const char* const values, const bool repeat_values) { return assign(size_x, size_y, size_z, size_c) .fill(values, repeat_values); } //! Construct image with specified size and initialize pixel values from a //! memory buffer \inplace. /** In-place version of the constructor CImg(const t*,unsigned int,unsigned int,unsigned int,unsigned int). **/ template CImg& assign(const t* const values, const unsigned int size_x, const unsigned int size_y = 1, const unsigned int size_z = 1, const unsigned int size_c = 1) { const size_t siz = (size_t)size_x * size_y * size_z * size_c; if (!values || !siz) return assign(); assign(size_x, size_y, size_z, size_c); const t* ptrs = values; cimg_for(*this, ptrd, T)* ptrd = (T) * (ptrs++); return *this; } //! Construct image with specified size and initialize pixel values from a //! memory buffer \specialization. CImg& assign(const T* const values, const unsigned int size_x, const unsigned int size_y = 1, const unsigned int size_z = 1, const unsigned int size_c = 1) { const size_t siz = (size_t)size_x * size_y * size_z * size_c; if (!values || !siz) return assign(); const size_t curr_siz = (size_t)size(); if (values == _data && siz == curr_siz) return assign(size_x, size_y, size_z, size_c); if (_is_shared || values + siz < _data || values >= _data + size()) { assign(size_x, size_y, size_z, size_c); if (_is_shared) std::memmove((void*)_data, (void*)values, siz * sizeof(T)); else std::memcpy((void*)_data, (void*)values, siz * sizeof(T)); } else { T* new_data = 0; try { new_data = new T[siz]; } catch (...) { _width = _height = _depth = _spectrum = 0; _data = 0; throw CImgInstanceException( _cimg_instance "assign(): Failed to allocate memory (%s) for image " "(%u,%u,%u,%u).", cimg_instance, cimg::strbuffersize(sizeof(T) * size_x * size_y * size_z * size_c), size_x, size_y, size_z, size_c); } std::memcpy((void*)new_data, (void*)values, siz * sizeof(T)); delete[] _data; _data = new_data; _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; } return *this; } //! Construct image with specified size and initialize pixel values from a //! memory buffer \overloading. template CImg& assign(const t* const values, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const bool is_shared) { if (is_shared) throw CImgArgumentException(_cimg_instance "assign(): Invalid assignment request " "of shared instance from (%s*) buffer" "(pixel types are different).", cimg_instance, CImg::pixel_type()); return assign(values, size_x, size_y, size_z, size_c); } //! Construct image with specified size and initialize pixel values from a //! memory buffer \overloading. CImg& assign(const T* const values, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const bool is_shared) { const size_t siz = (size_t)size_x * size_y * size_z * size_c; if (!values || !siz) return assign(); if (!is_shared) { if (_is_shared) assign(); assign(values, size_x, size_y, size_z, size_c); } else { if (!_is_shared) { if (values + siz < _data || values >= _data + size()) assign(); else cimg::warn(_cimg_instance "assign(): Shared image instance has " "overlapping memory.", cimg_instance); } _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; _is_shared = true; _data = const_cast(values); } return *this; } //! Construct image from memory buffer with specified size and pixel //! ordering scheme. template CImg& assign(const t* const values, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const char* const axes_order) { CImg(values, size_x, size_y, size_z, size_c, axes_order) .move_to(*this); } //! Construct image from reading an image file \inplace. /** In-place version of the constructor CImg(const char*). **/ CImg& assign(const char* const filename) { return load(filename); } //! Construct image copy \inplace. /** In-place version of the constructor CImg(const CImg&). **/ template CImg& assign(const CImg& img) { return assign(img._data, img._width, img._height, img._depth, img._spectrum); } //! In-place version of the advanced copy constructor. /** In-place version of the constructor CImg(const CImg&,bool). **/ template CImg& assign(const CImg& img, const bool is_shared) { return assign(img._data, img._width, img._height, img._depth, img._spectrum, is_shared); } //! Construct image with dimensions borrowed from another image \inplace. /** In-place version of the constructor CImg(const CImg&,const char*). **/ template CImg& assign(const CImg& img, const char* const dimensions) { if (!dimensions || !*dimensions) return assign(img._width, img._height, img._depth, img._spectrum); unsigned int siz[4] = {0, 1, 1, 1}, k = 0; CImg item(256); for (const char* s = dimensions; *s && k < 4; ++k) { if (cimg_sscanf(s, "%255[^0-9%xyzvwhdcXYZVWHDC]", item._data) > 0) s += std::strlen(item); if (*s) { unsigned int val = 0; char sep = 0; if (cimg_sscanf(s, "%u%c", &val, &sep) > 0) { if (sep == '%') siz[k] = val * (k == 0 ? _width : k == 1 ? _height : k == 2 ? _depth : _spectrum) / 100; else siz[k] = val; while (*s >= '0' && *s <= '9') ++s; if (sep == '%') ++s; } else switch (cimg::lowercase(*s)) { case 'x': case 'w': siz[k] = img._width; ++s; break; case 'y': case 'h': siz[k] = img._height; ++s; break; case 'z': case 'd': siz[k] = img._depth; ++s; break; case 'c': case 's': siz[k] = img._spectrum; ++s; break; default: throw CImgArgumentException( _cimg_instance "assign(): Invalid character '%c' detected in " "specified dimension string '%s'.", cimg_instance, *s, dimensions); } } } return assign(siz[0], siz[1], siz[2], siz[3]); } //! Construct image with dimensions borrowed from another image and //! initialize pixel values \inplace. /** In-place version of the constructor CImg(const CImg&,const char*,T). **/ template CImg& assign(const CImg& img, const char* const dimensions, const T& value) { return assign(img, dimensions).fill(value); } //! Construct image from a display window \inplace. /** In-place version of the constructor CImg(const CImgDisplay&). **/ CImg& assign(const CImgDisplay& disp) { disp.snapshot(*this); return *this; } //! Construct empty image \inplace. /** Equivalent to assign(). \note - It has been defined for compatibility with STL naming conventions. **/ CImg& clear() { return assign(); } //! Transfer content of an image instance into another one. /** Transfer the dimensions and the pixel buffer content of an image instance into another one, and replace instance by an empty image. It avoids the copy of the pixel buffer when possible. \param img Destination image. \note - Pixel types \c T and \c t of source and destination images can be different, though the process is designed to be instantaneous when \c T and \c t are the same. \par Example \code CImg src(256,256,1,3,0), // Construct a 256x256x1x3 (color) image filled with value '0' dest(16,16); // Construct a 16x16x1x1 (scalar) image src.move_to(dest); // Now, 'src' is empty and 'dest' is the 256x256x1x3 image \endcode **/ template CImg& move_to(CImg& img) { img.assign(*this); assign(); return img; } //! Transfer content of an image instance into another one \specialization. CImg& move_to(CImg& img) { if (_is_shared || img._is_shared) img.assign(*this); else swap(img); assign(); return img; } //! Transfer content of an image instance into a new image in an image list. /** Transfer the dimensions and the pixel buffer content of an image instance into a newly inserted image at position \c pos in specified \c CImgList instance. \param list Destination list. \param pos Position of the newly inserted image in the list. \note - When optional parameter \c pos is ommited, the image instance is transfered as a new image at the end of the specified \c list. - It is convenient to sequentially insert new images into image lists, with no additional copies of memory buffer. \par Example \code CImgList list; // Construct an empty image list CImg img("reference.jpg"); // Read image from filename img.move_to(list); // Transfer image content as a new item in the list (no buffer copy) \endcode **/ template CImgList& move_to(CImgList& list, const unsigned int pos = ~0U) { const unsigned int npos = pos > list._width ? list._width : pos; move_to(list.insert(1, npos)[npos]); return list; } //! Swap fields of two image instances. /** \param img Image to swap fields with. \note - It can be used to interchange the content of two images in a very fast way. Can be convenient when dealing with algorithms requiring two swapping buffers. \par Example \code CImg img1("lena.jpg"), img2("milla.jpg"); img1.swap(img2); // Now, 'img1' is 'milla' and 'img2' is 'lena' \endcode **/ CImg& swap(CImg& img) { cimg::swap(_width, img._width, _height, img._height, _depth, img._depth, _spectrum, img._spectrum); cimg::swap(_data, img._data); cimg::swap(_is_shared, img._is_shared); return img; } //! Return a reference to an empty image. /** \note This function is useful mainly to declare optional parameters having type \c CImg in functions prototypes, e.g. \code void f(const int x=0, const int y=0, const CImg& img=CImg::empty()); \endcode **/ static CImg& empty() { static CImg _empty; return _empty.assign(); } //! Return a reference to an empty image \const. static const CImg& const_empty() { static const CImg _empty; return _empty; } //@} //------------------------------------------ // //! \name Overloaded Operators //@{ //------------------------------------------ //! Access to a pixel value. /** Return a reference to a located pixel value of the image instance, being possibly \e const, whether the image instance is \e const or not. This is the standard method to get/set pixel values in \c CImg images. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note - Range of pixel coordinates start from (0,0,0,0) to (width() - 1,height() - 1,depth() - 1,spectrum() - 1). - Due to the particular arrangement of the pixel buffers defined in %CImg, you can omit one coordinate if the corresponding dimension is equal to \c 1. For instance, pixels of a 2D image (depth() equal to \c 1) can be accessed by img(x,y,c) instead of img(x,y,0,c). \warning - There is \e no boundary checking done in this operator, to make it as fast as possible. You \e must take care of out-of-bounds access by yourself, if necessary. For debuging purposes, you may want to define macro \c 'cimg_verbosity'>=3 to enable additional boundary checking operations in this operator. In that case, warning messages will be printed on the error output when accessing out-of-bounds pixels. \par Example \code CImg img(100,100,1,3,0); // Construct a 100x100x1x3 (color) image with pixels set to '0' const float valR = img(10,10,0,0), // Read red value at coordinates (10,10) valG = img(10,10,0,1), // Read green value at coordinates (10,10) valB = img(10,10,2), // Read blue value at coordinates (10,10) (Z-coordinate can be omitted) avg = (valR + valG + valB)/3; // Compute average pixel value img(10,10,0) = img(10,10,1) = img(10,10,2) = avg; // Replace the color pixel (10,10) by the average grey value \endcode **/ #if cimg_verbosity >= 3 T& operator()(const unsigned int x, const unsigned int y = 0, const unsigned int z = 0, const unsigned int c = 0) { const ulongT off = (ulongT)offset(x, y, z, c); if (!_data || off >= size()) { cimg::warn(_cimg_instance "operator(): Invalid pixel request, at coordinates " "(%d,%d,%d,%d) [offset=%u].", cimg_instance, (int)x, (int)y, (int)z, (int)c, off); return *_data; } else return _data[off]; } //! Access to a pixel value \const. const T& operator()(const unsigned int x, const unsigned int y = 0, const unsigned int z = 0, const unsigned int c = 0) const { return const_cast*>(this)->operator()(x, y, z, c); } //! Access to a pixel value. /** \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \param wh Precomputed offset, must be equal to width()*\ref height(). \param whd Precomputed offset, must be equal to width()*\ref height()*\ref depth(). \note - Similar to (but faster than) operator()(). It uses precomputed offsets to optimize memory access. You may use it to optimize the reading/writing of several pixel values in the same image (e.g. in a loop). **/ T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, const ulongT wh, const ulongT whd = 0) { cimg::unused(wh, whd); return (*this)(x, y, z, c); } //! Access to a pixel value \const. const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, const ulongT wh, const ulongT whd = 0) const { cimg::unused(wh, whd); return (*this)(x, y, z, c); } #else T& operator()(const unsigned int x) { return _data[x]; } const T& operator()(const unsigned int x) const { return _data[x]; } T& operator()(const unsigned int x, const unsigned int y) { return _data[x + y * _width]; } const T& operator()(const unsigned int x, const unsigned int y) const { return _data[x + y * _width]; } T& operator()(const unsigned int x, const unsigned int y, const unsigned int z) { return _data[x + y * (ulongT)_width + z * (ulongT)_width * _height]; } const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z) const { return _data[x + y * (ulongT)_width + z * (ulongT)_width * _height]; } T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c) { return _data[x + y * (ulongT)_width + z * (ulongT)_width * _height + c * (ulongT)_width * _height * _depth]; } const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c) const { return _data[x + y * (ulongT)_width + z * (ulongT)_width * _height + c * (ulongT)_width * _height * _depth]; } T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int, const ulongT wh) { return _data[x + y * _width + z * wh]; } const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int, const ulongT wh) const { return _data[x + y * _width + z * wh]; } T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, const ulongT wh, const ulongT whd) { return _data[x + y * _width + z * wh + c * whd]; } const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, const ulongT wh, const ulongT whd) const { return _data[x + y * _width + z * wh + c * whd]; } #endif //! Implicitely cast an image into a \c T*. /** Implicitely cast a \c CImg instance into a \c T* or \c const \c T* pointer, whether the image instance is \e const or not. The returned pointer points on the first value of the image pixel buffer. \note - It simply returns the pointer data() to the pixel buffer. - This implicit conversion is convenient to test the empty state of images (data() being \c 0 in this case), e.g. \code CImg img1(100,100), img2; // 'img1' is a 100x100 image, 'img2' is an empty image if (img1) { // Test succeeds, 'img1' is not an empty image if (!img2) { // Test succeeds, 'img2' is an empty image std::printf("'img1' is not empty, 'img2' is empty."); } } \endcode - It also allows to use brackets to access pixel values, without need for a \c CImg::operator[](), e.g. \code CImg img(100,100); const float value = img[99]; // Access to value of the last pixel on the first row img[510] = 255; // Set pixel value at (10,5) \endcode **/ operator T*() { return _data; } //! Implicitely cast an image into a \c T* \const. operator const T*() const { return _data; } //! Assign a value to all image pixels. /** Assign specified \c value to each pixel value of the image instance. \param value Value that will be assigned to image pixels. \note - The image size is never modified. - The \c value may be casted to pixel type \c T if necessary. \par Example \code CImg img(100,100); // Declare image (with garbage values) img = 0; // Set all pixel values to '0' img = 1.2; // Set all pixel values to '1' (cast of '1.2' as a 'char') \endcode **/ CImg& operator=(const T& value) { return fill(value); } //! Assign pixels values from a specified expression. /** Initialize all pixel values from the specified string \c expression. \param expression Value string describing the way pixel values are set. \note - String parameter \c expression may describe different things: - If \c expression is a list of values (as in \c "1,2,3,8,3,2"), or a formula (as in \c "(x*y)%255"), the pixel values are set from specified \c expression and the image size is not modified. - If \c expression is a filename (as in \c "reference.jpg"), the corresponding image file is loaded and replace the image instance. The image size is modified if necessary. \par Example \code CImg img1(100,100), img2(img1), img3(img1); // Declare 3 scalar images 100x100 with unitialized values img1 = "0,50,100,150,200,250,200,150,100,50"; // Set pixel values of 'img1' from a value sequence img2 = "10*((x*y)%25)"; // Set pixel values of 'img2' from a formula img3 = "reference.jpg"; // Set pixel values of 'img3' from a file (image size is modified) (img1,img2,img3).display(); \endcode \image html ref_operator_eq.jpg **/ CImg& operator=(const char* const expression) { const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); try { _fill(expression, true, 1, 0, 0, "operator=", 0); } catch (CImgException&) { cimg::exception_mode(omode); load(expression); } cimg::exception_mode(omode); return *this; } //! Copy an image into the current image instance. /** Similar to the in-place copy constructor assign(const CImg&). **/ template CImg& operator=(const CImg& img) { return assign(img); } //! Copy an image into the current image instance \specialization. CImg& operator=(const CImg& img) { return assign(img); } //! Copy the content of a display window to the current image instance. /** Similar to assign(const CImgDisplay&). **/ CImg& operator=(const CImgDisplay& disp) { disp.snapshot(*this); return *this; } //! In-place addition operator. /** Add specified \c value to all pixels of an image instance. \param value Value to add. \note - Resulting pixel values are casted to fit the pixel type \c T. For instance, adding \c 0.2 to a \c CImg is possible but does nothing indeed. - Overflow values are treated as with standard C++ numeric types. For instance, \code CImg img(100,100,1,1,255); // Construct a 100x100 image with pixel values '255' img+=1; // Add '1' to each pixels -> Overflow // here all pixels of image 'img' are equal to '0'. \endcode - To prevent value overflow, you may want to consider pixel type \c T as \c float or \c double, and use cut() after addition. \par Example \code CImg img1("reference.jpg"); // Load a 8-bits RGB image (values in [0,255]) CImg img2(img1); // Construct a float-valued copy of 'img1' img2+=100; // Add '100' to pixel values -> goes out of [0,255] but no problems with floats img2.cut(0,255); // Cut values in [0,255] to fit the 'unsigned char' constraint img1 = img2; // Rewrite safe result in 'unsigned char' version 'img1' const CImg img3 = (img1 + 100).cut(0,255); // Do the same in a more simple and elegant way (img1,img2,img3).display(); \endcode \image html ref_operator_plus.jpg **/ template CImg& operator+=(const t value) { if (is_empty()) return *this; cimg_openmp_for(*this, *ptr + value, 524288); return *this; } //! In-place addition operator. /** Add values to image pixels, according to the specified string \c expression. \param expression Value string describing the way pixel values are added. \note - Similar to operator=(const char*), except that it adds values to the pixels of the current image instance, instead of assigning them. **/ CImg& operator+=(const char* const expression) { return *this += (+*this)._fill(expression, true, 1, 0, 0, "operator+=", this); } //! In-place addition operator. /** Add values to image pixels, according to the values of the input image \c img. \param img Input image to add. \note - The size of the image instance is never modified. - It is not mandatory that input image \c img has the same size as the image instance. If less values are available in \c img, then the values are added periodically. For instance, adding one WxH scalar image (spectrum() equal to \c 1) to one WxH color image (spectrum() equal to \c 3) means each color channel will be incremented with the same values at the same locations. \par Example \code CImg img1("reference.jpg"); // Load a RGB color image (img1.spectrum()==3) // Construct a scalar shading (img2.spectrum()==1). const CImg img2(img1.width(),img.height(),1,1,"255*(x/w)^2"); img1+=img2; // Add shading to each channel of 'img1' img1.cut(0,255); // Prevent [0,255] overflow (img2,img1).display(); \endcode \image html ref_operator_plus1.jpg **/ template CImg& operator+=(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return *this += +img; T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)(*ptrd + *(ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)(*ptrd + *(ptrs++)); } return *this; } //! In-place increment operator (prefix). /** Add \c 1 to all image pixels, and return a reference to the current incremented image instance. \note - Writing \c ++img is equivalent to \c img+=1. **/ CImg& operator++() { if (is_empty()) return *this; cimg_openmp_for(*this, *ptr + 1, 524288); return *this; } //! In-place increment operator (postfix). /** Add \c 1 to all image pixels, and return a new copy of the initial (pre-incremented) image instance. \note - Use the prefixed version operator++() if you don't need a copy of the initial (pre-incremented) image instance, since a useless image copy may be expensive in terms of memory usage. **/ CImg operator++(int) { const CImg copy(*this, false); ++*this; return copy; } //! Return a non-shared copy of the image instance. /** \note - Use this operator to ensure you get a non-shared copy of an image instance with same pixel type \c T. Indeed, the usual copy constructor CImg(const CImg&) returns a shared copy of a shared input image, and it may be not desirable to work on a regular copy (e.g. for a resize operation) if you have no information about the shared state of the input image. - Writing \c (+img) is equivalent to \c CImg(img,false). **/ CImg operator+() const { return CImg(*this, false); } //! Addition operator. /** Similar to operator+=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ template CImg<_cimg_Tt> operator+(const t value) const { return CImg<_cimg_Tt>(*this, false) += value; } //! Addition operator. /** Similar to operator+=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ CImg operator+(const char* const expression) const { return CImg(*this, false) += expression; } //! Addition operator. /** Similar to operator+=(const CImg&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ template CImg<_cimg_Tt> operator+(const CImg& img) const { return CImg<_cimg_Tt>(*this, false) += img; } //! In-place substraction operator. /** Similar to operator+=(const t), except that it performs a substraction instead of an addition. **/ template CImg& operator-=(const t value) { if (is_empty()) return *this; cimg_openmp_for(*this, *ptr - value, 524288); return *this; } //! In-place substraction operator. /** Similar to operator+=(const char*), except that it performs a substraction instead of an addition. **/ CImg& operator-=(const char* const expression) { return *this -= (+*this)._fill(expression, true, 1, 0, 0, "operator-=", this); } //! In-place substraction operator. /** Similar to operator+=(const CImg&), except that it performs a substraction instead of an addition. **/ template CImg& operator-=(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return *this -= +img; T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)(*ptrd - *(ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)(*ptrd - *(ptrs++)); } return *this; } //! In-place decrement operator (prefix). /** Similar to operator++(), except that it performs a decrement instead of an increment. **/ CImg& operator--() { if (is_empty()) return *this; cimg_openmp_for(*this, *ptr - 1, 524288); return *this; } //! In-place decrement operator (postfix). /** Similar to operator++(int), except that it performs a decrement instead of an increment. **/ CImg operator--(int) { const CImg copy(*this, false); --*this; return copy; } //! Replace each pixel by its opposite value. /** \note - If the computed opposite values are out-of-range, they are treated as with standard C++ numeric types. For instance, the \c unsigned \c char opposite of \c 1 is \c 255. \par Example \code const CImg img1("reference.jpg"), // Load a RGB color image img2 = -img1; // Compute its opposite (in 'unsigned char') (img1,img2).display(); \endcode \image html ref_operator_minus.jpg **/ CImg operator-() const { return CImg(_width, _height, _depth, _spectrum, (T)0) -= *this; } //! Substraction operator. /** Similar to operator-=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ template CImg<_cimg_Tt> operator-(const t value) const { return CImg<_cimg_Tt>(*this, false) -= value; } //! Substraction operator. /** Similar to operator-=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ CImg operator-(const char* const expression) const { return CImg(*this, false) -= expression; } //! Substraction operator. /** Similar to operator-=(const CImg&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ template CImg<_cimg_Tt> operator-(const CImg& img) const { return CImg<_cimg_Tt>(*this, false) -= img; } //! In-place multiplication operator. /** Similar to operator+=(const t), except that it performs a multiplication instead of an addition. **/ template CImg& operator*=(const t value) { if (is_empty()) return *this; cimg_openmp_for(*this, *ptr * value, 262144); return *this; } //! In-place multiplication operator. /** Similar to operator+=(const char*), except that it performs a multiplication instead of an addition. **/ CImg& operator*=(const char* const expression) { return mul( (+*this)._fill(expression, true, 1, 0, 0, "operator*=", this)); } //! In-place multiplication operator. /** Replace the image instance by the matrix multiplication between the image instance and the specified matrix \c img. \param img Second operand of the matrix multiplication. \note - It does \e not compute a pointwise multiplication between two images. For this purpose, use mul(const CImg&) instead. - The size of the image instance can be modified by this operator. \par Example \code CImg A(2,2,1,1, 1,2,3,4); // Construct 2x2 matrix A = [1,2;3,4] const CImg X(1,2,1,1, 1,2); // Construct 1x2 vector X = [1;2] A*=X; // Assign matrix multiplication A*X to 'A' // 'A' is now a 1x2 vector whose values are [5;11]. \endcode **/ template CImg& operator*=(const CImg& img) { return ((*this) * img).move_to(*this); } //! Multiplication operator. /** Similar to operator*=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ template CImg<_cimg_Tt> operator*(const t value) const { return CImg<_cimg_Tt>(*this, false) *= value; } //! Multiplication operator. /** Similar to operator*=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ CImg operator*(const char* const expression) const { return CImg(*this, false) *= expression; } //! Multiplication operator. /** Similar to operator*=(const CImg&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ template CImg<_cimg_Tt> operator*(const CImg& img) const { typedef _cimg_Ttdouble Ttdouble; typedef _cimg_Tt Tt; if (_width != img._height || _depth != 1 || _spectrum != 1) throw CImgArgumentException( _cimg_instance "operator*(): Invalid multiplication of instance by specified " "matrix (%u,%u,%u,%u,%p)", cimg_instance, img._width, img._height, img._depth, img._spectrum, img._data); CImg res(img._width, _height); // Check for common cases to optimize. if (img._width == 1) { // Matrix * Vector if (_height == 1) switch (_width) { // Vector^T * Vector case 1: res[0] = (Tt)((Ttdouble)_data[0] * img[0]); return res; case 2: res[0] = (Tt)((Ttdouble)_data[0] * img[0] + (Ttdouble)_data[1] * img[1]); return res; case 3: res[0] = (Tt)((Ttdouble)_data[0] * img[0] + (Ttdouble)_data[1] * img[1] + (Ttdouble)_data[2] * img[2]); return res; case 4: res[0] = (Tt)((Ttdouble)_data[0] * img[0] + (Ttdouble)_data[1] * img[1] + (Ttdouble)_data[2] * img[2] + (Ttdouble)_data[3] * img[3]); return res; default: { Ttdouble val = 0; cimg_forX(*this, i) val += (Ttdouble)_data[i] * img[i]; res[0] = val; return res; } } else if (_height == _width) switch (_width) { // Square_matrix * Vector case 2: // 2x2_matrix * Vector res[0] = (Tt)((Ttdouble)_data[0] * img[0] + (Ttdouble)_data[1] * img[1]); res[1] = (Tt)((Ttdouble)_data[2] * img[0] + (Ttdouble)_data[3] * img[1]); return res; case 3: // 3x3_matrix * Vector res[0] = (Tt)((Ttdouble)_data[0] * img[0] + (Ttdouble)_data[1] * img[1] + (Ttdouble)_data[2] * img[2]); res[1] = (Tt)((Ttdouble)_data[3] * img[0] + (Ttdouble)_data[4] * img[1] + (Ttdouble)_data[5] * img[2]); res[2] = (Tt)((Ttdouble)_data[6] * img[0] + (Ttdouble)_data[7] * img[1] + (Ttdouble)_data[8] * img[2]); return res; case 4: // 4x4_matrix * Vector res[0] = (Tt)((Ttdouble)_data[0] * img[0] + (Ttdouble)_data[1] * img[1] + (Ttdouble)_data[2] * img[2] + (Ttdouble)_data[3] * img[3]); res[1] = (Tt)((Ttdouble)_data[4] * img[0] + (Ttdouble)_data[5] * img[1] + (Ttdouble)_data[6] * img[2] + (Ttdouble)_data[7] * img[3]); res[2] = (Tt)((Ttdouble)_data[8] * img[0] + (Ttdouble)_data[9] * img[1] + (Ttdouble)_data[10] * img[2] + (Ttdouble)_data[11] * img[3]); res[3] = (Tt)((Ttdouble)_data[12] * img[0] + (Ttdouble)_data[13] * img[1] + (Ttdouble)_data[14] * img[2] + (Ttdouble)_data[15] * img[3]); return res; } } else if (_height == _width) { if (img._height == img._width) switch (_width) { // Square_matrix * Square_matrix case 2: // 2x2_matrix * 2x2_matrix res[0] = (Tt)((Ttdouble)_data[0] * img[0] + (Ttdouble)_data[1] * img[2]); res[1] = (Tt)((Ttdouble)_data[0] * img[1] + (Ttdouble)_data[1] * img[3]); res[2] = (Tt)((Ttdouble)_data[2] * img[0] + (Ttdouble)_data[3] * img[2]); res[3] = (Tt)((Ttdouble)_data[2] * img[1] + (Ttdouble)_data[3] * img[3]); return res; case 3: // 3x3_matrix * 3x3_matrix res[0] = (Tt)((Ttdouble)_data[0] * img[0] + (Ttdouble)_data[1] * img[3] + (Ttdouble)_data[2] * img[6]); res[1] = (Tt)((Ttdouble)_data[0] * img[1] + (Ttdouble)_data[1] * img[4] + (Ttdouble)_data[2] * img[7]); res[2] = (Tt)((Ttdouble)_data[0] * img[2] + (Ttdouble)_data[1] * img[5] + (Ttdouble)_data[2] * img[8]); res[3] = (Tt)((Ttdouble)_data[3] * img[0] + (Ttdouble)_data[4] * img[3] + (Ttdouble)_data[5] * img[6]); res[4] = (Tt)((Ttdouble)_data[3] * img[1] + (Ttdouble)_data[4] * img[4] + (Ttdouble)_data[5] * img[7]); res[5] = (Tt)((Ttdouble)_data[3] * img[2] + (Ttdouble)_data[4] * img[5] + (Ttdouble)_data[5] * img[8]); res[6] = (Tt)((Ttdouble)_data[6] * img[0] + (Ttdouble)_data[7] * img[3] + (Ttdouble)_data[8] * img[6]); res[7] = (Tt)((Ttdouble)_data[6] * img[1] + (Ttdouble)_data[7] * img[4] + (Ttdouble)_data[8] * img[7]); res[8] = (Tt)((Ttdouble)_data[6] * img[2] + (Ttdouble)_data[7] * img[5] + (Ttdouble)_data[8] * img[8]); return res; case 4: // 4x4_matrix * 4x4_matrix res[0] = (Tt)((Ttdouble)_data[0] * img[0] + (Ttdouble)_data[1] * img[4] + (Ttdouble)_data[2] * img[8] + (Ttdouble)_data[3] * img[12]); res[1] = (Tt)((Ttdouble)_data[0] * img[1] + (Ttdouble)_data[1] * img[5] + (Ttdouble)_data[2] * img[9] + (Ttdouble)_data[3] * img[13]); res[2] = (Tt)((Ttdouble)_data[0] * img[2] + (Ttdouble)_data[1] * img[6] + (Ttdouble)_data[2] * img[10] + (Ttdouble)_data[3] * img[14]); res[3] = (Tt)((Ttdouble)_data[0] * img[3] + (Ttdouble)_data[1] * img[7] + (Ttdouble)_data[2] * img[11] + (Ttdouble)_data[3] * img[15]); res[4] = (Tt)((Ttdouble)_data[4] * img[0] + (Ttdouble)_data[5] * img[4] + (Ttdouble)_data[6] * img[8] + (Ttdouble)_data[7] * img[12]); res[5] = (Tt)((Ttdouble)_data[4] * img[1] + (Ttdouble)_data[5] * img[5] + (Ttdouble)_data[6] * img[9] + (Ttdouble)_data[7] * img[13]); res[6] = (Tt)((Ttdouble)_data[4] * img[2] + (Ttdouble)_data[5] * img[6] + (Ttdouble)_data[6] * img[10] + (Ttdouble)_data[7] * img[14]); res[7] = (Tt)((Ttdouble)_data[4] * img[3] + (Ttdouble)_data[5] * img[7] + (Ttdouble)_data[6] * img[11] + (Ttdouble)_data[7] * img[15]); res[8] = (Tt)((Ttdouble)_data[8] * img[0] + (Ttdouble)_data[9] * img[4] + (Ttdouble)_data[10] * img[8] + (Ttdouble)_data[11] * img[12]); res[9] = (Tt)((Ttdouble)_data[8] * img[1] + (Ttdouble)_data[9] * img[5] + (Ttdouble)_data[10] * img[9] + (Ttdouble)_data[11] * img[13]); res[10] = (Tt)((Ttdouble)_data[8] * img[2] + (Ttdouble)_data[9] * img[6] + (Ttdouble)_data[10] * img[10] + (Ttdouble)_data[11] * img[14]); res[11] = (Tt)((Ttdouble)_data[8] * img[3] + (Ttdouble)_data[9] * img[7] + (Ttdouble)_data[10] * img[11] + (Ttdouble)_data[11] * img[15]); res[12] = (Tt)((Ttdouble)_data[12] * img[0] + (Ttdouble)_data[13] * img[4] + (Ttdouble)_data[14] * img[8] + (Ttdouble)_data[15] * img[12]); res[13] = (Tt)((Ttdouble)_data[12] * img[1] + (Ttdouble)_data[13] * img[5] + (Ttdouble)_data[14] * img[9] + (Ttdouble)_data[15] * img[13]); res[14] = (Tt)((Ttdouble)_data[12] * img[2] + (Ttdouble)_data[13] * img[6] + (Ttdouble)_data[14] * img[10] + (Ttdouble)_data[15] * img[14]); res[15] = (Tt)((Ttdouble)_data[12] * img[3] + (Ttdouble)_data[13] * img[7] + (Ttdouble)_data[14] * img[11] + (Ttdouble)_data[15] * img[15]); return res; } else switch (_width) { // Square_matrix * Matrix case 2: { // 2x2_matrix * Matrix const t *ps0 = img.data(), *ps1 = img.data(0, 1); Tt *pd0 = res.data(), *pd1 = res.data(0, 1); const Ttdouble a0 = (Ttdouble)_data[0], a1 = (Ttdouble)_data[1], a2 = (Ttdouble)_data[2], a3 = (Ttdouble)_data[3]; cimg_forX(img, i) { const Ttdouble x = (Ttdouble) * (ps0++), y = (Ttdouble) * (ps1++); *(pd0++) = (Tt)(a0 * x + a1 * y); *(pd1++) = (Tt)(a2 * x + a3 * y); } return res; } case 3: { // 3x3_matrix * Matrix const t *ps0 = img.data(), *ps1 = img.data(0, 1), *ps2 = img.data(0, 2); Tt *pd0 = res.data(), *pd1 = res.data(0, 1), *pd2 = res.data(0, 2); const Ttdouble a0 = (Ttdouble)_data[0], a1 = (Ttdouble)_data[1], a2 = (Ttdouble)_data[2], a3 = (Ttdouble)_data[3], a4 = (Ttdouble)_data[4], a5 = (Ttdouble)_data[5], a6 = (Ttdouble)_data[6], a7 = (Ttdouble)_data[7], a8 = (Ttdouble)_data[8]; cimg_forX(img, i) { const Ttdouble x = (Ttdouble) * (ps0++), y = (Ttdouble) * (ps1++), z = (Ttdouble) * (ps2++); *(pd0++) = (Tt)(a0 * x + a1 * y + a2 * z); *(pd1++) = (Tt)(a3 * x + a4 * y + a5 * z); *(pd2++) = (Tt)(a6 * x + a7 * y + a8 * z); } return res; } case 4: { // 4x4_matrix * Matrix const t *ps0 = img.data(), *ps1 = img.data(0, 1), *ps2 = img.data(0, 2), *ps3 = img.data(0, 3); Tt *pd0 = res.data(), *pd1 = res.data(0, 1), *pd2 = res.data(0, 2), *pd3 = res.data(0, 3); const Ttdouble a0 = (Ttdouble)_data[0], a1 = (Ttdouble)_data[1], a2 = (Ttdouble)_data[2], a3 = (Ttdouble)_data[3], a4 = (Ttdouble)_data[4], a5 = (Ttdouble)_data[5], a6 = (Ttdouble)_data[6], a7 = (Ttdouble)_data[7], a8 = (Ttdouble)_data[8], a9 = (Ttdouble)_data[9], a10 = (Ttdouble)_data[10], a11 = (Ttdouble)_data[11], a12 = (Ttdouble)_data[12], a13 = (Ttdouble)_data[13], a14 = (Ttdouble)_data[14], a15 = (Ttdouble)_data[15]; cimg_forX(img, col) { const Ttdouble x = (Ttdouble) * (ps0++), y = (Ttdouble) * (ps1++), z = (Ttdouble) * (ps2++), c = (Ttdouble) * (ps3++); *(pd0++) = (Tt)(a0 * x + a1 * y + a2 * z + a3 * c); *(pd1++) = (Tt)(a4 * x + a5 * y + a6 * z + a7 * c); *(pd2++) = (Tt)(a8 * x + a9 * y + a10 * z + a11 * c); *(pd3++) = (Tt)(a12 * x + a13 * y + a14 * z + a15 * c); } return res; } } } // Fallback to generic version. #if cimg_use_openmp != 0 cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(size()>(cimg_openmp_sizefactor)*1024 && img.size()>(cimg_openmp_sizefactor)*1024)) cimg_forXY(res,i,j) { Ttdouble value = 0; cimg_forX(*this, k) value += (*this)(k, j) * img(i, k); res(i, j) = (Tt)value; } #else Tt* ptrd = res._data; cimg_forXY(res, i, j) { Ttdouble value = 0; cimg_forX(*this, k) value += (*this)(k, j) * img(i, k); *(ptrd++) = (Tt)value; } #endif return res; } //! In-place division operator. /** Similar to operator+=(const t), except that it performs a division instead of an addition. **/ template CImg& operator/=(const t value) { if (is_empty()) return *this; cimg_openmp_for(*this, *ptr / value, 32768); return *this; } //! In-place division operator. /** Similar to operator+=(const char*), except that it performs a division instead of an addition. **/ CImg& operator/=(const char* const expression) { return div( (+*this)._fill(expression, true, 1, 0, 0, "operator/=", this)); } //! In-place division operator. /** Replace the image instance by the (right) matrix division between the image instance and the specified matrix \c img. \param img Second operand of the matrix division. \note - It does \e not compute a pointwise division between two images. For this purpose, use div(const CImg&) instead. - It returns the matrix operation \c A*inverse(img). - The size of the image instance can be modified by this operator. **/ template CImg& operator/=(const CImg& img) { return (*this * img.get_invert()).move_to(*this); } //! Division operator. /** Similar to operator/=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ template CImg<_cimg_Tt> operator/(const t value) const { return CImg<_cimg_Tt>(*this, false) /= value; } //! Division operator. /** Similar to operator/=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ CImg operator/(const char* const expression) const { return CImg(*this, false) /= expression; } //! Division operator. /** Similar to operator/=(const CImg&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ template CImg<_cimg_Tt> operator/(const CImg& img) const { return (*this) * img.get_invert(); } //! In-place modulo operator. /** Similar to operator+=(const t), except that it performs a modulo operation instead of an addition. **/ template CImg& operator%=(const t value) { if (is_empty()) return *this; cimg_openmp_for(*this, cimg::mod(*ptr, (T)value), 16384); return *this; } //! In-place modulo operator. /** Similar to operator+=(const char*), except that it performs a modulo operation instead of an addition. **/ CImg& operator%=(const char* const expression) { return *this %= (+*this)._fill(expression, true, 1, 0, 0, "operator%=", this); } //! In-place modulo operator. /** Similar to operator+=(const CImg&), except that it performs a modulo operation instead of an addition. **/ template CImg& operator%=(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return *this %= +img; T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = cimg::mod(*ptrd, (T) * (ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = cimg::mod(*ptrd, (T) * (ptrs++)); } return *this; } //! Modulo operator. /** Similar to operator%=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ template CImg<_cimg_Tt> operator%(const t value) const { return CImg<_cimg_Tt>(*this, false) %= value; } //! Modulo operator. /** Similar to operator%=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ CImg operator%(const char* const expression) const { return CImg(*this, false) %= expression; } //! Modulo operator. /** Similar to operator%=(const CImg&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. **/ template CImg<_cimg_Tt> operator%(const CImg& img) const { return CImg<_cimg_Tt>(*this, false) %= img; } //! In-place bitwise AND operator. /** Similar to operator+=(const t), except that it performs a bitwise AND operation instead of an addition. **/ template CImg& operator&=(const t value) { if (is_empty()) return *this; cimg_openmp_for(*this, (ulongT)*ptr & (ulongT)value, 32768); return *this; } //! In-place bitwise AND operator. /** Similar to operator+=(const char*), except that it performs a bitwise AND operation instead of an addition. **/ CImg& operator&=(const char* const expression) { return *this &= (+*this)._fill(expression, true, 1, 0, 0, "operator&=", this); } //! In-place bitwise AND operator. /** Similar to operator+=(const CImg&), except that it performs a bitwise AND operation instead of an addition. **/ template CImg& operator&=(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return *this &= +img; T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)((ulongT)*ptrd & (ulongT) * (ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)((ulongT)*ptrd & (ulongT) * (ptrs++)); } return *this; } //! Bitwise AND operator. /** Similar to operator&=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ template CImg operator&(const t value) const { return (+*this) &= value; } //! Bitwise AND operator. /** Similar to operator&=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ CImg operator&(const char* const expression) const { return (+*this) &= expression; } //! Bitwise AND operator. /** Similar to operator&=(const CImg&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ template CImg operator&(const CImg& img) const { return (+*this) &= img; } //! In-place bitwise OR operator. /** Similar to operator+=(const t), except that it performs a bitwise OR operation instead of an addition. **/ template CImg& operator|=(const t value) { if (is_empty()) return *this; cimg_openmp_for(*this, (ulongT)*ptr | (ulongT)value, 32768); return *this; } //! In-place bitwise OR operator. /** Similar to operator+=(const char*), except that it performs a bitwise OR operation instead of an addition. **/ CImg& operator|=(const char* const expression) { return *this |= (+*this)._fill(expression, true, 1, 0, 0, "operator|=", this); } //! In-place bitwise OR operator. /** Similar to operator+=(const CImg&), except that it performs a bitwise OR operation instead of an addition. **/ template CImg& operator|=(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return *this |= +img; T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)((ulongT)*ptrd | (ulongT) * (ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)((ulongT)*ptrd | (ulongT) * (ptrs++)); } return *this; } //! Bitwise OR operator. /** Similar to operator|=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ template CImg operator|(const t value) const { return (+*this) |= value; } //! Bitwise OR operator. /** Similar to operator|=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ CImg operator|(const char* const expression) const { return (+*this) |= expression; } //! Bitwise OR operator. /** Similar to operator|=(const CImg&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ template CImg operator|(const CImg& img) const { return (+*this) |= img; } //! In-place bitwise XOR operator. /** Similar to operator+=(const t), except that it performs a bitwise XOR operation instead of an addition. \warning - It does \e not compute the \e power of pixel values. For this purpose, use pow(const t) instead. **/ template CImg& operator^=(const t value) { if (is_empty()) return *this; cimg_openmp_for(*this, (ulongT)*ptr ^ (ulongT)value, 32768); return *this; } //! In-place bitwise XOR operator. /** Similar to operator+=(const char*), except that it performs a bitwise XOR operation instead of an addition. \warning - It does \e not compute the \e power of pixel values. For this purpose, use pow(const char*) instead. **/ CImg& operator^=(const char* const expression) { return *this ^= (+*this)._fill(expression, true, 1, 0, 0, "operator^=", this); } //! In-place bitwise XOR operator. /** Similar to operator+=(const CImg&), except that it performs a bitwise XOR operation instead of an addition. \warning - It does \e not compute the \e power of pixel values. For this purpose, use pow(const CImg&) instead. **/ template CImg& operator^=(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return *this ^= +img; T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)((ulongT)*ptrd ^ (ulongT) * (ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)((ulongT)*ptrd ^ (ulongT) * (ptrs++)); } return *this; } //! Bitwise XOR operator. /** Similar to operator^=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ template CImg operator^(const t value) const { return (+*this) ^= value; } //! Bitwise XOR operator. /** Similar to operator^=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ CImg operator^(const char* const expression) const { return (+*this) ^= expression; } //! Bitwise XOR operator. /** Similar to operator^=(const CImg&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ template CImg operator^(const CImg& img) const { return (+*this) ^= img; } //! In-place bitwise left shift operator. /** Similar to operator+=(const t), except that it performs a bitwise left shift instead of an addition. **/ template CImg& operator<<=(const t value) { if (is_empty()) return *this; cimg_openmp_for(*this, ((longT)*ptr) << (int)value, 65536); return *this; } //! In-place bitwise left shift operator. /** Similar to operator+=(const char*), except that it performs a bitwise left shift instead of an addition. **/ CImg& operator<<=(const char* const expression) { return *this <<= (+*this)._fill(expression, true, 1, 0, 0, "operator<<=", this); } //! In-place bitwise left shift operator. /** Similar to operator+=(const CImg&), except that it performs a bitwise left shift instead of an addition. **/ template CImg& operator<<=(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return *this ^= +img; T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)((longT)*ptrd << (int)*(ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)((longT)*ptrd << (int)*(ptrs++)); } return *this; } //! Bitwise left shift operator. /** Similar to operator<<=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ template CImg operator<<(const t value) const { return (+*this) <<= value; } //! Bitwise left shift operator. /** Similar to operator<<=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ CImg operator<<(const char* const expression) const { return (+*this) <<= expression; } //! Bitwise left shift operator. /** Similar to operator<<=(const CImg&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ template CImg operator<<(const CImg& img) const { return (+*this) <<= img; } //! In-place bitwise right shift operator. /** Similar to operator+=(const t), except that it performs a bitwise right shift instead of an addition. **/ template CImg& operator>>=(const t value) { if (is_empty()) return *this; cimg_openmp_for(*this, ((longT)*ptr) >> (int)value, 65536); return *this; } //! In-place bitwise right shift operator. /** Similar to operator+=(const char*), except that it performs a bitwise right shift instead of an addition. **/ CImg& operator>>=(const char* const expression) { return *this >>= (+*this)._fill(expression, true, 1, 0, 0, "operator>>=", this); } //! In-place bitwise right shift operator. /** Similar to operator+=(const CImg&), except that it performs a bitwise right shift instead of an addition. **/ template CImg& operator>>=(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return *this ^= +img; T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)((longT)*ptrd >> (int)*(ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)((longT)*ptrd >> (int)*(ptrs++)); } return *this; } //! Bitwise right shift operator. /** Similar to operator>>=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ template CImg operator>>(const t value) const { return (+*this) >>= value; } //! Bitwise right shift operator. /** Similar to operator>>=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ CImg operator>>(const char* const expression) const { return (+*this) >>= expression; } //! Bitwise right shift operator. /** Similar to operator>>=(const CImg&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \c T. **/ template CImg operator>>(const CImg& img) const { return (+*this) >>= img; } //! Bitwise inversion operator. /** Similar to operator-(), except that it compute the bitwise inverse instead of the opposite value. **/ CImg operator~() const { CImg res(_width, _height, _depth, _spectrum); const T* ptrs = _data; cimg_for(res, ptrd, T) { const ulongT value = (ulongT) * (ptrs++); *ptrd = (T)~value; } return res; } //! Test if all pixels of an image have the same value. /** Return \c true is all pixels of the image instance are equal to the specified \c value. \param value Reference value to compare with. **/ template bool operator==(const t value) const { if (is_empty()) return false; typedef _cimg_Tt Tt; bool is_equal = true; for (T* ptrd = _data + size(); is_equal && ptrd > _data; is_equal = ((Tt) * (--ptrd) == (Tt)value)) { } return is_equal; } //! Test if all pixel values of an image follow a specified expression. /** Return \c true is all pixels of the image instance are equal to the specified \c expression. \param expression Value string describing the way pixel values are compared. **/ bool operator==(const char* const expression) const { return *this == (+*this)._fill(expression, true, 1, 0, 0, "operator==", this); } //! Test if two images have the same size and values. /** Return \c true if the image instance and the input image \c img have the same dimensions and pixel values, and \c false otherwise. \param img Input image to compare with. \note - The pixel buffer pointers data() of the two compared images do not have to be the same for operator==() to return \c true. Only the dimensions and the pixel values matter. Thus, the comparison can be \c true even for different pixel types \c T and \c t. \par Example \code const CImg img1(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'float' pixel values) const CImg img2(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'char' pixel values) if (img1==img2) { // Test succeeds, image dimensions and values are the same std::printf("'img1' and 'img2' have same dimensions and values."); } \endcode **/ template bool operator==(const CImg& img) const { typedef _cimg_Tt Tt; const ulongT siz = size(); bool is_equal = true; if (siz != img.size()) return false; t* ptrs = img._data + siz; for (T* ptrd = _data + siz; is_equal && ptrd > _data; is_equal = ((Tt) * (--ptrd) == (Tt) * (--ptrs))) { } return is_equal; } //! Test if pixels of an image are all different from a value. /** Return \c true is all pixels of the image instance are different than the specified \c value. \param value Reference value to compare with. **/ template bool operator!=(const t value) const { return !((*this) == value); } //! Test if all pixel values of an image are different from a specified //! expression. /** Return \c true is all pixels of the image instance are different to the specified \c expression. \param expression Value string describing the way pixel values are compared. **/ bool operator!=(const char* const expression) const { return !((*this) == expression); } //! Test if two images have different sizes or values. /** Return \c true if the image instance and the input image \c img have different dimensions or pixel values, and \c false otherwise. \param img Input image to compare with. \note - Writing \c img1!=img2 is equivalent to \c !(img1==img2). **/ template bool operator!=(const CImg& img) const { return !((*this) == img); } //! Construct an image list from two images. /** Return a new list of image (\c CImgList instance) containing exactly two elements: - A copy of the image instance, at position [\c 0]. - A copy of the specified image \c img, at position [\c 1]. \param img Input image that will be the second image of the resulting list. \note - The family of operator,() is convenient to easily create list of images, but it is also \e quite \e slow in practice (see warning below). - Constructed lists contain no shared images. If image instance or input image \c img are shared, they are inserted as new non-shared copies in the resulting list. - The pixel type of the returned list may be a superset of the initial pixel type \c T, if necessary. \warning - Pipelining operator,() \c N times will perform \c N copies of the entire content of a (growing) image list. This may become very expensive in terms of speed and used memory. You should avoid using this technique to build a new CImgList instance from several images, if you are seeking for performance. Fast insertions of images in an image list are possible with CImgList::insert(const CImg&,unsigned int,bool) or move_to(CImgList&,unsigned int). \par Example \code const CImg img1("reference.jpg"), img2 = img1.get_mirror('x'), img3 = img2.get_blur(5); const CImgList list = (img1,img2); // Create list of two elements from 'img1' and 'img2' (list,img3).display(); // Display image list containing copies of 'img1','img2' and 'img3' \endcode \image html ref_operator_comma.jpg **/ template CImgList<_cimg_Tt> operator,(const CImg& img) const { return CImgList<_cimg_Tt>(*this, img); } //! Construct an image list from image instance and an input image list. /** Return a new list of images (\c CImgList instance) containing exactly \c list.size() \c + \c 1 elements: - A copy of the image instance, at position [\c 0]. - A copy of the specified image list \c list, from positions [\c 1] to [\c list.size()]. \param list Input image list that will be appended to the image instance. \note - Similar to operator,(const CImg&) const, except that it takes an image list as an argument. **/ template CImgList<_cimg_Tt> operator,(const CImgList& list) const { return CImgList<_cimg_Tt>(list, false).insert(*this, 0); } //! Split image along specified axis. /** Return a new list of images (\c CImgList instance) containing the splitted components of the instance image along the specified axis. \param axis Splitting axis (can be '\c x','\c y','\c z' or '\c c') \note - Similar to get_split(char,int) const, with default second argument. \par Example \code const CImg img("reference.jpg"); // Load a RGB color image const CImgList list = (img<'c'); // Get a list of its three R,G,B channels (img,list).display(); \endcode \image html ref_operator_less.jpg **/ CImgList operator<(const char axis) const { return get_split(axis); } //@} //------------------------------------- // //! \name Instance Characteristics //@{ //------------------------------------- //! Return the type of image pixel values as a C string. /** Return a \c char* string containing the usual type name of the image pixel values (i.e. a stringified version of the template parameter \c T). \note - The returned string may contain spaces (as in \c "unsigned char"). - If the pixel type \c T does not correspond to a registered type, the string "unknown" is returned. **/ static const char* pixel_type() { return cimg::type::string(); } //! Return the number of image columns. /** Return the image width, i.e. the image dimension along the X-axis. \note - The width() of an empty image is equal to \c 0. - width() is typically equal to \c 1 when considering images as \e vectors for matrix calculations. - width() returns an \c int, although the image width is internally stored as an \c unsigned \c int. Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving \c unsigned \c int variables. Access to the initial \c unsigned \c int variable is possible (though not recommended) by (*this)._width. **/ int width() const { return (int)_width; } //! Return the number of image rows. /** Return the image height, i.e. the image dimension along the Y-axis. \note - The height() of an empty image is equal to \c 0. - height() returns an \c int, although the image height is internally stored as an \c unsigned \c int. Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving \c unsigned \c int variables. Access to the initial \c unsigned \c int variable is possible (though not recommended) by (*this)._height. **/ int height() const { return (int)_height; } //! Return the number of image slices. /** Return the image depth, i.e. the image dimension along the Z-axis. \note - The depth() of an empty image is equal to \c 0. - depth() is typically equal to \c 1 when considering usual 2D images. When depth()\c > \c 1, the image is said to be \e volumetric. - depth() returns an \c int, although the image depth is internally stored as an \c unsigned \c int. Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving \c unsigned \c int variables. Access to the initial \c unsigned \c int variable is possible (though not recommended) by (*this)._depth. **/ int depth() const { return (int)_depth; } //! Return the number of image channels. /** Return the number of image channels, i.e. the image dimension along the C-axis. \note - The spectrum() of an empty image is equal to \c 0. - spectrum() is typically equal to \c 1 when considering scalar-valued images, to \c 3 for RGB-coded color images, and to \c 4 for RGBA-coded color images (with alpha-channel). The number of channels of an image instance is not limited. The meaning of the pixel values is not linked up to the number of channels (e.g. a 4-channel image may indifferently stands for a RGBA or CMYK color image). - spectrum() returns an \c int, although the image spectrum is internally stored as an \c unsigned \c int. Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving \c unsigned \c int variables. Access to the initial \c unsigned \c int variable is possible (though not recommended) by (*this)._spectrum. **/ int spectrum() const { return (int)_spectrum; } //! Return the total number of pixel values. /** Return width()*\ref height()*\ref depth()*\ref spectrum(), i.e. the total number of values of type \c T in the pixel buffer of the image instance. \note - The size() of an empty image is equal to \c 0. - The allocated memory size for a pixel buffer of a non-shared \c CImg instance is equal to size()*sizeof(T). \par Example \code const CImg img(100,100,1,3); // Construct new 100x100 color image if (img.size()==30000) // Test succeeds std::printf("Pixel buffer uses %lu bytes", img.size()*sizeof(float)); \endcode **/ ulongT size() const { return (ulongT)_width * _height * _depth * _spectrum; } //! Return a pointer to the first pixel value. /** Return a \c T*, or a \c const \c T* pointer to the first value in the pixel buffer of the image instance, whether the instance is \c const or not. \note - The data() of an empty image is equal to \c 0 (null pointer). - The allocated pixel buffer for the image instance starts from \c data() and goes to data()+\ref size() - 1 (included). - To get the pointer to one particular location of the pixel buffer, use data(unsigned int,unsigned int,unsigned int,unsigned int) instead. **/ T* data() { return _data; } //! Return a pointer to the first pixel value \const. const T* data() const { return _data; } //! Return a pointer to a located pixel value. /** Return a \c T*, or a \c const \c T* pointer to the value located at (\c x,\c y,\c z,\c c) in the pixel buffer of the image instance, whether the instance is \c const or not. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note - Writing \c img.data(x,y,z,c) is equivalent to &(img(x,y,z,c)). Thus, this method has the same properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int). **/ #if cimg_verbosity >= 3 T* data(const unsigned int x, const unsigned int y = 0, const unsigned int z = 0, const unsigned int c = 0) { const ulongT off = (ulongT)offset(x, y, z, c); if (off >= size()) cimg::warn(_cimg_instance "data(): Invalid pointer request, at coordinates " "(%u,%u,%u,%u) [offset=%u].", cimg_instance, x, y, z, c, off); return _data + off; } //! Return a pointer to a located pixel value \const. const T* data(const unsigned int x, const unsigned int y = 0, const unsigned int z = 0, const unsigned int c = 0) const { return const_cast*>(this)->data(x, y, z, c); } #else T* data(const unsigned int x, const unsigned int y = 0, const unsigned int z = 0, const unsigned int c = 0) { return _data + x + (ulongT)y * _width + (ulongT)z * _width * _height + (ulongT)c * _width * _height * _depth; } const T* data(const unsigned int x, const unsigned int y = 0, const unsigned int z = 0, const unsigned int c = 0) const { return _data + x + (ulongT)y * _width + (ulongT)z * _width * _height + (ulongT)c * _width * _height * _depth; } #endif //! Return the offset to a located pixel value, with respect to the //! beginning of the pixel buffer. /** \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note - Writing \c img.data(x,y,z,c) is equivalent to &(img(x,y,z,c)) - img.data(). Thus, this method has the same properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int). \par Example \code const CImg img(100,100,1,3); // Define a 100x100 RGB-color image const long off = img.offset(10,10,0,2); // Get the offset of the blue value of the pixel located at (10,10) const float val = img[off]; // Get the blue value of this pixel \endcode **/ longT offset(const int x, const int y = 0, const int z = 0, const int c = 0) const { return x + (longT)y * _width + (longT)z * _width * _height + (longT)c * _width * _height * _depth; } //! Return a CImg::iterator pointing to the first pixel value. /** \note - Equivalent to data(). - It has been mainly defined for compatibility with STL naming conventions. **/ iterator begin() { return _data; } //! Return a CImg::iterator pointing to the first value of the pixel //! buffer \const. const_iterator begin() const { return _data; } //! Return a CImg::iterator pointing next to the last pixel value. /** \note - Writing \c img.end() is equivalent to img.data() + img.size(). - It has been mainly defined for compatibility with STL naming conventions. \warning - The returned iterator actually points to a value located \e outside the acceptable bounds of the pixel buffer. Trying to read or write the content of the returned iterator will probably result in a crash. Use it mainly as a strict upper bound for a CImg::iterator. \par Example \code CImg img(100,100,1,3); // Define a 100x100 RGB color image // 'img.end()' used below as an upper bound for the iterator. for (CImg::iterator it = img.begin(); it::iterator pointing next to the last pixel value \const. const_iterator end() const { return _data + size(); } //! Return a reference to the first pixel value. /** \note - Writing \c img.front() is equivalent to img[0], or img(0,0,0,0). - It has been mainly defined for compatibility with STL naming conventions. **/ T& front() { return *_data; } //! Return a reference to the first pixel value \const. const T& front() const { return *_data; } //! Return a reference to the last pixel value. /** \note - Writing \c img.back() is equivalent to img[img.size() - 1], or img(img.width() - 1,img.height() - 1,img.depth() - 1,img.spectrum() - 1). - It has been mainly defined for compatibility with STL naming conventions. **/ T& back() { return *(_data + size() - 1); } //! Return a reference to the last pixel value \const. const T& back() const { return *(_data + size() - 1); } //! Access to a pixel value at a specified offset, using Dirichlet boundary //! conditions. /** Return a reference to the pixel value of the image instance located at a specified \c offset, or to a specified default value in case of out-of-bounds access. \param offset Offset to the desired pixel value. \param out_value Default value returned if \c offset is outside image bounds. \note - Writing \c img.at(offset,out_value) is similar to img[offset], except that if \c offset is outside bounds (e.g. \c offset<0 or \c offset>=img.size()), a reference to a value \c out_value is safely returned instead. - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are \e not sure about the validity of the specified pixel offset. **/ T& at(const int offset, const T& out_value) { return (offset < 0 || offset >= (int)size()) ? (cimg::temporary(out_value) = out_value) : (*this)[offset]; } //! Access to a pixel value at a specified offset, using Dirichlet boundary //! conditions \const. T at(const int offset, const T& out_value) const { return (offset < 0 || offset >= (int)size()) ? out_value : (*this)[offset]; } //! Access to a pixel value at a specified offset, using Neumann boundary //! conditions. /** Return a reference to the pixel value of the image instance located at a specified \c offset, or to the nearest pixel location in the image instance in case of out-of-bounds access. \param offset Offset to the desired pixel value. \note - Similar to at(int,const T), except that an out-of-bounds access returns the value of the nearest pixel in the image instance, regarding the specified offset, i.e. - If \c offset<0, then \c img[0] is returned. - If \c offset>=img.size(), then \c img[img.size() - 1] is returned. - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are \e not sure about the validity of the specified pixel offset. - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _at(int). **/ T& at(const int offset) { if (is_empty()) throw CImgInstanceException(_cimg_instance "at(): Empty instance.", cimg_instance); return _at(offset); } T& _at(const int offset) { const unsigned int siz = (unsigned int)size(); return ( *this)[offset < 0 ? 0 : (unsigned int)offset >= siz ? siz - 1 : offset]; } //! Access to a pixel value at a specified offset, using Neumann boundary //! conditions \const. const T& at(const int offset) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "at(): Empty instance.", cimg_instance); return _at(offset); } const T& _at(const int offset) const { const unsigned int siz = (unsigned int)size(); return ( *this)[offset < 0 ? 0 : (unsigned int)offset >= siz ? siz - 1 : offset]; } //! Access to a pixel value, using Dirichlet boundary conditions for the //! X-coordinate. /** Return a reference to the pixel value of the image instance located at (\c x,\c y,\c z,\c c), or to a specified default value in case of out-of-bounds access along the X-axis. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \param out_value Default value returned if \c (\c x,\c y,\c z,\c c) is outside image bounds. \note - Similar to operator()(), except that an out-of-bounds access along the X-axis returns the specified value \c out_value. - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are \e not sure about the validity of the specified pixel coordinates. \warning - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. **/ T& atX(const int x, const int y, const int z, const int c, const T& out_value) { return (x < 0 || x >= width()) ? (cimg::temporary(out_value) = out_value) : (*this)(x, y, z, c); } //! Access to a pixel value, using Dirichlet boundary conditions for the //! X-coordinate \const. T atX(const int x, const int y, const int z, const int c, const T& out_value) const { return (x < 0 || x >= width()) ? out_value : (*this)(x, y, z, c); } //! Access to a pixel value, using Neumann boundary conditions for the //! X-coordinate. /** Return a reference to the pixel value of the image instance located at (\c x,\c y,\c z,\c c), or to the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note - Similar to at(int,int,int,int,const T), except that an out-of-bounds access returns the value of the nearest pixel in the image instance, regarding the specified X-coordinate. - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are \e not sure about the validity of the specified pixel coordinates. - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _at(int,int,int,int). \warning - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. **/ T& atX(const int x, const int y = 0, const int z = 0, const int c = 0) { if (is_empty()) throw CImgInstanceException(_cimg_instance "atX(): Empty instance.", cimg_instance); return _atX(x, y, z, c); } T& _atX(const int x, const int y = 0, const int z = 0, const int c = 0) { return (*this)(x < 0 ? 0 : (x >= width() ? width() - 1 : x), y, z, c); } //! Access to a pixel value, using Neumann boundary conditions for the //! X-coordinate \const. const T& atX(const int x, const int y = 0, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "atX(): Empty instance.", cimg_instance); return _atX(x, y, z, c); } const T& _atX(const int x, const int y = 0, const int z = 0, const int c = 0) const { return (*this)(x < 0 ? 0 : (x >= width() ? width() - 1 : x), y, z, c); } //! Access to a pixel value, using Dirichlet boundary conditions for the X //! and Y-coordinates. /** Similar to atX(int,int,int,int,const T), except that boundary checking is performed both on X and Y-coordinates. **/ T& atXY(const int x, const int y, const int z, const int c, const T& out_value) { return (x < 0 || y < 0 || x >= width() || y >= height()) ? (cimg::temporary(out_value) = out_value) : (*this)(x, y, z, c); } //! Access to a pixel value, using Dirichlet boundary conditions for the X //! and Y coordinates \const. T atXY(const int x, const int y, const int z, const int c, const T& out_value) const { return (x < 0 || y < 0 || x >= width() || y >= height()) ? out_value : (*this)(x, y, z, c); } //! Access to a pixel value, using Neumann boundary conditions for the X and //! Y-coordinates. /** Similar to atX(int,int,int,int), except that boundary checking is performed both on X and Y-coordinates. \note - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _atXY(int,int,int,int). **/ T& atXY(const int x, const int y, const int z = 0, const int c = 0) { if (is_empty()) throw CImgInstanceException( _cimg_instance "atXY(): Empty instance.", cimg_instance); return _atXY(x, y, z, c); } T& _atXY(const int x, const int y, const int z = 0, const int c = 0) { return (*this)(cimg::cut(x, 0, width() - 1), cimg::cut(y, 0, height() - 1), z, c); } //! Access to a pixel value, using Neumann boundary conditions for the X and //! Y-coordinates \const. const T& atXY(const int x, const int y, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "atXY(): Empty instance.", cimg_instance); return _atXY(x, y, z, c); } const T& _atXY(const int x, const int y, const int z = 0, const int c = 0) const { return (*this)(cimg::cut(x, 0, width() - 1), cimg::cut(y, 0, height() - 1), z, c); } //! Access to a pixel value, using Dirichlet boundary conditions for the X,Y //! and Z-coordinates. /** Similar to atX(int,int,int,int,const T), except that boundary checking is performed both on X,Y and Z-coordinates. **/ T& atXYZ(const int x, const int y, const int z, const int c, const T& out_value) { return (x < 0 || y < 0 || z < 0 || x >= width() || y >= height() || z >= depth()) ? (cimg::temporary(out_value) = out_value) : (*this)(x, y, z, c); } //! Access to a pixel value, using Dirichlet boundary conditions for the X,Y //! and Z-coordinates \const. T atXYZ(const int x, const int y, const int z, const int c, const T& out_value) const { return (x < 0 || y < 0 || z < 0 || x >= width() || y >= height() || z >= depth()) ? out_value : (*this)(x, y, z, c); } //! Access to a pixel value, using Neumann boundary conditions for the X,Y //! and Z-coordinates. /** Similar to atX(int,int,int,int), except that boundary checking is performed both on X,Y and Z-coordinates. \note - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _atXYZ(int,int,int,int). **/ T& atXYZ(const int x, const int y, const int z, const int c = 0) { if (is_empty()) throw CImgInstanceException( _cimg_instance "atXYZ(): Empty instance.", cimg_instance); return _atXYZ(x, y, z, c); } T& _atXYZ(const int x, const int y, const int z, const int c = 0) { return (*this)(cimg::cut(x, 0, width() - 1), cimg::cut(y, 0, height() - 1), cimg::cut(z, 0, depth() - 1), c); } //! Access to a pixel value, using Neumann boundary conditions for the X,Y //! and Z-coordinates \const. const T& atXYZ(const int x, const int y, const int z, const int c = 0) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "atXYZ(): Empty instance.", cimg_instance); return _atXYZ(x, y, z, c); } const T& _atXYZ(const int x, const int y, const int z, const int c = 0) const { return (*this)(cimg::cut(x, 0, width() - 1), cimg::cut(y, 0, height() - 1), cimg::cut(z, 0, depth() - 1), c); } //! Access to a pixel value, using Dirichlet boundary conditions. /** Similar to atX(int,int,int,int,const T), except that boundary checking is performed on all X,Y,Z and C-coordinates. **/ T& atXYZC(const int x, const int y, const int z, const int c, const T& out_value) { return (x < 0 || y < 0 || z < 0 || c < 0 || x >= width() || y >= height() || z >= depth() || c >= spectrum()) ? (cimg::temporary(out_value) = out_value) : (*this)(x, y, z, c); } //! Access to a pixel value, using Dirichlet boundary conditions \const. T atXYZC(const int x, const int y, const int z, const int c, const T& out_value) const { return (x < 0 || y < 0 || z < 0 || c < 0 || x >= width() || y >= height() || z >= depth() || c >= spectrum()) ? out_value : (*this)(x, y, z, c); } //! Access to a pixel value, using Neumann boundary conditions. /** Similar to atX(int,int,int,int), except that boundary checking is performed on all X,Y,Z and C-coordinates. \note - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _atXYZC(int,int,int,int). **/ T& atXYZC(const int x, const int y, const int z, const int c) { if (is_empty()) throw CImgInstanceException( _cimg_instance "atXYZC(): Empty instance.", cimg_instance); return _atXYZC(x, y, z, c); } T& _atXYZC(const int x, const int y, const int z, const int c) { return (*this)( cimg::cut(x, 0, width() - 1), cimg::cut(y, 0, height() - 1), cimg::cut(z, 0, depth() - 1), cimg::cut(c, 0, spectrum() - 1)); } //! Access to a pixel value, using Neumann boundary conditions \const. const T& atXYZC(const int x, const int y, const int z, const int c) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "atXYZC(): Empty instance.", cimg_instance); return _atXYZC(x, y, z, c); } const T& _atXYZC(const int x, const int y, const int z, const int c) const { return (*this)( cimg::cut(x, 0, width() - 1), cimg::cut(y, 0, height() - 1), cimg::cut(z, 0, depth() - 1), cimg::cut(c, 0, spectrum() - 1)); } //! Return pixel value, using linear interpolation and Dirichlet boundary //! conditions for the X-coordinate. /** Return a linearly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), or a specified default value in case of out-of-bounds access along the X-axis. \param fx X-coordinate of the pixel value (float-valued). \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \param out_value Default value returned if \c (\c fx,\c y,\c z,\c c) is outside image bounds. \note - Similar to atX(int,int,int,int,const T), except that the returned pixel value is approximated by a linear interpolation along the X-axis, if corresponding coordinates are not integers. - The type of the returned pixel value is extended to \c float, if the pixel type \c T is not float-valued. \warning - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. **/ Tfloat linear_atX(const float fx, const int y, const int z, const int c, const T& out_value) const { const int x = (int)fx - (fx >= 0 ? 0 : 1), nx = x + 1; const float dx = fx - x; const Tfloat Ic = (Tfloat)atX(x, y, z, c, out_value), In = (Tfloat)atXY(nx, y, z, c, out_value); return Ic + dx * (In - Ic); } //! Return pixel value, using linear interpolation and Neumann boundary //! conditions for the X-coordinate. /** Return a linearly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), or the value of the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis. \param fx X-coordinate of the pixel value (float-valued). \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note - Similar to linear_atX(float,int,int,int,const T) const, except that an out-of-bounds access returns the value of the nearest pixel in the image instance, regarding the specified X-coordinate. - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _linear_atX(float,int,int,int). \warning - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. **/ Tfloat linear_atX(const float fx, const int y = 0, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "linear_atX(): Empty instance.", cimg_instance); return _linear_atX(fx, y, z, c); } Tfloat _linear_atX(const float fx, const int y = 0, const int z = 0, const int c = 0) const { const float nfx = cimg::cut(fx, 0, width() - 1); const unsigned int x = (unsigned int)nfx; const float dx = nfx - x; const unsigned int nx = dx > 0 ? x + 1 : x; const Tfloat Ic = (Tfloat)(*this)(x, y, z, c), In = (Tfloat)(*this)(nx, y, z, c); return Ic + dx * (In - Ic); } //! Return pixel value, using linear interpolation and periodic boundary //! conditions for the X-coordinate. Tfloat linear_atX_p(const float fx, const int y = 0, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "linear_atX_p(): Empty instance.", cimg_instance); return _linear_atX_p(fx, y, z, c); } Tfloat _linear_atX_p(const float fx, const int y = 0, const int z = 0, const int c = 0) const { const float nfx = cimg::mod(fx, (float)_width); const unsigned int x = (unsigned int)nfx; const float dx = nfx - x; const unsigned int nx = cimg::mod(x + 1, _width); const Tfloat Ic = (Tfloat)(*this)(x, y, z, c), In = (Tfloat)(*this)(nx, y, z, c); return Ic + dx * (In - Ic); } //! Return pixel value, using linear interpolation and Dirichlet boundary //! conditions for the X and Y-coordinates. /** Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the boundary checking are achieved both for X and Y-coordinates. **/ Tfloat linear_atXY(const float fx, const float fy, const int z, const int c, const T& out_value) const { const int x = (int)fx - (fx >= 0 ? 0 : 1), nx = x + 1, y = (int)fy - (fy >= 0 ? 0 : 1), ny = y + 1; const float dx = fx - x, dy = fy - y; const Tfloat Icc = (Tfloat)atXY(x, y, z, c, out_value), Inc = (Tfloat)atXY(nx, y, z, c, out_value), Icn = (Tfloat)atXY(x, ny, z, c, out_value), Inn = (Tfloat)atXY(nx, ny, z, c, out_value); return Icc + dx * (Inc - Icc + dy * (Icc + Inn - Icn - Inc)) + dy * (Icn - Icc); } //! Return pixel value, using linear interpolation and Neumann boundary //! conditions for the X and Y-coordinates. /** Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking are achieved both for X and Y-coordinates. \note - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _linear_atXY(float,float,int,int). **/ Tfloat linear_atXY(const float fx, const float fy, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "linear_atXY(): Empty instance.", cimg_instance); return _linear_atXY(fx, fy, z, c); } Tfloat _linear_atXY(const float fx, const float fy, const int z = 0, const int c = 0) const { const float nfx = cimg::cut(fx, 0, width() - 1), nfy = cimg::cut(fy, 0, height() - 1); const unsigned int x = (unsigned int)nfx, y = (unsigned int)nfy; const float dx = nfx - x, dy = nfy - y; const unsigned int nx = dx > 0 ? x + 1 : x, ny = dy > 0 ? y + 1 : y; const Tfloat Icc = (Tfloat)(*this)(x, y, z, c), Inc = (Tfloat)(*this)(nx, y, z, c), Icn = (Tfloat)(*this)(x, ny, z, c), Inn = (Tfloat)(*this)(nx, ny, z, c); return Icc + dx * (Inc - Icc + dy * (Icc + Inn - Icn - Inc)) + dy * (Icn - Icc); } //! Return pixel value, using linear interpolation and periodic boundary //! conditions for the X and Y-coordinates. Tfloat linear_atXY_p(const float fx, const float fy, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "linear_atXY_p(): Empty instance.", cimg_instance); return _linear_atXY_p(fx, fy, z, c); } Tfloat _linear_atXY_p(const float fx, const float fy, const int z = 0, const int c = 0) const { const float nfx = cimg::mod(fx, (float)_width), nfy = cimg::mod(fy, (float)_height); const unsigned int x = (unsigned int)nfx, y = (unsigned int)nfy; const float dx = nfx - x, dy = nfy - y; const unsigned int nx = cimg::mod(x + 1, _width), ny = cimg::mod(y + 1, _height); const Tfloat Icc = (Tfloat)(*this)(x, y, z, c), Inc = (Tfloat)(*this)(nx, y, z, c), Icn = (Tfloat)(*this)(x, ny, z, c), Inn = (Tfloat)(*this)(nx, ny, z, c); return Icc + dx * (Inc - Icc + dy * (Icc + Inn - Icn - Inc)) + dy * (Icn - Icc); } //! Return pixel value, using linear interpolation and Dirichlet boundary //! conditions for the X,Y and Z-coordinates. /** Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the boundary checking are achieved both for X,Y and Z-coordinates. **/ Tfloat linear_atXYZ(const float fx, const float fy, const float fz, const int c, const T& out_value) const { const int x = (int)fx - (fx >= 0 ? 0 : 1), nx = x + 1, y = (int)fy - (fy >= 0 ? 0 : 1), ny = y + 1, z = (int)fz - (fz >= 0 ? 0 : 1), nz = z + 1; const float dx = fx - x, dy = fy - y, dz = fz - z; const Tfloat Iccc = (Tfloat)atXYZ(x, y, z, c, out_value), Incc = (Tfloat)atXYZ(nx, y, z, c, out_value), Icnc = (Tfloat)atXYZ(x, ny, z, c, out_value), Innc = (Tfloat)atXYZ(nx, ny, z, c, out_value), Iccn = (Tfloat)atXYZ(x, y, nz, c, out_value), Incn = (Tfloat)atXYZ(nx, y, nz, c, out_value), Icnn = (Tfloat)atXYZ(x, ny, nz, c, out_value), Innn = (Tfloat)atXYZ(nx, ny, nz, c, out_value); return Iccc + dx * (Incc - Iccc + dy * (Iccc + Innc - Icnc - Incc + dz * (Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)) + dz * (Iccc + Incn - Iccn - Incc)) + dy * (Icnc - Iccc + dz * (Iccc + Icnn - Iccn - Icnc)) + dz * (Iccn - Iccc); } //! Return pixel value, using linear interpolation and Neumann boundary //! conditions for the X,Y and Z-coordinates. /** Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking are achieved both for X,Y and Z-coordinates. \note - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _linear_atXYZ(float,float,float,int). **/ Tfloat linear_atXYZ(const float fx, const float fy = 0, const float fz = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "linear_atXYZ(): Empty instance.", cimg_instance); return _linear_atXYZ(fx, fy, fz, c); } Tfloat _linear_atXYZ(const float fx, const float fy = 0, const float fz = 0, const int c = 0) const { const float nfx = cimg::cut(fx, 0, width() - 1), nfy = cimg::cut(fy, 0, height() - 1), nfz = cimg::cut(fz, 0, depth() - 1); const unsigned int x = (unsigned int)nfx, y = (unsigned int)nfy, z = (unsigned int)nfz; const float dx = nfx - x, dy = nfy - y, dz = nfz - z; const unsigned int nx = dx > 0 ? x + 1 : x, ny = dy > 0 ? y + 1 : y, nz = dz > 0 ? z + 1 : z; const Tfloat Iccc = (Tfloat)(*this)(x, y, z, c), Incc = (Tfloat)(*this)(nx, y, z, c), Icnc = (Tfloat)(*this)(x, ny, z, c), Innc = (Tfloat)(*this)(nx, ny, z, c), Iccn = (Tfloat)(*this)(x, y, nz, c), Incn = (Tfloat)(*this)(nx, y, nz, c), Icnn = (Tfloat)(*this)(x, ny, nz, c), Innn = (Tfloat)(*this)(nx, ny, nz, c); return Iccc + dx * (Incc - Iccc + dy * (Iccc + Innc - Icnc - Incc + dz * (Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)) + dz * (Iccc + Incn - Iccn - Incc)) + dy * (Icnc - Iccc + dz * (Iccc + Icnn - Iccn - Icnc)) + dz * (Iccn - Iccc); } //! Return pixel value, using linear interpolation and periodic boundary //! conditions for the X,Y and Z-coordinates. Tfloat linear_atXYZ_p(const float fx, const float fy = 0, const float fz = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "linear_atXYZ_p(): Empty instance.", cimg_instance); return _linear_atXYZ_p(fx, fy, fz, c); } Tfloat _linear_atXYZ_p(const float fx, const float fy = 0, const float fz = 0, const int c = 0) const { const float nfx = cimg::mod(fx, (float)_width), nfy = cimg::mod(fy, (float)_height), nfz = cimg::mod(fz, (float)_depth); const unsigned int x = (unsigned int)nfx, y = (unsigned int)nfy, z = (unsigned int)nfz; const float dx = nfx - x, dy = nfy - y, dz = nfz - z; const unsigned int nx = cimg::mod(x + 1, _width), ny = cimg::mod(y + 1, _height), nz = cimg::mod(z + 1, _depth); const Tfloat Iccc = (Tfloat)(*this)(x, y, z, c), Incc = (Tfloat)(*this)(nx, y, z, c), Icnc = (Tfloat)(*this)(x, ny, z, c), Innc = (Tfloat)(*this)(nx, ny, z, c), Iccn = (Tfloat)(*this)(x, y, nz, c), Incn = (Tfloat)(*this)(nx, y, nz, c), Icnn = (Tfloat)(*this)(x, ny, nz, c), Innn = (Tfloat)(*this)(nx, ny, nz, c); return Iccc + dx * (Incc - Iccc + dy * (Iccc + Innc - Icnc - Incc + dz * (Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)) + dz * (Iccc + Incn - Iccn - Incc)) + dy * (Icnc - Iccc + dz * (Iccc + Icnn - Iccn - Icnc)) + dz * (Iccn - Iccc); } //! Return pixel value, using linear interpolation and Dirichlet boundary //! conditions for all X,Y,Z,C-coordinates. /** Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the boundary checking are achieved for all X,Y,Z and C-coordinates. **/ Tfloat linear_atXYZC(const float fx, const float fy, const float fz, const float fc, const T& out_value) const { const int x = (int)fx - (fx >= 0 ? 0 : 1), nx = x + 1, y = (int)fy - (fy >= 0 ? 0 : 1), ny = y + 1, z = (int)fz - (fz >= 0 ? 0 : 1), nz = z + 1, c = (int)fc - (fc >= 0 ? 0 : 1), nc = c + 1; const float dx = fx - x, dy = fy - y, dz = fz - z, dc = fc - c; const Tfloat Icccc = (Tfloat)atXYZC(x, y, z, c, out_value), Inccc = (Tfloat)atXYZC(nx, y, z, c, out_value), Icncc = (Tfloat)atXYZC(x, ny, z, c, out_value), Inncc = (Tfloat)atXYZC(nx, ny, z, c, out_value), Iccnc = (Tfloat)atXYZC(x, y, nz, c, out_value), Incnc = (Tfloat)atXYZC(nx, y, nz, c, out_value), Icnnc = (Tfloat)atXYZC(x, ny, nz, c, out_value), Innnc = (Tfloat)atXYZC(nx, ny, nz, c, out_value), Icccn = (Tfloat)atXYZC(x, y, z, nc, out_value), Inccn = (Tfloat)atXYZC(nx, y, z, nc, out_value), Icncn = (Tfloat)atXYZC(x, ny, z, nc, out_value), Inncn = (Tfloat)atXYZC(nx, ny, z, nc, out_value), Iccnn = (Tfloat)atXYZC(x, y, nz, nc, out_value), Incnn = (Tfloat)atXYZC(nx, y, nz, nc, out_value), Icnnn = (Tfloat)atXYZC(x, ny, nz, nc, out_value), Innnn = (Tfloat)atXYZC(nx, ny, nz, nc, out_value); return Icccc + dx * (Inccc - Icccc + dy * (Icccc + Inncc - Icncc - Inccc + dz * (Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc + dc * (Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc - Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) + dc * (Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) + dz * (Icccc + Incnc - Iccnc - Inccc + dc * (Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) + dc * (Icccc + Inccn - Inccc - Icccn)) + dy * (Icncc - Icccc + dz * (Icccc + Icnnc - Iccnc - Icncc + dc * (Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) + dc * (Icccc + Icncn - Icncc - Icccn)) + dz * (Iccnc - Icccc + dc * (Icccc + Iccnn - Iccnc - Icccn)) + dc * (Icccn - Icccc); } //! Return pixel value, using linear interpolation and Neumann boundary //! conditions for all X,Y,Z and C-coordinates. /** Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking are achieved for all X,Y,Z and C-coordinates. \note - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _linear_atXYZC(float,float,float,float). **/ Tfloat linear_atXYZC(const float fx, const float fy = 0, const float fz = 0, const float fc = 0) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "linear_atXYZC(): Empty instance.", cimg_instance); return _linear_atXYZC(fx, fy, fz, fc); } Tfloat _linear_atXYZC(const float fx, const float fy = 0, const float fz = 0, const float fc = 0) const { const float nfx = cimg::cut(fx, 0, width() - 1), nfy = cimg::cut(fy, 0, height() - 1), nfz = cimg::cut(fz, 0, depth() - 1), nfc = cimg::cut(fc, 0, spectrum() - 1); const unsigned int x = (unsigned int)nfx, y = (unsigned int)nfy, z = (unsigned int)nfz, c = (unsigned int)nfc; const float dx = nfx - x, dy = nfy - y, dz = nfz - z, dc = nfc - c; const unsigned int nx = dx > 0 ? x + 1 : x, ny = dy > 0 ? y + 1 : y, nz = dz > 0 ? z + 1 : z, nc = dc > 0 ? c + 1 : c; const Tfloat Icccc = (Tfloat)(*this)(x, y, z, c), Inccc = (Tfloat)(*this)(nx, y, z, c), Icncc = (Tfloat)(*this)(x, ny, z, c), Inncc = (Tfloat)(*this)(nx, ny, z, c), Iccnc = (Tfloat)(*this)(x, y, nz, c), Incnc = (Tfloat)(*this)(nx, y, nz, c), Icnnc = (Tfloat)(*this)(x, ny, nz, c), Innnc = (Tfloat)(*this)(nx, ny, nz, c), Icccn = (Tfloat)(*this)(x, y, z, nc), Inccn = (Tfloat)(*this)(nx, y, z, nc), Icncn = (Tfloat)(*this)(x, ny, z, nc), Inncn = (Tfloat)(*this)(nx, ny, z, nc), Iccnn = (Tfloat)(*this)(x, y, nz, nc), Incnn = (Tfloat)(*this)(nx, y, nz, nc), Icnnn = (Tfloat)(*this)(x, ny, nz, nc), Innnn = (Tfloat)(*this)(nx, ny, nz, nc); return Icccc + dx * (Inccc - Icccc + dy * (Icccc + Inncc - Icncc - Inccc + dz * (Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc + dc * (Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc - Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) + dc * (Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) + dz * (Icccc + Incnc - Iccnc - Inccc + dc * (Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) + dc * (Icccc + Inccn - Inccc - Icccn)) + dy * (Icncc - Icccc + dz * (Icccc + Icnnc - Iccnc - Icncc + dc * (Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) + dc * (Icccc + Icncn - Icncc - Icccn)) + dz * (Iccnc - Icccc + dc * (Icccc + Iccnn - Iccnc - Icccn)) + dc * (Icccn - Icccc); } //! Return pixel value, using linear interpolation and periodic boundary //! conditions for all X,Y,Z and C-coordinates. Tfloat linear_atXYZC_p(const float fx, const float fy = 0, const float fz = 0, const float fc = 0) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "linear_atXYZC_p(): Empty instance.", cimg_instance); return _linear_atXYZC_p(fx, fy, fz, fc); } Tfloat _linear_atXYZC_p(const float fx, const float fy = 0, const float fz = 0, const float fc = 0) const { const float nfx = cimg::mod(fx, (float)_width), nfy = cimg::mod(fy, (float)_height), nfz = cimg::mod(fz, (float)_depth), nfc = cimg::mod(fc, (float)_spectrum); const unsigned int x = (unsigned int)nfx, y = (unsigned int)nfy, z = (unsigned int)nfz, c = (unsigned int)nfc; const float dx = nfx - x, dy = nfy - y, dz = nfz - z, dc = nfc - c; const unsigned int nx = cimg::mod(x + 1, _width), ny = cimg::mod(y + 1, _height), nz = cimg::mod(z + 1, _depth), nc = cimg::mod(c + 1, _spectrum); const Tfloat Icccc = (Tfloat)(*this)(x, y, z, c), Inccc = (Tfloat)(*this)(nx, y, z, c), Icncc = (Tfloat)(*this)(x, ny, z, c), Inncc = (Tfloat)(*this)(nx, ny, z, c), Iccnc = (Tfloat)(*this)(x, y, nz, c), Incnc = (Tfloat)(*this)(nx, y, nz, c), Icnnc = (Tfloat)(*this)(x, ny, nz, c), Innnc = (Tfloat)(*this)(nx, ny, nz, c), Icccn = (Tfloat)(*this)(x, y, z, nc), Inccn = (Tfloat)(*this)(nx, y, z, nc), Icncn = (Tfloat)(*this)(x, ny, z, nc), Inncn = (Tfloat)(*this)(nx, ny, z, nc), Iccnn = (Tfloat)(*this)(x, y, nz, nc), Incnn = (Tfloat)(*this)(nx, y, nz, nc), Icnnn = (Tfloat)(*this)(x, ny, nz, nc), Innnn = (Tfloat)(*this)(nx, ny, nz, nc); return Icccc + dx * (Inccc - Icccc + dy * (Icccc + Inncc - Icncc - Inccc + dz * (Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc + dc * (Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc - Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) + dc * (Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) + dz * (Icccc + Incnc - Iccnc - Inccc + dc * (Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) + dc * (Icccc + Inccn - Inccc - Icccn)) + dy * (Icncc - Icccc + dz * (Icccc + Icnnc - Iccnc - Icncc + dc * (Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) + dc * (Icccc + Icncn - Icncc - Icccn)) + dz * (Iccnc - Icccc + dc * (Icccc + Iccnn - Iccnc - Icccn)) + dc * (Icccn - Icccc); } //! Return pixel value, using cubic interpolation and Dirichlet boundary //! conditions for the X-coordinate. /** Return a cubicly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), or a specified default value in case of out-of-bounds access along the X-axis. The cubic interpolation uses Hermite splines. \param fx d X-coordinate of the pixel value (float-valued). \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \param out_value Default value returned if \c (\c fx,\c y,\c z,\c c) is outside image bounds. \note - Similar to linear_atX(float,int,int,int,const T) const, except that the returned pixel value is approximated by a \e cubic interpolation along the X-axis. - The type of the returned pixel value is extended to \c float, if the pixel type \c T is not float-valued. \warning - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. **/ Tfloat cubic_atX(const float fx, const int y, const int z, const int c, const T& out_value) const { const int x = (int)fx - (fx >= 0 ? 0 : 1), px = x - 1, nx = x + 1, ax = x + 2; const float dx = fx - x; const Tfloat Ip = (Tfloat)atX(px, y, z, c, out_value), Ic = (Tfloat)atX(x, y, z, c, out_value), In = (Tfloat)atX(nx, y, z, c, out_value), Ia = (Tfloat)atX(ax, y, z, c, out_value); return Ic + 0.5f * (dx * (-Ip + In) + dx * dx * (2 * Ip - 5 * Ic + 4 * In - Ia) + dx * dx * dx * (-Ip + 3 * Ic - 3 * In + Ia)); } //! Return clamped pixel value, using cubic interpolation and Dirichlet //! boundary conditions for the X-coordinate. /** Similar to cubic_atX(float,int,int,int,const T) const, except that the return value is clamped to stay in the min/max range of the datatype \c T. **/ T cubic_atX_c(const float fx, const int y, const int z, const int c, const T& out_value) const { return cimg::type::cut(cubic_atX(fx, y, z, c, out_value)); } //! Return pixel value, using cubic interpolation and Neumann boundary //! conditions for the X-coordinate. /** Return a cubicly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), or the value of the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis. The cubic interpolation uses Hermite splines. \param fx X-coordinate of the pixel value (float-valued). \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note - Similar to cubic_atX(float,int,int,int,const T) const, except that the returned pixel value is approximated by a cubic interpolation along the X-axis. - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _cubic_atX(float,int,int,int). \warning - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. **/ Tfloat cubic_atX(const float fx, const int y = 0, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "cubic_atX(): Empty instance.", cimg_instance); return _cubic_atX(fx, y, z, c); } Tfloat _cubic_atX(const float fx, const int y = 0, const int z = 0, const int c = 0) const { const float nfx = cimg::type::is_nan(fx) ? 0 : cimg::cut(fx, 0, width() - 1); const int x = (int)nfx; const float dx = nfx - x; const int px = x - 1 < 0 ? 0 : x - 1, nx = dx > 0 ? x + 1 : x, ax = x + 2 >= width() ? width() - 1 : x + 2; const Tfloat Ip = (Tfloat)(*this)(px, y, z, c), Ic = (Tfloat)(*this)(x, y, z, c), In = (Tfloat)(*this)(nx, y, z, c), Ia = (Tfloat)(*this)(ax, y, z, c); return Ic + 0.5f * (dx * (-Ip + In) + dx * dx * (2 * Ip - 5 * Ic + 4 * In - Ia) + dx * dx * dx * (-Ip + 3 * Ic - 3 * In + Ia)); } //! Return clamped pixel value, using cubic interpolation and Neumann //! boundary conditions for the X-coordinate. /** Similar to cubic_atX(float,int,int,int) const, except that the return value is clamped to stay in the min/max range of the datatype \c T. **/ T cubic_atX_c(const float fx, const int y, const int z, const int c) const { return cimg::type::cut(cubic_atX(fx, y, z, c)); } T _cubic_atX_c(const float fx, const int y, const int z, const int c) const { return cimg::type::cut(_cubic_atX(fx, y, z, c)); } //! Return pixel value, using cubic interpolation and periodic boundary //! conditions for the X-coordinate. Tfloat cubic_atX_p(const float fx, const int y = 0, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "cubic_atX_p(): Empty instance.", cimg_instance); return _cubic_atX_p(fx, y, z, c); } Tfloat _cubic_atX_p(const float fx, const int y = 0, const int z = 0, const int c = 0) const { const float nfx = cimg::type::is_nan(fx) ? 0 : cimg::mod(fx, (float)_width); const int x = (int)nfx; const float dx = nfx - x; const int px = cimg::mod(x - 1, width()), nx = cimg::mod(x + 1, width()), ax = cimg::mod(x + 2, width()); const Tfloat Ip = (Tfloat)(*this)(px, y, z, c), Ic = (Tfloat)(*this)(x, y, z, c), In = (Tfloat)(*this)(nx, y, z, c), Ia = (Tfloat)(*this)(ax, y, z, c); return Ic + 0.5f * (dx * (-Ip + In) + dx * dx * (2 * Ip - 5 * Ic + 4 * In - Ia) + dx * dx * dx * (-Ip + 3 * Ic - 3 * In + Ia)); } T cubic_atX_pc(const float fx, const int y, const int z, const int c) const { return cimg::type::cut(cubic_atX_p(fx, y, z, c)); } T _cubic_atX_pc(const float fx, const int y, const int z, const int c) const { return cimg::type::cut(_cubic_atX_p(fx, y, z, c)); } //! Return pixel value, using cubic interpolation and Dirichlet boundary //! conditions for the X and Y-coordinates. /** Similar to cubic_atX(float,int,int,int,const T) const, except that the cubic interpolation and boundary checking are achieved both for X and Y-coordinates. **/ Tfloat cubic_atXY(const float fx, const float fy, const int z, const int c, const T& out_value) const { const int x = (int)fx - (fx >= 0 ? 0 : 1), px = x - 1, nx = x + 1, ax = x + 2, y = (int)fy - (fy >= 0 ? 0 : 1), py = y - 1, ny = y + 1, ay = y + 2; const float dx = fx - x, dy = fy - y; const Tfloat Ipp = (Tfloat)atXY(px, py, z, c, out_value), Icp = (Tfloat)atXY(x, py, z, c, out_value), Inp = (Tfloat)atXY(nx, py, z, c, out_value), Iap = (Tfloat)atXY(ax, py, z, c, out_value), Ip = Icp + 0.5f * (dx * (-Ipp + Inp) + dx * dx * (2 * Ipp - 5 * Icp + 4 * Inp - Iap) + dx * dx * dx * (-Ipp + 3 * Icp - 3 * Inp + Iap)), Ipc = (Tfloat)atXY(px, y, z, c, out_value), Icc = (Tfloat)atXY(x, y, z, c, out_value), Inc = (Tfloat)atXY(nx, y, z, c, out_value), Iac = (Tfloat)atXY(ax, y, z, c, out_value), Ic = Icc + 0.5f * (dx * (-Ipc + Inc) + dx * dx * (2 * Ipc - 5 * Icc + 4 * Inc - Iac) + dx * dx * dx * (-Ipc + 3 * Icc - 3 * Inc + Iac)), Ipn = (Tfloat)atXY(px, ny, z, c, out_value), Icn = (Tfloat)atXY(x, ny, z, c, out_value), Inn = (Tfloat)atXY(nx, ny, z, c, out_value), Ian = (Tfloat)atXY(ax, ny, z, c, out_value), In = Icn + 0.5f * (dx * (-Ipn + Inn) + dx * dx * (2 * Ipn - 5 * Icn + 4 * Inn - Ian) + dx * dx * dx * (-Ipn + 3 * Icn - 3 * Inn + Ian)), Ipa = (Tfloat)atXY(px, ay, z, c, out_value), Ica = (Tfloat)atXY(x, ay, z, c, out_value), Ina = (Tfloat)atXY(nx, ay, z, c, out_value), Iaa = (Tfloat)atXY(ax, ay, z, c, out_value), Ia = Ica + 0.5f * (dx * (-Ipa + Ina) + dx * dx * (2 * Ipa - 5 * Ica + 4 * Ina - Iaa) + dx * dx * dx * (-Ipa + 3 * Ica - 3 * Ina + Iaa)); return Ic + 0.5f * (dy * (-Ip + In) + dy * dy * (2 * Ip - 5 * Ic + 4 * In - Ia) + dy * dy * dy * (-Ip + 3 * Ic - 3 * In + Ia)); } //! Return clamped pixel value, using cubic interpolation and Dirichlet //! boundary conditions for the X,Y-coordinates. /** Similar to cubic_atXY(float,float,int,int,const T) const, except that the return value is clamped to stay in the min/max range of the datatype \c T. **/ T cubic_atXY_c(const float fx, const float fy, const int z, const int c, const T& out_value) const { return cimg::type::cut(cubic_atXY(fx, fy, z, c, out_value)); } //! Return pixel value, using cubic interpolation and Neumann boundary //! conditions for the X and Y-coordinates. /** Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking are achieved for both X and Y-coordinates. \note - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _cubic_atXY(float,float,int,int). **/ Tfloat cubic_atXY(const float fx, const float fy, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "cubic_atXY(): Empty instance.", cimg_instance); return _cubic_atXY(fx, fy, z, c); } Tfloat _cubic_atXY(const float fx, const float fy, const int z = 0, const int c = 0) const { const float nfx = cimg::type::is_nan(fx) ? 0 : cimg::cut(fx, 0, width() - 1), nfy = cimg::type::is_nan(fy) ? 0 : cimg::cut(fy, 0, height() - 1); const int x = (int)nfx, y = (int)nfy; const float dx = nfx - x, dy = nfy - y; const int px = x - 1 < 0 ? 0 : x - 1, nx = dx <= 0 ? x : x + 1, ax = x + 2 >= width() ? width() - 1 : x + 2, py = y - 1 < 0 ? 0 : y - 1, ny = dy <= 0 ? y : y + 1, ay = y + 2 >= height() ? height() - 1 : y + 2; const Tfloat Ipp = (Tfloat)(*this)(px, py, z, c), Icp = (Tfloat)(*this)(x, py, z, c), Inp = (Tfloat)(*this)(nx, py, z, c), Iap = (Tfloat)(*this)(ax, py, z, c), Ip = Icp + 0.5f * (dx * (-Ipp + Inp) + dx * dx * (2 * Ipp - 5 * Icp + 4 * Inp - Iap) + dx * dx * dx * (-Ipp + 3 * Icp - 3 * Inp + Iap)), Ipc = (Tfloat)(*this)(px, y, z, c), Icc = (Tfloat)(*this)(x, y, z, c), Inc = (Tfloat)(*this)(nx, y, z, c), Iac = (Tfloat)(*this)(ax, y, z, c), Ic = Icc + 0.5f * (dx * (-Ipc + Inc) + dx * dx * (2 * Ipc - 5 * Icc + 4 * Inc - Iac) + dx * dx * dx * (-Ipc + 3 * Icc - 3 * Inc + Iac)), Ipn = (Tfloat)(*this)(px, ny, z, c), Icn = (Tfloat)(*this)(x, ny, z, c), Inn = (Tfloat)(*this)(nx, ny, z, c), Ian = (Tfloat)(*this)(ax, ny, z, c), In = Icn + 0.5f * (dx * (-Ipn + Inn) + dx * dx * (2 * Ipn - 5 * Icn + 4 * Inn - Ian) + dx * dx * dx * (-Ipn + 3 * Icn - 3 * Inn + Ian)), Ipa = (Tfloat)(*this)(px, ay, z, c), Ica = (Tfloat)(*this)(x, ay, z, c), Ina = (Tfloat)(*this)(nx, ay, z, c), Iaa = (Tfloat)(*this)(ax, ay, z, c), Ia = Ica + 0.5f * (dx * (-Ipa + Ina) + dx * dx * (2 * Ipa - 5 * Ica + 4 * Ina - Iaa) + dx * dx * dx * (-Ipa + 3 * Ica - 3 * Ina + Iaa)); return Ic + 0.5f * (dy * (-Ip + In) + dy * dy * (2 * Ip - 5 * Ic + 4 * In - Ia) + dy * dy * dy * (-Ip + 3 * Ic - 3 * In + Ia)); } //! Return clamped pixel value, using cubic interpolation and Neumann //! boundary conditions for the X,Y-coordinates. /** Similar to cubic_atXY(float,float,int,int) const, except that the return value is clamped to stay in the min/max range of the datatype \c T. **/ T cubic_atXY_c(const float fx, const float fy, const int z, const int c) const { return cimg::type::cut(cubic_atXY(fx, fy, z, c)); } T _cubic_atXY_c(const float fx, const float fy, const int z, const int c) const { return cimg::type::cut(_cubic_atXY(fx, fy, z, c)); } //! Return pixel value, using cubic interpolation and periodic boundary //! conditions for the X and Y-coordinates. Tfloat cubic_atXY_p(const float fx, const float fy, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "cubic_atXY_p(): Empty instance.", cimg_instance); return _cubic_atXY_p(fx, fy, z, c); } Tfloat _cubic_atXY_p(const float fx, const float fy, const int z = 0, const int c = 0) const { const float nfx = cimg::type::is_nan(fx) ? 0 : cimg::mod(fx, (float)_width), nfy = cimg::type::is_nan(fy) ? 0 : cimg::mod(fy, (float)_height); const int x = (int)nfx, y = (int)nfy; const float dx = nfx - x, dy = nfy - y; const int px = cimg::mod(x - 1, width()), nx = cimg::mod(x + 1, width()), ax = cimg::mod(x + 2, width()), py = cimg::mod(y - 1, height()), ny = cimg::mod(y + 1, height()), ay = cimg::mod(y + 2, height()); const Tfloat Ipp = (Tfloat)(*this)(px, py, z, c), Icp = (Tfloat)(*this)(x, py, z, c), Inp = (Tfloat)(*this)(nx, py, z, c), Iap = (Tfloat)(*this)(ax, py, z, c), Ip = Icp + 0.5f * (dx * (-Ipp + Inp) + dx * dx * (2 * Ipp - 5 * Icp + 4 * Inp - Iap) + dx * dx * dx * (-Ipp + 3 * Icp - 3 * Inp + Iap)), Ipc = (Tfloat)(*this)(px, y, z, c), Icc = (Tfloat)(*this)(x, y, z, c), Inc = (Tfloat)(*this)(nx, y, z, c), Iac = (Tfloat)(*this)(ax, y, z, c), Ic = Icc + 0.5f * (dx * (-Ipc + Inc) + dx * dx * (2 * Ipc - 5 * Icc + 4 * Inc - Iac) + dx * dx * dx * (-Ipc + 3 * Icc - 3 * Inc + Iac)), Ipn = (Tfloat)(*this)(px, ny, z, c), Icn = (Tfloat)(*this)(x, ny, z, c), Inn = (Tfloat)(*this)(nx, ny, z, c), Ian = (Tfloat)(*this)(ax, ny, z, c), In = Icn + 0.5f * (dx * (-Ipn + Inn) + dx * dx * (2 * Ipn - 5 * Icn + 4 * Inn - Ian) + dx * dx * dx * (-Ipn + 3 * Icn - 3 * Inn + Ian)), Ipa = (Tfloat)(*this)(px, ay, z, c), Ica = (Tfloat)(*this)(x, ay, z, c), Ina = (Tfloat)(*this)(nx, ay, z, c), Iaa = (Tfloat)(*this)(ax, ay, z, c), Ia = Ica + 0.5f * (dx * (-Ipa + Ina) + dx * dx * (2 * Ipa - 5 * Ica + 4 * Ina - Iaa) + dx * dx * dx * (-Ipa + 3 * Ica - 3 * Ina + Iaa)); return Ic + 0.5f * (dy * (-Ip + In) + dy * dy * (2 * Ip - 5 * Ic + 4 * In - Ia) + dy * dy * dy * (-Ip + 3 * Ic - 3 * In + Ia)); } T cubic_atXY_pc(const float fx, const float fy, const int z, const int c) const { return cimg::type::cut(cubic_atXY_p(fx, fy, z, c)); } T _cubic_atXY_pc(const float fx, const float fy, const int z, const int c) const { return cimg::type::cut(_cubic_atXY_p(fx, fy, z, c)); } //! Return pixel value, using cubic interpolation and Dirichlet boundary //! conditions for the X,Y and Z-coordinates. /** Similar to cubic_atX(float,int,int,int,const T) const, except that the cubic interpolation and boundary checking are achieved both for X,Y and Z-coordinates. **/ Tfloat cubic_atXYZ(const float fx, const float fy, const float fz, const int c, const T& out_value) const { const int x = (int)fx - (fx >= 0 ? 0 : 1), px = x - 1, nx = x + 1, ax = x + 2, y = (int)fy - (fy >= 0 ? 0 : 1), py = y - 1, ny = y + 1, ay = y + 2, z = (int)fz - (fz >= 0 ? 0 : 1), pz = z - 1, nz = z + 1, az = z + 2; const float dx = fx - x, dy = fy - y, dz = fz - z; const Tfloat Ippp = (Tfloat)atXYZ(px, py, pz, c, out_value), Icpp = (Tfloat)atXYZ(x, py, pz, c, out_value), Inpp = (Tfloat)atXYZ(nx, py, pz, c, out_value), Iapp = (Tfloat)atXYZ(ax, py, pz, c, out_value), Ipp = Icpp + 0.5f * (dx * (-Ippp + Inpp) + dx * dx * (2 * Ippp - 5 * Icpp + 4 * Inpp - Iapp) + dx * dx * dx * (-Ippp + 3 * Icpp - 3 * Inpp + Iapp)), Ipcp = (Tfloat)atXYZ(px, y, pz, c, out_value), Iccp = (Tfloat)atXYZ(x, y, pz, c, out_value), Incp = (Tfloat)atXYZ(nx, y, pz, c, out_value), Iacp = (Tfloat)atXYZ(ax, y, pz, c, out_value), Icp = Iccp + 0.5f * (dx * (-Ipcp + Incp) + dx * dx * (2 * Ipcp - 5 * Iccp + 4 * Incp - Iacp) + dx * dx * dx * (-Ipcp + 3 * Iccp - 3 * Incp + Iacp)), Ipnp = (Tfloat)atXYZ(px, ny, pz, c, out_value), Icnp = (Tfloat)atXYZ(x, ny, pz, c, out_value), Innp = (Tfloat)atXYZ(nx, ny, pz, c, out_value), Ianp = (Tfloat)atXYZ(ax, ny, pz, c, out_value), Inp = Icnp + 0.5f * (dx * (-Ipnp + Innp) + dx * dx * (2 * Ipnp - 5 * Icnp + 4 * Innp - Ianp) + dx * dx * dx * (-Ipnp + 3 * Icnp - 3 * Innp + Ianp)), Ipap = (Tfloat)atXYZ(px, ay, pz, c, out_value), Icap = (Tfloat)atXYZ(x, ay, pz, c, out_value), Inap = (Tfloat)atXYZ(nx, ay, pz, c, out_value), Iaap = (Tfloat)atXYZ(ax, ay, pz, c, out_value), Iap = Icap + 0.5f * (dx * (-Ipap + Inap) + dx * dx * (2 * Ipap - 5 * Icap + 4 * Inap - Iaap) + dx * dx * dx * (-Ipap + 3 * Icap - 3 * Inap + Iaap)), Ip = Icp + 0.5f * (dy * (-Ipp + Inp) + dy * dy * (2 * Ipp - 5 * Icp + 4 * Inp - Iap) + dy * dy * dy * (-Ipp + 3 * Icp - 3 * Inp + Iap)), Ippc = (Tfloat)atXYZ(px, py, z, c, out_value), Icpc = (Tfloat)atXYZ(x, py, z, c, out_value), Inpc = (Tfloat)atXYZ(nx, py, z, c, out_value), Iapc = (Tfloat)atXYZ(ax, py, z, c, out_value), Ipc = Icpc + 0.5f * (dx * (-Ippc + Inpc) + dx * dx * (2 * Ippc - 5 * Icpc + 4 * Inpc - Iapc) + dx * dx * dx * (-Ippc + 3 * Icpc - 3 * Inpc + Iapc)), Ipcc = (Tfloat)atXYZ(px, y, z, c, out_value), Iccc = (Tfloat)atXYZ(x, y, z, c, out_value), Incc = (Tfloat)atXYZ(nx, y, z, c, out_value), Iacc = (Tfloat)atXYZ(ax, y, z, c, out_value), Icc = Iccc + 0.5f * (dx * (-Ipcc + Incc) + dx * dx * (2 * Ipcc - 5 * Iccc + 4 * Incc - Iacc) + dx * dx * dx * (-Ipcc + 3 * Iccc - 3 * Incc + Iacc)), Ipnc = (Tfloat)atXYZ(px, ny, z, c, out_value), Icnc = (Tfloat)atXYZ(x, ny, z, c, out_value), Innc = (Tfloat)atXYZ(nx, ny, z, c, out_value), Ianc = (Tfloat)atXYZ(ax, ny, z, c, out_value), Inc = Icnc + 0.5f * (dx * (-Ipnc + Innc) + dx * dx * (2 * Ipnc - 5 * Icnc + 4 * Innc - Ianc) + dx * dx * dx * (-Ipnc + 3 * Icnc - 3 * Innc + Ianc)), Ipac = (Tfloat)atXYZ(px, ay, z, c, out_value), Icac = (Tfloat)atXYZ(x, ay, z, c, out_value), Inac = (Tfloat)atXYZ(nx, ay, z, c, out_value), Iaac = (Tfloat)atXYZ(ax, ay, z, c, out_value), Iac = Icac + 0.5f * (dx * (-Ipac + Inac) + dx * dx * (2 * Ipac - 5 * Icac + 4 * Inac - Iaac) + dx * dx * dx * (-Ipac + 3 * Icac - 3 * Inac + Iaac)), Ic = Icc + 0.5f * (dy * (-Ipc + Inc) + dy * dy * (2 * Ipc - 5 * Icc + 4 * Inc - Iac) + dy * dy * dy * (-Ipc + 3 * Icc - 3 * Inc + Iac)), Ippn = (Tfloat)atXYZ(px, py, nz, c, out_value), Icpn = (Tfloat)atXYZ(x, py, nz, c, out_value), Inpn = (Tfloat)atXYZ(nx, py, nz, c, out_value), Iapn = (Tfloat)atXYZ(ax, py, nz, c, out_value), Ipn = Icpn + 0.5f * (dx * (-Ippn + Inpn) + dx * dx * (2 * Ippn - 5 * Icpn + 4 * Inpn - Iapn) + dx * dx * dx * (-Ippn + 3 * Icpn - 3 * Inpn + Iapn)), Ipcn = (Tfloat)atXYZ(px, y, nz, c, out_value), Iccn = (Tfloat)atXYZ(x, y, nz, c, out_value), Incn = (Tfloat)atXYZ(nx, y, nz, c, out_value), Iacn = (Tfloat)atXYZ(ax, y, nz, c, out_value), Icn = Iccn + 0.5f * (dx * (-Ipcn + Incn) + dx * dx * (2 * Ipcn - 5 * Iccn + 4 * Incn - Iacn) + dx * dx * dx * (-Ipcn + 3 * Iccn - 3 * Incn + Iacn)), Ipnn = (Tfloat)atXYZ(px, ny, nz, c, out_value), Icnn = (Tfloat)atXYZ(x, ny, nz, c, out_value), Innn = (Tfloat)atXYZ(nx, ny, nz, c, out_value), Iann = (Tfloat)atXYZ(ax, ny, nz, c, out_value), Inn = Icnn + 0.5f * (dx * (-Ipnn + Innn) + dx * dx * (2 * Ipnn - 5 * Icnn + 4 * Innn - Iann) + dx * dx * dx * (-Ipnn + 3 * Icnn - 3 * Innn + Iann)), Ipan = (Tfloat)atXYZ(px, ay, nz, c, out_value), Ican = (Tfloat)atXYZ(x, ay, nz, c, out_value), Inan = (Tfloat)atXYZ(nx, ay, nz, c, out_value), Iaan = (Tfloat)atXYZ(ax, ay, nz, c, out_value), Ian = Ican + 0.5f * (dx * (-Ipan + Inan) + dx * dx * (2 * Ipan - 5 * Ican + 4 * Inan - Iaan) + dx * dx * dx * (-Ipan + 3 * Ican - 3 * Inan + Iaan)), In = Icn + 0.5f * (dy * (-Ipn + Inn) + dy * dy * (2 * Ipn - 5 * Icn + 4 * Inn - Ian) + dy * dy * dy * (-Ipn + 3 * Icn - 3 * Inn + Ian)), Ippa = (Tfloat)atXYZ(px, py, az, c, out_value), Icpa = (Tfloat)atXYZ(x, py, az, c, out_value), Inpa = (Tfloat)atXYZ(nx, py, az, c, out_value), Iapa = (Tfloat)atXYZ(ax, py, az, c, out_value), Ipa = Icpa + 0.5f * (dx * (-Ippa + Inpa) + dx * dx * (2 * Ippa - 5 * Icpa + 4 * Inpa - Iapa) + dx * dx * dx * (-Ippa + 3 * Icpa - 3 * Inpa + Iapa)), Ipca = (Tfloat)atXYZ(px, y, az, c, out_value), Icca = (Tfloat)atXYZ(x, y, az, c, out_value), Inca = (Tfloat)atXYZ(nx, y, az, c, out_value), Iaca = (Tfloat)atXYZ(ax, y, az, c, out_value), Ica = Icca + 0.5f * (dx * (-Ipca + Inca) + dx * dx * (2 * Ipca - 5 * Icca + 4 * Inca - Iaca) + dx * dx * dx * (-Ipca + 3 * Icca - 3 * Inca + Iaca)), Ipna = (Tfloat)atXYZ(px, ny, az, c, out_value), Icna = (Tfloat)atXYZ(x, ny, az, c, out_value), Inna = (Tfloat)atXYZ(nx, ny, az, c, out_value), Iana = (Tfloat)atXYZ(ax, ny, az, c, out_value), Ina = Icna + 0.5f * (dx * (-Ipna + Inna) + dx * dx * (2 * Ipna - 5 * Icna + 4 * Inna - Iana) + dx * dx * dx * (-Ipna + 3 * Icna - 3 * Inna + Iana)), Ipaa = (Tfloat)atXYZ(px, ay, az, c, out_value), Icaa = (Tfloat)atXYZ(x, ay, az, c, out_value), Inaa = (Tfloat)atXYZ(nx, ay, az, c, out_value), Iaaa = (Tfloat)atXYZ(ax, ay, az, c, out_value), Iaa = Icaa + 0.5f * (dx * (-Ipaa + Inaa) + dx * dx * (2 * Ipaa - 5 * Icaa + 4 * Inaa - Iaaa) + dx * dx * dx * (-Ipaa + 3 * Icaa - 3 * Inaa + Iaaa)), Ia = Ica + 0.5f * (dy * (-Ipa + Ina) + dy * dy * (2 * Ipa - 5 * Ica + 4 * Ina - Iaa) + dy * dy * dy * (-Ipa + 3 * Ica - 3 * Ina + Iaa)); return Ic + 0.5f * (dz * (-Ip + In) + dz * dz * (2 * Ip - 5 * Ic + 4 * In - Ia) + dz * dz * dz * (-Ip + 3 * Ic - 3 * In + Ia)); } //! Return clamped pixel value, using cubic interpolation and Dirichlet //! boundary conditions for the XYZ-coordinates. /** Similar to cubic_atXYZ(float,float,float,int,const T) const, except that the return value is clamped to stay in the min/max range of the datatype \c T. **/ T cubic_atXYZ_c(const float fx, const float fy, const float fz, const int c, const T& out_value) const { return cimg::type::cut(cubic_atXYZ(fx, fy, fz, c, out_value)); } //! Return pixel value, using cubic interpolation and Neumann boundary //! conditions for the X,Y and Z-coordinates. /** Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking are achieved both for X,Y and Z-coordinates. \note - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _cubic_atXYZ(float,float,float,int). **/ Tfloat cubic_atXYZ(const float fx, const float fy, const float fz, const int c = 0) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "cubic_atXYZ(): Empty instance.", cimg_instance); return _cubic_atXYZ(fx, fy, fz, c); } Tfloat _cubic_atXYZ(const float fx, const float fy, const float fz, const int c = 0) const { const float nfx = cimg::type::is_nan(fx) ? 0 : cimg::cut(fx, 0, width() - 1), nfy = cimg::type::is_nan(fy) ? 0 : cimg::cut(fy, 0, height() - 1), nfz = cimg::type::is_nan(fz) ? 0 : cimg::cut(fz, 0, depth() - 1); const int x = (int)nfx, y = (int)nfy, z = (int)nfz; const float dx = nfx - x, dy = nfy - y, dz = nfz - z; const int px = x - 1 < 0 ? 0 : x - 1, nx = dx > 0 ? x + 1 : x, ax = x + 2 >= width() ? width() - 1 : x + 2, py = y - 1 < 0 ? 0 : y - 1, ny = dy > 0 ? y + 1 : y, ay = y + 2 >= height() ? height() - 1 : y + 2, pz = z - 1 < 0 ? 0 : z - 1, nz = dz > 0 ? z + 1 : z, az = z + 2 >= depth() ? depth() - 1 : z + 2; const Tfloat Ippp = (Tfloat)(*this)(px, py, pz, c), Icpp = (Tfloat)(*this)(x, py, pz, c), Inpp = (Tfloat)(*this)(nx, py, pz, c), Iapp = (Tfloat)(*this)(ax, py, pz, c), Ipp = Icpp + 0.5f * (dx * (-Ippp + Inpp) + dx * dx * (2 * Ippp - 5 * Icpp + 4 * Inpp - Iapp) + dx * dx * dx * (-Ippp + 3 * Icpp - 3 * Inpp + Iapp)), Ipcp = (Tfloat)(*this)(px, y, pz, c), Iccp = (Tfloat)(*this)(x, y, pz, c), Incp = (Tfloat)(*this)(nx, y, pz, c), Iacp = (Tfloat)(*this)(ax, y, pz, c), Icp = Iccp + 0.5f * (dx * (-Ipcp + Incp) + dx * dx * (2 * Ipcp - 5 * Iccp + 4 * Incp - Iacp) + dx * dx * dx * (-Ipcp + 3 * Iccp - 3 * Incp + Iacp)), Ipnp = (Tfloat)(*this)(px, ny, pz, c), Icnp = (Tfloat)(*this)(x, ny, pz, c), Innp = (Tfloat)(*this)(nx, ny, pz, c), Ianp = (Tfloat)(*this)(ax, ny, pz, c), Inp = Icnp + 0.5f * (dx * (-Ipnp + Innp) + dx * dx * (2 * Ipnp - 5 * Icnp + 4 * Innp - Ianp) + dx * dx * dx * (-Ipnp + 3 * Icnp - 3 * Innp + Ianp)), Ipap = (Tfloat)(*this)(px, ay, pz, c), Icap = (Tfloat)(*this)(x, ay, pz, c), Inap = (Tfloat)(*this)(nx, ay, pz, c), Iaap = (Tfloat)(*this)(ax, ay, pz, c), Iap = Icap + 0.5f * (dx * (-Ipap + Inap) + dx * dx * (2 * Ipap - 5 * Icap + 4 * Inap - Iaap) + dx * dx * dx * (-Ipap + 3 * Icap - 3 * Inap + Iaap)), Ip = Icp + 0.5f * (dy * (-Ipp + Inp) + dy * dy * (2 * Ipp - 5 * Icp + 4 * Inp - Iap) + dy * dy * dy * (-Ipp + 3 * Icp - 3 * Inp + Iap)), Ippc = (Tfloat)(*this)(px, py, z, c), Icpc = (Tfloat)(*this)(x, py, z, c), Inpc = (Tfloat)(*this)(nx, py, z, c), Iapc = (Tfloat)(*this)(ax, py, z, c), Ipc = Icpc + 0.5f * (dx * (-Ippc + Inpc) + dx * dx * (2 * Ippc - 5 * Icpc + 4 * Inpc - Iapc) + dx * dx * dx * (-Ippc + 3 * Icpc - 3 * Inpc + Iapc)), Ipcc = (Tfloat)(*this)(px, y, z, c), Iccc = (Tfloat)(*this)(x, y, z, c), Incc = (Tfloat)(*this)(nx, y, z, c), Iacc = (Tfloat)(*this)(ax, y, z, c), Icc = Iccc + 0.5f * (dx * (-Ipcc + Incc) + dx * dx * (2 * Ipcc - 5 * Iccc + 4 * Incc - Iacc) + dx * dx * dx * (-Ipcc + 3 * Iccc - 3 * Incc + Iacc)), Ipnc = (Tfloat)(*this)(px, ny, z, c), Icnc = (Tfloat)(*this)(x, ny, z, c), Innc = (Tfloat)(*this)(nx, ny, z, c), Ianc = (Tfloat)(*this)(ax, ny, z, c), Inc = Icnc + 0.5f * (dx * (-Ipnc + Innc) + dx * dx * (2 * Ipnc - 5 * Icnc + 4 * Innc - Ianc) + dx * dx * dx * (-Ipnc + 3 * Icnc - 3 * Innc + Ianc)), Ipac = (Tfloat)(*this)(px, ay, z, c), Icac = (Tfloat)(*this)(x, ay, z, c), Inac = (Tfloat)(*this)(nx, ay, z, c), Iaac = (Tfloat)(*this)(ax, ay, z, c), Iac = Icac + 0.5f * (dx * (-Ipac + Inac) + dx * dx * (2 * Ipac - 5 * Icac + 4 * Inac - Iaac) + dx * dx * dx * (-Ipac + 3 * Icac - 3 * Inac + Iaac)), Ic = Icc + 0.5f * (dy * (-Ipc + Inc) + dy * dy * (2 * Ipc - 5 * Icc + 4 * Inc - Iac) + dy * dy * dy * (-Ipc + 3 * Icc - 3 * Inc + Iac)), Ippn = (Tfloat)(*this)(px, py, nz, c), Icpn = (Tfloat)(*this)(x, py, nz, c), Inpn = (Tfloat)(*this)(nx, py, nz, c), Iapn = (Tfloat)(*this)(ax, py, nz, c), Ipn = Icpn + 0.5f * (dx * (-Ippn + Inpn) + dx * dx * (2 * Ippn - 5 * Icpn + 4 * Inpn - Iapn) + dx * dx * dx * (-Ippn + 3 * Icpn - 3 * Inpn + Iapn)), Ipcn = (Tfloat)(*this)(px, y, nz, c), Iccn = (Tfloat)(*this)(x, y, nz, c), Incn = (Tfloat)(*this)(nx, y, nz, c), Iacn = (Tfloat)(*this)(ax, y, nz, c), Icn = Iccn + 0.5f * (dx * (-Ipcn + Incn) + dx * dx * (2 * Ipcn - 5 * Iccn + 4 * Incn - Iacn) + dx * dx * dx * (-Ipcn + 3 * Iccn - 3 * Incn + Iacn)), Ipnn = (Tfloat)(*this)(px, ny, nz, c), Icnn = (Tfloat)(*this)(x, ny, nz, c), Innn = (Tfloat)(*this)(nx, ny, nz, c), Iann = (Tfloat)(*this)(ax, ny, nz, c), Inn = Icnn + 0.5f * (dx * (-Ipnn + Innn) + dx * dx * (2 * Ipnn - 5 * Icnn + 4 * Innn - Iann) + dx * dx * dx * (-Ipnn + 3 * Icnn - 3 * Innn + Iann)), Ipan = (Tfloat)(*this)(px, ay, nz, c), Ican = (Tfloat)(*this)(x, ay, nz, c), Inan = (Tfloat)(*this)(nx, ay, nz, c), Iaan = (Tfloat)(*this)(ax, ay, nz, c), Ian = Ican + 0.5f * (dx * (-Ipan + Inan) + dx * dx * (2 * Ipan - 5 * Ican + 4 * Inan - Iaan) + dx * dx * dx * (-Ipan + 3 * Ican - 3 * Inan + Iaan)), In = Icn + 0.5f * (dy * (-Ipn + Inn) + dy * dy * (2 * Ipn - 5 * Icn + 4 * Inn - Ian) + dy * dy * dy * (-Ipn + 3 * Icn - 3 * Inn + Ian)), Ippa = (Tfloat)(*this)(px, py, az, c), Icpa = (Tfloat)(*this)(x, py, az, c), Inpa = (Tfloat)(*this)(nx, py, az, c), Iapa = (Tfloat)(*this)(ax, py, az, c), Ipa = Icpa + 0.5f * (dx * (-Ippa + Inpa) + dx * dx * (2 * Ippa - 5 * Icpa + 4 * Inpa - Iapa) + dx * dx * dx * (-Ippa + 3 * Icpa - 3 * Inpa + Iapa)), Ipca = (Tfloat)(*this)(px, y, az, c), Icca = (Tfloat)(*this)(x, y, az, c), Inca = (Tfloat)(*this)(nx, y, az, c), Iaca = (Tfloat)(*this)(ax, y, az, c), Ica = Icca + 0.5f * (dx * (-Ipca + Inca) + dx * dx * (2 * Ipca - 5 * Icca + 4 * Inca - Iaca) + dx * dx * dx * (-Ipca + 3 * Icca - 3 * Inca + Iaca)), Ipna = (Tfloat)(*this)(px, ny, az, c), Icna = (Tfloat)(*this)(x, ny, az, c), Inna = (Tfloat)(*this)(nx, ny, az, c), Iana = (Tfloat)(*this)(ax, ny, az, c), Ina = Icna + 0.5f * (dx * (-Ipna + Inna) + dx * dx * (2 * Ipna - 5 * Icna + 4 * Inna - Iana) + dx * dx * dx * (-Ipna + 3 * Icna - 3 * Inna + Iana)), Ipaa = (Tfloat)(*this)(px, ay, az, c), Icaa = (Tfloat)(*this)(x, ay, az, c), Inaa = (Tfloat)(*this)(nx, ay, az, c), Iaaa = (Tfloat)(*this)(ax, ay, az, c), Iaa = Icaa + 0.5f * (dx * (-Ipaa + Inaa) + dx * dx * (2 * Ipaa - 5 * Icaa + 4 * Inaa - Iaaa) + dx * dx * dx * (-Ipaa + 3 * Icaa - 3 * Inaa + Iaaa)), Ia = Ica + 0.5f * (dy * (-Ipa + Ina) + dy * dy * (2 * Ipa - 5 * Ica + 4 * Ina - Iaa) + dy * dy * dy * (-Ipa + 3 * Ica - 3 * Ina + Iaa)); return Ic + 0.5f * (dz * (-Ip + In) + dz * dz * (2 * Ip - 5 * Ic + 4 * In - Ia) + dz * dz * dz * (-Ip + 3 * Ic - 3 * In + Ia)); } //! Return clamped pixel value, using cubic interpolation and Neumann //! boundary conditions for the XYZ-coordinates. /** Similar to cubic_atXYZ(float,float,float,int) const, except that the return value is clamped to stay in the min/max range of the datatype \c T. **/ T cubic_atXYZ_c(const float fx, const float fy, const float fz, const int c) const { return cimg::type::cut(cubic_atXYZ(fx, fy, fz, c)); } T _cubic_atXYZ_c(const float fx, const float fy, const float fz, const int c) const { return cimg::type::cut(_cubic_atXYZ(fx, fy, fz, c)); } //! Return pixel value, using cubic interpolation and Neumann boundary //! conditions for the X,Y and Z-coordinates. /** Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking are achieved both for X,Y and Z-coordinates. \note - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _cubic_atXYZ(float,float,float,int). **/ Tfloat cubic_atXYZ_p(const float fx, const float fy, const float fz, const int c = 0) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "cubic_atXYZ_p(): Empty instance.", cimg_instance); return _cubic_atXYZ_p(fx, fy, fz, c); } Tfloat _cubic_atXYZ_p(const float fx, const float fy, const float fz, const int c = 0) const { const float nfx = cimg::type::is_nan(fx) ? 0 : cimg::mod(fx, (float)_width), nfy = cimg::type::is_nan(fy) ? 0 : cimg::mod(fy, (float)_height), nfz = cimg::type::is_nan(fz) ? 0 : cimg::mod(fz, (float)_depth); const int x = (int)nfx, y = (int)nfy, z = (int)nfz; const float dx = nfx - x, dy = nfy - y, dz = nfz - z; const int px = cimg::mod(x - 1, width()), nx = cimg::mod(x + 1, width()), ax = cimg::mod(x + 2, width()), py = cimg::mod(y - 1, height()), ny = cimg::mod(y + 1, height()), ay = cimg::mod(y + 2, height()), pz = cimg::mod(z - 1, depth()), nz = cimg::mod(z + 1, depth()), az = cimg::mod(z + 2, depth()); const Tfloat Ippp = (Tfloat)(*this)(px, py, pz, c), Icpp = (Tfloat)(*this)(x, py, pz, c), Inpp = (Tfloat)(*this)(nx, py, pz, c), Iapp = (Tfloat)(*this)(ax, py, pz, c), Ipp = Icpp + 0.5f * (dx * (-Ippp + Inpp) + dx * dx * (2 * Ippp - 5 * Icpp + 4 * Inpp - Iapp) + dx * dx * dx * (-Ippp + 3 * Icpp - 3 * Inpp + Iapp)), Ipcp = (Tfloat)(*this)(px, y, pz, c), Iccp = (Tfloat)(*this)(x, y, pz, c), Incp = (Tfloat)(*this)(nx, y, pz, c), Iacp = (Tfloat)(*this)(ax, y, pz, c), Icp = Iccp + 0.5f * (dx * (-Ipcp + Incp) + dx * dx * (2 * Ipcp - 5 * Iccp + 4 * Incp - Iacp) + dx * dx * dx * (-Ipcp + 3 * Iccp - 3 * Incp + Iacp)), Ipnp = (Tfloat)(*this)(px, ny, pz, c), Icnp = (Tfloat)(*this)(x, ny, pz, c), Innp = (Tfloat)(*this)(nx, ny, pz, c), Ianp = (Tfloat)(*this)(ax, ny, pz, c), Inp = Icnp + 0.5f * (dx * (-Ipnp + Innp) + dx * dx * (2 * Ipnp - 5 * Icnp + 4 * Innp - Ianp) + dx * dx * dx * (-Ipnp + 3 * Icnp - 3 * Innp + Ianp)), Ipap = (Tfloat)(*this)(px, ay, pz, c), Icap = (Tfloat)(*this)(x, ay, pz, c), Inap = (Tfloat)(*this)(nx, ay, pz, c), Iaap = (Tfloat)(*this)(ax, ay, pz, c), Iap = Icap + 0.5f * (dx * (-Ipap + Inap) + dx * dx * (2 * Ipap - 5 * Icap + 4 * Inap - Iaap) + dx * dx * dx * (-Ipap + 3 * Icap - 3 * Inap + Iaap)), Ip = Icp + 0.5f * (dy * (-Ipp + Inp) + dy * dy * (2 * Ipp - 5 * Icp + 4 * Inp - Iap) + dy * dy * dy * (-Ipp + 3 * Icp - 3 * Inp + Iap)), Ippc = (Tfloat)(*this)(px, py, z, c), Icpc = (Tfloat)(*this)(x, py, z, c), Inpc = (Tfloat)(*this)(nx, py, z, c), Iapc = (Tfloat)(*this)(ax, py, z, c), Ipc = Icpc + 0.5f * (dx * (-Ippc + Inpc) + dx * dx * (2 * Ippc - 5 * Icpc + 4 * Inpc - Iapc) + dx * dx * dx * (-Ippc + 3 * Icpc - 3 * Inpc + Iapc)), Ipcc = (Tfloat)(*this)(px, y, z, c), Iccc = (Tfloat)(*this)(x, y, z, c), Incc = (Tfloat)(*this)(nx, y, z, c), Iacc = (Tfloat)(*this)(ax, y, z, c), Icc = Iccc + 0.5f * (dx * (-Ipcc + Incc) + dx * dx * (2 * Ipcc - 5 * Iccc + 4 * Incc - Iacc) + dx * dx * dx * (-Ipcc + 3 * Iccc - 3 * Incc + Iacc)), Ipnc = (Tfloat)(*this)(px, ny, z, c), Icnc = (Tfloat)(*this)(x, ny, z, c), Innc = (Tfloat)(*this)(nx, ny, z, c), Ianc = (Tfloat)(*this)(ax, ny, z, c), Inc = Icnc + 0.5f * (dx * (-Ipnc + Innc) + dx * dx * (2 * Ipnc - 5 * Icnc + 4 * Innc - Ianc) + dx * dx * dx * (-Ipnc + 3 * Icnc - 3 * Innc + Ianc)), Ipac = (Tfloat)(*this)(px, ay, z, c), Icac = (Tfloat)(*this)(x, ay, z, c), Inac = (Tfloat)(*this)(nx, ay, z, c), Iaac = (Tfloat)(*this)(ax, ay, z, c), Iac = Icac + 0.5f * (dx * (-Ipac + Inac) + dx * dx * (2 * Ipac - 5 * Icac + 4 * Inac - Iaac) + dx * dx * dx * (-Ipac + 3 * Icac - 3 * Inac + Iaac)), Ic = Icc + 0.5f * (dy * (-Ipc + Inc) + dy * dy * (2 * Ipc - 5 * Icc + 4 * Inc - Iac) + dy * dy * dy * (-Ipc + 3 * Icc - 3 * Inc + Iac)), Ippn = (Tfloat)(*this)(px, py, nz, c), Icpn = (Tfloat)(*this)(x, py, nz, c), Inpn = (Tfloat)(*this)(nx, py, nz, c), Iapn = (Tfloat)(*this)(ax, py, nz, c), Ipn = Icpn + 0.5f * (dx * (-Ippn + Inpn) + dx * dx * (2 * Ippn - 5 * Icpn + 4 * Inpn - Iapn) + dx * dx * dx * (-Ippn + 3 * Icpn - 3 * Inpn + Iapn)), Ipcn = (Tfloat)(*this)(px, y, nz, c), Iccn = (Tfloat)(*this)(x, y, nz, c), Incn = (Tfloat)(*this)(nx, y, nz, c), Iacn = (Tfloat)(*this)(ax, y, nz, c), Icn = Iccn + 0.5f * (dx * (-Ipcn + Incn) + dx * dx * (2 * Ipcn - 5 * Iccn + 4 * Incn - Iacn) + dx * dx * dx * (-Ipcn + 3 * Iccn - 3 * Incn + Iacn)), Ipnn = (Tfloat)(*this)(px, ny, nz, c), Icnn = (Tfloat)(*this)(x, ny, nz, c), Innn = (Tfloat)(*this)(nx, ny, nz, c), Iann = (Tfloat)(*this)(ax, ny, nz, c), Inn = Icnn + 0.5f * (dx * (-Ipnn + Innn) + dx * dx * (2 * Ipnn - 5 * Icnn + 4 * Innn - Iann) + dx * dx * dx * (-Ipnn + 3 * Icnn - 3 * Innn + Iann)), Ipan = (Tfloat)(*this)(px, ay, nz, c), Ican = (Tfloat)(*this)(x, ay, nz, c), Inan = (Tfloat)(*this)(nx, ay, nz, c), Iaan = (Tfloat)(*this)(ax, ay, nz, c), Ian = Ican + 0.5f * (dx * (-Ipan + Inan) + dx * dx * (2 * Ipan - 5 * Ican + 4 * Inan - Iaan) + dx * dx * dx * (-Ipan + 3 * Ican - 3 * Inan + Iaan)), In = Icn + 0.5f * (dy * (-Ipn + Inn) + dy * dy * (2 * Ipn - 5 * Icn + 4 * Inn - Ian) + dy * dy * dy * (-Ipn + 3 * Icn - 3 * Inn + Ian)), Ippa = (Tfloat)(*this)(px, py, az, c), Icpa = (Tfloat)(*this)(x, py, az, c), Inpa = (Tfloat)(*this)(nx, py, az, c), Iapa = (Tfloat)(*this)(ax, py, az, c), Ipa = Icpa + 0.5f * (dx * (-Ippa + Inpa) + dx * dx * (2 * Ippa - 5 * Icpa + 4 * Inpa - Iapa) + dx * dx * dx * (-Ippa + 3 * Icpa - 3 * Inpa + Iapa)), Ipca = (Tfloat)(*this)(px, y, az, c), Icca = (Tfloat)(*this)(x, y, az, c), Inca = (Tfloat)(*this)(nx, y, az, c), Iaca = (Tfloat)(*this)(ax, y, az, c), Ica = Icca + 0.5f * (dx * (-Ipca + Inca) + dx * dx * (2 * Ipca - 5 * Icca + 4 * Inca - Iaca) + dx * dx * dx * (-Ipca + 3 * Icca - 3 * Inca + Iaca)), Ipna = (Tfloat)(*this)(px, ny, az, c), Icna = (Tfloat)(*this)(x, ny, az, c), Inna = (Tfloat)(*this)(nx, ny, az, c), Iana = (Tfloat)(*this)(ax, ny, az, c), Ina = Icna + 0.5f * (dx * (-Ipna + Inna) + dx * dx * (2 * Ipna - 5 * Icna + 4 * Inna - Iana) + dx * dx * dx * (-Ipna + 3 * Icna - 3 * Inna + Iana)), Ipaa = (Tfloat)(*this)(px, ay, az, c), Icaa = (Tfloat)(*this)(x, ay, az, c), Inaa = (Tfloat)(*this)(nx, ay, az, c), Iaaa = (Tfloat)(*this)(ax, ay, az, c), Iaa = Icaa + 0.5f * (dx * (-Ipaa + Inaa) + dx * dx * (2 * Ipaa - 5 * Icaa + 4 * Inaa - Iaaa) + dx * dx * dx * (-Ipaa + 3 * Icaa - 3 * Inaa + Iaaa)), Ia = Ica + 0.5f * (dy * (-Ipa + Ina) + dy * dy * (2 * Ipa - 5 * Ica + 4 * Ina - Iaa) + dy * dy * dy * (-Ipa + 3 * Ica - 3 * Ina + Iaa)); return Ic + 0.5f * (dz * (-Ip + In) + dz * dz * (2 * Ip - 5 * Ic + 4 * In - Ia) + dz * dz * dz * (-Ip + 3 * Ic - 3 * In + Ia)); } T cubic_atXYZ_pc(const float fx, const float fy, const float fz, const int c) const { return cimg::type::cut(cubic_atXYZ_p(fx, fy, fz, c)); } T _cubic_atXYZ_pc(const float fx, const float fy, const float fz, const int c) const { return cimg::type::cut(_cubic_atXYZ_p(fx, fy, fz, c)); } //! Set pixel value, using linear interpolation for the X-coordinates. /** Set pixel value at specified coordinates (\c fx,\c y,\c z,\c c) in the image instance, in a way that the value is spread amongst several neighbors if the pixel coordinates are float-valued. \param value Pixel value to set. \param fx X-coordinate of the pixel value (float-valued). \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \param is_added Tells if the pixel value is added to (\c true), or simply replace (\c false) the current image pixel(s). \return A reference to the current image instance. \note - Calling this method with out-of-bounds coordinates does nothing. **/ CImg& set_linear_atX(const T& value, const float fx, const int y = 0, const int z = 0, const int c = 0, const bool is_added = false) { const int x = (int)fx - (fx >= 0 ? 0 : 1), nx = x + 1; const float dx = fx - x; if (y >= 0 && y < height() && z >= 0 && z < depth() && c >= 0 && c < spectrum()) { if (x >= 0 && x < width()) { const float w1 = 1 - dx, w2 = is_added ? 1 : (1 - w1); (*this)(x, y, z, c) = (T)(w1 * value + w2 * (*this)(x, y, z, c)); } if (nx >= 0 && nx < width()) { const float w1 = dx, w2 = is_added ? 1 : (1 - w1); (*this)(nx, y, z, c) = (T)(w1 * value + w2 * (*this)(nx, y, z, c)); } } return *this; } //! Set pixel value, using linear interpolation for the X and Y-coordinates. /** Similar to set_linear_atX(const T&,float,int,int,int,bool), except that the linear interpolation is achieved both for X and Y-coordinates. **/ CImg& set_linear_atXY(const T& value, const float fx, const float fy = 0, const int z = 0, const int c = 0, const bool is_added = false) { const int x = (int)fx - (fx >= 0 ? 0 : 1), nx = x + 1, y = (int)fy - (fy >= 0 ? 0 : 1), ny = y + 1; const float dx = fx - x, dy = fy - y; if (z >= 0 && z < depth() && c >= 0 && c < spectrum()) { if (y >= 0 && y < height()) { if (x >= 0 && x < width()) { const float w1 = (1 - dx) * (1 - dy), w2 = is_added ? 1 : (1 - w1); (*this)(x, y, z, c) = (T)(w1 * value + w2 * (*this)(x, y, z, c)); } if (nx >= 0 && nx < width()) { const float w1 = dx * (1 - dy), w2 = is_added ? 1 : (1 - w1); (*this)(nx, y, z, c) = (T)(w1 * value + w2 * (*this)(nx, y, z, c)); } } if (ny >= 0 && ny < height()) { if (x >= 0 && x < width()) { const float w1 = (1 - dx) * dy, w2 = is_added ? 1 : (1 - w1); (*this)(x, ny, z, c) = (T)(w1 * value + w2 * (*this)(x, ny, z, c)); } if (nx >= 0 && nx < width()) { const float w1 = dx * dy, w2 = is_added ? 1 : (1 - w1); (*this)(nx, ny, z, c) = (T)(w1 * value + w2 * (*this)(nx, ny, z, c)); } } } return *this; } //! Set pixel value, using linear interpolation for the X,Y and //! Z-coordinates. /** Similar to set_linear_atXY(const T&,float,float,int,int,bool), except that the linear interpolation is achieved both for X,Y and Z-coordinates. **/ CImg& set_linear_atXYZ(const T& value, const float fx, const float fy = 0, const float fz = 0, const int c = 0, const bool is_added = false) { const int x = (int)fx - (fx >= 0 ? 0 : 1), nx = x + 1, y = (int)fy - (fy >= 0 ? 0 : 1), ny = y + 1, z = (int)fz - (fz >= 0 ? 0 : 1), nz = z + 1; const float dx = fx - x, dy = fy - y, dz = fz - z; if (c >= 0 && c < spectrum()) { if (z >= 0 && z < depth()) { if (y >= 0 && y < height()) { if (x >= 0 && x < width()) { const float w1 = (1 - dx) * (1 - dy) * (1 - dz), w2 = is_added ? 1 : (1 - w1); (*this)(x, y, z, c) = (T)(w1 * value + w2 * (*this)(x, y, z, c)); } if (nx >= 0 && nx < width()) { const float w1 = dx * (1 - dy) * (1 - dz), w2 = is_added ? 1 : (1 - w1); (*this)(nx, y, z, c) = (T)(w1 * value + w2 * (*this)(nx, y, z, c)); } } if (ny >= 0 && ny < height()) { if (x >= 0 && x < width()) { const float w1 = (1 - dx) * dy * (1 - dz), w2 = is_added ? 1 : (1 - w1); (*this)(x, ny, z, c) = (T)(w1 * value + w2 * (*this)(x, ny, z, c)); } if (nx >= 0 && nx < width()) { const float w1 = dx * dy * (1 - dz), w2 = is_added ? 1 : (1 - w1); (*this)(nx, ny, z, c) = (T)(w1 * value + w2 * (*this)(nx, ny, z, c)); } } } if (nz >= 0 && nz < depth()) { if (y >= 0 && y < height()) { if (x >= 0 && x < width()) { const float w1 = (1 - dx) * (1 - dy) * dz, w2 = is_added ? 1 : (1 - w1); (*this)(x, y, nz, c) = (T)(w1 * value + w2 * (*this)(x, y, nz, c)); } if (nx >= 0 && nx < width()) { const float w1 = dx * (1 - dy) * dz, w2 = is_added ? 1 : (1 - w1); (*this)(nx, y, nz, c) = (T)(w1 * value + w2 * (*this)(nx, y, nz, c)); } } if (ny >= 0 && ny < height()) { if (x >= 0 && x < width()) { const float w1 = (1 - dx) * dy * dz, w2 = is_added ? 1 : (1 - w1); (*this)(x, ny, nz, c) = (T)(w1 * value + w2 * (*this)(x, ny, nz, c)); } if (nx >= 0 && nx < width()) { const float w1 = dx * dy * dz, w2 = is_added ? 1 : (1 - w1); (*this)(nx, ny, nz, c) = (T)(w1 * value + w2 * (*this)(nx, ny, nz, c)); } } } } return *this; } //! Return a C-string containing a list of all values of the image instance. /** Return a new \c CImg image whose buffer data() is a \c char* string describing the list of all pixel values of the image instance (written in base 10), separated by specified \c separator character. \param separator A \c char character which specifies the separator between values in the returned C-string. \param max_size Maximum size of the returned image (or \c 0 if no limits are set). \param format For float/double-values, tell the printf format used to generate the Ascii representation of the numbers (or \c 0 for default representation). \note - The returned image is never empty. - For an empty image instance, the returned string is "". - If \c max_size is equal to \c 0, there are no limits on the size of the returned string. - Otherwise, if the maximum number of string characters is exceeded, the value string is cut off and terminated by character \c '\0'. In that case, the returned image size is max_size + 1. **/ CImg value_string(const char separator = ',', const unsigned int max_size = 0, const char* const format = 0) const { if (is_empty() || max_size == 1) return CImg(1, 1, 1, 1, 0); CImgList items; CImg s_item(256); *s_item = 0; const T* ptrs = _data; unsigned int string_size = 0; const char* const _format = format ? format : cimg::type::format(); for (ulongT off = 0, siz = size(); off < siz && (!max_size || string_size < max_size); ++off) { const unsigned int printed_size = 1U + cimg_snprintf(s_item, s_item._width, _format, cimg::type::format(*(ptrs++))); CImg item(s_item._data, printed_size); item[printed_size - 1] = separator; item.move_to(items); if (max_size) string_size += printed_size; } CImg res; (items > 'x').move_to(res); if (max_size && res._width >= max_size) res.crop(0, max_size - 1); res.back() = 0; return res; } //@} //------------------------------------- // //! \name Instance Checking //@{ //------------------------------------- //! Test shared state of the pixel buffer. /** Return \c true if image instance has a shared memory buffer, and \c false otherwise. \note - A shared image do not own his pixel buffer data() and will not deallocate it on destruction. - Most of the time, a \c CImg image instance will \e not be shared. - A shared image can only be obtained by a limited set of constructors and methods (see list below). **/ bool is_shared() const { return _is_shared; } //! Test if image instance is empty. /** Return \c true, if image instance is empty, i.e. does \e not contain any pixel values, has dimensions \c 0 x \c 0 x \c 0 x \c 0 and a pixel buffer pointer set to \c 0 (null pointer), and \c false otherwise. **/ bool is_empty() const { return !(_data && _width && _height && _depth && _spectrum); } //! Test if image instance contains a 'inf' value. /** Return \c true, if image instance contains a 'inf' value, and \c false otherwise. **/ bool is_inf() const { if (cimg::type::is_float()) cimg_for(*this, p, T) if (cimg::type::is_inf((float)*p)) return true; return false; } //! Test if image instance contains a NaN value. /** Return \c true, if image instance contains a NaN value, and \c false otherwise. **/ bool is_nan() const { if (cimg::type::is_float()) cimg_for(*this, p, T) if (cimg::type::is_nan((float)*p)) return true; return false; } //! Test if image width is equal to specified value. bool is_sameX(const unsigned int size_x) const { return _width == size_x; } //! Test if image width is equal to specified value. template bool is_sameX(const CImg& img) const { return is_sameX(img._width); } //! Test if image width is equal to specified value. bool is_sameX(const CImgDisplay& disp) const { return is_sameX(disp._width); } //! Test if image height is equal to specified value. bool is_sameY(const unsigned int size_y) const { return _height == size_y; } //! Test if image height is equal to specified value. template bool is_sameY(const CImg& img) const { return is_sameY(img._height); } //! Test if image height is equal to specified value. bool is_sameY(const CImgDisplay& disp) const { return is_sameY(disp._height); } //! Test if image depth is equal to specified value. bool is_sameZ(const unsigned int size_z) const { return _depth == size_z; } //! Test if image depth is equal to specified value. template bool is_sameZ(const CImg& img) const { return is_sameZ(img._depth); } //! Test if image spectrum is equal to specified value. bool is_sameC(const unsigned int size_c) const { return _spectrum == size_c; } //! Test if image spectrum is equal to specified value. template bool is_sameC(const CImg& img) const { return is_sameC(img._spectrum); } //! Test if image width and height are equal to specified values. /** Test if is_sameX(unsigned int) const and is_sameY(unsigned int) const are both verified. **/ bool is_sameXY(const unsigned int size_x, const unsigned int size_y) const { return _width == size_x && _height == size_y; } //! Test if image width and height are the same as that of another image. /** Test if is_sameX(const CImg&) const and is_sameY(const CImg&) const are both verified. **/ template bool is_sameXY(const CImg& img) const { return is_sameXY(img._width, img._height); } //! Test if image width and height are the same as that of an existing //! display window. /** Test if is_sameX(const CImgDisplay&) const and is_sameY(const CImgDisplay&) const are both verified. **/ bool is_sameXY(const CImgDisplay& disp) const { return is_sameXY(disp._width, disp._height); } //! Test if image width and depth are equal to specified values. /** Test if is_sameX(unsigned int) const and is_sameZ(unsigned int) const are both verified. **/ bool is_sameXZ(const unsigned int size_x, const unsigned int size_z) const { return _width == size_x && _depth == size_z; } //! Test if image width and depth are the same as that of another image. /** Test if is_sameX(const CImg&) const and is_sameZ(const CImg&) const are both verified. **/ template bool is_sameXZ(const CImg& img) const { return is_sameXZ(img._width, img._depth); } //! Test if image width and spectrum are equal to specified values. /** Test if is_sameX(unsigned int) const and is_sameC(unsigned int) const are both verified. **/ bool is_sameXC(const unsigned int size_x, const unsigned int size_c) const { return _width == size_x && _spectrum == size_c; } //! Test if image width and spectrum are the same as that of another image. /** Test if is_sameX(const CImg&) const and is_sameC(const CImg&) const are both verified. **/ template bool is_sameXC(const CImg& img) const { return is_sameXC(img._width, img._spectrum); } //! Test if image height and depth are equal to specified values. /** Test if is_sameY(unsigned int) const and is_sameZ(unsigned int) const are both verified. **/ bool is_sameYZ(const unsigned int size_y, const unsigned int size_z) const { return _height == size_y && _depth == size_z; } //! Test if image height and depth are the same as that of another image. /** Test if is_sameY(const CImg&) const and is_sameZ(const CImg&) const are both verified. **/ template bool is_sameYZ(const CImg& img) const { return is_sameYZ(img._height, img._depth); } //! Test if image height and spectrum are equal to specified values. /** Test if is_sameY(unsigned int) const and is_sameC(unsigned int) const are both verified. **/ bool is_sameYC(const unsigned int size_y, const unsigned int size_c) const { return _height == size_y && _spectrum == size_c; } //! Test if image height and spectrum are the same as that of another image. /** Test if is_sameY(const CImg&) const and is_sameC(const CImg&) const are both verified. **/ template bool is_sameYC(const CImg& img) const { return is_sameYC(img._height, img._spectrum); } //! Test if image depth and spectrum are equal to specified values. /** Test if is_sameZ(unsigned int) const and is_sameC(unsigned int) const are both verified. **/ bool is_sameZC(const unsigned int size_z, const unsigned int size_c) const { return _depth == size_z && _spectrum == size_c; } //! Test if image depth and spectrum are the same as that of another image. /** Test if is_sameZ(const CImg&) const and is_sameC(const CImg&) const are both verified. **/ template bool is_sameZC(const CImg& img) const { return is_sameZC(img._depth, img._spectrum); } //! Test if image width, height and depth are equal to specified values. /** Test if is_sameXY(unsigned int,unsigned int) const and is_sameZ(unsigned int) const are both verified. **/ bool is_sameXYZ(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z) const { return is_sameXY(size_x, size_y) && _depth == size_z; } //! Test if image width, height and depth are the same as that of another //! image. /** Test if is_sameXY(const CImg&) const and is_sameZ(const CImg&) const are both verified. **/ template bool is_sameXYZ(const CImg& img) const { return is_sameXYZ(img._width, img._height, img._depth); } //! Test if image width, height and spectrum are equal to specified values. /** Test if is_sameXY(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified. **/ bool is_sameXYC(const unsigned int size_x, const unsigned int size_y, const unsigned int size_c) const { return is_sameXY(size_x, size_y) && _spectrum == size_c; } //! Test if image width, height and spectrum are the same as that of another //! image. /** Test if is_sameXY(const CImg&) const and is_sameC(const CImg&) const are both verified. **/ template bool is_sameXYC(const CImg& img) const { return is_sameXYC(img._width, img._height, img._spectrum); } //! Test if image width, depth and spectrum are equal to specified values. /** Test if is_sameXZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified. **/ bool is_sameXZC(const unsigned int size_x, const unsigned int size_z, const unsigned int size_c) const { return is_sameXZ(size_x, size_z) && _spectrum == size_c; } //! Test if image width, depth and spectrum are the same as that of another //! image. /** Test if is_sameXZ(const CImg&) const and is_sameC(const CImg&) const are both verified. **/ template bool is_sameXZC(const CImg& img) const { return is_sameXZC(img._width, img._depth, img._spectrum); } //! Test if image height, depth and spectrum are equal to specified values. /** Test if is_sameYZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified. **/ bool is_sameYZC(const unsigned int size_y, const unsigned int size_z, const unsigned int size_c) const { return is_sameYZ(size_y, size_z) && _spectrum == size_c; } //! Test if image height, depth and spectrum are the same as that of another //! image. /** Test if is_sameYZ(const CImg&) const and is_sameC(const CImg&) const are both verified. **/ template bool is_sameYZC(const CImg& img) const { return is_sameYZC(img._height, img._depth, img._spectrum); } //! Test if image width, height, depth and spectrum are equal to specified //! values. /** Test if is_sameXYZ(unsigned int,unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified. **/ bool is_sameXYZC(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c) const { return is_sameXYZ(size_x, size_y, size_z) && _spectrum == size_c; } //! Test if image width, height, depth and spectrum are the same as that of //! another image. /** Test if is_sameXYZ(const CImg&) const and is_sameC(const CImg&) const are both verified. **/ template bool is_sameXYZC(const CImg& img) const { return is_sameXYZC(img._width, img._height, img._depth, img._spectrum); } //! Test if specified coordinates are inside image bounds. /** Return \c true if pixel located at (\c x,\c y,\c z,\c c) is inside bounds of the image instance, and \c false otherwise. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note - Return \c true only if all these conditions are verified: - The image instance is \e not empty. - 0<=x<=\ref width() - 1. - 0<=y<=\ref height() - 1. - 0<=z<=\ref depth() - 1. - 0<=c<=\ref spectrum() - 1. **/ bool containsXYZC(const int x, const int y = 0, const int z = 0, const int c = 0) const { return !is_empty() && x >= 0 && x < width() && y >= 0 && y < height() && z >= 0 && z < depth() && c >= 0 && c < spectrum(); } //! Test if pixel value is inside image bounds and get its X,Y,Z and //! C-coordinates. /** Return \c true, if specified reference refers to a pixel value inside bounds of the image instance, and \c false otherwise. \param pixel Reference to pixel value to test. \param[out] x X-coordinate of the pixel value, if test succeeds. \param[out] y Y-coordinate of the pixel value, if test succeeds. \param[out] z Z-coordinate of the pixel value, if test succeeds. \param[out] c C-coordinate of the pixel value, if test succeeds. \note - Useful to convert an offset to a buffer value into pixel value coordinates: \code const CImg img(100,100,1,3); // Construct a 100x100 RGB color image const unsigned long offset = 1249; // Offset to the pixel (49,12,0,0) unsigned int x,y,z,c; if (img.contains(img[offset],x,y,z,c)) { // Convert offset to (x,y,z,c) coordinates std::printf("Offset %u refers to pixel located at (%u,%u,%u,%u).\n", offset,x,y,z,c); } \endcode **/ template bool contains(const T& pixel, t& x, t& y, t& z, t& c) const { const ulongT wh = (ulongT)_width * _height, whd = wh * _depth, siz = whd * _spectrum; const T* const ppixel = &pixel; if (is_empty() || ppixel < _data || ppixel >= _data + siz) return false; ulongT off = (ulongT)(ppixel - _data); const ulongT nc = off / whd; off %= whd; const ulongT nz = off / wh; off %= wh; const ulongT ny = off / _width, nx = off % _width; x = (t)nx; y = (t)ny; z = (t)nz; c = (t)nc; return true; } //! Test if pixel value is inside image bounds and get its X,Y and //! Z-coordinates. /** Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X,Y and Z-coordinates are set. **/ template bool contains(const T& pixel, t& x, t& y, t& z) const { const ulongT wh = (ulongT)_width * _height, whd = wh * _depth, siz = whd * _spectrum; const T* const ppixel = &pixel; if (is_empty() || ppixel < _data || ppixel >= _data + siz) return false; ulongT off = ((ulongT)(ppixel - _data)) % whd; const ulongT nz = off / wh; off %= wh; const ulongT ny = off / _width, nx = off % _width; x = (t)nx; y = (t)ny; z = (t)nz; return true; } //! Test if pixel value is inside image bounds and get its X and //! Y-coordinates. /** Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X and Y-coordinates are set. **/ template bool contains(const T& pixel, t& x, t& y) const { const ulongT wh = (ulongT)_width * _height, siz = wh * _depth * _spectrum; const T* const ppixel = &pixel; if (is_empty() || ppixel < _data || ppixel >= _data + siz) return false; ulongT off = ((unsigned int)(ppixel - _data)) % wh; const ulongT ny = off / _width, nx = off % _width; x = (t)nx; y = (t)ny; return true; } //! Test if pixel value is inside image bounds and get its X-coordinate. /** Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X-coordinate is set. **/ template bool contains(const T& pixel, t& x) const { const T* const ppixel = &pixel; if (is_empty() || ppixel < _data || ppixel >= _data + size()) return false; x = (t)(((ulongT)(ppixel - _data)) % _width); return true; } //! Test if pixel value is inside image bounds. /** Similar to contains(const T&,t&,t&,t&,t&) const, except that no pixel coordinates are set. **/ bool contains(const T& pixel) const { const T* const ppixel = &pixel; return !is_empty() && ppixel >= _data && ppixel < _data + size(); } //! Test if pixel buffers of instance and input images overlap. /** Return \c true, if pixel buffers attached to image instance and input image \c img overlap, and \c false otherwise. \param img Input image to compare with. \note - Buffer overlapping may happen when manipulating \e shared images. - If two image buffers overlap, operating on one of the image will probably modify the other one. - Most of the time, \c CImg instances are \e non-shared and do not overlap between each others. \par Example \code const CImg img1("reference.jpg"), // Load RGB-color image img2 = img1.get_shared_channel(1); // Get shared version of the green channel if (img1.is_overlapped(img2)) { // Test succeeds, 'img1' and 'img2' overlaps std::printf("Buffers overlap!\n"); } \endcode **/ template bool is_overlapped(const CImg& img) const { const ulongT csiz = size(), isiz = img.size(); return !((void*)(_data + csiz) <= (void*)img._data || (void*)_data >= (void*)(img._data + isiz)); } //! Test if the set {\c *this,\c primitives,\c colors,\c opacities} defines //! a valid 3D object. /** Return \c true is the 3D object represented by the set {\c *this,\c primitives,\c colors,\c opacities} defines a valid 3D object, and \c false otherwise. The vertex coordinates are defined by the instance image. \param primitives List of primitives of the 3D object. \param colors List of colors of the 3D object. \param opacities List (or image) of opacities of the 3D object. \param full_check Tells if full checking of the 3D object must be performed. \param[out] error_message C-string to contain the error message, if the test does not succeed. \note - Set \c full_checking to \c false to speed-up the 3D object checking. In this case, only the size of each 3D object component is checked. - Size of the string \c error_message should be at least 128-bytes long, to be able to contain the error message. **/ template bool is_object3d(const CImgList& primitives, const CImgList& colors, const to& opacities, const bool full_check = true, char* const error_message = 0) const { if (error_message) *error_message = 0; // Check consistency for the particular case of an empty 3D object. if (is_empty()) { if (primitives || colors || opacities) { if (error_message) cimg_sprintf(error_message, "3D object (%u,%u) defines no vertices but %u " "primitives, " "%u colors and %lu opacities", _width, primitives._width, primitives._width, colors._width, (unsigned long)opacities.size()); return false; } return true; } // Check consistency of vertices. if (_height != 3 || _depth > 1 || _spectrum > 1) { // Check vertices dimensions if (error_message) cimg_sprintf(error_message, "3D object (%u,%u) has invalid vertex dimensions " "(%u,%u,%u,%u)", _width, primitives._width, _width, _height, _depth, _spectrum); return false; } if (colors._width > primitives._width + 1) { if (error_message) cimg_sprintf(error_message, "3D object (%u,%u) defines %u colors", _width, primitives._width, colors._width); return false; } if (opacities.size() > primitives._width) { if (error_message) cimg_sprintf( error_message, "3D object (%u,%u) defines %lu opacities", _width, primitives._width, (unsigned long)opacities.size()); return false; } if (!full_check) return true; // Check consistency of primitives. cimglist_for(primitives, l) { const CImg& primitive = primitives[l]; const unsigned int psiz = (unsigned int)primitive.size(); switch (psiz) { case 1: { // Point const unsigned int i0 = (unsigned int)primitive(0); if (i0 >= _width) { if (error_message) cimg_sprintf(error_message, "3D object (%u,%u) refers to invalid " "vertex index %u in " "point primitive [%u]", _width, primitives._width, i0, l); return false; } } break; case 5: { // Sphere const unsigned int i0 = (unsigned int)primitive(0), i1 = (unsigned int)primitive(1); if (i0 >= _width || i1 >= _width) { if (error_message) cimg_sprintf(error_message, "3D object (%u,%u) refers to invalid " "vertex indices (%u,%u) in " "sphere primitive [%u]", _width, primitives._width, i0, i1, l); return false; } } break; case 2: case 6: { // Segment const unsigned int i0 = (unsigned int)primitive(0), i1 = (unsigned int)primitive(1); if (i0 >= _width || i1 >= _width) { if (error_message) cimg_sprintf(error_message, "3D object (%u,%u) refers to invalid " "vertex indices (%u,%u) in " "segment primitive [%u]", _width, primitives._width, i0, i1, l); return false; } } break; case 3: case 9: { // Triangle const unsigned int i0 = (unsigned int)primitive(0), i1 = (unsigned int)primitive(1), i2 = (unsigned int)primitive(2); if (i0 >= _width || i1 >= _width || i2 >= _width) { if (error_message) cimg_sprintf(error_message, "3D object (%u,%u) refers to invalid " "vertex indices (%u,%u,%u) in " "triangle primitive [%u]", _width, primitives._width, i0, i1, i2, l); return false; } } break; case 4: case 12: { // Quadrangle const unsigned int i0 = (unsigned int)primitive(0), i1 = (unsigned int)primitive(1), i2 = (unsigned int)primitive(2), i3 = (unsigned int)primitive(3); if (i0 >= _width || i1 >= _width || i2 >= _width || i3 >= _width) { if (error_message) cimg_sprintf(error_message, "3D object (%u,%u) refers to invalid " "vertex indices (%u,%u,%u,%u) in " "quadrangle primitive [%u]", _width, primitives._width, i0, i1, i2, i3, l); return false; } } break; default: if (error_message) cimg_sprintf(error_message, "3D object (%u,%u) defines an invalid " "primitive [%u] of size %u", _width, primitives._width, l, (unsigned int)psiz); return false; } } // Check consistency of colors. cimglist_for(colors, c) { const CImg& color = colors[c]; if (!color) { if (error_message) cimg_sprintf( error_message, "3D object (%u,%u) defines no color for primitive [%u]", _width, primitives._width, c); return false; } } // Check consistency of light texture. if (colors._width > primitives._width) { const CImg& light = colors.back(); if (!light || light._depth > 1) { if (error_message) cimg_sprintf(error_message, "3D object (%u,%u) defines an invalid light " "texture (%u,%u,%u,%u)", _width, primitives._width, light._width, light._height, light._depth, light._spectrum); return false; } } return true; } //! Test if image instance represents a valid serialization of a 3D object. /** Return \c true if the image instance represents a valid serialization of a 3D object, and \c false otherwise. \param full_check Tells if full checking of the instance must be performed. \param[out] error_message C-string to contain the error message, if the test does not succeed. \note - Set \c full_check to \c false to speed-up the 3D object checking. In this case, only the size of each 3D object component is checked. - Size of the string \c error_message should be at least 128-bytes long, to be able to contain the error message. **/ bool is_CImg3d(const bool full_check = true, char* const error_message = 0) const { if (error_message) *error_message = 0; // Check instance dimension and header. if (_width != 1 || _height < 8 || _depth != 1 || _spectrum != 1) { if (error_message) cimg_sprintf(error_message, "CImg3d has invalid dimensions (%u,%u,%u,%u)", _width, _height, _depth, _spectrum); return false; } const T *ptrs = _data, *const ptre = end(); if (!_is_CImg3d(*(ptrs++), 'C') || !_is_CImg3d(*(ptrs++), 'I') || !_is_CImg3d(*(ptrs++), 'm') || !_is_CImg3d(*(ptrs++), 'g') || !_is_CImg3d(*(ptrs++), '3') || !_is_CImg3d(*(ptrs++), 'd')) { if (error_message) cimg_sprintf(error_message, "CImg3d header not found"); return false; } const unsigned int nb_points = cimg::float2uint((float)*(ptrs++)), nb_primitives = cimg::float2uint((float)*(ptrs++)); // Check consistency of number of vertices / primitives. if (!full_check) { const ulongT minimal_size = 8UL + 3 * nb_points + 6 * nb_primitives; if (_data + minimal_size > ptre) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) has only %lu values, while at " "least %lu values were expected", nb_points, nb_primitives, (unsigned long)size(), (unsigned long)minimal_size); return false; } } // Check consistency of vertex data. if (!nb_points) { if (nb_primitives) { if (error_message) cimg_sprintf( error_message, "CImg3d (%u,%u) defines no vertices but %u primitives", nb_points, nb_primitives, nb_primitives); return false; } if (ptrs != ptre) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) is an empty object but " "contains %u value%s " "more than expected", nb_points, nb_primitives, (unsigned int)(ptre - ptrs), (ptre - ptrs) > 1 ? "s" : ""); return false; } return true; } if (ptrs + 3 * nb_points > ptre) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) defines only %u vertices data", nb_points, nb_primitives, (unsigned int)(ptre - ptrs) / 3); return false; } ptrs += 3 * nb_points; // Check consistency of primitive data. if (ptrs == ptre) { if (error_message) cimg_sprintf( error_message, "CImg3d (%u,%u) defines %u vertices but no primitive", nb_points, nb_primitives, nb_points); return false; } if (!full_check) return true; for (unsigned int p = 0; p < nb_primitives; ++p) { const unsigned int nb_inds = (unsigned int)*(ptrs++); switch (nb_inds) { case 1: { // Point const unsigned int i0 = cimg::float2uint((float)*(ptrs++)); if (i0 >= nb_points) { if (error_message) cimg_sprintf( error_message, "CImg3d (%u,%u) refers to invalid vertex index " "%u in point primitive [%u]", nb_points, nb_primitives, i0, p); return false; } } break; case 5: { // Sphere const unsigned int i0 = cimg::float2uint((float)*(ptrs++)), i1 = cimg::float2uint((float)*(ptrs++)); ptrs += 3; if (i0 >= nb_points || i1 >= nb_points) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) refers to invalid " "vertex indices (%u,%u) in " "sphere primitive [%u]", nb_points, nb_primitives, i0, i1, p); return false; } } break; case 2: case 6: { // Segment const unsigned int i0 = cimg::float2uint((float)*(ptrs++)), i1 = cimg::float2uint((float)*(ptrs++)); if (nb_inds == 6) ptrs += 4; if (i0 >= nb_points || i1 >= nb_points) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) refers to invalid " "vertex indices (%u,%u) in " "segment primitive [%u]", nb_points, nb_primitives, i0, i1, p); return false; } } break; case 3: case 9: { // Triangle const unsigned int i0 = cimg::float2uint((float)*(ptrs++)), i1 = cimg::float2uint((float)*(ptrs++)), i2 = cimg::float2uint((float)*(ptrs++)); if (nb_inds == 9) ptrs += 6; if (i0 >= nb_points || i1 >= nb_points || i2 >= nb_points) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) refers to invalid " "vertex indices (%u,%u,%u) in " "triangle primitive [%u]", nb_points, nb_primitives, i0, i1, i2, p); return false; } } break; case 4: case 12: { // Quadrangle const unsigned int i0 = cimg::float2uint((float)*(ptrs++)), i1 = cimg::float2uint((float)*(ptrs++)), i2 = cimg::float2uint((float)*(ptrs++)), i3 = cimg::float2uint((float)*(ptrs++)); if (nb_inds == 12) ptrs += 8; if (i0 >= nb_points || i1 >= nb_points || i2 >= nb_points || i3 >= nb_points) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) refers to invalid " "vertex indices (%u,%u,%u,%u) in " "quadrangle primitive [%u]", nb_points, nb_primitives, i0, i1, i2, i3, p); return false; } } break; default: if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) defines an invalid " "primitive [%u] of size %u", nb_points, nb_primitives, p, nb_inds); return false; } if (ptrs > ptre) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) has incomplete primitive data " "for primitive [%u], " "%u values missing", nb_points, nb_primitives, p, (unsigned int)(ptrs - ptre)); return false; } } // Check consistency of color data. if (ptrs == ptre) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) defines no color/texture data", nb_points, nb_primitives); return false; } for (unsigned int c = 0; c < nb_primitives; ++c) { if (*(ptrs++) != (T)-128) ptrs += 2; else if ((ptrs += 3) < ptre) { const unsigned int w = (unsigned int)*(ptrs - 3), h = (unsigned int)*(ptrs - 2), s = (unsigned int)*(ptrs - 1); if (!h && !s) { if (w >= c) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) refers to invalid " "shared sprite/texture index %u " "for primitive [%u]", nb_points, nb_primitives, w, c); return false; } } else ptrs += w * h * s; } if (ptrs > ptre) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) has incomplete color/texture " "data for primitive [%u], " "%u values missing", nb_points, nb_primitives, c, (unsigned int)(ptrs - ptre)); return false; } } // Check consistency of opacity data. if (ptrs == ptre) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) defines no opacity data", nb_points, nb_primitives); return false; } for (unsigned int o = 0; o < nb_primitives; ++o) { if (*(ptrs++) == (T)-128 && (ptrs += 3) < ptre) { const unsigned int w = (unsigned int)*(ptrs - 3), h = (unsigned int)*(ptrs - 2), s = (unsigned int)*(ptrs - 1); if (!h && !s) { if (w >= o) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) refers to invalid " "shared opacity index %u " "for primitive [%u]", nb_points, nb_primitives, w, o); return false; } } else ptrs += w * h * s; } if (ptrs > ptre) { if (error_message) cimg_sprintf(error_message, "CImg3d (%u,%u) has incomplete opacity data " "for primitive [%u]", nb_points, nb_primitives, o); return false; } } // Check end of data. if (ptrs < ptre) { if (error_message) cimg_sprintf( error_message, "CImg3d (%u,%u) contains %u value%s more than expected", nb_points, nb_primitives, (unsigned int)(ptre - ptrs), (ptre - ptrs) > 1 ? "s" : ""); return false; } return true; } static bool _is_CImg3d(const T val, const char c) { return val >= (T)c && val < (T)(c + 1); } //@} //------------------------------------- // //! \name Mathematical Functions //@{ //------------------------------------- // Define the math formula parser/compiler and expression evaluator. struct _cimg_math_parser { CImg mem; CImg memtype; CImgList _code, &code, code_begin, code_end; CImg opcode; const CImg*p_code_end, *p_code; const CImg* const p_break; CImg expr, pexpr; const CImg& imgin; const CImgList& listin; CImg& imgout; CImgList& listout; CImg _img_stats, &img_stats, constcache_vals; CImgList _list_stats, &list_stats, _list_median, &list_median; CImg mem_img_stats, constcache_inds; CImg level, variable_pos, reserved_label; CImgList variable_def, macro_def, macro_body; CImgList macro_body_is_string; char* user_macro; unsigned int mempos, mem_img_median, debug_indent, result_dim, break_type, constcache_size; bool is_parallelizable, is_fill, need_input_copy; double* result; ulongT rng; const char *const calling_function, *s_op, *ss_op; typedef double (*mp_func)(_cimg_math_parser&); #define _cimg_mp_is_constant(arg) (memtype[arg] == 1) // Is constant value? #define _cimg_mp_is_scalar(arg) (memtype[arg] < 2) // Is scalar value? #define _cimg_mp_is_comp(arg) (!memtype[arg]) // Is computation value? #define _cimg_mp_is_variable(arg) (memtype[arg] == -1) // Is scalar variable? #define _cimg_mp_is_vector(arg) (memtype[arg] > 1) // Is vector? #define _cimg_mp_size(arg) \ (_cimg_mp_is_scalar(arg) \ ? 0U \ : (unsigned int)memtype[arg] - 1) // Size (0=scalar, N>0=vectorN) #define _cimg_mp_calling_function calling_function_s()._data #define _cimg_mp_op(s) \ s_op = s; \ ss_op = ss #define _cimg_mp_check_type(arg, n_arg, mode, N) \ check_type(arg, n_arg, mode, N, ss, se, saved_char) #define _cimg_mp_check_constant(arg, n_arg, mode) \ check_constant(arg, n_arg, mode, ss, se, saved_char) #define _cimg_mp_check_matrix_square(arg, n_arg) \ check_matrix_square(arg, n_arg, ss, se, saved_char) #define _cimg_mp_check_list(is_out) check_list(is_out, ss, se, saved_char) #define _cimg_mp_defunc(mp) (*(mp_func)(*(mp).opcode))(mp) #define _cimg_mp_return(x) \ { \ *se = saved_char; \ s_op = previous_s_op; \ ss_op = previous_ss_op; \ return x; \ } #define _cimg_mp_return_nan() _cimg_mp_return(_cimg_mp_slot_nan) #define _cimg_mp_constant(val) _cimg_mp_return(constant((double)(val))) #define _cimg_mp_scalar0(op) _cimg_mp_return(scalar0(op)) #define _cimg_mp_scalar1(op, i1) _cimg_mp_return(scalar1(op, i1)) #define _cimg_mp_scalar2(op, i1, i2) _cimg_mp_return(scalar2(op, i1, i2)) #define _cimg_mp_scalar3(op, i1, i2, i3) \ _cimg_mp_return(scalar3(op, i1, i2, i3)) #define _cimg_mp_scalar4(op, i1, i2, i3, i4) \ _cimg_mp_return(scalar4(op, i1, i2, i3, i4)) #define _cimg_mp_scalar5(op, i1, i2, i3, i4, i5) \ _cimg_mp_return(scalar5(op, i1, i2, i3, i4, i5)) #define _cimg_mp_scalar6(op, i1, i2, i3, i4, i5, i6) \ _cimg_mp_return(scalar6(op, i1, i2, i3, i4, i5, i6)) #define _cimg_mp_scalar7(op, i1, i2, i3, i4, i5, i6, i7) \ _cimg_mp_return(scalar7(op, i1, i2, i3, i4, i5, i6, i7)) #define _cimg_mp_vector1_v(op, i1) _cimg_mp_return(vector1_v(op, i1)) #define _cimg_mp_vector2_sv(op, i1, i2) _cimg_mp_return(vector2_sv(op, i1, i2)) #define _cimg_mp_vector2_vs(op, i1, i2) _cimg_mp_return(vector2_vs(op, i1, i2)) #define _cimg_mp_vector2_vv(op, i1, i2) _cimg_mp_return(vector2_vv(op, i1, i2)) #define _cimg_mp_vector3_vss(op, i1, i2, i3) \ _cimg_mp_return(vector3_vss(op, i1, i2, i3)) // Constructors / Destructors. ~_cimg_math_parser() { cimg::srand(rng); } _cimg_math_parser(const char* const expression, const char* const funcname = 0, const CImg& img_input = CImg::const_empty(), CImg* const img_output = 0, const CImgList* const list_inputs = 0, CImgList* const list_outputs = 0, const bool _is_fill = false) : code(_code), p_break((CImg*)(cimg_ulong)-2), imgin(img_input), listin(list_inputs ? *list_inputs : CImgList::const_empty()), imgout(img_output ? *img_output : CImg::empty()), listout(list_outputs ? *list_outputs : CImgList::empty()), img_stats(_img_stats), list_stats(_list_stats), list_median(_list_median), user_macro(0), mem_img_median(~0U), debug_indent(0), result_dim(0), break_type(0), constcache_size(0), is_parallelizable(true), is_fill(_is_fill), need_input_copy(false), rng((cimg::_rand(), cimg::rng())), calling_function(funcname ? funcname : "cimg_math_parser") { #if cimg_use_openmp != 0 rng += omp_get_thread_num(); #endif if (!expression || !*expression) throw CImgArgumentException("[" cimg_appname "_math_parser] " "CImg<%s>::%s: Empty expression.", pixel_type(), _cimg_mp_calling_function); const char* _expression = expression; while (*_expression && (cimg::is_blank(*_expression) || *_expression == ';')) ++_expression; CImg::string(_expression).move_to(expr); char* ps = &expr.back() - 1; while (ps > expr._data && (cimg::is_blank(*ps) || *ps == ';')) --ps; *(++ps) = 0; expr._width = (unsigned int)(ps - expr._data + 1); // Ease the retrieval of previous non-space characters afterwards. pexpr.assign(expr._width); char c, *pe = pexpr._data; for (ps = expr._data, c = ' '; *ps; ++ps) { if (!cimg::is_blank(*ps)) c = *ps; else *ps = ' '; *(pe++) = c; } *pe = 0; level = get_level(expr); // Init constant values. #define _cimg_mp_interpolation \ (reserved_label[29] != ~0U ? reserved_label[29] : 0) #define _cimg_mp_boundary (reserved_label[30] != ~0U ? reserved_label[30] : 0) #define _cimg_mp_slot_nan 29 #define _cimg_mp_slot_x 30 #define _cimg_mp_slot_y 31 #define _cimg_mp_slot_z 32 #define _cimg_mp_slot_c 33 mem.assign(96); for (unsigned int i = 0; i <= 10; ++i) mem[i] = (double)i; // mem[0-10] = 0...10 for (unsigned int i = 1; i <= 5; ++i) mem[i + 10] = -(double)i; // mem[11-15] = -1...-5 mem[16] = 0.5; mem[17] = 0; // thread_id mem[18] = (double)imgin._width; // w mem[19] = (double)imgin._height; // h mem[20] = (double)imgin._depth; // d mem[21] = (double)imgin._spectrum; // s mem[22] = (double)imgin._is_shared; // r mem[23] = (double)imgin._width * imgin._height; // wh mem[24] = (double)imgin._width * imgin._height * imgin._depth; // whd mem[25] = (double)imgin._width * imgin._height * imgin._depth * imgin._spectrum; // whds mem[26] = (double)listin._width; // l mem[27] = std::exp(1.); // e mem[28] = cimg::PI; // pi mem[_cimg_mp_slot_nan] = cimg::type::nan(); // nan // Set value property : // { -2 = other | -1 = variable | 0 = computation value | // 1 = compile-time constant | N>1 = constant ptr to vector[N-1] // }. memtype.assign(mem._width, 1, 1, 1, 0); for (unsigned int i = 0; i < _cimg_mp_slot_x; ++i) memtype[i] = 1; memtype[17] = 0; memtype[_cimg_mp_slot_x] = memtype[_cimg_mp_slot_y] = memtype[_cimg_mp_slot_z] = memtype[_cimg_mp_slot_c] = -2; mempos = _cimg_mp_slot_c + 1; variable_pos.assign(8); reserved_label.assign(128, 1, 1, 1, ~0U); // reserved_label[4-28] are used to store these two-char variables: // [0] = wh, [1] = whd, [2] = whds, [3] = pi, [4] = im, [5] = iM, // [6] = ia, [7] = iv, [8] = is, [9] = ip, [10] = ic, [11] = xm, // [12] = ym, [13] = zm, [14] = cm, [15] = xM, [16] = yM, [17] = zM, // [18]=cM, [19]=i0...[28]=i9, [29] = interpolation, [30] = boundary // Compile expression into a serie of opcodes. s_op = ""; ss_op = expr._data; const unsigned int ind_result = compile(expr._data, expr._data + expr._width - 1, 0, 0, false); if (!_cimg_mp_is_constant(ind_result)) { if (_cimg_mp_is_vector(ind_result)) CImg(&mem[ind_result] + 1, _cimg_mp_size(ind_result), 1, 1, 1, true) .fill(cimg::type::nan()); else mem[ind_result] = cimg::type::nan(); } // Free resources used for compiling expression and prepare // evaluation. result_dim = _cimg_mp_size(ind_result); if (mem._width >= 256 && mem._width - mempos >= mem._width / 2) mem.resize(mempos, 1, 1, 1, -1); result = mem._data + ind_result; memtype.assign(); constcache_vals.assign(); constcache_inds.assign(); level.assign(); variable_pos.assign(); reserved_label.assign(); expr.assign(); pexpr.assign(); opcode.assign(); opcode._is_shared = true; // Execute begin() bloc if any specified. if (code_begin) { mem[_cimg_mp_slot_x] = mem[_cimg_mp_slot_y] = mem[_cimg_mp_slot_z] = mem[_cimg_mp_slot_c] = 0; p_code_end = code_begin.end(); for (p_code = code_begin; p_code < p_code_end; ++p_code) { opcode._data = p_code->_data; const ulongT target = opcode[1]; mem[target] = _cimg_mp_defunc(*this); } } p_code_end = code.end(); } _cimg_math_parser() : code(_code), p_code_end(0), p_break((CImg*)(cimg_ulong)-2), imgin(CImg::const_empty()), listin(CImgList::const_empty()), imgout(CImg::empty()), listout(CImgList::empty()), img_stats(_img_stats), list_stats(_list_stats), list_median(_list_median), debug_indent(0), result_dim(0), break_type(0), constcache_size(0), is_parallelizable(true), is_fill(false), need_input_copy(false), rng(0), calling_function(0) { mem.assign(1 + _cimg_mp_slot_c, 1, 1, 1, 0); // Allow to skip 'is_empty?' test in operator()() result = mem._data; } _cimg_math_parser(const _cimg_math_parser& mp) : mem(mp.mem), code(mp.code), p_code_end(mp.p_code_end), p_break(mp.p_break), imgin(mp.imgin), listin(mp.listin), imgout(mp.imgout), listout(mp.listout), img_stats(mp.img_stats), list_stats(mp.list_stats), list_median(mp.list_median), debug_indent(0), result_dim(mp.result_dim), break_type(0), constcache_size(0), is_parallelizable(mp.is_parallelizable), is_fill(mp.is_fill), need_input_copy(mp.need_input_copy), result(mem._data + (mp.result - mp.mem._data)), rng((cimg::_rand(), cimg::rng())), calling_function(0) { #if cimg_use_openmp != 0 mem[17] = omp_get_thread_num(); rng += omp_get_thread_num(); #endif opcode.assign(); opcode._is_shared = true; } // Count parentheses/brackets level of each character of the expression. CImg get_level(CImg& _expr) const { bool is_escaped = false, next_is_escaped = false; unsigned int mode = 0, next_mode = 0; // { 0=normal | 1=char-string | 2=vector-string CImg res(_expr._width - 1); unsigned int* pd = res._data; int _level = 0; for (const char* ps = _expr._data; *ps && _level >= 0; ++ps) { if (!is_escaped && !next_is_escaped && *ps == '\\') next_is_escaped = true; if (!is_escaped && *ps == '\'') { // Non-escaped character if (!mode && ps > _expr._data && *(ps - 1) == '[') next_mode = mode = 2; // Start vector-string else if (mode == 2 && *(ps + 1) == ']') next_mode = !mode; // End vector-string else if (mode < 2) next_mode = mode ? (mode = 0) : 1; // Start/end char-string } *(pd++) = (unsigned int)(mode >= 1 || is_escaped ? _level + (mode == 1) : *ps == '(' || *ps == '[' ? _level++ : *ps == ')' || *ps == ']' ? --_level : _level); mode = next_mode; is_escaped = next_is_escaped; next_is_escaped = false; } if (mode) { cimg::strellipsize(_expr, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: Unterminated string literal, in expression " "'%s'.", pixel_type(), _cimg_mp_calling_function, _expr._data); } if (_level) { cimg::strellipsize(_expr, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: Unbalanced parentheses/brackets, in " "expression '%s'.", pixel_type(), _cimg_mp_calling_function, _expr._data); } return res; } // Tell for each character of an expression if it is inside a string or // not. CImg is_inside_string(CImg& _expr) const { bool is_escaped = false, next_is_escaped = false; unsigned int mode = 0, next_mode = 0; // { 0=normal | 1=char-string | 2=vector-string CImg res = CImg::string(_expr); bool* pd = res._data; for (const char* ps = _expr._data; *ps; ++ps) { if (!next_is_escaped && *ps == '\\') next_is_escaped = true; if (!is_escaped && *ps == '\'') { // Non-escaped character if (!mode && ps > _expr._data && *(ps - 1) == '[') next_mode = mode = 2; // Start vector-string else if (mode == 2 && *(ps + 1) == ']') next_mode = !mode; // End vector-string else if (mode < 2) next_mode = mode ? (mode = 0) : 1; // Start/end char-string } *(pd++) = mode >= 1 || is_escaped; mode = next_mode; is_escaped = next_is_escaped; next_is_escaped = false; } return res; } // Compilation procedure. unsigned int compile(char* ss, char* se, const unsigned int depth, unsigned int* const p_ref, const bool is_single) { if (depth > 256) { cimg::strellipsize(expr, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: Call stack overflow (infinite recursion?), " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, (ss - 4) > expr._data ? "..." : "", (ss - 4) > expr._data ? ss - 4 : expr._data, se < &expr.back() ? "..." : ""); } char c1, c2, c3, c4; // Simplify expression when possible. do { c2 = 0; if (ss < se) { while (*ss && (cimg::is_blank(*ss) || *ss == ';')) ++ss; while (se > ss && (cimg::is_blank(c1 = *(se - 1)) || c1 == ';')) --se; } while (*ss == '(' && *(se - 1) == ')' && std::strchr(ss, ')') == se - 1) { ++ss; --se; c2 = 1; } } while (c2 && ss < se); if (se <= ss || !*ss) { cimg::strellipsize(expr, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s%s Missing %s, in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, *s_op ? ":" : "", *s_op == 'F' ? "argument" : "item", (ss_op - 4) > expr._data ? "..." : "", (ss_op - 4) > expr._data ? ss_op - 4 : expr._data, ss_op + std::strlen(ss_op) < &expr.back() ? "..." : ""); } const char *const previous_s_op = s_op, *const previous_ss_op = ss_op; const unsigned int depth1 = depth + 1; unsigned int pos, p1, p2, p3, arg1, arg2, arg3, arg4, arg5, arg6; char *const se1 = se - 1, *const se2 = se - 2, *const se3 = se - 3, *const ss1 = ss + 1, *const ss2 = ss + 2, *const ss3 = ss + 3, *const ss4 = ss + 4, *const ss5 = ss + 5, *const ss6 = ss + 6, *const ss7 = ss + 7, *const ss8 = ss + 8, *s, *ps, *ns, *s0, *s1, *s2, *s3, sep = 0, end = 0; double val = 0, val1, val2; mp_func op; // 'p_ref' is a 'unsigned int[7]' used to return a reference to an // image or vector value linked to the returned memory slot // (reference that cannot be determined at compile time). p_ref[0] // can be { 0 = scalar (unlinked) | 1 = vector value | 2 = image // value (offset) | // 3 = image value (coordinates) | 4 = image value // as a vector (offsets) | 5 = image value as a // vector (coordinates) }. // Depending on p_ref[0], the remaining p_ref[k] have the following // meaning: When p_ref[0]==0, p_ref is actually unlinked. When // p_ref[0]==1, p_ref = [ 1, vector_ind, offset ]. When p_ref[0]==2, // p_ref = [ 2, image_ind (or ~0U), is_relative, offset ]. When // p_ref[0]==3, p_ref = [ 3, image_ind (or ~0U), is_relative, x, y, // z, c ]. When p_ref[0]==4, p_ref = [ 4, image_ind (or ~0U), // is_relative, offset ]. When p_ref[0]==5, p_ref = [ 5, image_ind // (or ~0U), is_relative, x, y, z ]. if (p_ref) { *p_ref = 0; p_ref[1] = p_ref[2] = p_ref[3] = p_ref[4] = p_ref[5] = p_ref[6] = ~0U; } const char saved_char = *se; *se = 0; const unsigned int clevel = level[ss - expr._data], clevel1 = clevel + 1; bool is_sth, is_relative; CImg ref; CImg variable_name; CImgList l_opcode; // Look for a single value or a pre-defined variable. int nb = 0; s = ss + (*ss == '+' || *ss == '-' ? 1 : 0); if (*s == 'i' || *s == 'I' || *s == 'n' || *s == 'N') { // Particular cases : +/-NaN and +/-Inf is_sth = *ss == '-'; if (!cimg::strcasecmp(s, "inf")) { val = cimg::type::inf(); nb = 1; } else if (!cimg::strcasecmp(s, "nan")) { val = cimg::type::nan(); nb = 1; } if (nb == 1 && is_sth) val = -val; } else if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) { // Hexadecimal number is_sth = *ss == '-'; if (cimg_sscanf(s + 2, "%x%c", &arg1, &sep) == 1) { nb = 1; val = (double)arg1; if (is_sth) val = -val; } } if (!nb) nb = cimg_sscanf(ss, "%lf%c%c", &val, &(sep = 0), &(end = 0)); if (nb == 1) _cimg_mp_constant(val); if (nb == 2 && sep == '%') _cimg_mp_constant(val / 100); if (ss1 == se) switch (*ss) { // One-char reserved variable case 'c': _cimg_mp_return(reserved_label[(int)'c'] != ~0U ? reserved_label[(int)'c'] : _cimg_mp_slot_c); case 'd': _cimg_mp_return(reserved_label[(int)'d'] != ~0U ? reserved_label[(int)'d'] : 20); case 'e': _cimg_mp_return(reserved_label[(int)'e'] != ~0U ? reserved_label[(int)'e'] : 27); case 'h': _cimg_mp_return(reserved_label[(int)'h'] != ~0U ? reserved_label[(int)'h'] : 19); case 'l': _cimg_mp_return(reserved_label[(int)'l'] != ~0U ? reserved_label[(int)'l'] : 26); case 'r': _cimg_mp_return(reserved_label[(int)'r'] != ~0U ? reserved_label[(int)'r'] : 22); case 's': _cimg_mp_return(reserved_label[(int)'s'] != ~0U ? reserved_label[(int)'s'] : 21); case 't': _cimg_mp_return(reserved_label[(int)'t'] != ~0U ? reserved_label[(int)'t'] : 17); case 'w': _cimg_mp_return(reserved_label[(int)'w'] != ~0U ? reserved_label[(int)'w'] : 18); case 'x': _cimg_mp_return(reserved_label[(int)'x'] != ~0U ? reserved_label[(int)'x'] : _cimg_mp_slot_x); case 'y': _cimg_mp_return(reserved_label[(int)'y'] != ~0U ? reserved_label[(int)'y'] : _cimg_mp_slot_y); case 'z': _cimg_mp_return(reserved_label[(int)'z'] != ~0U ? reserved_label[(int)'z'] : _cimg_mp_slot_z); case 'u': if (reserved_label[(int)'u'] != ~0U) _cimg_mp_return(reserved_label[(int)'u']); _cimg_mp_scalar2(mp_u, 0, 1); case 'g': if (reserved_label[(int)'g'] != ~0U) _cimg_mp_return(reserved_label[(int)'g']); _cimg_mp_scalar0(mp_g); case 'i': if (reserved_label[(int)'i'] != ~0U) _cimg_mp_return(reserved_label[(int)'i']); _cimg_mp_scalar0(mp_i); case 'I': _cimg_mp_op("Variable 'I'"); if (reserved_label[(int)'I'] != ~0U) _cimg_mp_return(reserved_label[(int)'I']); if (!imgin._spectrum) _cimg_mp_return(0); need_input_copy = true; pos = vector(imgin._spectrum); CImg::vector((ulongT)mp_Joff, pos, 0, 0, imgin._spectrum) .move_to(code); _cimg_mp_return(pos); case 'R': if (reserved_label[(int)'R'] != ~0U) _cimg_mp_return(reserved_label[(int)'R']); need_input_copy = true; _cimg_mp_scalar6(mp_ixyzc, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, 0, 0, 0); case 'G': if (reserved_label[(int)'G'] != ~0U) _cimg_mp_return(reserved_label[(int)'G']); need_input_copy = true; _cimg_mp_scalar6(mp_ixyzc, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, 1, 0, 0); case 'B': if (reserved_label[(int)'B'] != ~0U) _cimg_mp_return(reserved_label[(int)'B']); need_input_copy = true; _cimg_mp_scalar6(mp_ixyzc, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, 2, 0, 0); case 'A': if (reserved_label[(int)'A'] != ~0U) _cimg_mp_return(reserved_label[(int)'A']); need_input_copy = true; _cimg_mp_scalar6(mp_ixyzc, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, 3, 0, 0); } else if (ss2 == se) { // Two-chars reserved variable arg1 = arg2 = ~0U; if (*ss == 'w' && *ss1 == 'h') // wh _cimg_mp_return(reserved_label[0] != ~0U ? reserved_label[0] : 23); if (*ss == 'p' && *ss1 == 'i') // pi _cimg_mp_return(reserved_label[3] != ~0U ? reserved_label[3] : 28); if (*ss == 'i') { if (*ss1 >= '0' && *ss1 <= '9') { // i0...i9 pos = 19 + *ss1 - '0'; if (reserved_label[pos] != ~0U) _cimg_mp_return(reserved_label[pos]); need_input_copy = true; _cimg_mp_scalar6(mp_ixyzc, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, pos - 19, 0, 0); } switch (*ss1) { case 'm': arg1 = 4; arg2 = 0; break; // im case 'M': arg1 = 5; arg2 = 1; break; // iM case 'a': arg1 = 6; arg2 = 2; break; // ia case 'v': arg1 = 7; arg2 = 3; break; // iv case 's': arg1 = 8; arg2 = 12; break; // is case 'p': arg1 = 9; arg2 = 13; break; // ip case 'c': // ic if (reserved_label[10] != ~0U) _cimg_mp_return(reserved_label[10]); if (mem_img_median == ~0U) mem_img_median = imgin ? constant(imgin.median()) : 0; _cimg_mp_return(mem_img_median); break; } } else if (*ss1 == 'm') switch (*ss) { case 'x': arg1 = 11; arg2 = 4; break; // xm case 'y': arg1 = 12; arg2 = 5; break; // ym case 'z': arg1 = 13; arg2 = 6; break; // zm case 'c': arg1 = 14; arg2 = 7; break; // cm } else if (*ss1 == 'M') switch (*ss) { case 'x': arg1 = 15; arg2 = 8; break; // xM case 'y': arg1 = 16; arg2 = 9; break; // yM case 'z': arg1 = 17; arg2 = 10; break; // zM case 'c': arg1 = 18; arg2 = 11; break; // cM } if (arg1 != ~0U) { if (reserved_label[arg1] != ~0U) _cimg_mp_return(reserved_label[arg1]); if (!img_stats) { img_stats.assign(1, 14, 1, 1, 0) .fill(imgin.get_stats(), false); mem_img_stats.assign(1, 14, 1, 1, ~0U); } if (mem_img_stats[arg2] == ~0U) mem_img_stats[arg2] = constant(img_stats[arg2]); _cimg_mp_return(mem_img_stats[arg2]); } } else if (ss3 == se) { // Three-chars reserved variable if (*ss == 'w' && *ss1 == 'h' && *ss2 == 'd') // whd _cimg_mp_return(reserved_label[1] != ~0U ? reserved_label[1] : 24); } else if (ss4 == se) { // Four-chars reserved variable if (*ss == 'w' && *ss1 == 'h' && *ss2 == 'd' && *ss3 == 's') // whds _cimg_mp_return(reserved_label[2] != ~0U ? reserved_label[2] : 25); } pos = ~0U; is_sth = false; for (s0 = ss, s = ss1; s < se1; ++s) if (*s == ';' && level[s - expr._data] == clevel) { // Separator ';' arg1 = code_end._width; arg2 = compile(s0, s++, depth, 0, is_single); if (code_end._width == arg1) pos = arg2; // makes 'end()' return void is_sth = true; while (*s && (cimg::is_blank(*s) || *s == ';')) ++s; s0 = s; } if (is_sth) { arg1 = code_end._width; arg2 = compile(s0, se, depth, p_ref, is_single); if (code_end._width == arg1) pos = arg2; // makes 'end()' return void _cimg_mp_return(pos); } // Declare / assign variable, vector value or image value. for (s = ss1, ps = ss, ns = ss2; s < se1; ++s, ++ps, ++ns) if (*s == '=' && *ns != '=' && *ps != '=' && *ps != '>' && *ps != '<' && *ps != '!' && *ps != '+' && *ps != '-' && *ps != '*' && *ps != '/' && *ps != '%' && *ps != '>' && *ps != '<' && *ps != '&' && *ps != '|' && *ps != '^' && level[s - expr._data] == clevel) { variable_name.assign(ss, (unsigned int)(s + 1 - ss)) .back() = 0; cimg::strpare(variable_name, false, true); const unsigned int l_variable_name = (unsigned int)std::strlen(variable_name); char* const ve1 = ss + l_variable_name - 1; _cimg_mp_op("Operator '='"); // Assign image value (direct). if (l_variable_name > 2 && (*ss == 'i' || *ss == 'j' || *ss == 'I' || *ss == 'J') && (*ss1 == '(' || *ss1 == '[') && (reserved_label[(int)*ss] == ~0U || *ss1 == '(' || !_cimg_mp_is_vector(reserved_label[(int)*ss]))) { is_relative = *ss == 'j' || *ss == 'J'; if (*ss1 == '[' && *ve1 == ']') { // i/j/I/J[_#ind,offset] = value if (!is_single) is_parallelizable = false; if (*ss2 == '#') { // Index specified s0 = ss3; while (s0 < ve1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss3, s0++, depth1, 0, is_single); _cimg_mp_check_list(true); } else { p1 = ~0U; s0 = ss2; } arg1 = compile(s0, ve1, depth1, 0, is_single); // Offset _cimg_mp_check_type(arg1, 0, 1, 0); arg2 = compile(s + 1, se, depth1, 0, is_single); // Value to assign if (_cimg_mp_is_vector(arg2)) { p2 = ~0U; // 'p2' must be the dimension of the // vector-valued operand if any if (p1 == ~0U) p2 = imgin._spectrum; else if (_cimg_mp_is_constant(p1)) { p3 = (unsigned int)cimg::mod( (int)mem[p1], listin.width()); p2 = listin[p3]._spectrum; } if (!p2) _cimg_mp_return(0); } else p2 = 0; _cimg_mp_check_type(arg2, 2, *ss >= 'i' ? 1 : 3, p2); if (p_ref) { *p_ref = _cimg_mp_is_vector(arg2) ? 4 : 2; p_ref[1] = p1; p_ref[2] = (unsigned int)is_relative; p_ref[3] = arg1; if (_cimg_mp_is_vector(arg2)) set_variable_vector( arg2); // Prevent from being used in // further optimization else if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -2; if (p1 != ~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -2; if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -2; } if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg2); if (*ss >= 'i') CImg::vector( (ulongT)(is_relative ? mp_list_set_joff : mp_list_set_ioff), arg2, p1, arg1) .move_to(code); else if (_cimg_mp_is_scalar(arg2)) CImg::vector( (ulongT)(is_relative ? mp_list_set_Joff_s : mp_list_set_Ioff_s), arg2, p1, arg1) .move_to(code); else CImg::vector( (ulongT)(is_relative ? mp_list_set_Joff_v : mp_list_set_Ioff_v), arg2, p1, arg1, _cimg_mp_size(arg2)) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg2); if (*ss >= 'i') CImg::vector( (ulongT)(is_relative ? mp_set_joff : mp_set_ioff), arg2, arg1) .move_to(code); else if (_cimg_mp_is_scalar(arg2)) CImg::vector( (ulongT)(is_relative ? mp_set_Joff_s : mp_set_Ioff_s), arg2, arg1) .move_to(code); else CImg::vector( (ulongT)(is_relative ? mp_set_Joff_v : mp_set_Ioff_v), arg2, arg1, _cimg_mp_size(arg2)) .move_to(code); } _cimg_mp_return(arg2); } if (*ss1 == '(' && *ve1 == ')') { // i/j/I/J(_#ind,_x,_y,_z,_c) = value if (!is_single) is_parallelizable = false; if (*ss2 == '#') { // Index specified s0 = ss3; while (s0 < ve1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss3, s0++, depth1, 0, is_single); _cimg_mp_check_list(true); } else { p1 = ~0U; s0 = ss2; } arg1 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_x; arg2 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_y; arg3 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_z; arg4 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_c; arg5 = compile(s + 1, se, depth1, 0, is_single); // Value to assign if (s0 < ve1) { // X or [ X,_Y,_Z,_C ] s1 = s0; while (s1 < ve1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(s0, s1, depth1, 0, is_single); if (_cimg_mp_is_vector( arg1)) { // Coordinates specified as a // vector p2 = _cimg_mp_size(arg1); // Vector size ++arg1; if (p2 > 1) { arg2 = arg1 + 1; if (p2 > 2) { arg3 = arg2 + 1; if (p2 > 3) arg4 = arg3 + 1; } } } else if (s1 < ve1) { // Y s2 = ++s1; while (s2 < ve1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(s1, s2, depth1, 0, is_single); if (s2 < ve1) { // Z s3 = ++s2; while ( s3 < ve1 && (*s3 != ',' || level[s3 - expr._data] != clevel1)) ++s3; arg3 = compile(s2, s3, depth1, 0, is_single); if (s3 < ve1) arg4 = compile(++s3, ve1, depth1, 0, is_single); // C } } } if (_cimg_mp_is_vector(arg5)) { p2 = ~0U; // 'p2' must be the dimension of the // vector-valued operand if any if (p1 == ~0U) p2 = imgin._spectrum; else if (_cimg_mp_is_constant(p1)) { p3 = (unsigned int)cimg::mod( (int)mem[p1], listin.width()); p2 = listin[p3]._spectrum; } if (!p2) _cimg_mp_return(0); } else p2 = 0; _cimg_mp_check_type(arg5, 2, *ss >= 'i' ? 1 : 3, p2); if (p_ref) { *p_ref = _cimg_mp_is_vector(arg5) ? 5 : 3; p_ref[1] = p1; p_ref[2] = (unsigned int)is_relative; p_ref[3] = arg1; p_ref[4] = arg2; p_ref[5] = arg3; p_ref[6] = arg4; if (_cimg_mp_is_vector(arg5)) set_variable_vector( arg5); // Prevent from being used in // further optimization else if (_cimg_mp_is_comp(arg5)) memtype[arg5] = -2; if (p1 != ~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -2; if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -2; if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -2; if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -2; if (_cimg_mp_is_comp(arg4)) memtype[arg4] = -2; } if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg5); if (*ss >= 'i') CImg::vector( (ulongT)(is_relative ? mp_list_set_jxyzc : mp_list_set_ixyzc), arg5, p1, arg1, arg2, arg3, arg4) .move_to(code); else if (_cimg_mp_is_scalar(arg5)) CImg::vector( (ulongT)(is_relative ? mp_list_set_Jxyz_s : mp_list_set_Ixyz_s), arg5, p1, arg1, arg2, arg3) .move_to(code); else CImg::vector( (ulongT)(is_relative ? mp_list_set_Jxyz_v : mp_list_set_Ixyz_v), arg5, p1, arg1, arg2, arg3, _cimg_mp_size(arg5)) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg5); if (*ss >= 'i') CImg::vector( (ulongT)(is_relative ? mp_set_jxyzc : mp_set_ixyzc), arg5, arg1, arg2, arg3, arg4) .move_to(code); else if (_cimg_mp_is_scalar(arg5)) CImg::vector( (ulongT)(is_relative ? mp_set_Jxyz_s : mp_set_Ixyz_s), arg5, arg1, arg2, arg3) .move_to(code); else CImg::vector( (ulongT)(is_relative ? mp_set_Jxyz_v : mp_set_Ixyz_v), arg5, arg1, arg2, arg3, _cimg_mp_size(arg5)) .move_to(code); } _cimg_mp_return(arg5); } } // Assign vector value (direct). if (l_variable_name > 3 && *ve1 == ']' && *ss != '[') { s0 = ve1; while (s0 > ss && (*s0 != '[' || level[s0 - expr._data] != clevel)) --s0; is_sth = true; // is_valid_variable_name? if (*ss >= '0' && *ss <= '9') is_sth = false; else for (ns = ss; ns < s0; ++ns) if (!is_varchar(*ns)) { is_sth = false; break; } if (is_sth && s0 > ss) { variable_name[s0 - ss] = 0; // Remove brackets in variable name arg1 = ~0U; // Vector slot arg2 = compile(++s0, ve1, depth1, 0, is_single); // Index arg3 = compile(s + 1, se, depth1, 0, is_single); // Value to assign _cimg_mp_check_type(arg3, 2, 1, 0); if (variable_name[1]) { // Multi-char variable cimglist_for( variable_def, i) if (!std::strcmp(variable_name, variable_def[i])) { arg1 = variable_pos[i]; break; } } else arg1 = reserved_label[( int)*variable_name]; // Single-char // variable if (arg1 == ~0U) compile(ss, s0 - 1, depth1, 0, is_single); // Variable does not exist // -> error else { // Variable already exists if (_cimg_mp_is_scalar(arg1)) compile(ss, s, depth1, 0, is_single); // Variable is not a // vector -> error if (_cimg_mp_is_constant( arg2)) { // Constant index -> return // corresponding variable slot // directly nb = (int)mem[arg2]; if (nb >= 0 && nb < (int)_cimg_mp_size(arg1)) { arg1 += nb + 1; CImg::vector((ulongT)mp_copy, arg1, arg3) .move_to(code); _cimg_mp_return(arg1); } compile(ss, s, depth1, 0, is_single); // Out-of-bounds // reference -> error } // Case of non-constant index -> return assigned // value + linked reference if (p_ref) { *p_ref = 1; p_ref[1] = arg1; p_ref[2] = arg2; if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -2; // Prevent from being used in // further optimization if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -2; } CImg::vector( (ulongT)mp_vector_set_off, arg3, arg1, (ulongT)_cimg_mp_size(arg1), arg2, arg3) .move_to(code); _cimg_mp_return(arg3); } } } // Assign user-defined macro. if (l_variable_name > 2 && *ve1 == ')' && *ss != '(') { s0 = ve1; while (s0 > ss && *s0 != '(') --s0; is_sth = std::strncmp(variable_name, "debug(", 6) && std::strncmp(variable_name, "print(", 6); // is_valid_function_name? if (*ss >= '0' && *ss <= '9') is_sth = false; else for (ns = ss; ns < s0; ++ns) if (!is_varchar(*ns)) { is_sth = false; break; } if (is_sth && s0 > ss) { // Looks like a valid function // declaration s0 = variable_name._data + (s0 - ss); *s0 = 0; s1 = variable_name._data + l_variable_name - 1; // Pointer to closing parenthesis CImg( variable_name._data, (unsigned int)(s0 - variable_name._data + 1)) .move_to(macro_def, 0); ++s; while (*s && cimg::is_blank(*s)) ++s; CImg(s, (unsigned int)(se - s + 1)) .move_to(macro_body, 0); p1 = 1; // Index of current parsed argument for (s = s0 + 1; s <= s1; ++p1, s = ns + 1) { // Parse function arguments if (p1 > 24) { *se = saved_char; cimg::strellipsize(variable_name, 64); s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Too much specified " "arguments (>24) in macro " "definition '%s()', in expression " "'%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, variable_name._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } while (*s && cimg::is_blank(*s)) ++s; if (*s == ')' && p1 == 1) break; // Function has no arguments s2 = s; // Start of the argument name is_sth = true; // is_valid_argument_name? if (*s >= '0' && *s <= '9') is_sth = false; else for (ns = s; ns < s1 && *ns != ',' && !cimg::is_blank(*ns); ++ns) if (!is_varchar(*ns)) { is_sth = false; break; } s3 = ns; // End of the argument name while (*ns && cimg::is_blank(*ns)) ++ns; if (!is_sth || s2 == s3 || (*ns != ',' && ns != s1)) { *se = saved_char; cimg::strellipsize(variable_name, 64); s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: %s name specified " "for argument %u when defining " "macro '%s()', in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, is_sth ? "Empty" : "Invalid", p1, variable_name._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } if (ns == s1 || *ns == ',') { // New argument found *s3 = 0; p2 = (unsigned int)(s3 - s2); // Argument length for (ps = std::strstr(macro_body[0], s2); ps; ps = std::strstr( ps, s2)) { // Replace by arg number if (!((ps > macro_body[0]._data && is_varchar(*(ps - 1))) || (ps + p2 < macro_body[0].end() && is_varchar(*(ps + p2))))) { if (ps > macro_body[0]._data && *(ps - 1) == '#') { // Remove pre-number // sign *(ps - 1) = (char)p1; if (ps + p2 < macro_body[0].end() && *(ps + p2) == '#') { // Has pre & // post number // signs std::memmove( ps, ps + p2 + 1, macro_body[0].end() - ps - p2 - 1); macro_body[0]._width -= p2 + 1; } else { // Has pre number sign // only std::memmove( ps, ps + p2, macro_body[0].end() - ps - p2); macro_body[0]._width -= p2; } } else if ( ps + p2 < macro_body[0].end() && *(ps + p2) == '#') { // Remove // post-number // sign *(ps++) = (char)p1; std::memmove( ps, ps + p2, macro_body[0].end() - ps - p2); macro_body[0]._width -= p2; } else { // Not near a number sign if (p2 < 3) { ps -= (ulongT)macro_body[0] ._data; macro_body[0].resize( macro_body[0]._width - p2 + 3, 1, 1, 1, 0); ps += (ulongT)macro_body[0] ._data; } else macro_body[0]._width -= p2 - 3; std::memmove( ps + 3, ps + p2, macro_body[0].end() - ps - 3); *(ps++) = '('; *(ps++) = (char)p1; *(ps++) = ')'; } } else ++ps; } } } // Store number of arguments. macro_def[0] .resize(macro_def[0]._width + 1, 1, 1, 1, 0) .back() = (char)(p1 - 1); // Detect parts of function body inside a string. is_inside_string(macro_body[0]) .move_to(macro_body_is_string, 0); _cimg_mp_return_nan(); } } // Check if the variable name could be valid. If not, this // is probably an lvalue assignment. is_sth = true; // is_valid_variable_name? const bool is_const = l_variable_name > 6 && !std::strncmp(variable_name, "const ", 6); s0 = variable_name._data; if (is_const) { s0 += 6; while (cimg::is_blank(*s0)) ++s0; variable_name.resize(variable_name.end() - s0, 1, 1, 1, 0, 0, 1); } if (*variable_name >= '0' && *variable_name <= '9') is_sth = false; else for (ns = variable_name._data; *ns; ++ns) if (!is_varchar(*ns)) { is_sth = false; break; } // Assign variable (direct). if (is_sth) { arg3 = variable_name[1] ? ~0U : *variable_name; // One-char variable if (variable_name[1] && !variable_name[2]) { // Two-chars variable c1 = variable_name[0]; c2 = variable_name[1]; if (c1 == 'w' && c2 == 'h') arg3 = 0; // wh else if (c1 == 'p' && c2 == 'i') arg3 = 3; // pi else if (c1 == 'i') { if (c2 >= '0' && c2 <= '9') arg3 = 19 + c2 - '0'; // i0...i9 else if (c2 == 'm') arg3 = 4; // im else if (c2 == 'M') arg3 = 5; // iM else if (c2 == 'a') arg3 = 6; // ia else if (c2 == 'v') arg3 = 7; // iv else if (c2 == 's') arg3 = 8; // is else if (c2 == 'p') arg3 = 9; // ip else if (c2 == 'c') arg3 = 10; // ic } else if (c2 == 'm') { if (c1 == 'x') arg3 = 11; // xm else if (c1 == 'y') arg3 = 12; // ym else if (c1 == 'z') arg3 = 13; // zm else if (c1 == 'c') arg3 = 14; // cm } else if (c2 == 'M') { if (c1 == 'x') arg3 = 15; // xM else if (c1 == 'y') arg3 = 16; // yM else if (c1 == 'z') arg3 = 17; // zM else if (c1 == 'c') arg3 = 18; // cM } } else if (variable_name[1] && variable_name[2] && !variable_name[3]) { // Three-chars variable c1 = variable_name[0]; c2 = variable_name[1]; c3 = variable_name[2]; if (c1 == 'w' && c2 == 'h' && c3 == 'd') arg3 = 1; // whd } else if (variable_name[1] && variable_name[2] && variable_name[3] && !variable_name[4]) { // Four-chars variable c1 = variable_name[0]; c2 = variable_name[1]; c3 = variable_name[2]; c4 = variable_name[3]; if (c1 == 'w' && c2 == 'h' && c3 == 'd' && c4 == 's') arg3 = 2; // whds } else if (!std::strcmp(variable_name, "interpolation")) arg3 = 29; // interpolation else if (!std::strcmp(variable_name, "boundary")) arg3 = 30; // boundary arg1 = ~0U; arg2 = compile(s + 1, se, depth1, 0, is_single); if (is_const) _cimg_mp_check_constant(arg2, 2, 0); if (arg3 != ~0U) // One-char variable, or variable in // reserved_labels arg1 = reserved_label[arg3]; else // Multi-char variable name : check for existing // variable with same name cimglist_for(variable_def, i) if (!std::strcmp(variable_name, variable_def[i])) { arg1 = variable_pos[i]; break; } if (arg1 == ~0U) { // Create new variable if (_cimg_mp_is_vector(arg2)) { // Vector variable arg1 = is_comp_vector(arg2) ? arg2 : vector_copy(arg2); set_variable_vector(arg1); } else { // Scalar variable if (is_const) arg1 = arg2; else { arg1 = _cimg_mp_is_comp(arg2) ? arg2 : scalar1(mp_copy, arg2); memtype[arg1] = -1; } } if (arg3 != ~0U) reserved_label[arg3] = arg1; else { if (variable_def._width >= variable_pos._width) variable_pos.resize(-200, 1, 1, 1, 0); variable_pos[variable_def._width] = arg1; variable_name.move_to(variable_def); } } else { // Variable already exists -> assign a new // value if (is_const || _cimg_mp_is_constant(arg1)) { *se = saved_char; cimg::strellipsize(variable_name, 64); s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Invalid assignment of " "%sconst variable '%s'%s, " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, _cimg_mp_is_constant(arg1) ? "already-defined " : "non-", variable_name._data, !_cimg_mp_is_constant(arg1) && is_const ? " as a new const variable" : "", s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } _cimg_mp_check_type( arg2, 2, _cimg_mp_is_vector(arg1) ? 3 : 1, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1)) { // Vector if (_cimg_mp_is_vector(arg2)) // From vector CImg::vector( (ulongT)mp_vector_copy, arg1, arg2, (ulongT)_cimg_mp_size(arg1)) .move_to(code); else // From scalar CImg::vector( (ulongT)mp_vector_init, arg1, 1, (ulongT)_cimg_mp_size(arg1), arg2) .move_to(code); } else // Scalar CImg::vector((ulongT)mp_copy, arg1, arg2) .move_to(code); } _cimg_mp_return(arg1); } // Assign lvalue (variable name was not valid for a direct // assignment). arg1 = ~0U; is_sth = (bool)std::strchr( variable_name, '?'); // Contains_ternary_operator? if (is_sth) break; // Do nothing and make ternary operator // prioritary over assignment if (l_variable_name > 2 && (std::strchr(variable_name, '(') || std::strchr(variable_name, '['))) { ref.assign(7); arg1 = compile(ss, s, depth1, ref, is_single); // Lvalue slot arg2 = compile(s + 1, se, depth1, 0, is_single); // Value to assign if (*ref == 1) { // Vector value (scalar): V[k] = scalar _cimg_mp_check_type(arg2, 2, 1, 0); arg3 = ref[1]; // Vector slot arg4 = ref[2]; // Index if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); CImg::vector( (ulongT)mp_vector_set_off, arg2, arg3, (ulongT)_cimg_mp_size(arg3), arg4, arg2) .move_to(code); _cimg_mp_return(arg2); } if (*ref == 2) { // Image value (scalar): // i/j[_#ind,off] = scalar if (!is_single) is_parallelizable = false; _cimg_mp_check_type(arg2, 2, 1, 0); p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // Offset if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg2); CImg::vector( (ulongT)(is_relative ? mp_list_set_joff : mp_list_set_ioff), arg2, p1, arg3) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg2); CImg::vector( (ulongT)(is_relative ? mp_set_joff : mp_set_ioff), arg2, arg3) .move_to(code); } _cimg_mp_return(arg2); } if (*ref == 3) { // Image value (scalar): // i/j(_#ind,_x,_y,_z,_c) = scalar if (!is_single) is_parallelizable = false; _cimg_mp_check_type(arg2, 2, 1, 0); p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // X arg4 = ref[4]; // Y arg5 = ref[5]; // Z arg6 = ref[6]; // C if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg2); CImg::vector( (ulongT)(is_relative ? mp_list_set_jxyzc : mp_list_set_ixyzc), arg2, p1, arg3, arg4, arg5, arg6) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg2); CImg::vector( (ulongT)(is_relative ? mp_set_jxyzc : mp_set_ixyzc), arg2, arg3, arg4, arg5, arg6) .move_to(code); } _cimg_mp_return(arg2); } if (*ref == 4) { // Image value (vector): // I/J[_#ind,off] = value if (!is_single) is_parallelizable = false; _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // Offset if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg2); if (_cimg_mp_is_scalar(arg2)) CImg::vector( (ulongT)(is_relative ? mp_list_set_Joff_s : mp_list_set_Ioff_s), arg2, p1, arg3) .move_to(code); else CImg::vector( (ulongT)(is_relative ? mp_list_set_Joff_v : mp_list_set_Ioff_v), arg2, p1, arg3, _cimg_mp_size(arg2)) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg2); if (_cimg_mp_is_scalar(arg2)) CImg::vector( (ulongT)(is_relative ? mp_set_Joff_s : mp_set_Ioff_s), arg2, arg3) .move_to(code); else CImg::vector( (ulongT)(is_relative ? mp_set_Joff_v : mp_set_Ioff_v), arg2, arg3, _cimg_mp_size(arg2)) .move_to(code); } _cimg_mp_return(arg2); } if (*ref == 5) { // Image value (vector): // I/J(_#ind,_x,_y,_z,_c) = value if (!is_single) is_parallelizable = false; _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // X arg4 = ref[4]; // Y arg5 = ref[5]; // Z if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg2); if (_cimg_mp_is_scalar(arg2)) CImg::vector( (ulongT)(is_relative ? mp_list_set_Jxyz_s : mp_list_set_Ixyz_s), arg2, p1, arg3, arg4, arg5) .move_to(code); else CImg::vector( (ulongT)(is_relative ? mp_list_set_Jxyz_v : mp_list_set_Ixyz_v), arg2, p1, arg3, arg4, arg5, _cimg_mp_size(arg2)) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg2); if (_cimg_mp_is_scalar(arg2)) CImg::vector( (ulongT)(is_relative ? mp_set_Jxyz_s : mp_set_Ixyz_s), arg2, arg3, arg4, arg5) .move_to(code); else CImg::vector( (ulongT)(is_relative ? mp_set_Jxyz_v : mp_set_Ixyz_v), arg2, arg3, arg4, arg5, _cimg_mp_size(arg2)) .move_to(code); } _cimg_mp_return(arg2); } if (_cimg_mp_is_vector( arg1)) { // Vector variable: V = value _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg2)) // From vector CImg::vector( (ulongT)mp_vector_copy, arg1, arg2, (ulongT)_cimg_mp_size(arg1)) .move_to(code); else // From scalar CImg::vector( (ulongT)mp_vector_init, arg1, 1, (ulongT)_cimg_mp_size(arg1), arg2) .move_to(code); _cimg_mp_return(arg1); } if (_cimg_mp_is_variable( arg1)) { // Scalar variable: s = scalar _cimg_mp_check_type(arg2, 2, 1, 0); CImg::vector((ulongT)mp_copy, arg1, arg2) .move_to(code); _cimg_mp_return(arg1); } } // No assignment expressions match -> error *se = saved_char; cimg::strellipsize(variable_name, 64); s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Invalid %slvalue '%s', " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, arg1 != ~0U && _cimg_mp_is_constant(arg1) ? "const " : "", variable_name._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } // Apply unary/binary/ternary operators. The operator precedences // should be the same as in C++. for (s = se2, ps = se3, ns = ps - 1; s > ss1; --s, --ps, --ns) // Here, ns = ps - 1 if (*s == '=' && (*ps == '*' || *ps == '/' || *ps == '^') && *ns == *ps && level[s - expr._data] == clevel) { // Self-operators for complex numbers only // (**=,//=,^^=) _cimg_mp_op(*ps == '*' ? "Operator '**='" : *ps == '/' ? "Operator '//='" : "Operator '^^='"); ref.assign(7); arg1 = compile(ss, ns, depth1, ref, is_single); // Vector slot arg2 = compile(s + 1, se, depth1, 0, is_single); // Right operand _cimg_mp_check_type(arg1, 1, 2, 2); _cimg_mp_check_type(arg2, 2, 3, 2); if (_cimg_mp_is_vector(arg2)) { // Complex **= complex if (*ps == '*') CImg::vector((ulongT)mp_complex_mul, arg1, arg1, arg2) .move_to(code); else if (*ps == '/') CImg::vector((ulongT)mp_complex_div_vv, arg1, arg1, arg2) .move_to(code); else CImg::vector((ulongT)mp_complex_pow_vv, arg1, arg1, arg2) .move_to(code); } else { // Complex **= scalar if (*ps == '*') { if (arg2 == 1) _cimg_mp_return(arg1); self_vector_s(arg1, mp_self_mul, arg2); } else if (*ps == '/') { if (arg2 == 1) _cimg_mp_return(arg1); self_vector_s(arg1, mp_self_div, arg2); } else { if (arg2 == 1) _cimg_mp_return(arg1); CImg::vector((ulongT)mp_complex_pow_vs, arg1, arg1, arg2) .move_to(code); } } // Write computed value back in image if necessary. if (*ref == 4) { // Image value (vector): I/J[_#ind,off] **= value if (!is_single) is_parallelizable = false; p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // Offset if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_list_set_Joff_v : mp_list_set_Ioff_v), arg1, p1, arg3, _cimg_mp_size(arg1)) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_set_Joff_v : mp_set_Ioff_v), arg1, arg3, _cimg_mp_size(arg1)) .move_to(code); } } else if (*ref == 5) { // Image value (vector): // I/J(_#ind,_x,_y,_z,_c) **= value if (!is_single) is_parallelizable = false; p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // X arg4 = ref[4]; // Y arg5 = ref[5]; // Z if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_list_set_Jxyz_v : mp_list_set_Ixyz_v), arg1, p1, arg3, arg4, arg5, _cimg_mp_size(arg1)) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_set_Jxyz_v : mp_set_Ixyz_v), arg1, arg3, arg4, arg5, _cimg_mp_size(arg1)) .move_to(code); } } _cimg_mp_return(arg1); } for (s = se2, ps = se3, ns = ps - 1; s > ss1; --s, --ps, --ns) // Here, ns = ps - 1 if (*s == '=' && (*ps == '+' || *ps == '-' || *ps == '*' || *ps == '/' || *ps == '%' || *ps == '&' || *ps == '^' || *ps == '|' || (*ps == '>' && *ns == '>') || (*ps == '<' && *ns == '<')) && level[s - expr._data] == clevel) { // Self-operators // (+=,-=,*=,/=,%=,>>=,<<=,&=,^=,|=) switch (*ps) { case '+': op = mp_self_add; _cimg_mp_op("Operator '+='"); break; case '-': op = mp_self_sub; _cimg_mp_op("Operator '-='"); break; case '*': op = mp_self_mul; _cimg_mp_op("Operator '*='"); break; case '/': op = mp_self_div; _cimg_mp_op("Operator '/='"); break; case '%': op = mp_self_modulo; _cimg_mp_op("Operator '%='"); break; case '<': op = mp_self_bitwise_left_shift; _cimg_mp_op("Operator '<<='"); break; case '>': op = mp_self_bitwise_right_shift; _cimg_mp_op("Operator '>>='"); break; case '&': op = mp_self_bitwise_and; _cimg_mp_op("Operator '&='"); break; case '|': op = mp_self_bitwise_or; _cimg_mp_op("Operator '|='"); break; default: op = mp_self_pow; _cimg_mp_op("Operator '^='"); break; } s1 = *ps == '>' || *ps == '<' ? ns : ps; ref.assign(7); arg1 = compile(ss, s1, depth1, ref, is_single); // Variable slot arg2 = compile(s + 1, se, depth1, 0, is_single); // Value to apply // Check for particular case to be simplified. if ((op == mp_self_add || op == mp_self_sub) && !arg2) _cimg_mp_return(arg1); if ((op == mp_self_mul || op == mp_self_div) && arg2 == 1) _cimg_mp_return(arg1); // Apply operator on a copy to prevent modifying a constant // or a variable. if (*ref && (_cimg_mp_is_constant(arg1) || _cimg_mp_is_vector(arg1) || _cimg_mp_is_variable(arg1))) { if (_cimg_mp_is_vector(arg1)) arg1 = vector_copy(arg1); else arg1 = scalar1(mp_copy, arg1); } if (*ref == 1) { // Vector value (scalar): V[k] += scalar _cimg_mp_check_type(arg2, 2, 1, 0); arg3 = ref[1]; // Vector slot arg4 = ref[2]; // Index if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); CImg::vector((ulongT)op, arg1, arg2) .move_to(code); CImg::vector((ulongT)mp_vector_set_off, arg1, arg3, (ulongT)_cimg_mp_size(arg3), arg4, arg1) .move_to(code); _cimg_mp_return(arg1); } if (*ref == 2) { // Image value (scalar): i/j[_#ind,off] += scalar if (!is_single) is_parallelizable = false; _cimg_mp_check_type(arg2, 2, 1, 0); p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // Offset if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); CImg::vector((ulongT)op, arg1, arg2) .move_to(code); if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_list_set_joff : mp_list_set_ioff), arg1, p1, arg3) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_set_joff : mp_set_ioff), arg1, arg3) .move_to(code); } _cimg_mp_return(arg1); } if (*ref == 3) { // Image value (scalar): // i/j(_#ind,_x,_y,_z,_c) += scalar if (!is_single) is_parallelizable = false; _cimg_mp_check_type(arg2, 2, 1, 0); p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // X arg4 = ref[4]; // Y arg5 = ref[5]; // Z arg6 = ref[6]; // C if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); CImg::vector((ulongT)op, arg1, arg2) .move_to(code); if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_list_set_jxyzc : mp_list_set_ixyzc), arg1, p1, arg3, arg4, arg5, arg6) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_set_jxyzc : mp_set_ixyzc), arg1, arg3, arg4, arg5, arg6) .move_to(code); } _cimg_mp_return(arg1); } if (*ref == 4) { // Image value (vector): I/J[_#ind,off] += value if (!is_single) is_parallelizable = false; _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // Offset if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); if (_cimg_mp_is_scalar(arg2)) self_vector_s(arg1, op, arg2); else self_vector_v(arg1, op, arg2); if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_list_set_Joff_v : mp_list_set_Ioff_v), arg1, p1, arg3, _cimg_mp_size(arg1)) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_set_Joff_v : mp_set_Ioff_v), arg1, arg3, _cimg_mp_size(arg1)) .move_to(code); } _cimg_mp_return(arg1); } if (*ref == 5) { // Image value (vector): // I/J(_#ind,_x,_y,_z,_c) += value if (!is_single) is_parallelizable = false; _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // X arg4 = ref[4]; // Y arg5 = ref[5]; // Z if (p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); if (_cimg_mp_is_scalar(arg2)) self_vector_s(arg1, op, arg2); else self_vector_v(arg1, op, arg2); if (p1 != ~0U) { if (!listout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_list_set_Jxyz_v : mp_list_set_Ixyz_v), arg1, p1, arg3, arg4, arg5, _cimg_mp_size(arg1)) .move_to(code); } else { if (!imgout) _cimg_mp_return(arg1); CImg::vector( (ulongT)(is_relative ? mp_set_Jxyz_v : mp_set_Ixyz_v), arg1, arg3, arg4, arg5, _cimg_mp_size(arg1)) .move_to(code); } _cimg_mp_return(arg1); } if (_cimg_mp_is_vector( arg1)) { // Vector variable: V += value _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg2)) self_vector_v(arg1, op, arg2); // Vector += vector else self_vector_s(arg1, op, arg2); // Vector += scalar _cimg_mp_return(arg1); } if (_cimg_mp_is_variable( arg1)) { // Scalar variable: s += scalar _cimg_mp_check_type(arg2, 2, 1, 0); CImg::vector((ulongT)op, arg1, arg2) .move_to(code); _cimg_mp_return(arg1); } variable_name.assign(ss, (unsigned int)(s - ss)).back() = 0; cimg::strpare(variable_name, false, true); *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Invalid %slvalue '%s', " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, _cimg_mp_is_constant(arg1) ? "const " : "", variable_name._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } for (s = ss1; s < se1; ++s) if (*s == '?' && level[s - expr._data] == clevel) { // Ternary operator 'cond?expr1:expr2' _cimg_mp_op("Operator '?:'"); s1 = s + 1; while (s1 < se1 && (*s1 != ':' || level[s1 - expr._data] != clevel)) ++s1; arg1 = compile(ss, s, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 1, 0); if (_cimg_mp_is_constant(arg1)) { if ((bool)mem[arg1]) return compile(s + 1, *s1 != ':' ? se : s1, depth1, 0, is_single); else return *s1 != ':' ? 0 : compile(++s1, se, depth1, 0, is_single); } p2 = code._width; arg2 = compile(s + 1, *s1 != ':' ? se : s1, depth1, 0, is_single); p3 = code._width; arg3 = *s1 == ':' ? compile(++s1, se, depth1, 0, is_single) : _cimg_mp_is_vector(arg2) ? vector(_cimg_mp_size(arg2), 0) : 0; _cimg_mp_check_type(arg3, 3, _cimg_mp_is_vector(arg2) ? 2 : 1, _cimg_mp_size(arg2)); arg4 = _cimg_mp_size(arg2); if (arg4) pos = vector(arg4); else pos = scalar(); CImg::vector((ulongT)mp_if, pos, arg1, arg2, arg3, p3 - p2, code._width - p3, arg4) .move_to(code, p2); _cimg_mp_return(pos); } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '|' && *ns == '|' && level[s - expr._data] == clevel) { // Logical or ('||') _cimg_mp_op("Operator '||'"); arg1 = compile(ss, s, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 1, 0); if (arg1 > 0 && arg1 <= 16) _cimg_mp_return(1); p2 = code._width; arg2 = compile(s + 2, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 1, 0); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] || mem[arg2]); if (!arg1) _cimg_mp_return(arg2); pos = scalar(); CImg::vector((ulongT)mp_logical_or, pos, arg1, arg2, code._width - p2) .move_to(code, p2); _cimg_mp_return(pos); } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '&' && *ns == '&' && level[s - expr._data] == clevel) { // Logical and ('&&') _cimg_mp_op("Operator '&&'"); arg1 = compile(ss, s, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 1, 0); if (!arg1) _cimg_mp_return(0); p2 = code._width; arg2 = compile(s + 2, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 1, 0); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] && mem[arg2]); if (arg1 > 0 && arg1 <= 16) _cimg_mp_return(arg2); pos = scalar(); CImg::vector((ulongT)mp_logical_and, pos, arg1, arg2, code._width - p2) .move_to(code, p2); _cimg_mp_return(pos); } for (s = se2; s > ss; --s) if (*s == '|' && level[s - expr._data] == clevel) { // Bitwise or ('|') _cimg_mp_op("Operator '|'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 1, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_or, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) { if (!arg2) _cimg_mp_return(arg1); _cimg_mp_vector2_vs(mp_bitwise_or, arg1, arg2); } if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) { if (!arg1) _cimg_mp_return(arg2); _cimg_mp_vector2_sv(mp_bitwise_or, arg1, arg2); } if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant((longT)mem[arg1] | (longT)mem[arg2]); if (!arg2) _cimg_mp_return(arg1); if (!arg1) _cimg_mp_return(arg2); _cimg_mp_scalar2(mp_bitwise_or, arg1, arg2); } for (s = se2; s > ss; --s) if (*s == '&' && level[s - expr._data] == clevel) { // Bitwise and ('&') _cimg_mp_op("Operator '&'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 1, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_and, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_bitwise_and, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_bitwise_and, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant((longT)mem[arg1] & (longT)mem[arg2]); if (!arg1 || !arg2) _cimg_mp_return(0); _cimg_mp_scalar2(mp_bitwise_and, arg1, arg2); } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '!' && *ns == '=' && level[s - expr._data] == clevel) { // Not equal to ('!=') _cimg_mp_op("Operator '!='"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 2, se, depth1, 0, is_single); if (arg1 == arg2) _cimg_mp_return(0); p1 = _cimg_mp_size(arg1); p2 = _cimg_mp_size(arg2); if (p1 || p2) { if (p1 && p2 && p1 != p2) _cimg_mp_return(1); pos = scalar(); CImg::vector((ulongT)mp_vector_neq, pos, arg1, p1, arg2, p2, 11, 1) .move_to(code); _cimg_mp_return(pos); } if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] != mem[arg2]); _cimg_mp_scalar2(mp_neq, arg1, arg2); } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '=' && *ns == '=' && level[s - expr._data] == clevel) { // Equal to ('==') _cimg_mp_op("Operator '=='"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 2, se, depth1, 0, is_single); if (arg1 == arg2) _cimg_mp_return(1); p1 = _cimg_mp_size(arg1); p2 = _cimg_mp_size(arg2); if (p1 || p2) { if (p1 && p2 && p1 != p2) _cimg_mp_return(0); pos = scalar(); CImg::vector((ulongT)mp_vector_eq, pos, arg1, p1, arg2, p2, 11, 1) .move_to(code); _cimg_mp_return(pos); } if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] == mem[arg2]); _cimg_mp_scalar2(mp_eq, arg1, arg2); } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '<' && *ns == '=' && level[s - expr._data] == clevel) { // Less or equal than ('<=') _cimg_mp_op("Operator '<='"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 2, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_lte, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_lte, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_lte, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] <= mem[arg2]); if (arg1 == arg2) _cimg_mp_return(1); _cimg_mp_scalar2(mp_lte, arg1, arg2); } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '>' && *ns == '=' && level[s - expr._data] == clevel) { // Greater or equal than ('>=') _cimg_mp_op("Operator '>='"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 2, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_gte, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_gte, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_gte, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] >= mem[arg2]); if (arg1 == arg2) _cimg_mp_return(1); _cimg_mp_scalar2(mp_gte, arg1, arg2); } for (s = se2, ns = se1, ps = se3; s > ss; --s, --ns, --ps) if (*s == '<' && *ns != '<' && *ps != '<' && level[s - expr._data] == clevel) { // Less than ('<') _cimg_mp_op("Operator '<'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 1, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_lt, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_lt, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_lt, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] < mem[arg2]); if (arg1 == arg2) _cimg_mp_return(0); _cimg_mp_scalar2(mp_lt, arg1, arg2); } for (s = se2, ns = se1, ps = se3; s > ss; --s, --ns, --ps) if (*s == '>' && *ns != '>' && *ps != '>' && level[s - expr._data] == clevel) { // Greather than ('>') _cimg_mp_op("Operator '>'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 1, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_gt, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_gt, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_gt, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] > mem[arg2]); if (arg1 == arg2) _cimg_mp_return(0); _cimg_mp_scalar2(mp_gt, arg1, arg2); } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '<' && *ns == '<' && level[s - expr._data] == clevel) { // Left bit shift ('<<') _cimg_mp_op("Operator '<<'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 2, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_left_shift, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) { if (!arg2) _cimg_mp_return(arg1); _cimg_mp_vector2_vs(mp_bitwise_left_shift, arg1, arg2); } if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_bitwise_left_shift, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant((longT)mem[arg1] << (unsigned int)mem[arg2]); if (!arg1) _cimg_mp_return(0); if (!arg2) _cimg_mp_return(arg1); _cimg_mp_scalar2(mp_bitwise_left_shift, arg1, arg2); } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '>' && *ns == '>' && level[s - expr._data] == clevel) { // Right bit shift ('>>') _cimg_mp_op("Operator '>>'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 2, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_right_shift, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) { if (!arg2) _cimg_mp_return(arg1); _cimg_mp_vector2_vs(mp_bitwise_right_shift, arg1, arg2); } if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_bitwise_right_shift, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant((longT)mem[arg1] >> (unsigned int)mem[arg2]); if (!arg1) _cimg_mp_return(0); if (!arg2) _cimg_mp_return(arg1); _cimg_mp_scalar2(mp_bitwise_right_shift, arg1, arg2); } for (ns = se1, s = se2, ps = pexpr._data + (se3 - expr._data); s > ss; --ns, --s, --ps) if (*s == '+' && (*ns != '+' || ns != se1) && *ps != '-' && *ps != '+' && *ps != '*' && *ps != '/' && *ps != '%' && *ps != '&' && *ps != '|' && *ps != '^' && *ps != '!' && *ps != '~' && *ps != '#' && (*ps != 'e' || !(ps - pexpr._data > ss - expr._data && (*(ps - 1) == '.' || (*(ps - 1) >= '0' && *(ps - 1) <= '9')))) && level[s - expr._data] == clevel) { // Addition ('+') _cimg_mp_op("Operator '+'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 1, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (!arg2) _cimg_mp_return(arg1); if (!arg1) _cimg_mp_return(arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_add, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_add, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_add, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] + mem[arg2]); if (code) { // Try to spot linear case 'a*b + c' CImg& pop = code.back(); if (pop[0] == (ulongT)mp_mul && _cimg_mp_is_comp(pop[1]) && (pop[1] == arg1 || pop[1] == arg2)) { arg3 = (unsigned int)pop[1]; arg4 = (unsigned int)pop[2]; arg5 = (unsigned int)pop[3]; code.remove(); CImg::vector((ulongT)mp_linear_add, arg3, arg4, arg5, arg3 == arg2 ? arg1 : arg2) .move_to(code); _cimg_mp_return(arg3); } } if (arg2 == 1) _cimg_mp_scalar1(mp_increment, arg1); if (arg1 == 1) _cimg_mp_scalar1(mp_increment, arg2); _cimg_mp_scalar2(mp_add, arg1, arg2); } for (ns = se1, s = se2, ps = pexpr._data + (se3 - expr._data); s > ss; --ns, --s, --ps) if (*s == '-' && (*ns != '-' || ns != se1) && *ps != '-' && *ps != '+' && *ps != '*' && *ps != '/' && *ps != '%' && *ps != '&' && *ps != '|' && *ps != '^' && *ps != '!' && *ps != '~' && *ps != '#' && (*ps != 'e' || !(ps - pexpr._data > ss - expr._data && (*(ps - 1) == '.' || (*(ps - 1) >= '0' && *(ps - 1) <= '9')))) && level[s - expr._data] == clevel) { // Subtraction ('-') _cimg_mp_op("Operator '-'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 1, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (!arg2) _cimg_mp_return(arg1); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_sub, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_sub, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) { if (!arg1) _cimg_mp_vector1_v(mp_minus, arg2); _cimg_mp_vector2_sv(mp_sub, arg1, arg2); } if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] - mem[arg2]); if (!arg1) _cimg_mp_scalar1(mp_minus, arg2); if (code) { // Try to spot linear cases 'a*b - c' and 'c - // a*b' CImg& pop = code.back(); if (pop[0] == (ulongT)mp_mul && _cimg_mp_is_comp(pop[1]) && (pop[1] == arg1 || pop[1] == arg2)) { arg3 = (unsigned int)pop[1]; arg4 = (unsigned int)pop[2]; arg5 = (unsigned int)pop[3]; code.remove(); CImg::vector( (ulongT)(arg3 == arg1 ? mp_linear_sub_left : mp_linear_sub_right), arg3, arg4, arg5, arg3 == arg1 ? arg2 : arg1) .move_to(code); _cimg_mp_return(arg3); } } if (arg2 == 1) _cimg_mp_scalar1(mp_decrement, arg1); _cimg_mp_scalar2(mp_sub, arg1, arg2); } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '*' && *ns == '*' && level[s - expr._data] == clevel) { // Complex multiplication ('**') _cimg_mp_op("Operator '**'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 2, se, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 3, 2); _cimg_mp_check_type(arg2, 2, 3, 2); if (arg2 == 1) _cimg_mp_return(arg1); if (arg1 == 1) _cimg_mp_return(arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) { pos = vector(2); CImg::vector((ulongT)mp_complex_mul, pos, arg1, arg2) .move_to(code); _cimg_mp_return(pos); } if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_mul, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_mul, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] * mem[arg2]); if (!arg1 || !arg2) _cimg_mp_return(0); _cimg_mp_scalar2(mp_mul, arg1, arg2); } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '/' && *ns == '/' && level[s - expr._data] == clevel) { // Complex division ('//') _cimg_mp_op("Operator '//'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 2, se, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 3, 2); _cimg_mp_check_type(arg2, 2, 3, 2); if (arg2 == 1) _cimg_mp_return(arg1); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) { pos = vector(2); CImg::vector((ulongT)mp_complex_div_vv, pos, arg1, arg2) .move_to(code); _cimg_mp_return(pos); } if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_div, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) { pos = vector(2); CImg::vector((ulongT)mp_complex_div_sv, pos, arg1, arg2) .move_to(code); _cimg_mp_return(pos); } if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] / mem[arg2]); if (!arg1) _cimg_mp_return(0); _cimg_mp_scalar2(mp_div, arg1, arg2); } for (s = se2; s > ss; --s) if (*s == '*' && level[s - expr._data] == clevel) { // Multiplication ('*') _cimg_mp_op("Operator '*'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 1, se, depth1, 0, is_single); p2 = _cimg_mp_size(arg2); if (p2 > 0 && (ulongT)_cimg_mp_size(arg1) == (ulongT)p2 * p2) { // Particular case of matrix // multiplication pos = vector(p2); CImg::vector((ulongT)mp_matrix_mul, pos, arg1, arg2, p2, p2, 1) .move_to(code); _cimg_mp_return(pos); } _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (arg2 == 1) _cimg_mp_return(arg1); if (arg1 == 1) _cimg_mp_return(arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_mul, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_mul, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_mul, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] * mem[arg2]); if (code) { // Try to spot double multiplication 'a*b*c' CImg& pop = code.back(); if (pop[0] == (ulongT)mp_mul && _cimg_mp_is_comp(pop[1]) && (pop[1] == arg1 || pop[1] == arg2)) { arg3 = (unsigned int)pop[1]; arg4 = (unsigned int)pop[2]; arg5 = (unsigned int)pop[3]; code.remove(); CImg::vector((ulongT)mp_mul2, arg3, arg4, arg5, arg3 == arg2 ? arg1 : arg2) .move_to(code); _cimg_mp_return(arg3); } } if (!arg1 || !arg2) _cimg_mp_return(0); _cimg_mp_scalar2(mp_mul, arg1, arg2); } for (s = se2; s > ss; --s) if (*s == '/' && level[s - expr._data] == clevel) { // Division ('/') _cimg_mp_op("Operator '/'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 1, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (arg2 == 1) _cimg_mp_return(arg1); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_div, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_div, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_div, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] / mem[arg2]); if (!arg1) _cimg_mp_return(0); _cimg_mp_scalar2(mp_div, arg1, arg2); } for (s = se2, ns = se1; s > ss; --s, --ns) if (*s == '%' && *ns != '^' && level[s - expr._data] == clevel) { // Modulo ('%') _cimg_mp_op("Operator '%'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 1, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_modulo, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_modulo, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_modulo, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(cimg::mod(mem[arg1], mem[arg2])); _cimg_mp_scalar2(mp_modulo, arg1, arg2); } if (se1 > ss) { if (*ss == '+' && (*ss1 != '+' || (ss2 < se && *ss2 >= '0' && *ss2 <= '9'))) { // Unary plus ('+') _cimg_mp_op("Operator '+'"); _cimg_mp_return(compile(ss1, se, depth1, 0, is_single)); } if (*ss == '-' && (*ss1 != '-' || (ss2 < se && *ss2 >= '0' && *ss2 <= '9'))) { // Unary minus ('-') _cimg_mp_op("Operator '-'"); arg1 = compile(ss1, se, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_minus, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(-mem[arg1]); _cimg_mp_scalar1(mp_minus, arg1); } if (*ss == '!') { // Logical not ('!') _cimg_mp_op("Operator '!'"); if (*ss1 == '!') { // '!!expr' optimized as 'bool(expr)' arg1 = compile(ss2, se, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_bool, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant((bool)mem[arg1]); _cimg_mp_scalar1(mp_bool, arg1); } arg1 = compile(ss1, se, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_logical_not, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(!mem[arg1]); _cimg_mp_scalar1(mp_logical_not, arg1); } if (*ss == '~') { // Bitwise not ('~') _cimg_mp_op("Operator '~'"); arg1 = compile(ss1, se, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_bitwise_not, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(~(unsigned int)mem[arg1]); _cimg_mp_scalar1(mp_bitwise_not, arg1); } } for (s = se3, ns = se2; s > ss; --s, --ns) if (*s == '^' && *ns == '^' && level[s - expr._data] == clevel) { // Complex power ('^^') _cimg_mp_op("Operator '^^'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 2, se, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 3, 2); _cimg_mp_check_type(arg2, 2, 3, 2); if (arg2 == 1) _cimg_mp_return(arg1); pos = vector(2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) { CImg::vector((ulongT)mp_complex_pow_vv, pos, arg1, arg2) .move_to(code); _cimg_mp_return(pos); } if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) { CImg::vector((ulongT)mp_complex_pow_vs, pos, arg1, arg2) .move_to(code); _cimg_mp_return(pos); } if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) { CImg::vector((ulongT)mp_complex_pow_sv, pos, arg1, arg2) .move_to(code); _cimg_mp_return(pos); } CImg::vector((ulongT)mp_complex_pow_ss, pos, arg1, arg2) .move_to(code); _cimg_mp_return(pos); } for (s = se2; s > ss; --s) if (*s == '^' && level[s - expr._data] == clevel) { // Power ('^') _cimg_mp_op("Operator '^'"); arg1 = compile(ss, s, depth1, 0, is_single); arg2 = compile(s + 1, se, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (arg2 == 1) _cimg_mp_return(arg1); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_pow, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_pow, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_pow, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(std::pow(mem[arg1], mem[arg2])); switch (arg2) { case 0: _cimg_mp_return(1); case 2: _cimg_mp_scalar1(mp_sqr, arg1); case 3: _cimg_mp_scalar1(mp_pow3, arg1); case 4: _cimg_mp_scalar1(mp_pow4, arg1); default: if (_cimg_mp_is_constant(arg2)) { if (mem[arg2] == 0.5) { _cimg_mp_scalar1(mp_sqrt, arg1); } else if (mem[arg2] == 0.25) { _cimg_mp_scalar1(mp_pow0_25, arg1); } } _cimg_mp_scalar2(mp_pow, arg1, arg2); } } // Percentage computation. if (*se1 == '%') { arg1 = compile(ss, se1, depth1, 0, is_single); arg2 = _cimg_mp_is_constant(arg1) ? 0 : constant(100); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector2_vs(mp_div, arg1, arg2); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(mem[arg1] / 100); _cimg_mp_scalar2(mp_div, arg1, arg2); } is_sth = ss1 < se1 && (*ss == '+' || *ss == '-') && *ss1 == *ss; // is pre-? if (is_sth || (se2 > ss && (*se1 == '+' || *se1 == '-') && *se2 == *se1)) { // Pre/post-decrement and increment if ((is_sth && *ss == '+') || (!is_sth && *se1 == '+')) { _cimg_mp_op("Operator '++'"); op = mp_self_increment; } else { _cimg_mp_op("Operator '--'"); op = mp_self_decrement; } ref.assign(7); arg1 = is_sth ? compile(ss2, se, depth1, ref, is_single) : compile(ss, se2, depth1, ref, is_single); // Variable slot // Apply operator on a copy to prevent modifying a constant or a // variable. if (*ref && (_cimg_mp_is_constant(arg1) || _cimg_mp_is_vector(arg1) || _cimg_mp_is_variable(arg1))) { if (_cimg_mp_is_vector(arg1)) arg1 = vector_copy(arg1); else arg1 = scalar1(mp_copy, arg1); } if (is_sth) pos = arg1; // Determine return index, depending on // pre/post action else { if (_cimg_mp_is_vector(arg1)) pos = vector_copy(arg1); else pos = scalar1(mp_copy, arg1); } if (*ref == 1) { // Vector value (scalar): V[k]++ arg3 = ref[1]; // Vector slot arg4 = ref[2]; // Index if (is_sth && p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); CImg::vector((ulongT)op, arg1, 1).move_to(code); CImg::vector((ulongT)mp_vector_set_off, arg1, arg3, (ulongT)_cimg_mp_size(arg3), arg4, arg1) .move_to(code); _cimg_mp_return(pos); } if (*ref == 2) { // Image value (scalar): i/j[_#ind,off]++ if (!is_single) is_parallelizable = false; p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // Offset if (is_sth && p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); CImg::vector((ulongT)op, arg1).move_to(code); if (p1 != ~0U) { if (!listout) _cimg_mp_return(pos); CImg::vector( (ulongT)(is_relative ? mp_list_set_joff : mp_list_set_ioff), arg1, p1, arg3) .move_to(code); } else { if (!imgout) _cimg_mp_return(pos); CImg::vector( (ulongT)(is_relative ? mp_set_joff : mp_set_ioff), arg1, arg3) .move_to(code); } _cimg_mp_return(pos); } if (*ref == 3) { // Image value (scalar): i/j(_#ind,_x,_y,_z,_c)++ if (!is_single) is_parallelizable = false; p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // X arg4 = ref[4]; // Y arg5 = ref[5]; // Z arg6 = ref[6]; // C if (is_sth && p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); CImg::vector((ulongT)op, arg1).move_to(code); if (p1 != ~0U) { if (!listout) _cimg_mp_return(pos); CImg::vector( (ulongT)(is_relative ? mp_list_set_jxyzc : mp_list_set_ixyzc), arg1, p1, arg3, arg4, arg5, arg6) .move_to(code); } else { if (!imgout) _cimg_mp_return(pos); CImg::vector( (ulongT)(is_relative ? mp_set_jxyzc : mp_set_ixyzc), arg1, arg3, arg4, arg5, arg6) .move_to(code); } _cimg_mp_return(pos); } if (*ref == 4) { // Image value (vector): I/J[_#ind,off]++ if (!is_single) is_parallelizable = false; p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // Offset if (is_sth && p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); self_vector_s( arg1, op == mp_self_increment ? mp_self_add : mp_self_sub, 1); if (p1 != ~0U) { if (!listout) _cimg_mp_return(pos); CImg::vector( (ulongT)(is_relative ? mp_list_set_Joff_v : mp_list_set_Ioff_v), arg1, p1, arg3, _cimg_mp_size(arg1)) .move_to(code); } else { if (!imgout) _cimg_mp_return(pos); CImg::vector( (ulongT)(is_relative ? mp_set_Joff_v : mp_set_Ioff_v), arg1, arg3, _cimg_mp_size(arg1)) .move_to(code); } _cimg_mp_return(pos); } if (*ref == 5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c)++ if (!is_single) is_parallelizable = false; p1 = ref[1]; // Index is_relative = (bool)ref[2]; arg3 = ref[3]; // X arg4 = ref[4]; // Y arg5 = ref[5]; // Z if (is_sth && p_ref) std::memcpy(p_ref, ref, ref._width * sizeof(unsigned int)); self_vector_s( arg1, op == mp_self_increment ? mp_self_add : mp_self_sub, 1); if (p1 != ~0U) { if (!listout) _cimg_mp_return(pos); CImg::vector( (ulongT)(is_relative ? mp_list_set_Jxyz_v : mp_list_set_Ixyz_v), arg1, p1, arg3, arg4, arg5, _cimg_mp_size(arg1)) .move_to(code); } else { if (!imgout) _cimg_mp_return(pos); CImg::vector( (ulongT)(is_relative ? mp_set_Jxyz_v : mp_set_Ixyz_v), arg1, arg3, arg4, arg5, _cimg_mp_size(arg1)) .move_to(code); } _cimg_mp_return(pos); } if (_cimg_mp_is_vector(arg1)) { // Vector variable: V++ self_vector_s( arg1, op == mp_self_increment ? mp_self_add : mp_self_sub, 1); _cimg_mp_return(pos); } if (_cimg_mp_is_variable(arg1)) { // Scalar variable: s++ CImg::vector((ulongT)op, arg1).move_to(code); _cimg_mp_return(pos); } if (is_sth) variable_name.assign(ss2, (unsigned int)(se - ss1)); else variable_name.assign(ss, (unsigned int)(se1 - ss)); variable_name.back() = 0; cimg::strpare(variable_name, false, true); *se = saved_char; cimg::strellipsize(variable_name, 64); s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Invalid %slvalue '%s', " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, _cimg_mp_is_constant(arg1) ? "const " : "", variable_name._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } // Array-like access to vectors and image values // 'i/j/I/J[_#ind,offset,_boundary]' and 'vector[offset]'. if (*se1 == ']' && *ss != '[') { _cimg_mp_op("Value accessor '[]'"); is_relative = *ss == 'j' || *ss == 'J'; s0 = s1 = std::strchr(ss, '['); if (s0) { do { --s1; } while (cimg::is_blank(*s1)); cimg::swap(*s0, *++s1); } if ((*ss == 'I' || *ss == 'J') && *ss1 == '[' && (reserved_label[(int)*ss] == ~0U || !_cimg_mp_is_vector(reserved_label[( int)*ss]))) { // Image value as a vector if (*ss2 == '#') { // Index specified s0 = ss3; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss3, s0++, depth1, 0, is_single); _cimg_mp_check_list(false); } else { p1 = ~0U; s0 = ss2; } s1 = s0; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; p2 = 1 + (p1 != ~0U); arg1 = compile(s0, s1, depth1, 0, is_single); // Offset _cimg_mp_check_type(arg1, p2, 1, 0); arg2 = ~0U; if (s1 < se1) { arg2 = compile(++s1, se1, depth1, 0, is_single); // Boundary _cimg_mp_check_type(arg2, p2 + 1, 1, 0); } if (p_ref && arg2 == ~0U) { *p_ref = 4; p_ref[1] = p1; p_ref[2] = (unsigned int)is_relative; p_ref[3] = arg1; if (p1 != ~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -2; // Prevent from being used in // further optimization if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -2; } p2 = ~0U; // 'p2' must be the dimension of the // vector-valued operand if any if (p1 == ~0U) p2 = imgin._spectrum; else if (_cimg_mp_is_constant(p1)) { p3 = (unsigned int)cimg::mod((int)mem[p1], listin.width()); p2 = listin[p3]._spectrum; } if (!p2) _cimg_mp_return(0); pos = vector(p2); if (p1 != ~0U) { CImg::vector( (ulongT)(is_relative ? mp_list_Joff : mp_list_Ioff), pos, p1, arg1, arg2 == ~0U ? _cimg_mp_boundary : arg2, p2) .move_to(code); } else { need_input_copy = true; CImg::vector( (ulongT)(is_relative ? mp_Joff : mp_Ioff), pos, arg1, arg2 == ~0U ? _cimg_mp_boundary : arg2, p2) .move_to(code); } _cimg_mp_return(pos); } if ((*ss == 'i' || *ss == 'j') && *ss1 == '[' && (reserved_label[(int)*ss] == ~0U || !_cimg_mp_is_vector(reserved_label[( int)*ss]))) { // Image value as a scalar if (*ss2 == '#') { // Index specified s0 = ss3; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss3, s0++, depth1, 0, is_single); } else { p1 = ~0U; s0 = ss2; } s1 = s0; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(s0, s1, depth1, 0, is_single); // Offset arg2 = s1 < se1 ? compile(++s1, se1, depth1, 0, is_single) : ~0U; // Boundary if (p_ref && arg2 == ~0U) { *p_ref = 2; p_ref[1] = p1; p_ref[2] = (unsigned int)is_relative; p_ref[3] = arg1; if (p1 != ~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -2; // Prevent from being used in // further optimization if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -2; } if (p1 != ~0U) { if (!listin) _cimg_mp_return(0); pos = scalar3(is_relative ? mp_list_joff : mp_list_ioff, p1, arg1, arg2 == ~0U ? _cimg_mp_boundary : arg2); } else { if (!imgin) _cimg_mp_return(0); need_input_copy = true; pos = scalar2(is_relative ? mp_joff : mp_ioff, arg1, arg2 == ~0U ? _cimg_mp_boundary : arg2); } memtype[pos] = -2; // Prevent from being used in further optimization _cimg_mp_return(pos); } s0 = se1; while (s0 > ss && (*s0 != '[' || level[s0 - expr._data] != clevel)) --s0; if (s0 > ss) { // Vector value arg1 = compile(ss, s0, depth1, 0, is_single); if (_cimg_mp_is_scalar(arg1)) { variable_name.assign(ss, (unsigned int)(s0 - ss + 1)) .back() = 0; *se = saved_char; cimg::strellipsize(variable_name, 64); s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Array brackets used on " "non-vector variable '%s', " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, variable_name._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } s1 = s0 + 1; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; if (s1 < se1) { // Two or three arguments -> sub-vector // extraction p1 = _cimg_mp_size(arg1); arg2 = compile(++s0, s1, depth1, 0, is_single); // Starting index s0 = ++s1; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; arg3 = compile(s1, s0, depth1, 0, is_single); // Length arg4 = s0 < se1 ? compile(++s0, se1, depth1, 0, is_single) : 1; // Step _cimg_mp_check_constant(arg3, 2, 3); arg3 = (unsigned int)mem[arg3]; pos = vector(arg3); CImg::vector((ulongT)mp_vector_crop, pos, arg1, p1, arg2, arg3, arg4) .move_to(code); _cimg_mp_return(pos); } // One argument -> vector value reference arg2 = compile(++s0, se1, depth1, 0, is_single); if (_cimg_mp_is_constant(arg2)) { // Constant index nb = (int)mem[arg2]; if (nb >= 0 && nb < (int)_cimg_mp_size(arg1)) _cimg_mp_return(arg1 + 1 + nb); variable_name.assign(ss, (unsigned int)(s0 - ss)) .back() = 0; *se = saved_char; cimg::strellipsize(variable_name, 64); s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: Out-of-bounds reference '%s[%d]' " "(vector '%s' has dimension %u), " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, variable_name._data, nb, variable_name._data, _cimg_mp_size(arg1), s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } if (p_ref) { *p_ref = 1; p_ref[1] = arg1; p_ref[2] = arg2; if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -2; // Prevent from being used in // further optimization } pos = scalar3(mp_vector_off, arg1, _cimg_mp_size(arg1), arg2); memtype[pos] = -2; // Prevent from being used in further optimization _cimg_mp_return(pos); } } // Look for a function call, an access to image value, or a // parenthesis. if (*se1 == ')') { if (*ss == '(') _cimg_mp_return(compile(ss1, se1, depth1, p_ref, is_single)); // Simple parentheses _cimg_mp_op("Value accessor '()'"); is_relative = *ss == 'j' || *ss == 'J'; s0 = s1 = std::strchr(ss, '('); if (s0) { do { --s1; } while (cimg::is_blank(*s1)); cimg::swap(*s0, *++s1); } // I/J(_#ind,_x,_y,_z,_interpolation,_boundary_conditions) if ((*ss == 'I' || *ss == 'J') && *ss1 == '(') { // Image value as scalar if (*ss2 == '#') { // Index specified s0 = ss3; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss3, s0++, depth1, 0, is_single); _cimg_mp_check_list(false); } else { p1 = ~0U; s0 = ss2; } arg1 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_x; arg2 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_y; arg3 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_z; arg4 = arg5 = ~0U; if (s0 < se1) { s1 = s0; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(s0, s1, depth1, 0, is_single); if (_cimg_mp_is_vector( arg1)) { // Coordinates specified as a vector p2 = _cimg_mp_size(arg1); ++arg1; if (p2 > 1) { arg2 = arg1 + 1; if (p2 > 2) arg3 = arg2 + 1; } if (s1 < se1) { s2 = ++s1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg4 = compile(s1, s2, depth1, 0, is_single); arg5 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : ~0U; } } else if (s1 < se1) { s2 = ++s1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(s1, s2, depth1, 0, is_single); if (s2 < se1) { s3 = ++s2; while (s3 < se1 && (*s3 != ',' || level[s3 - expr._data] != clevel1)) ++s3; arg3 = compile(s2, s3, depth1, 0, is_single); if (s3 < se1) { s2 = ++s3; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg4 = compile(s3, s2, depth1, 0, is_single); arg5 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : ~0U; } } } } if (p_ref && arg4 == ~0U && arg5 == ~0U) { *p_ref = 5; p_ref[1] = p1; p_ref[2] = (unsigned int)is_relative; p_ref[3] = arg1; p_ref[4] = arg2; p_ref[5] = arg3; if (p1 != ~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -2; // Prevent from being used in // further optimization if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -2; if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -2; if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -2; } p2 = ~0U; // 'p2' must be the dimension of the // vector-valued operand if any if (p1 == ~0U) p2 = imgin._spectrum; else if (_cimg_mp_is_constant(p1)) { p3 = (unsigned int)cimg::mod((int)mem[p1], listin.width()); p2 = listin[p3]._spectrum; } if (!p2) _cimg_mp_return(0); pos = vector(p2); if (p1 != ~0U) CImg::vector( (ulongT)(is_relative ? mp_list_Jxyz : mp_list_Ixyz), pos, p1, arg1, arg2, arg3, arg4 == ~0U ? _cimg_mp_interpolation : arg4, arg5 == ~0U ? _cimg_mp_boundary : arg5, p2) .move_to(code); else { need_input_copy = true; CImg::vector( (ulongT)(is_relative ? mp_Jxyz : mp_Ixyz), pos, arg1, arg2, arg3, arg4 == ~0U ? _cimg_mp_interpolation : arg4, arg5 == ~0U ? _cimg_mp_boundary : arg5, p2) .move_to(code); } _cimg_mp_return(pos); } // i/j(_#ind,_x,_y,_z,_c,_interpolation,_boundary_conditions) if ((*ss == 'i' || *ss == 'j') && *ss1 == '(') { // Image value as scalar if (*ss2 == '#') { // Index specified s0 = ss3; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss3, s0++, depth1, 0, is_single); } else { p1 = ~0U; s0 = ss2; } arg1 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_x; arg2 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_y; arg3 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_z; arg4 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_c; arg5 = arg6 = ~0U; if (s0 < se1) { s1 = s0; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(s0, s1, depth1, 0, is_single); if (_cimg_mp_is_vector( arg1)) { // Coordinates specified as a vector p2 = _cimg_mp_size(arg1); ++arg1; if (p2 > 1) { arg2 = arg1 + 1; if (p2 > 2) { arg3 = arg2 + 1; if (p2 > 3) arg4 = arg3 + 1; } } if (s1 < se1) { s2 = ++s1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg5 = compile(s1, s2, depth1, 0, is_single); arg6 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : ~0U; } } else if (s1 < se1) { s2 = ++s1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(s1, s2, depth1, 0, is_single); if (s2 < se1) { s3 = ++s2; while (s3 < se1 && (*s3 != ',' || level[s3 - expr._data] != clevel1)) ++s3; arg3 = compile(s2, s3, depth1, 0, is_single); if (s3 < se1) { s2 = ++s3; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg4 = compile(s3, s2, depth1, 0, is_single); if (s2 < se1) { s3 = ++s2; while ( s3 < se1 && (*s3 != ',' || level[s3 - expr._data] != clevel1)) ++s3; arg5 = compile(s2, s3, depth1, 0, is_single); arg6 = s3 < se1 ? compile(++s3, se1, depth1, 0, is_single) : ~0U; } } } } } if (p_ref && arg5 == ~0U && arg6 == ~0U) { *p_ref = 3; p_ref[1] = p1; p_ref[2] = (unsigned int)is_relative; p_ref[3] = arg1; p_ref[4] = arg2; p_ref[5] = arg3; p_ref[6] = arg4; if (p1 != ~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -2; // Prevent from being used in // further optimization if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -2; if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -2; if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -2; if (_cimg_mp_is_comp(arg4)) memtype[arg4] = -2; } if (p1 != ~0U) { if (!listin) _cimg_mp_return(0); pos = scalar7(is_relative ? mp_list_jxyzc : mp_list_ixyzc, p1, arg1, arg2, arg3, arg4, arg5 == ~0U ? _cimg_mp_interpolation : arg5, arg6 == ~0U ? _cimg_mp_boundary : arg6); } else { if (!imgin) _cimg_mp_return(0); need_input_copy = true; pos = scalar6( is_relative ? mp_jxyzc : mp_ixyzc, arg1, arg2, arg3, arg4, arg5 == ~0U ? _cimg_mp_interpolation : arg5, arg6 == ~0U ? _cimg_mp_boundary : arg6); } memtype[pos] = -2; // Prevent from being used in further optimization _cimg_mp_return(pos); } // Mathematical functions. switch (*ss) { case '_': if (*ss1 == '(') // Skip arguments _cimg_mp_return_nan(); break; case 'a': if (!std::strncmp(ss, "abs(", 4)) { // Absolute value _cimg_mp_op("Function 'abs()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_abs, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::abs(mem[arg1])); _cimg_mp_scalar1(mp_abs, arg1); } if (!std::strncmp(ss, "acos(", 5)) { // Arccos _cimg_mp_op("Function 'acos()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_acos, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::acos(mem[arg1])); _cimg_mp_scalar1(mp_acos, arg1); } if (!std::strncmp(ss, "acosh(", 6)) { // Hyperbolic arccosine _cimg_mp_op("Function 'acosh()'"); arg1 = compile(ss6, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_acosh, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::acosh(mem[arg1])); _cimg_mp_scalar1(mp_acosh, arg1); } if (!std::strncmp(ss, "asinh(", 6)) { // Hyperbolic arcsine _cimg_mp_op("Function 'asinh()'"); arg1 = compile(ss6, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_asinh, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::asinh(mem[arg1])); _cimg_mp_scalar1(mp_asinh, arg1); } if (!std::strncmp(ss, "atanh(", 6)) { // Hyperbolic arctangent _cimg_mp_op("Function 'atanh()'"); arg1 = compile(ss6, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_atanh, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::atanh(mem[arg1])); _cimg_mp_scalar1(mp_atanh, arg1); } if (!std::strncmp(ss, "arg(", 4)) { // Nth argument _cimg_mp_op("Function 'arg()'"); s1 = ss4; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss4, s1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 1, 0); s2 = ++s1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(s1, s2, depth1, 0, is_single); p2 = _cimg_mp_size(arg2); p3 = 3; CImg::vector((ulongT)mp_arg, 0, 0, p2, arg1, arg2) .move_to(l_opcode); for (s = ++s2; s < se; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg3 = compile(s, ns, depth1, 0, is_single); _cimg_mp_check_type(arg3, p3, p2 ? 2 : 1, p2); CImg::vector(arg3).move_to(l_opcode); ++p3; s = ns; } (l_opcode > 'y').move_to(opcode); opcode[2] = opcode._height; if (_cimg_mp_is_constant(arg1)) { p3 -= 1; // Number of args arg1 = (unsigned int)(mem[arg1] < 0 ? mem[arg1] + p3 : mem[arg1]); if (arg1 < p3) _cimg_mp_return(opcode[4 + arg1]); if (p2) { pos = vector(p2); std::memset(&mem[pos] + 1, 0, p2 * sizeof(double)); _cimg_mp_return(pos); } else _cimg_mp_return(0); } pos = opcode[1] = p2 ? vector(p2) : scalar(); opcode.move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "asin(", 5)) { // Arcsin _cimg_mp_op("Function 'asin()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_asin, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::asin(mem[arg1])); _cimg_mp_scalar1(mp_asin, arg1); } if (!std::strncmp(ss, "atan(", 5)) { // Arctan _cimg_mp_op("Function 'atan()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_atan, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::atan(mem[arg1])); _cimg_mp_scalar1(mp_atan, arg1); } if (!std::strncmp(ss, "atan2(", 6)) { // Arctan2 _cimg_mp_op("Function 'atan2()'"); s1 = ss6; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss6, s1, depth1, 0, is_single); arg2 = compile(++s1, se1, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_atan2, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_atan2, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_atan2, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant( std::atan2(mem[arg1], mem[arg2])); _cimg_mp_scalar2(mp_atan2, arg1, arg2); } break; case 'b': if (!std::strncmp(ss, "break(", 6)) { // Complex absolute value if (pexpr[se2 - expr._data] == '(') { // no arguments? CImg::vector((ulongT)mp_break, _cimg_mp_slot_nan) .move_to(code); _cimg_mp_return_nan(); } } if (!std::strncmp( ss, "breakpoint(", 11)) { // Break point (for abort test) _cimg_mp_op("Function 'breakpoint()'"); if (pexpr[se2 - expr._data] == '(') { // no arguments? CImg::vector((ulongT)mp_breakpoint, _cimg_mp_slot_nan) .move_to(code); _cimg_mp_return_nan(); } } if (!std::strncmp(ss, "bool(", 5)) { // Boolean cast _cimg_mp_op("Function 'bool()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_bool, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant((bool)mem[arg1]); _cimg_mp_scalar1(mp_bool, arg1); } if (!std::strncmp(ss, "begin(", 6)) { // Begin _cimg_mp_op("Function 'begin()'"); code.swap(code_begin); arg1 = compile(ss6, se1, depth1, p_ref, true); code.swap(code_begin); _cimg_mp_return(arg1); } break; case 'c': if (!std::strncmp(ss, "cabs(", 5)) { // Complex absolute value _cimg_mp_op("Function 'cabs()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 0, 2, 2); _cimg_mp_scalar2(mp_complex_abs, arg1 + 1, arg1 + 2); } if (!std::strncmp(ss, "carg(", 5)) { // Complex argument _cimg_mp_op("Function 'carg()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 0, 2, 2); _cimg_mp_scalar2(mp_atan2, arg1 + 2, arg1 + 1); } if (!std::strncmp(ss, "cats(", 5)) { // Concatenate strings _cimg_mp_op("Function 'cats()'"); CImg::vector((ulongT)mp_cats, 0, 0, 0) .move_to(l_opcode); arg1 = 0; for (s = ss5; s < se; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg1 = compile(s, ns, depth1, 0, is_single); CImg::vector(arg1, _cimg_mp_size(arg1)) .move_to(l_opcode); s = ns; } _cimg_mp_check_constant( arg1, 1, 3); // Last argument = output vector size l_opcode.remove(); (l_opcode > 'y').move_to(opcode); p1 = (unsigned int)mem[arg1]; pos = vector(p1); opcode[1] = pos; opcode[2] = p1; opcode[3] = opcode._height; opcode.move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "cbrt(", 5)) { // Cubic root _cimg_mp_op("Function 'cbrt()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_cbrt, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::cbrt(mem[arg1])); _cimg_mp_scalar1(mp_cbrt, arg1); } if (!std::strncmp(ss, "cconj(", 6)) { // Complex conjugate _cimg_mp_op("Function 'cconj()'"); arg1 = compile(ss6, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 0, 2, 2); pos = vector(2); CImg::vector((ulongT)mp_complex_conj, pos, arg1) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "ceil(", 5)) { // Ceil _cimg_mp_op("Function 'ceil()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_ceil, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::ceil(mem[arg1])); _cimg_mp_scalar1(mp_ceil, arg1); } if (!std::strncmp(ss, "cexp(", 5)) { // Complex exponential _cimg_mp_op("Function 'cexp()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 0, 2, 2); pos = vector(2); CImg::vector((ulongT)mp_complex_exp, pos, arg1) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "clog(", 5)) { // Complex logarithm _cimg_mp_op("Function 'clog()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 0, 2, 2); pos = vector(2); CImg::vector((ulongT)mp_complex_log, pos, arg1) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "continue(", 9)) { // Complex absolute value if (pexpr[se2 - expr._data] == '(') { // no arguments? CImg::vector((ulongT)mp_continue, _cimg_mp_slot_nan) .move_to(code); _cimg_mp_return_nan(); } } if (!std::strncmp(ss, "copy(", 5)) { // Memory copy _cimg_mp_op("Function 'copy()'"); ref.assign(14); s1 = ss5; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = p1 = compile(ss5, s1, depth1, ref, is_single); s2 = ++s1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(s1, s2, depth1, ref._data + 7, is_single); arg3 = arg4 = arg5 = ~0U; arg6 = 1; if (s2 < se1) { s3 = ++s2; while (s3 < se1 && (*s3 != ',' || level[s3 - expr._data] != clevel1)) ++s3; arg3 = compile(s2, s3, depth1, 0, is_single); if (s3 < se1) { s1 = ++s3; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg4 = compile(s3, s1, depth1, 0, is_single); if (s1 < se1) { s2 = ++s1; while ( s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg5 = compile(s1, s2, depth1, 0, is_single); arg6 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : 1; } } } if (_cimg_mp_is_vector(arg1)) { if (!ref[0]) ++arg1; else if (ref[0] >= 4 && arg4 == ~0U) arg4 = scalar1(mp_image_whd, ref[1]); } if (_cimg_mp_is_vector(arg2)) { if (arg3 == ~0U) arg3 = constant(_cimg_mp_size(arg2)); if (!ref[7]) ++arg2; if (ref[7] >= 4 && arg5 == ~0U) arg5 = scalar1(mp_image_whd, ref[8]); } if (arg3 == ~0U) arg3 = 1; if (arg4 == ~0U) arg4 = 1; if (arg5 == ~0U) arg5 = 1; _cimg_mp_check_type(arg3, 3, 1, 0); _cimg_mp_check_type(arg4, 4, 1, 0); _cimg_mp_check_type(arg5, 5, 1, 0); _cimg_mp_check_type(arg6, 5, 1, 0); CImg(1, 22).move_to(code); code.back().get_shared_rows(0, 7).fill( (ulongT)mp_memcopy, p1, arg1, arg2, arg3, arg4, arg5, arg6); code.back().get_shared_rows(8, 21).fill(ref); _cimg_mp_return(p1); } if (!std::strncmp(ss, "cos(", 4)) { // Cosine _cimg_mp_op("Function 'cos()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_cos, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::cos(mem[arg1])); _cimg_mp_scalar1(mp_cos, arg1); } if (!std::strncmp(ss, "cosh(", 5)) { // Hyperbolic cosine _cimg_mp_op("Function 'cosh()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_cosh, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::cosh(mem[arg1])); _cimg_mp_scalar1(mp_cosh, arg1); } if (!std::strncmp(ss, "critical(", 9)) { // Critical section (single // thread at a time) _cimg_mp_op("Function 'critical()'"); p1 = code._width; arg1 = compile(ss + 9, se1, depth1, p_ref, true); CImg::vector((ulongT)mp_critical, arg1, code._width - p1) .move_to(code, p1); _cimg_mp_return(arg1); } if (!std::strncmp(ss, "crop(", 5)) { // Image crop _cimg_mp_op("Function 'crop()'"); if (*ss5 == '#') { // Index specified s0 = ss6; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss6, s0++, depth1, 0, is_single); _cimg_mp_check_list(false); } else { p1 = ~0U; s0 = ss5; need_input_copy = true; } pos = 0; is_sth = false; // Coordinates specified as a vector? if (s0 < se1) for (s = s0; s < se; ++s, ++pos) { ns = s; while ( ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg1 = compile(s, ns, depth1, 0, is_single); if (!pos && _cimg_mp_is_vector( arg1)) { // Coordinates specified // as a vector opcode = CImg::sequence( _cimg_mp_size(arg1), arg1 + 1, arg1 + (ulongT)_cimg_mp_size(arg1)); opcode .resize( 1, std::min(opcode._height, 4U), 1, 1, 0) .move_to(l_opcode); is_sth = true; } else { _cimg_mp_check_type(arg1, pos + 1, 1, 0); CImg::vector(arg1).move_to( l_opcode); } s = ns; } (l_opcode > 'y').move_to(opcode); arg1 = 0; arg2 = (p1 != ~0U); switch (opcode._height) { case 0: case 1: CImg::vector(0, 0, 0, 0, ~0U, ~0U, ~0U, ~0U, 0) .move_to(opcode); break; case 2: CImg::vector(*opcode, 0, 0, 0, opcode[1], ~0U, ~0U, ~0U, _cimg_mp_boundary) .move_to(opcode); arg1 = arg2 + 2; break; case 3: CImg::vector(*opcode, 0, 0, 0, opcode[1], ~0U, ~0U, ~0U, opcode[2]) .move_to(opcode); arg1 = arg2 + 2; break; case 4: CImg::vector( *opcode, opcode[1], 0, 0, opcode[2], opcode[3], ~0U, ~0U, _cimg_mp_boundary) .move_to(opcode); arg1 = arg2 + (is_sth ? 2 : 3); break; case 5: CImg::vector( *opcode, opcode[1], 0, 0, opcode[2], opcode[3], ~0U, ~0U, opcode[4]) .move_to(opcode); arg1 = arg2 + (is_sth ? 2 : 3); break; case 6: CImg::vector( *opcode, opcode[1], opcode[2], 0, opcode[3], opcode[4], opcode[5], ~0U, _cimg_mp_boundary) .move_to(opcode); arg1 = arg2 + (is_sth ? 2 : 4); break; case 7: CImg::vector( *opcode, opcode[1], opcode[2], 0, opcode[3], opcode[4], opcode[5], ~0U, opcode[6]) .move_to(opcode); arg1 = arg2 + (is_sth ? 2 : 4); break; case 8: CImg::vector( *opcode, opcode[1], opcode[2], opcode[3], opcode[4], opcode[5], opcode[6], opcode[7], _cimg_mp_boundary) .move_to(opcode); arg1 = arg2 + (is_sth ? 2 : 5); break; case 9: arg1 = arg2 + (is_sth ? 2 : 5); break; default: // Error -> too much arguments *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Too much arguments " "specified, " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } _cimg_mp_check_type((unsigned int)*opcode, arg2 + 1, 1, 0); _cimg_mp_check_type((unsigned int)opcode[1], arg2 + 1 + (is_sth ? 0 : 1), 1, 0); _cimg_mp_check_type((unsigned int)opcode[2], arg2 + 1 + (is_sth ? 0 : 2), 1, 0); _cimg_mp_check_type((unsigned int)opcode[3], arg2 + 1 + (is_sth ? 0 : 3), 1, 0); if (opcode[4] != (ulongT)~0U) { _cimg_mp_check_constant((unsigned int)opcode[4], arg1, 3); opcode[4] = (ulongT)mem[opcode[4]]; } if (opcode[5] != (ulongT)~0U) { _cimg_mp_check_constant((unsigned int)opcode[5], arg1 + 1, 3); opcode[5] = (ulongT)mem[opcode[5]]; } if (opcode[6] != (ulongT)~0U) { _cimg_mp_check_constant((unsigned int)opcode[6], arg1 + 2, 3); opcode[6] = (ulongT)mem[opcode[6]]; } if (opcode[7] != (ulongT)~0U) { _cimg_mp_check_constant((unsigned int)opcode[7], arg1 + 3, 3); opcode[7] = (ulongT)mem[opcode[7]]; } _cimg_mp_check_type((unsigned int)opcode[8], arg1 + 4, 1, 0); if (opcode[4] == (ulongT)~0U || opcode[5] == (ulongT)~0U || opcode[6] == (ulongT)~0U || opcode[7] == (ulongT)~0U) { if (p1 != ~0U) { _cimg_mp_check_constant(p1, 1, 1); p1 = (unsigned int)cimg::mod( (int)mem[p1], listin.width()); } const CImg& img = p1 != ~0U ? listin[p1] : imgin; if (!img) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Cannot crop empty " "image when " "some xyzc-coordinates are " "unspecified, in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } if (opcode[4] == (ulongT)~0U) opcode[4] = (ulongT)img._width; if (opcode[5] == (ulongT)~0U) opcode[5] = (ulongT)img._height; if (opcode[6] == (ulongT)~0U) opcode[6] = (ulongT)img._depth; if (opcode[7] == (ulongT)~0U) opcode[7] = (ulongT)img._spectrum; } pos = vector((unsigned int)(opcode[4] * opcode[5] * opcode[6] * opcode[7])); CImg::vector( (ulongT)mp_crop, pos, p1, *opcode, opcode[1], opcode[2], opcode[3], opcode[4], opcode[5], opcode[6], opcode[7], opcode[8]) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "cross(", 6)) { // Cross product _cimg_mp_op("Function 'cross()'"); s1 = ss6; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss6, s1, depth1, 0, is_single); arg2 = compile(++s1, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 2, 3); _cimg_mp_check_type(arg2, 2, 2, 3); pos = vector(3); CImg::vector((ulongT)mp_cross, pos, arg1, arg2) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "cut(", 4)) { // Cut _cimg_mp_op("Function 'cut()'"); s1 = ss4; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss4, s1, depth1, 0, is_single); s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(++s1, s2, depth1, 0, is_single); arg3 = compile(++s2, se1, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 1, 0); _cimg_mp_check_type(arg3, 3, 1, 0); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector3_vss(mp_cut, arg1, arg2, arg3); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2) && _cimg_mp_is_constant(arg3)) { val = mem[arg1]; val1 = mem[arg2]; val2 = mem[arg3]; _cimg_mp_constant( val < val1 ? val1 : val > val2 ? val2 : val); } _cimg_mp_scalar3(mp_cut, arg1, arg2, arg3); } if (!std::strncmp(ss, "convolve(", 9) || !std::strncmp(ss, "correlate(", 10)) { // Convolve & Correlate is_sth = *ss2 == 'n'; // is_convolve? _cimg_mp_op(is_sth ? "Function 'convolve()'" : "Function 'correlate()'"); op = is_sth ? mp_convolve : mp_correlate; const ulongT default_params[] = { (ulongT)op, 0, // [0]=function, [1]=result // vector 0, 0, 0, 0, 0, // [2]=A, [3]=wA, [4]=hA, [5]=dA, [6]=sA 0, 0, 0, 0, 0, // [7]=M, [8]=wM, [9]=hM, [10]=dM, [11]=sM 1, 0, 1, // [12]=boundary_conditions, // [13]=is_normalized, // [14]=chan._mode 11, 11, 11, // [15]=xcenter, // [16]=ycenter, // [17]=zcenter (default // value:-1) 0, 0, 0, // [18]=xstart, [19]=ystart, // [20]=zstart 11, 11, 11, // [21]=xend, [22]=yend, // [23]=zend (default // value: -1) 1, 1, 1, // [24]=xstride, // [25]=ystride, // [26]=zstride 1, 1, 1}; // [27]=xdilation, // [28]=ydilation, // [29]=zdilation l_opcode.assign(); // Don't use 'opcode': it could // be modified by further calls // to 'compile()'! CImg( default_params, 1, sizeof(default_params) / sizeof(ulongT)) .move_to(l_opcode); arg1 = 2; for (s = std::strchr(ss, '(') + 1; s < se && arg1 < l_opcode[0]._height; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; l_opcode(0, arg1++) = compile(s, ns, depth1, 0, is_single); s = ns; } l_opcode[0].move_to(opcode); if (arg1 < 12 || arg1 >= opcode._height) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: %s arguments provided, " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, arg1 < 12 ? "Not enough" : "Too much", s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } _cimg_mp_check_type(opcode[2], 1, 2, 0); // A _cimg_mp_check_constant(opcode[3], 2, 3); // wA _cimg_mp_check_constant(opcode[4], 3, 3); // hA _cimg_mp_check_constant(opcode[5], 4, 3); // dA _cimg_mp_check_constant(opcode[6], 5, 3); // sA _cimg_mp_check_type(opcode[7], 6, 2, 0); // M _cimg_mp_check_constant(opcode[8], 7, 3); // wM _cimg_mp_check_constant(opcode[9], 8, 3); // hM _cimg_mp_check_constant(opcode[10], 9, 3); // dM _cimg_mp_check_constant(opcode[11], 10, 3); // sM _cimg_mp_check_type(opcode[12], 11, 1, 0); // boundary_conditions _cimg_mp_check_type(opcode[13], 12, 1, 0); // is_normalized _cimg_mp_check_constant(opcode[14], 13, 1); // channel_mode _cimg_mp_check_type(opcode[15], 14, 1, 0); // xcenter _cimg_mp_check_type(opcode[16], 15, 1, 0); // ycenter _cimg_mp_check_type(opcode[17], 16, 1, 0); // zcenter _cimg_mp_check_constant(opcode[18], 17, 1); // xstart _cimg_mp_check_constant(opcode[19], 18, 1); // ystart _cimg_mp_check_constant(opcode[20], 19, 1); // zstart _cimg_mp_check_constant(opcode[21], 20, 1); // xend _cimg_mp_check_constant(opcode[22], 21, 1); // yend _cimg_mp_check_constant(opcode[23], 22, 1); // zend _cimg_mp_check_constant(opcode[24], 23, 3); // xstride _cimg_mp_check_constant(opcode[25], 24, 3); // ystride _cimg_mp_check_constant(opcode[26], 25, 3); // zstride _cimg_mp_check_type(opcode[27], 26, 1, 0); // xdilation _cimg_mp_check_type(opcode[28], 27, 1, 0); // ydilation _cimg_mp_check_type(opcode[29], 28, 1, 0); // zdilation const unsigned int wA = (unsigned int)mem[opcode[3]], hA = (unsigned int)mem[opcode[4]], dA = (unsigned int)mem[opcode[5]], sA = (unsigned int)mem[opcode[6]], wM = (unsigned int)mem[opcode[8]], hM = (unsigned int)mem[opcode[9]], dM = (unsigned int)mem[opcode[10]], sM = (unsigned int)mem[opcode[11]], channel_mode = (unsigned int)mem[opcode[14]], xstart = std::min((unsigned int)mem[opcode[18]], wA - 1), ystart = std::min((unsigned int)mem[opcode[19]], hA - 1), zstart = std::min((unsigned int)mem[opcode[20]], dA - 1), xend = std::min((unsigned int)mem[opcode[21]], wA - 1), yend = std::min((unsigned int)mem[opcode[22]], hA - 1), zend = std::min((unsigned int)mem[opcode[23]], dA - 1); if (xstart > xend || ystart > yend || zstart > zend) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Invalid xyz-start/end " "arguments " "(start = (%u,%u,%u), end = (%u,%u,%u)), " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, xstart, ystart, zstart, xend, yend, zend, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } const float xstride = (float)mem[opcode[24]], ystride = (float)mem[opcode[25]], zstride = (float)mem[opcode[26]]; if (xstride <= 0 || ystride <= 0 || zstride <= 0) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Invalid stride " "arguments (%g,%g,%g), " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, xstride, ystride, zstride, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } arg2 = 1 + (unsigned int)std::floor( (xend - xstart) / xstride); arg3 = 1 + (unsigned int)std::floor( (yend - ystart) / ystride); arg4 = 1 + (unsigned int)std::floor( (zend + zstart) / zstride); arg5 = channel_mode == 0 ? sM : channel_mode == 1 ? std::max(sA, sM) : sA * sM; opcode[1] = pos = vector(arg2 * arg3 * arg4 * arg5); opcode[3] = (ulongT)wA; opcode[4] = (ulongT)hA; opcode[5] = (ulongT)dA; opcode[6] = (ulongT)sA; opcode[8] = (ulongT)wM; opcode[9] = (ulongT)hM; opcode[10] = (ulongT)dM; opcode[11] = (ulongT)sM; opcode[14] = (ulongT)channel_mode; opcode[18] = (ulongT)xstart; opcode[19] = (ulongT)ystart; opcode[20] = (ulongT)zstart; opcode[21] = (ulongT)xend; opcode[22] = (ulongT)yend; opcode[23] = (ulongT)zend; opcode.move_to(code); _cimg_mp_return(pos); } break; case 'd': if (*ss1 == '(') { // Image depth _cimg_mp_op("Function 'd()'"); if (*ss2 == '#') { // Index specified p1 = compile(ss3, se1, depth1, 0, is_single); _cimg_mp_check_list(false); } else { if (ss2 != se1) break; p1 = ~0U; } pos = scalar(); CImg::vector((ulongT)mp_image_d, pos, p1) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "date(", 5)) { // Current date or file date _cimg_mp_op("Function 'date()'"); s1 = ss5; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = ss5 != se1 ? compile(ss5, s1, depth1, 0, is_single) : ~0U; arg2 = s1 < se1 ? compile(++s1, se1, depth1, 0, is_single) : ~0U; if (arg2 != ~0U) _cimg_mp_check_type(arg2, 1, 2, 0); pos = arg1 == ~0U || _cimg_mp_is_vector(arg1) ? vector(arg1 == ~0U ? 7 : _cimg_mp_size(arg1)) : scalar(); CImg::vector( (ulongT)mp_date, pos, _cimg_mp_size(pos), arg1, arg1 == ~0U ? ~0U : _cimg_mp_size(arg1), arg2, arg2 == ~0U ? ~0U : _cimg_mp_size(arg2)) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "debug(", 6)) { // Print debug info _cimg_mp_op("Function 'debug()'"); p1 = code._width; arg1 = compile(ss6, se1, depth1, p_ref, is_single); *se1 = 0; variable_name.assign( CImg::string(ss6, true, true) .unroll('y'), true); cimg::strpare(variable_name, false, true); ((CImg::vector((ulongT)mp_debug, arg1, 0, code._width - p1), variable_name) > 'y') .move_to(opcode); opcode[2] = opcode._height; opcode.move_to(code, p1); *se1 = ')'; _cimg_mp_return(arg1); } if (!std::strncmp( ss, "display(", 8)) { // Display memory, vector or image _cimg_mp_op("Function 'display()'"); if (pexpr[se2 - expr._data] == '(') { // no arguments? CImg::vector((ulongT)mp_display_memory, _cimg_mp_slot_nan) .move_to(code); _cimg_mp_return_nan(); } if (*ss8 != '#') { // Vector s1 = ss8; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss8, s1, depth1, 0, is_single); arg2 = 0; arg3 = arg4 = arg5 = 1; if (s1 < se1) { s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(s1 + 1, s2, depth1, 0, is_single); if (s2 < se1) { s3 = ++s2; while ( s3 < se1 && (*s3 != ',' || level[s3 - expr._data] != clevel1)) ++s3; arg3 = compile(s2, s3, depth1, 0, is_single); if (s3 < se1) { s2 = ++s3; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg4 = compile(s3, s2, depth1, 0, is_single); arg5 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : 0; } } } _cimg_mp_check_type(arg2, 2, 1, 0); _cimg_mp_check_type(arg3, 3, 1, 0); _cimg_mp_check_type(arg4, 4, 1, 0); _cimg_mp_check_type(arg5, 5, 1, 0); c1 = *s1; *s1 = 0; variable_name.assign( CImg::string(ss8, true, true) .unroll('y'), true); cimg::strpare(variable_name, false, true); if (_cimg_mp_is_vector(arg1)) ((CImg::vector( (ulongT)mp_vector_print, arg1, 0, (ulongT)_cimg_mp_size(arg1), 0), variable_name) > 'y') .move_to(opcode); else ((CImg::vector((ulongT)mp_print, arg1, 0, 0), variable_name) > 'y') .move_to(opcode); opcode[2] = opcode._height; opcode.move_to(code); ((CImg::vector( (ulongT)mp_display, arg1, 0, (ulongT)_cimg_mp_size(arg1), arg2, arg3, arg4, arg5), variable_name) > 'y') .move_to(opcode); opcode[2] = opcode._height; opcode.move_to(code); *s1 = c1; _cimg_mp_return(arg1); } else { // Image p1 = compile(ss8 + 1, se1, depth1, 0, is_single); _cimg_mp_check_list(true); CImg::vector((ulongT)mp_image_display, _cimg_mp_slot_nan, p1) .move_to(code); _cimg_mp_return_nan(); } } if (!std::strncmp(ss, "det(", 4)) { // Matrix determinant _cimg_mp_op("Function 'det()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); _cimg_mp_check_matrix_square(arg1, 1); p1 = (unsigned int)cimg::round( std::sqrt((float)_cimg_mp_size(arg1))); _cimg_mp_scalar2(mp_det, arg1, p1); } if (!std::strncmp(ss, "diag(", 5)) { // Diagonal matrix _cimg_mp_op("Function 'diag()'"); CImg::vector((ulongT)mp_diag, 0, 0) .move_to(l_opcode); for (s = ss5; s < se; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg2 = compile(s, ns, depth1, 0, is_single); if (_cimg_mp_is_vector(arg2)) CImg::sequence( _cimg_mp_size(arg2), arg2 + 1, arg2 + (ulongT)_cimg_mp_size(arg2)) .move_to(l_opcode); else CImg::vector(arg2).move_to( l_opcode); s = ns; } (l_opcode > 'y').move_to(opcode); arg1 = opcode._height - 3; pos = vector(arg1 * arg1); opcode[1] = pos; opcode[2] = opcode._height; opcode.move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "dot(", 4)) { // Dot product _cimg_mp_op("Function 'dot()'"); s1 = ss4; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss4, s1, depth1, 0, is_single); arg2 = compile(++s1, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) { _cimg_mp_check_type(arg2, 2, 2, _cimg_mp_size(arg1)); _cimg_mp_scalar3(mp_dot, arg1, arg2, _cimg_mp_size(arg1)); } _cimg_mp_check_type(arg2, 2, 1, 0); _cimg_mp_scalar2(mp_mul, arg1, arg2); } if (!std::strncmp(ss, "do(", 3)) { // Do..while _cimg_mp_op("Function 'do()'"); s0 = *ss2 == '(' ? ss3 : ss8; s1 = s0; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = code._width; arg6 = mempos; p1 = compile(s0, s1, depth1, 0, is_single); // Body arg2 = code._width; p2 = s1 < se1 ? compile(++s1, se1, depth1, 0, is_single) : p1; // Condition _cimg_mp_check_type(p2, 2, 1, 0); CImg::vector( (ulongT)mp_do, p1, p2, arg2 - arg1, code._width - arg2, _cimg_mp_size(p1), p1 >= arg6 && !_cimg_mp_is_constant(p1), p2 >= arg6 && !_cimg_mp_is_constant(p2)) .move_to(code, arg1); _cimg_mp_return(p1); } if (!std::strncmp(ss, "draw(", 5)) { // Draw image if (!is_single) is_parallelizable = false; _cimg_mp_op("Function 'draw()'"); if (*ss5 == '#') { // Index specified s0 = ss6; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss6, s0++, depth1, 0, is_single); _cimg_mp_check_list(true); } else { p1 = ~0U; s0 = ss5; } s1 = s0; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(s0, s1, depth1, 0, is_single); arg2 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_x; arg3 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_y; arg4 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_z; arg5 = is_relative ? 0U : (unsigned int)_cimg_mp_slot_c; s0 = se1; if (s1 < se1) { s0 = s1 + 1; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; arg2 = compile(++s1, s0, depth1, 0, is_single); if (_cimg_mp_is_vector( arg2)) { // Coordinates specified as a // vector p2 = _cimg_mp_size(arg2); ++arg2; if (p2 > 1) { arg3 = arg2 + 1; if (p2 > 2) { arg4 = arg3 + 1; if (p2 > 3) arg5 = arg4 + 1; } } ++s0; is_sth = true; } else { if (s0 < se1) { is_sth = p1 != ~0U; s1 = s0 + 1; while ( s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg3 = compile(++s0, s1, depth1, 0, is_single); _cimg_mp_check_type( arg3, is_sth ? 4 : 3, 1, 0); if (s1 < se1) { s0 = s1 + 1; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; arg4 = compile(++s1, s0, depth1, 0, is_single); _cimg_mp_check_type( arg4, is_sth ? 5 : 4, 1, 0); if (s0 < se1) { s1 = s0 + 1; while ( s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg5 = compile(++s0, s1, depth1, 0, is_single); _cimg_mp_check_type( arg5, is_sth ? 6 : 5, 1, 0); s0 = ++s1; } } } is_sth = false; } } l_opcode.assign(); // Don't use 'opcode': it could // be modified by further calls // to 'compile()'! CImg::vector((ulongT)mp_draw, arg1, (ulongT)_cimg_mp_size(arg1), p1, arg2, arg3, arg4, arg5, 0, 0, 0, 0, 1, (ulongT)~0U, 0, 1) .move_to(l_opcode); arg2 = arg3 = arg4 = arg5 = ~0U; p2 = p1 != ~0U ? 0 : 1; if (s0 < se1) { s1 = s0; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg2 = compile(s0, s1, depth1, 0, is_single); _cimg_mp_check_type(arg2, p2 + (is_sth ? 3 : 6), 1, 0); if (s1 < se1) { s0 = s1 + 1; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; arg3 = compile(++s1, s0, depth1, 0, is_single); _cimg_mp_check_type( arg3, p2 + (is_sth ? 4 : 7), 1, 0); if (s0 < se1) { s1 = s0 + 1; while ( s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg4 = compile(++s0, s1, depth1, 0, is_single); _cimg_mp_check_type( arg4, p2 + (is_sth ? 5 : 8), 1, 0); if (s1 < se1) { s0 = s1 + 1; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; arg5 = compile(++s1, s0, depth1, 0, is_single); _cimg_mp_check_type( arg5, p2 + (is_sth ? 6 : 9), 1, 0); } } } } if (s0 < s1) s0 = s1; l_opcode(0, 8) = (ulongT)arg2; l_opcode(0, 9) = (ulongT)arg3; l_opcode(0, 10) = (ulongT)arg4; l_opcode(0, 11) = (ulongT)arg5; if (s0 < se1) { s1 = s0 + 1; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg6 = compile(++s0, s1, depth1, 0, is_single); _cimg_mp_check_type(arg6, 0, 1, 0); l_opcode(0, 12) = arg6; if (s1 < se1) { s0 = s1 + 1; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p2 = compile(++s1, s0, depth1, 0, is_single); _cimg_mp_check_type(p2, 0, 2, 0); l_opcode(0, 13) = p2; l_opcode(0, 14) = _cimg_mp_size(p2); p3 = s0 < se1 ? compile(++s0, se1, depth1, 0, is_single) : 1; _cimg_mp_check_type(p3, 0, 1, 0); l_opcode(0, 15) = p3; } } l_opcode[0].move_to(code); _cimg_mp_return(arg1); } break; case 'e': if (!std::strncmp(ss, "echo(", 5)) { // Echo _cimg_mp_op("Function 'echo()'"); CImg::vector((ulongT)mp_echo, _cimg_mp_slot_nan, 0) .move_to(l_opcode); for (s = ss5; s < se; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg1 = compile(s, ns, depth1, 0, is_single); CImg::vector(arg1, _cimg_mp_size(arg1)) .move_to(l_opcode); s = ns; } (l_opcode > 'y').move_to(opcode); opcode[2] = opcode._height; opcode.move_to(code); _cimg_mp_return_nan(); } if (!std::strncmp( ss, "eig(", 4)) { // Matrix eigenvalues/eigenvector _cimg_mp_op("Function 'eig()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); _cimg_mp_check_matrix_square(arg1, 1); p1 = (unsigned int)cimg::round( std::sqrt((float)_cimg_mp_size(arg1))); pos = vector((p1 + 1) * p1); CImg::vector((ulongT)mp_matrix_eig, pos, arg1, p1) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "end(", 4)) { // End _cimg_mp_op("Function 'end()'"); code.swap(code_end); compile(ss4, se1, depth1, p_ref, true); code.swap(code_end); _cimg_mp_return_nan(); } if (!std::strncmp(ss, "ellipse(", 8)) { // Ellipse/circle drawing if (!is_single) is_parallelizable = false; _cimg_mp_op("Function 'ellipse()'"); if (*ss8 == '#') { // Index specified s0 = ss + 9; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss + 9, s0++, depth1, 0, is_single); _cimg_mp_check_list(true); } else { p1 = ~0U; s0 = ss8; } if (s0 == se1) compile(s0, se1, depth1, 0, is_single); // 'missing' argument error CImg::vector((ulongT)mp_ellipse, _cimg_mp_slot_nan, 0, p1) .move_to(l_opcode); for (s = s0; s < se; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg2 = compile(s, ns, depth1, 0, is_single); if (_cimg_mp_is_vector(arg2)) CImg::sequence( _cimg_mp_size(arg2), arg2 + 1, arg2 + (ulongT)_cimg_mp_size(arg2)) .move_to(l_opcode); else CImg::vector(arg2).move_to( l_opcode); s = ns; } (l_opcode > 'y').move_to(opcode); opcode[2] = opcode._height; opcode.move_to(code); _cimg_mp_return_nan(); } if (!std::strncmp(ss, "ext(", 4)) { // Extern _cimg_mp_op("Function 'ext()'"); if (!is_single) is_parallelizable = false; CImg::vector((ulongT)mp_ext, 0, 0) .move_to(l_opcode); pos = 1; for (s = ss4; s < se; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg1 = compile(s, ns, depth1, 0, is_single); CImg::vector(arg1, _cimg_mp_size(arg1)) .move_to(l_opcode); s = ns; } (l_opcode > 'y').move_to(opcode); pos = scalar(); opcode[1] = pos; opcode[2] = opcode._height; opcode.move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "exp(", 4)) { // Exponential _cimg_mp_op("Function 'exp()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_exp, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::exp(mem[arg1])); _cimg_mp_scalar1(mp_exp, arg1); } if (!std::strncmp(ss, "eye(", 4)) { // Identity matrix _cimg_mp_op("Function 'eye()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); _cimg_mp_check_constant(arg1, 1, 3); p1 = (unsigned int)mem[arg1]; pos = vector(p1 * p1); CImg::vector((ulongT)mp_eye, pos, p1) .move_to(code); _cimg_mp_return(pos); } break; case 'f': if (!std::strncmp(ss, "fact(", 5)) { // Factorial _cimg_mp_op("Function 'fact()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_factorial, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant( cimg::factorial((int)mem[arg1])); _cimg_mp_scalar1(mp_factorial, arg1); } if (!std::strncmp(ss, "fibo(", 5)) { // Fibonacci _cimg_mp_op("Function 'fibo()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_fibonacci, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant( cimg::fibonacci((int)mem[arg1])); _cimg_mp_scalar1(mp_fibonacci, arg1); } if (!std::strncmp(ss, "find(", 5)) { // Find _cimg_mp_op("Function 'find()'"); // First argument: data to look at. s0 = ss5; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; if (*ss5 == '#') { // Index specified p1 = compile(ss6, s0, depth1, 0, is_single); _cimg_mp_check_list(false); arg1 = ~0U; } else { // Vector specified arg1 = compile(ss5, s0, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 2, 0); p1 = ~0U; } // Second argument: data to find. s1 = ++s0; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg2 = compile(s0, s1, depth1, 0, is_single); // Third and fourth arguments: search direction and // starting index. arg3 = 1; arg4 = _cimg_mp_slot_nan; if (s1 < se1) { s0 = s1 + 1; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; arg3 = compile(++s1, s0, depth1, 0, is_single); _cimg_mp_check_type(arg3, 3, 1, 0); if (s0 < se1) { arg4 = compile(++s0, se1, depth1, 0, is_single); _cimg_mp_check_type(arg4, 4, 1, 0); } } if (p1 != ~0U) { if (_cimg_mp_is_vector(arg2)) _cimg_mp_scalar5(mp_list_find_seq, p1, arg2, _cimg_mp_size(arg2), arg3, arg4); _cimg_mp_scalar4(mp_list_find, p1, arg2, arg3, arg4); } if (_cimg_mp_is_vector(arg2)) _cimg_mp_scalar6( mp_find_seq, arg1, _cimg_mp_size(arg1), arg2, _cimg_mp_size(arg2), arg3, arg4); _cimg_mp_scalar5(mp_find, arg1, _cimg_mp_size(arg1), arg2, arg3, arg4); } if (*ss1 == 'o' && *ss2 == 'r' && *ss3 == '(') { // For loop _cimg_mp_op("Function 'for()'"); s1 = ss4; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; s3 = s2 + 1; while (s3 < se1 && (*s3 != ',' || level[s3 - expr._data] != clevel1)) ++s3; arg1 = code._width; p1 = compile(ss4, s1, depth1, 0, is_single); // Init arg2 = code._width; p2 = compile(++s1, s2, depth1, 0, is_single); // Cond arg3 = code._width; arg6 = mempos; if (s3 < se1) { // Body + post p3 = compile(s3 + 1, se1, depth1, 0, is_single); // Body arg4 = code._width; pos = compile(++s2, s3, depth1, 0, is_single); // Post } else { p3 = compile(++s2, se1, depth1, 0, is_single); // Body only arg4 = pos = code._width; } _cimg_mp_check_type(p2, 2, 1, 0); arg5 = _cimg_mp_size(pos); CImg::vector( (ulongT)mp_for, p3, (ulongT)_cimg_mp_size(p3), p2, arg2 - arg1, arg3 - arg2, arg4 - arg3, code._width - arg4, p3 >= arg6 && !_cimg_mp_is_constant(p3), p2 >= arg6 && !_cimg_mp_is_constant(p2)) .move_to(code, arg1); _cimg_mp_return(p3); } if (!std::strncmp(ss, "floor(", 6)) { // Floor _cimg_mp_op("Function 'floor()'"); arg1 = compile(ss6, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_floor, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::floor(mem[arg1])); _cimg_mp_scalar1(mp_floor, arg1); } if (!std::strncmp(ss, "fsize(", 6)) { // File size _cimg_mp_op("Function 'fsize()'"); arg1 = compile(ss6, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 2, 0); pos = scalar(); CImg::vector((ulongT)mp_fsize, pos, arg1, (ulongT)_cimg_mp_size(arg1)) .move_to(code); _cimg_mp_return(pos); } break; case 'g': if (!std::strncmp(ss, "gauss(", 6)) { // Gaussian function _cimg_mp_op("Function 'gauss()'"); s1 = ss6; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss6, s1, depth1, 0, is_single); arg2 = arg3 = 1; if (s1 < se1) { s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(++s1, s2, depth1, 0, is_single); arg3 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : 1; } _cimg_mp_check_type(arg2, 2, 1, 0); _cimg_mp_check_type(arg3, 3, 1, 0); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector3_vss(mp_gauss, arg1, arg2, arg3); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2) && _cimg_mp_is_constant(arg3)) { val1 = mem[arg1]; val2 = mem[arg2]; _cimg_mp_constant( std::exp(-val1 * val1 / (2 * val2 * val2)) / (mem[arg3] ? std::sqrt(2 * val2 * val2 * cimg::PI) : 1)); } _cimg_mp_scalar3(mp_gauss, arg1, arg2, arg3); } if (!std::strncmp(ss, "gcd(", 4)) { // Gcd _cimg_mp_op("Function 'gcd()'"); s1 = ss4; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss4, s1, depth1, 0, is_single); arg2 = compile(++s1, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 1, 0); _cimg_mp_check_type(arg2, 2, 1, 0); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(cimg::gcd((long)mem[arg1], (long)mem[arg2])); _cimg_mp_scalar2(mp_gcd, arg1, arg2); } break; case 'h': if (*ss1 == '(') { // Image height _cimg_mp_op("Function 'h()'"); if (*ss2 == '#') { // Index specified p1 = compile(ss3, se1, depth1, 0, is_single); _cimg_mp_check_list(false); } else { if (ss2 != se1) break; p1 = ~0U; } pos = scalar(); CImg::vector((ulongT)mp_image_h, pos, p1) .move_to(code); _cimg_mp_return(pos); } break; case 'i': if (*ss1 == 'c' && *ss2 == '(') { // Image median _cimg_mp_op("Function 'ic()'"); if (*ss3 == '#') { // Index specified p1 = compile(ss4, se1, depth1, 0, is_single); _cimg_mp_check_list(false); } else { if (ss3 != se1) break; p1 = ~0U; } pos = scalar(); CImg::vector((ulongT)mp_image_median, pos, p1) .move_to(code); _cimg_mp_return(pos); } if (*ss1 == 'f' && *ss2 == '(') { // If..then[..else.] _cimg_mp_op("Function 'if()'"); s1 = ss3; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg1 = compile(ss3, s1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 1, 0); if (_cimg_mp_is_constant(arg1)) { if ((bool)mem[arg1]) return compile(++s1, s2, depth1, 0, is_single); else return s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : 0; } p2 = code._width; arg2 = compile(++s1, s2, depth1, 0, is_single); p3 = code._width; arg3 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : _cimg_mp_is_vector(arg2) ? vector(_cimg_mp_size(arg2), 0) : 0; _cimg_mp_check_type( arg3, 3, _cimg_mp_is_vector(arg2) ? 2 : 1, _cimg_mp_size(arg2)); arg4 = _cimg_mp_size(arg2); if (arg4) pos = vector(arg4); else pos = scalar(); CImg::vector((ulongT)mp_if, pos, arg1, arg2, arg3, p3 - p2, code._width - p3, arg4) .move_to(code, p2); _cimg_mp_return(pos); } if (!std::strncmp(ss, "int(", 4)) { // Integer cast _cimg_mp_op("Function 'int()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_int, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant((longT)mem[arg1]); _cimg_mp_scalar1(mp_int, arg1); } if (!std::strncmp(ss, "inv(", 4)) { // Matrix/scalar inversion _cimg_mp_op("Function 'inv()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) { _cimg_mp_check_matrix_square(arg1, 1); p1 = (unsigned int)cimg::round( std::sqrt((float)_cimg_mp_size(arg1))); pos = vector(p1 * p1); CImg::vector((ulongT)mp_matrix_inv, pos, arg1, p1) .move_to(code); _cimg_mp_return(pos); } if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(1 / mem[arg1]); _cimg_mp_scalar2(mp_div, 1, arg1); } if (*ss1 == 's') { // Family of 'is_?()' functions if (!std::strncmp(ss, "isbool(", 7)) { // Is boolean? _cimg_mp_op("Function 'isbool()'"); if (ss7 == se1) _cimg_mp_return(0); try { arg1 = compile(ss7, se1, depth1, 0, is_single); } catch (CImgException&) { _cimg_mp_return(0); } if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isbool, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_return(mem[arg1] == 0. || mem[arg1] == 1.); _cimg_mp_scalar1(mp_isbool, arg1); } if (!std::strncmp(ss, "isdir(", 6)) { // Is directory? _cimg_mp_op("Function 'isdir()'"); arg1 = compile(ss6, se1, depth1, 0, is_single); if (_cimg_mp_is_scalar(arg1)) _cimg_mp_return(0); pos = scalar(); CImg::vector( (ulongT)mp_isdir, pos, arg1, (ulongT)_cimg_mp_size(arg1)) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "isfile(", 7)) { // Is file? _cimg_mp_op("Function 'isfile()'"); arg1 = compile(ss7, se1, depth1, 0, is_single); if (_cimg_mp_is_scalar(arg1)) _cimg_mp_return(0); pos = scalar(); CImg::vector( (ulongT)mp_isfile, pos, arg1, (ulongT)_cimg_mp_size(arg1)) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "isin(", 5)) { // Is in sequence/vector? if (ss5 >= se1) _cimg_mp_return(0); _cimg_mp_op("Function 'isin()'"); pos = scalar(); CImg::vector((ulongT)mp_isin, pos, 0) .move_to(l_opcode); for (s = ss5; s < se; ++s) { ns = s; while ( ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg1 = compile(s, ns, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) CImg::sequence( _cimg_mp_size(arg1), arg1 + 1, arg1 + (ulongT)_cimg_mp_size(arg1)) .move_to(l_opcode); else CImg::vector(arg1).move_to( l_opcode); s = ns; } (l_opcode > 'y').move_to(opcode); opcode[2] = opcode._height; opcode.move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "isinf(", 6)) { // Is infinite? _cimg_mp_op("Function 'isinf()'"); if (ss6 == se1) _cimg_mp_return(0); arg1 = compile(ss6, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isinf, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_return( (unsigned int) cimg::type::is_inf( mem[arg1])); _cimg_mp_scalar1(mp_isinf, arg1); } if (!std::strncmp(ss, "isint(", 6)) { // Is integer? _cimg_mp_op("Function 'isint()'"); if (ss6 == se1) _cimg_mp_return(0); try { arg1 = compile(ss6, se1, depth1, 0, is_single); } catch (CImgException&) { _cimg_mp_return(0); } if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isint, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_return( (unsigned int)(cimg::mod(mem[arg1], 1.) == 0)); _cimg_mp_scalar1(mp_isint, arg1); } if (!std::strncmp(ss, "isnan(", 6)) { // Is NaN? _cimg_mp_op("Function 'isnan()'"); if (ss6 == se1) _cimg_mp_return(0); arg1 = compile(ss6, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isnan, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_return( (unsigned int) cimg::type::is_nan( mem[arg1])); _cimg_mp_scalar1(mp_isnan, arg1); } if (!std::strncmp(ss, "isnum(", 6)) { // Is number? _cimg_mp_op("Function 'isnum()'"); val = 0; if (cimg_sscanf(ss6, "%lf%c%c", &val, &sep, &end) == 2 && sep == ')') _cimg_mp_return(1); _cimg_mp_return(0); } if (!std::strncmp(ss, "isexpr(", 7)) { // Is valid expression? _cimg_mp_op("Function 'isexpr()'"); if (ss7 == se1) _cimg_mp_return(0); try { arg1 = compile(ss7, se1, depth1, 0, is_single); } catch (CImgException&) { _cimg_mp_return(0); } _cimg_mp_return(1); } } break; case 'l': if (*ss1 == '(') { // Size of image list _cimg_mp_op("Function 'l()'"); if (ss2 != se1) break; _cimg_mp_scalar0(mp_list_l); } if (!std::strncmp(ss, "log(", 4)) { // Natural logarithm _cimg_mp_op("Function 'log()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_log, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::log(mem[arg1])); _cimg_mp_scalar1(mp_log, arg1); } if (!std::strncmp(ss, "log2(", 5)) { // Base-2 logarithm _cimg_mp_op("Function 'log2()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_log2, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::log2(mem[arg1])); _cimg_mp_scalar1(mp_log2, arg1); } if (!std::strncmp(ss, "log10(", 6)) { // Base-10 logarithm _cimg_mp_op("Function 'log10()'"); arg1 = compile(ss6, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_log10, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::log10(mem[arg1])); _cimg_mp_scalar1(mp_log10, arg1); } if (!std::strncmp(ss, "lowercase(", 10)) { // Lower case _cimg_mp_op("Function 'lowercase()'"); arg1 = compile(ss + 10, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_lowercase, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::lowercase(mem[arg1])); _cimg_mp_scalar1(mp_lowercase, arg1); } break; case 'm': if (!std::strncmp(ss, "mul(", 4)) { // Matrix multiplication _cimg_mp_op("Function 'mul()'"); s1 = ss4; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss4, s1, depth1, 0, is_single); s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(++s1, s2, depth1, 0, is_single); arg3 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : 1; _cimg_mp_check_type(arg1, 1, 2, 0); _cimg_mp_check_type(arg2, 2, 2, 0); _cimg_mp_check_constant(arg3, 3, 3); p1 = _cimg_mp_size(arg1); p2 = _cimg_mp_size(arg2); p3 = (unsigned int)mem[arg3]; arg5 = p2 / p3; arg4 = p1 / arg5; if (arg4 * arg5 != p1 || arg5 * p3 != p2) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Types of first and " "second arguments ('%s' and '%s') " "do not match with third argument " "'nb_colsB=%u', " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, s_type(arg1)._data, s_type(arg2)._data, p3, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } pos = vector(arg4 * p3); CImg::vector((ulongT)mp_matrix_mul, pos, arg1, arg2, arg4, arg5, p3) .move_to(code); _cimg_mp_return(pos); } break; case 'n': if (!std::strncmp(ss, "narg(", 5)) { // Number of arguments _cimg_mp_op("Function 'narg()'"); if (ss5 >= se1) _cimg_mp_return(0); arg1 = 0; for (s = ss5; s < se; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; ++arg1; s = ns; } _cimg_mp_constant(arg1); } if ((cimg_sscanf(ss, "norm%u%c", &(arg1 = ~0U), &sep) == 2 && sep == '(') || !std::strncmp(ss, "norminf(", 8) || !std::strncmp(ss, "norm(", 5) || (!std::strncmp(ss, "norm", 4) && ss5 < se1 && (s = std::strchr(ss5, '(')) != 0)) { // Lp norm _cimg_mp_op("Function 'normP()'"); if (*ss4 == '(') { arg1 = 2; s = ss5; } else if (*ss4 == 'i' && *ss5 == 'n' && *ss6 == 'f' && *ss7 == '(') { arg1 = ~0U; s = ss8; } else if (arg1 == ~0U) { arg1 = compile(ss4, s++, depth1, 0, is_single); _cimg_mp_check_constant(arg1, 0, 2); arg1 = (unsigned int)mem[arg1]; } else s = std::strchr(ss4, '(') + 1; pos = scalar(); switch (arg1) { case 0: CImg::vector((ulongT)mp_norm0, pos, 0) .move_to(l_opcode); break; case 1: CImg::vector((ulongT)mp_norm1, pos, 0) .move_to(l_opcode); break; case 2: CImg::vector((ulongT)mp_norm2, pos, 0) .move_to(l_opcode); break; case ~0U: CImg::vector((ulongT)mp_norminf, pos, 0) .move_to(l_opcode); break; default: CImg::vector( (ulongT)mp_normp, pos, 0, (ulongT)(arg1 == ~0U ? -1 : (int)arg1)) .move_to(l_opcode); } for (; s < se; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg2 = compile(s, ns, depth1, 0, is_single); if (_cimg_mp_is_vector(arg2)) CImg::sequence( _cimg_mp_size(arg2), arg2 + 1, arg2 + (ulongT)_cimg_mp_size(arg2)) .move_to(l_opcode); else CImg::vector(arg2).move_to( l_opcode); s = ns; } (l_opcode > 'y').move_to(opcode); if (arg1 > 0 && opcode._height == 4) // Special case with one // argument and p>=1 _cimg_mp_scalar1(mp_abs, opcode[3]); opcode[2] = opcode._height; opcode.move_to(code); _cimg_mp_return(pos); } break; case 'p': if (!std::strncmp(ss, "permut(", 7)) { // Number of permutations _cimg_mp_op("Function 'permut()'"); s1 = ss7; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg1 = compile(ss7, s1, depth1, 0, is_single); arg2 = compile(++s1, s2, depth1, 0, is_single); arg3 = compile(++s2, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 1, 0); _cimg_mp_check_type(arg2, 2, 1, 0); _cimg_mp_check_type(arg3, 3, 1, 0); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2) && _cimg_mp_is_constant(arg3)) _cimg_mp_constant(cimg::permutations( (int)mem[arg1], (int)mem[arg2], (bool)mem[arg3])); _cimg_mp_scalar3(mp_permutations, arg1, arg2, arg3); } if (!std::strncmp(ss, "polygon(", 8)) { // Polygon/line drawing if (!is_single) is_parallelizable = false; _cimg_mp_op("Function 'polygon()'"); if (*ss8 == '#') { // Index specified s0 = ss + 9; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss + 9, s0++, depth1, 0, is_single); _cimg_mp_check_list(true); } else { p1 = ~0U; s0 = ss8; } if (s0 == se1) compile(s0, se1, depth1, 0, is_single); // 'missing' argument error CImg::vector((ulongT)mp_polygon, _cimg_mp_slot_nan, 0, p1) .move_to(l_opcode); for (s = s0; s < se; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg2 = compile(s, ns, depth1, 0, is_single); if (_cimg_mp_is_vector(arg2)) CImg::sequence( _cimg_mp_size(arg2), arg2 + 1, arg2 + (ulongT)_cimg_mp_size(arg2)) .move_to(l_opcode); else CImg::vector(arg2).move_to( l_opcode); s = ns; } (l_opcode > 'y').move_to(opcode); opcode[2] = opcode._height; opcode.move_to(code); _cimg_mp_return_nan(); } if (!std::strncmp(ss, "print(", 6) || !std::strncmp(ss, "prints(", 7)) { // Print expressions is_sth = ss[5] == 's'; // is prints() _cimg_mp_op(is_sth ? "Function 'prints()'" : "Function 'print()'"); s0 = is_sth ? ss7 : ss6; if (*s0 != '#' || is_sth) { // Regular expression for (s = s0; s < se; ++s) { ns = s; while ( ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; pos = compile(s, ns, depth1, p_ref, is_single); c1 = *ns; *ns = 0; variable_name.assign( CImg::string(s, true, true) .unroll('y'), true); cimg::strpare(variable_name, false, true); if (_cimg_mp_is_vector(pos)) // Vector ((CImg::vector( (ulongT)mp_vector_print, pos, 0, (ulongT)_cimg_mp_size(pos), is_sth ? 1 : 0), variable_name) > 'y') .move_to(opcode); else // Scalar ((CImg::vector((ulongT)mp_print, pos, 0, is_sth ? 1 : 0), variable_name) > 'y') .move_to(opcode); opcode[2] = opcode._height; opcode.move_to(code); *ns = c1; s = ns; } _cimg_mp_return(pos); } else { // Image p1 = compile(ss7, se1, depth1, 0, is_single); _cimg_mp_check_list(true); CImg::vector((ulongT)mp_image_print, _cimg_mp_slot_nan, p1) .move_to(code); _cimg_mp_return_nan(); } } if (!std::strncmp( ss, "pseudoinv(", 10)) { // Matrix/scalar pseudo-inversion _cimg_mp_op("Function 'pseudoinv()'"); s1 = ss + 10; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss + 10, s1, depth1, 0, is_single); arg2 = s1 < se1 ? compile(++s1, se1, depth1, 0, is_single) : 1; _cimg_mp_check_type(arg1, 1, 2, 0); _cimg_mp_check_constant(arg2, 2, 3); p1 = _cimg_mp_size(arg1); p2 = (unsigned int)mem[arg2]; p3 = p1 / p2; if (p3 * p2 != p1) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Type of first argument " "('%s') " "does not match with second argument " "'nb_colsA=%u', " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, s_type(arg1)._data, p2, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } pos = vector(p1); CImg::vector((ulongT)mp_matrix_pseudoinv, pos, arg1, p2, p3) .move_to(code); _cimg_mp_return(pos); } break; case 'r': if (!std::strncmp(ss, "resize(", 7)) { // Vector or image resize _cimg_mp_op("Function 'resize()'"); if (*ss7 != '#') { // Vector s1 = ss7; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss7, s1, depth1, 0, is_single); s2 = ++s1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(s1, s2, depth1, 0, is_single); arg3 = 1; arg4 = 0; if (s2 < se1) { s1 = ++s2; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg3 = compile(s2, s1, depth1, 0, is_single); arg4 = s1 < se1 ? compile(++s1, se1, depth1, 0, is_single) : 0; } _cimg_mp_check_constant(arg2, 2, 3); arg2 = (unsigned int)mem[arg2]; _cimg_mp_check_type(arg3, 3, 1, 0); _cimg_mp_check_type(arg4, 4, 1, 0); pos = vector(arg2); CImg::vector( (ulongT)mp_vector_resize, pos, arg2, arg1, (ulongT)_cimg_mp_size(arg1), arg3, arg4) .move_to(code); _cimg_mp_return(pos); } else { // Image if (!is_single) is_parallelizable = false; s0 = ss8; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; p1 = compile(ss8, s0++, depth1, 0, is_single); _cimg_mp_check_list(true); l_opcode .assign(); // Don't use 'opcode': it can be // modified by further calls to // 'compile()'! CImg::vector( (ulongT)mp_image_resize, _cimg_mp_slot_nan, p1, ~0U, ~0U, ~0U, ~0U, 1, 0, 0, 0, 0, 0) .move_to(l_opcode); pos = 0; for (s = s0; s < se && pos < 10; ++s) { ns = s; while ( ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg1 = compile(s, ns, depth1, 0, is_single); _cimg_mp_check_type(arg1, pos + 2, 1, 0); l_opcode(0, pos + 3) = arg1; s = ns; ++pos; } if (pos < 1 || pos > 10) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: %s arguments, in " "expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, pos < 1 ? "Missing" : "Too much", s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } l_opcode[0].move_to(code); _cimg_mp_return_nan(); } } if (!std::strncmp(ss, "reverse(", 8)) { // Vector reverse _cimg_mp_op("Function 'reverse()'"); arg1 = compile(ss8, se1, depth1, 0, is_single); if (!_cimg_mp_is_vector(arg1)) _cimg_mp_return(arg1); p1 = _cimg_mp_size(arg1); pos = vector(p1); CImg::vector((ulongT)mp_vector_reverse, pos, arg1, p1) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "rol(", 4) || !std::strncmp(ss, "ror(", 4)) { // Bitwise rotation _cimg_mp_op(ss[2] == 'l' ? "Function 'rol()'" : "Function 'ror()'"); s1 = ss4; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss4, s1, depth1, 0, is_single); arg2 = s1 < se1 ? compile(++s1, se1, depth1, 0, is_single) : 1; _cimg_mp_check_type(arg2, 2, 1, 0); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector2_vs( *ss2 == 'l' ? mp_rol : mp_ror, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant( *ss2 == 'l' ? cimg::rol(mem[arg1], (unsigned int)mem[arg2]) : cimg::ror(mem[arg1], (unsigned int)mem[arg2])); _cimg_mp_scalar2(*ss2 == 'l' ? mp_rol : mp_ror, arg1, arg2); } if (!std::strncmp(ss, "rot(", 4)) { // 2D/3D rotation matrix _cimg_mp_op("Function 'rot()'"); s1 = ss4; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss4, s1, depth1, 0, is_single); if (s1 < se1) { // 3D rotation _cimg_mp_check_type(arg1, 1, 3, 3); is_sth = false; // Is coordinates as vector? if (_cimg_mp_is_vector( arg1)) { // Coordinates specified as a // vector is_sth = true; p2 = _cimg_mp_size(arg1); ++arg1; arg2 = arg3 = 0; if (p2 > 1) { arg2 = arg1 + 1; if (p2 > 2) arg3 = arg2 + 1; } arg4 = compile(++s1, se1, depth1, 0, is_single); } else { s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(++s1, s2, depth1, 0, is_single); s3 = s2 + 1; while (s3 < se1 && (*s3 != ',' || level[s3 - expr._data] != clevel1)) ++s3; arg3 = compile(++s2, s3, depth1, 0, is_single); arg4 = compile(++s3, se1, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 1, 0); _cimg_mp_check_type(arg3, 3, 1, 0); } _cimg_mp_check_type(arg4, is_sth ? 2 : 4, 1, 0); pos = vector(9); CImg::vector((ulongT)mp_rot3d, pos, arg1, arg2, arg3, arg4) .move_to(code); } else { // 2D rotation _cimg_mp_check_type(arg1, 1, 1, 0); pos = vector(4); CImg::vector((ulongT)mp_rot2d, pos, arg1) .move_to(code); } _cimg_mp_return(pos); } if (!std::strncmp(ss, "round(", 6)) { // Value rounding _cimg_mp_op("Function 'round()'"); s1 = ss6; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss6, s1, depth1, 0, is_single); arg2 = 1; arg3 = 0; if (s1 < se1) { s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(++s1, s2, depth1, 0, is_single); arg3 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : 0; } _cimg_mp_check_type(arg2, 2, 1, 0); _cimg_mp_check_type(arg3, 3, 1, 0); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector3_vss(mp_round, arg1, arg2, arg3); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2) && _cimg_mp_is_constant(arg3)) _cimg_mp_constant(cimg::round( mem[arg1], mem[arg2], (int)mem[arg3])); _cimg_mp_scalar3(mp_round, arg1, arg2, arg3); } break; case 's': if (*ss1 == '(') { // Image spectrum _cimg_mp_op("Function 's()'"); if (*ss2 == '#') { // Index specified p1 = compile(ss3, se1, depth1, 0, is_single); _cimg_mp_check_list(false); } else { if (ss2 != se1) break; p1 = ~0U; } pos = scalar(); CImg::vector((ulongT)mp_image_s, pos, p1) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp( ss, "same(", 5)) { // Test if operands have the same values _cimg_mp_op("Function 'same()'"); s1 = ss5; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss5, s1, depth1, 0, is_single); s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(++s1, s2, depth1, 0, is_single); arg3 = 11; arg4 = 1; if (s2 < se1) { s3 = s2 + 1; while (s3 < se1 && (*s3 != ',' || level[s3 - expr._data] != clevel1)) ++s3; arg3 = compile(++s2, s3, depth1, 0, is_single); _cimg_mp_check_type(arg3, 3, 1, 0); arg4 = s3 < se1 ? compile(++s3, se1, depth1, 0, is_single) : 1; } p1 = _cimg_mp_size(arg1); p2 = _cimg_mp_size(arg2); _cimg_mp_scalar6(mp_vector_eq, arg1, p1, arg2, p2, arg3, arg4); } if (!std::strncmp(ss, "shift(", 6)) { // Shift vector _cimg_mp_op("Function 'shift()'"); s1 = ss6; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss6, s1, depth1, 0, is_single); arg2 = 1; arg3 = 0; if (s1 < se1) { s0 = ++s1; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; arg2 = compile(s1, s0, depth1, 0, is_single); arg3 = s0 < se1 ? compile(++s0, se1, depth1, 0, is_single) : 0; } _cimg_mp_check_type(arg1, 1, 2, 0); _cimg_mp_check_type(arg2, 2, 1, 0); _cimg_mp_check_type(arg3, 3, 1, 0); p1 = _cimg_mp_size(arg1); pos = vector(p1); CImg::vector((ulongT)mp_shift, pos, arg1, p1, arg2, arg3) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "sign(", 5)) { // Sign _cimg_mp_op("Function 'sign()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sign, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::sign(mem[arg1])); _cimg_mp_scalar1(mp_sign, arg1); } if (!std::strncmp(ss, "sin(", 4)) { // Sine _cimg_mp_op("Function 'sin()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sin, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::sin(mem[arg1])); _cimg_mp_scalar1(mp_sin, arg1); } if (!std::strncmp(ss, "sinc(", 5)) { // Sine cardinal _cimg_mp_op("Function 'sinc()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sinc, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::sinc(mem[arg1])); _cimg_mp_scalar1(mp_sinc, arg1); } if (!std::strncmp(ss, "sinh(", 5)) { // Hyperbolic sine _cimg_mp_op("Function 'sinh()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sinh, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::sinh(mem[arg1])); _cimg_mp_scalar1(mp_sinh, arg1); } if (!std::strncmp(ss, "size(", 5)) { // Vector size _cimg_mp_op("Function 'size()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); _cimg_mp_constant(_cimg_mp_is_scalar(arg1) ? 0 : _cimg_mp_size(arg1)); } if (!std::strncmp(ss, "solve(", 6)) { // Solve linear system _cimg_mp_op("Function 'solve()'"); s1 = ss6; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss6, s1, depth1, 0, is_single); s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(++s1, s2, depth1, 0, is_single); arg3 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : 1; _cimg_mp_check_type(arg1, 1, 2, 0); _cimg_mp_check_type(arg2, 2, 2, 0); _cimg_mp_check_constant(arg3, 3, 3); p1 = _cimg_mp_size(arg1); p2 = _cimg_mp_size(arg2); p3 = (unsigned int)mem[arg3]; arg5 = p2 / p3; arg4 = p1 / arg5; if (arg4 * arg5 != p1 || arg5 * p3 != p2) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Types of first and " "second arguments ('%s' and '%s') " "do not match with third argument " "'nb_colsB=%u', " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, s_type(arg1)._data, s_type(arg2)._data, p3, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } pos = vector(arg4 * p3); CImg::vector((ulongT)mp_solve, pos, arg1, arg2, arg4, arg5, p3) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "sort(", 5)) { // Sort vector _cimg_mp_op("Function 'sort()'"); if (*ss5 != '#') { // Vector s1 = ss5; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss5, s1, depth1, 0, is_single); arg2 = arg3 = 1; if (s1 < se1) { s0 = ++s1; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; arg2 = compile(s1, s0, depth1, 0, is_single); arg3 = s0 < se1 ? compile(++s0, se1, depth1, 0, is_single) : 1; } _cimg_mp_check_type(arg1, 1, 2, 0); _cimg_mp_check_type(arg2, 2, 1, 0); _cimg_mp_check_constant(arg3, 3, 3); arg3 = (unsigned int)mem[arg3]; p1 = _cimg_mp_size(arg1); if (p1 % arg3) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Invalid specified " "chunk size (%u) for first argument " "('%s'), in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, arg3, s_type(arg1)._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } pos = vector(p1); CImg::vector((ulongT)mp_sort, pos, arg1, p1, arg2, arg3) .move_to(code); _cimg_mp_return(pos); } else { // Image s1 = ss6; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; p1 = compile(ss6, s1, depth1, 0, is_single); arg1 = 1; arg2 = constant(-1.); if (s1 < se1) { s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg1 = compile(++s1, s2, depth1, 0, is_single); if (s2 < se1) arg2 = compile(++s2, se1, depth1, 0, is_single); } _cimg_mp_check_type(arg1, 2, 1, 0); _cimg_mp_check_type(arg2, 3, 1, 0); _cimg_mp_check_list(true); CImg::vector((ulongT)mp_image_sort, _cimg_mp_slot_nan, p1, arg1, arg2) .move_to(code); _cimg_mp_return_nan(); } } if (!std::strncmp(ss, "sqr(", 4)) { // Square _cimg_mp_op("Function 'sqr()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sqr, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::sqr(mem[arg1])); _cimg_mp_scalar1(mp_sqr, arg1); } if (!std::strncmp(ss, "sqrt(", 5)) { // Square root _cimg_mp_op("Function 'sqrt()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sqrt, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::sqrt(mem[arg1])); _cimg_mp_scalar1(mp_sqrt, arg1); } if (!std::strncmp(ss, "srand(", 6)) { // Set RNG seed _cimg_mp_op("Function 'srand()'"); arg1 = ss6 < se1 ? compile(ss6, se1, depth1, 0, is_single) : ~0U; if (arg1 != ~0U) { _cimg_mp_check_type(arg1, 1, 1, 0); _cimg_mp_scalar1(mp_srand, arg1); } _cimg_mp_scalar0(mp_srand0); } if (!std::strncmp(ss, "stats(", 6)) { // Image statistics _cimg_mp_op("Function 'stats()'"); if (*ss6 == '#') { // Index specified p1 = compile(ss7, se1, depth1, 0, is_single); _cimg_mp_check_list(false); } else { if (ss6 != se1) break; p1 = ~0U; } pos = vector(14); CImg::vector((ulongT)mp_image_stats, pos, p1) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "stov(", 5)) { // String to double _cimg_mp_op("Function 'stov()'"); s1 = ss5; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss5, s1, depth1, 0, is_single); arg2 = arg3 = 0; if (s1 < se1) { s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(++s1, s2, depth1, 0, is_single); arg3 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : 0; } _cimg_mp_check_type(arg2, 2, 1, 0); _cimg_mp_check_type(arg3, 3, 1, 0); p1 = _cimg_mp_size(arg1); pos = scalar(); CImg::vector((ulongT)mp_stov, pos, arg1, p1, arg2, arg3) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "svd(", 4)) { // Matrix SVD _cimg_mp_op("Function 'svd()'"); s1 = ss4; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss4, s1, depth1, 0, is_single); arg2 = s1 < se1 ? compile(++s1, se1, depth1, 0, is_single) : 1; _cimg_mp_check_type(arg1, 1, 2, 0); _cimg_mp_check_constant(arg2, 2, 3); p1 = _cimg_mp_size(arg1); p2 = (unsigned int)mem[arg2]; p3 = p1 / p2; if (p3 * p2 != p1) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Type of first argument " "('%s') " "does not match with second argument " "'nb_colsA=%u', " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, s_type(arg1)._data, p2, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } pos = vector(p1 + p2 + p2 * p2); CImg::vector((ulongT)mp_matrix_svd, pos, arg1, p2, p3) .move_to(code); _cimg_mp_return(pos); } break; case 't': if (!std::strncmp(ss, "tan(", 4)) { // Tangent _cimg_mp_op("Function 'tan()'"); arg1 = compile(ss4, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_tan, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::tan(mem[arg1])); _cimg_mp_scalar1(mp_tan, arg1); } if (!std::strncmp(ss, "tanh(", 5)) { // Hyperbolic tangent _cimg_mp_op("Function 'tanh()'"); arg1 = compile(ss5, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_tanh, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::tanh(mem[arg1])); _cimg_mp_scalar1(mp_tanh, arg1); } if (!std::strncmp(ss, "trace(", 6)) { // Matrix trace _cimg_mp_op("Function 'trace()'"); arg1 = compile(ss6, se1, depth1, 0, is_single); _cimg_mp_check_matrix_square(arg1, 1); p1 = (unsigned int)cimg::round( std::sqrt((float)_cimg_mp_size(arg1))); _cimg_mp_scalar2(mp_trace, arg1, p1); } if (!std::strncmp(ss, "transp(", 7)) { // Matrix transpose _cimg_mp_op("Function 'transp()'"); s1 = ss7; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss7, s1, depth1, 0, is_single); arg2 = compile(++s1, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 2, 0); _cimg_mp_check_constant(arg2, 2, 3); p1 = _cimg_mp_size(arg1); p2 = (unsigned int)mem[arg2]; p3 = p1 / p2; if (p2 * p3 != p1) { *se = saved_char; s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Size of first argument " "('%s') does not match " "second argument 'nb_cols=%u', in " "expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, s_type(arg1)._data, p2, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } pos = vector(p3 * p2); CImg::vector((ulongT)mp_transp, pos, arg1, p2, p3) .move_to(code); _cimg_mp_return(pos); } break; case 'u': if (*ss1 == '(') { // Random value with uniform distribution _cimg_mp_op("Function 'u()'"); if (*ss2 == ')') _cimg_mp_scalar2(mp_u, 0, 1); s1 = ss2; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss2, s1, depth1, 0, is_single); if (s1 < se1) arg2 = compile(++s1, se1, depth1, 0, is_single); else { arg2 = arg1; arg1 = 0; } _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_u, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_u, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_u, arg1, arg2); _cimg_mp_scalar2(mp_u, arg1, arg2); } if (!std::strncmp(ss, "unref(", 6)) { // Un-reference variable _cimg_mp_op("Function 'unref()'"); arg1 = ~0U; for (s0 = ss6; s0 < se1; s0 = s1) { if (s0 > ss6 && *s0 == ',') ++s0; s1 = s0; while (s1 < se1 && *s1 != ',') ++s1; c1 = *s1; if (s1 > s0) { *s1 = 0; arg2 = arg3 = ~0U; if (s0[0] == 'w' && s0[1] == 'h' && !s0[2]) arg1 = reserved_label[arg3 = 0]; else if (s0[0] == 'w' && s0[1] == 'h' && s0[2] == 'd' && !s0[3]) arg1 = reserved_label[arg3 = 1]; else if (s0[0] == 'w' && s0[1] == 'h' && s0[2] == 'd' && s0[3] == 's' && !s0[4]) arg1 = reserved_label[arg3 = 2]; else if (s0[0] == 'p' && s0[1] == 'i' && !s0[2]) arg1 = reserved_label[arg3 = 3]; else if (s0[0] == 'i' && s0[1] == 'm' && !s0[2]) arg1 = reserved_label[arg3 = 4]; else if (s0[0] == 'i' && s0[1] == 'M' && !s0[2]) arg1 = reserved_label[arg3 = 5]; else if (s0[0] == 'i' && s0[1] == 'a' && !s0[2]) arg1 = reserved_label[arg3 = 6]; else if (s0[0] == 'i' && s0[1] == 'v' && !s0[2]) arg1 = reserved_label[arg3 = 7]; else if (s0[0] == 'i' && s0[1] == 's' && !s0[2]) arg1 = reserved_label[arg3 = 8]; else if (s0[0] == 'i' && s0[1] == 'p' && !s0[2]) arg1 = reserved_label[arg3 = 9]; else if (s0[0] == 'i' && s0[1] == 'c' && !s0[2]) arg1 = reserved_label[arg3 = 10]; else if (s0[0] == 'x' && s0[1] == 'm' && !s0[2]) arg1 = reserved_label[arg3 = 11]; else if (s0[0] == 'y' && s0[1] == 'm' && !s0[2]) arg1 = reserved_label[arg3 = 12]; else if (s0[0] == 'z' && s0[1] == 'm' && !s0[2]) arg1 = reserved_label[arg3 = 13]; else if (s0[0] == 'c' && s0[1] == 'm' && !s0[2]) arg1 = reserved_label[arg3 = 14]; else if (s0[0] == 'x' && s0[1] == 'M' && !s0[2]) arg1 = reserved_label[arg3 = 15]; else if (s0[0] == 'y' && s0[1] == 'M' && !s0[2]) arg1 = reserved_label[arg3 = 16]; else if (s0[0] == 'z' && s0[1] == 'M' && !s0[2]) arg1 = reserved_label[arg3 = 17]; else if (s0[0] == 'c' && s0[1] == 'M' && !s0[2]) arg1 = reserved_label[arg3 = 18]; else if (s0[0] == 'i' && s0[1] >= '0' && s0[1] <= '9' && !s0[2]) arg1 = reserved_label[arg3 = 19 + s0[1] - '0']; else if (!std::strcmp(s0, "interpolation")) arg1 = reserved_label[arg3 = 29]; else if (!std::strcmp(s0, "boundary")) arg1 = reserved_label[arg3 = 30]; else if (s0[1]) { // Multi-char variable cimglist_for( variable_def, i) if (!std::strcmp(s0, variable_def [i])) { arg1 = variable_pos[i]; arg2 = i; break; } } else arg1 = reserved_label [arg3 = *s0]; // Single-char variable if (arg1 != ~0U) { if (arg2 == ~0U) { if (arg3 != ~0U) reserved_label[arg3] = ~0U; } else { variable_def.remove(arg2); if (arg2 < variable_pos._width - 1) std::memmove( variable_pos._data + arg2, variable_pos._data + arg2 + 1, sizeof(uintT) * (variable_pos._width - arg2 - 1)); --variable_pos._width; } } *s1 = c1; } else compile( s0, s1, depth1, 0, is_single); // Will throw a 'missing // argument' exception } _cimg_mp_return( arg1 != ~0U ? arg1 : _cimg_mp_slot_nan); // Return value of // last specified // variable } if (!std::strncmp(ss, "uppercase(", 10)) { // Upper case _cimg_mp_op("Function 'uppercase()'"); arg1 = compile(ss + 10, se1, depth1, 0, is_single); if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_uppercase, arg1); if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::uppercase(mem[arg1])); _cimg_mp_scalar1(mp_uppercase, arg1); } break; case 'v': if ((cimg_sscanf(ss, "vector%u%c", &(arg1 = ~0U), &sep) == 2 && sep == '(' && arg1 > 0) || !std::strncmp(ss, "vector(", 7) || (!std::strncmp(ss, "vector", 6) && ss7 < se1 && (s = std::strchr(ss7, '(')) != 0)) { // Vector _cimg_mp_op("Function 'vector()'"); arg2 = 0; // Number of specified values if (arg1 == ~0U && *ss6 != '(') { arg1 = compile(ss6, s++, depth1, 0, is_single); _cimg_mp_check_constant(arg1, 0, 3); arg1 = (unsigned int)mem[arg1]; } else s = std::strchr(ss6, '(') + 1; if (arg1 == ~0U && *s == '#') { // Number of elements specified as // first argument with '#' s0 = ++s; while (s0 < se1 && (*s0 != ',' || level[s0 - expr._data] != clevel1)) ++s0; arg1 = compile(s, s0++, depth1, 0, is_single); _cimg_mp_check_constant(arg1, 1, 3); arg1 = (unsigned int)mem[arg1]; s = s0; } if (s < se1 || arg1 == ~0U) for (; s < se; ++s) { ns = s; while ( ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg3 = compile(s, ns, depth1, 0, is_single); if (_cimg_mp_is_vector(arg3)) { arg4 = _cimg_mp_size(arg3); CImg::sequence(arg4, arg3 + 1, arg3 + arg4) .move_to(l_opcode); arg2 += arg4; } else { CImg::vector(arg3).move_to( l_opcode); ++arg2; } s = ns; } if (arg1 == ~0U) arg1 = arg2; if (!arg1) _cimg_mp_return(0); pos = vector(arg1); l_opcode.insert( CImg::vector((ulongT)mp_vector_init, pos, 0, arg1), 0); (l_opcode > 'y').move_to(opcode); opcode[2] = opcode._height; opcode.move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "vtos(", 5)) { // Double(s) to string _cimg_mp_op("Function 'vtos()'"); s1 = ss5; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss5, s1, depth1, 0, is_single); arg2 = 0; arg3 = ~0U; if (s1 < se1) { s2 = s1 + 1; while (s2 < se1 && (*s2 != ',' || level[s2 - expr._data] != clevel1)) ++s2; arg2 = compile(++s1, s2, depth1, 0, is_single); arg3 = s2 < se1 ? compile(++s2, se1, depth1, 0, is_single) : ~0U; } _cimg_mp_check_type(arg2, 2, 1, 0); if (arg3 == ~0U) { // Auto-guess best output vector size p1 = _cimg_mp_size(arg1); p1 = p1 ? 22 * p1 - 1 : 18; } else { _cimg_mp_check_constant(arg3, 3, 3); p1 = (unsigned int)mem[arg3]; } pos = vector(p1); CImg::vector((ulongT)mp_vtos, pos, p1, arg1, _cimg_mp_size(arg1), arg2) .move_to(code); _cimg_mp_return(pos); } break; case 'w': if (*ss1 == '(') { // Image width _cimg_mp_op("Function 'w()'"); if (*ss2 == '#') { // Index specified p1 = compile(ss3, se1, depth1, 0, is_single); _cimg_mp_check_list(false); } else { if (ss2 != se1) break; p1 = ~0U; } pos = scalar(); CImg::vector((ulongT)mp_image_w, pos, p1) .move_to(code); _cimg_mp_return(pos); } if (*ss1 == 'h' && *ss2 == '(') { // Image width*height _cimg_mp_op("Function 'wh()'"); if (*ss3 == '#') { // Index specified p1 = compile(ss4, se1, depth1, 0, is_single); _cimg_mp_check_list(false); } else { if (ss3 != se1) break; p1 = ~0U; } pos = scalar(); CImg::vector((ulongT)mp_image_wh, pos, p1) .move_to(code); _cimg_mp_return(pos); } if (*ss1 == 'h' && *ss2 == 'd' && *ss3 == '(') { // Image width*height*depth _cimg_mp_op("Function 'whd()'"); if (*ss4 == '#') { // Index specified p1 = compile(ss5, se1, depth1, 0, is_single); _cimg_mp_check_list(false); } else { if (ss4 != se1) break; p1 = ~0U; } pos = scalar(); CImg::vector((ulongT)mp_image_whd, pos, p1) .move_to(code); _cimg_mp_return(pos); } if (*ss1 == 'h' && *ss2 == 'd' && *ss3 == 's' && *ss4 == '(') { // Image width*height*depth*spectrum _cimg_mp_op("Function 'whds()'"); if (*ss5 == '#') { // Index specified p1 = compile(ss6, se1, depth1, 0, is_single); _cimg_mp_check_list(false); } else { if (ss5 != se1) break; p1 = ~0U; } pos = scalar(); CImg::vector((ulongT)mp_image_whds, pos, p1) .move_to(code); _cimg_mp_return(pos); } if (!std::strncmp(ss, "while(", 6)) { // While...do _cimg_mp_op("Function 'while()'"); s0 = *ss5 == '(' ? ss6 : ss8; s1 = s0; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; p1 = code._width; arg1 = compile(s0, s1, depth1, 0, is_single); p2 = code._width; arg6 = mempos; pos = compile(++s1, se1, depth1, 0, is_single); _cimg_mp_check_type(arg1, 1, 1, 0); arg2 = _cimg_mp_size(pos); CImg::vector( (ulongT)mp_while, pos, arg1, p2 - p1, code._width - p2, arg2, pos >= arg6 && !_cimg_mp_is_constant(pos), arg1 >= arg6 && !_cimg_mp_is_constant(arg1)) .move_to(code, p1); _cimg_mp_return(pos); } break; case 'x': if (!std::strncmp(ss, "xor(", 4)) { // Xor _cimg_mp_op("Function 'xor()'"); s1 = ss4; while (s1 < se1 && (*s1 != ',' || level[s1 - expr._data] != clevel1)) ++s1; arg1 = compile(ss4, s1, depth1, 0, is_single); arg2 = compile(++s1, se1, depth1, 0, is_single); _cimg_mp_check_type(arg2, 2, 3, _cimg_mp_size(arg1)); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_xor, arg1, arg2); if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_bitwise_xor, arg1, arg2); if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_bitwise_xor, arg1, arg2); if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant((longT)mem[arg1] ^ (longT)mem[arg2]); _cimg_mp_scalar2(mp_bitwise_xor, arg1, arg2); } break; } if (!std::strncmp(ss, "min(", 4) || !std::strncmp(ss, "max(", 4) || !std::strncmp(ss, "med(", 4) || !std::strncmp(ss, "kth(", 4) || !std::strncmp(ss, "sum(", 4) || !std::strncmp(ss, "avg(", 4) || !std::strncmp(ss, "std(", 4) || !std::strncmp(ss, "var(", 4) || !std::strncmp(ss, "prod(", 5) || !std::strncmp(ss, "argmin(", 7) || !std::strncmp(ss, "argmax(", 7) || !std::strncmp(ss, "argkth(", 7)) { // Multi-argument functions _cimg_mp_op( *ss == 'a' ? (ss[1] == 'v' ? "Function 'avg()'" : ss[3] == 'k' ? "Function 'argkth()'" : ss[4] == 'i' ? "Function 'argmin()'" : "Function 'argmax()'") : *ss == 's' ? (ss[1] == 'u' ? "Function 'sum()'" : "Function 'std()'") : *ss == 'k' ? "Function 'kth()'" : *ss == 'p' ? "Function 'prod()'" : *ss == 'v' ? "Function 'var()'" : ss[1] == 'i' ? "Function 'min()'" : ss[1] == 'a' ? "Function " "'max()'" : "Function " "'med()'"); op = *ss == 'a' ? (ss[1] == 'v' ? mp_avg : ss[3] == 'k' ? mp_argkth : ss[4] == 'i' ? mp_argmin : mp_argmax) : *ss == 's' ? (ss[1] == 'u' ? mp_sum : mp_std) : *ss == 'k' ? mp_kth : *ss == 'p' ? mp_prod : *ss == 'v' ? mp_var : ss[1] == 'i' ? mp_min : ss[1] == 'a' ? mp_max : ss[2] == 'a' ? mp_avg : mp_median; is_sth = true; // Tell if all arguments are constant pos = scalar(); CImg::vector((ulongT)op, pos, 0).move_to(l_opcode); for (s = std::strchr(ss, '(') + 1; s < se; ++s) { ns = s; while ( ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; arg2 = compile(s, ns, depth1, 0, is_single); if (_cimg_mp_is_vector(arg2)) CImg::sequence( _cimg_mp_size(arg2), arg2 + 1, arg2 + (ulongT)_cimg_mp_size(arg2)) .move_to(l_opcode); else CImg::vector(arg2).move_to(l_opcode); is_sth &= _cimg_mp_is_constant(arg2); s = ns; } (l_opcode > 'y').move_to(opcode); opcode[2] = opcode._height; if (is_sth) _cimg_mp_constant(op(*this)); opcode.move_to(code); _cimg_mp_return(pos); } // No corresponding built-in function -> Look for a user-defined // macro call. s0 = strchr(ss, '('); if (s0) { variable_name.assign(ss, (unsigned int)(s0 - ss + 1)) .back() = 0; // Count number of specified arguments. p1 = 0; for (s = s0 + 1; s <= se1; ++p1, s = ns + 1) { while (*s && cimg::is_blank(*s)) ++s; if (*s == ')' && !p1) break; ns = s; while ( ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; } arg3 = 0; // Number of possible name matches cimglist_for( macro_def, l) if (!std::strcmp(macro_def[l], variable_name) && ++arg3 && macro_def[l].back() == (char)p1) { p2 = (unsigned int)macro_def[l] .back(); // Number of required arguments CImg _expr = macro_body[l]; // Expression to be substituted p1 = 1; // Index of current parsed argument for (s = s0 + 1; s <= se1; ++p1, s = ns + 1) { // Parse function arguments while (*s && cimg::is_blank(*s)) ++s; if (*s == ')' && p1 == 1) break; // Function has no arguments if (p1 > p2) { ++p1; break; } ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ')' || level[ns - expr._data] != clevel)) ++ns; variable_name.assign(s, (unsigned int)(ns - s + 1)) .back() = 0; // Argument to write arg2 = 0; cimg_forX(_expr, k) { if (_expr[k] == (char) p1) { // Perform argument substitution arg1 = _expr._width; _expr.resize( arg1 + variable_name._width - 2, 1, 1, 1, 0); std::memmove(_expr._data + k + variable_name._width - 1, _expr._data + k + 1, arg1 - k - 1); std::memcpy(_expr._data + k, variable_name, variable_name._width - 1); k += variable_name._width - 2; } ++arg2; } } // Recompute 'pexpr' and 'level' for evaluating // substituted expression. CImg _pexpr(_expr._width); ns = _pexpr._data; for (ps = _expr._data, c1 = ' '; *ps; ++ps) { if (!cimg::is_blank(*ps)) c1 = *ps; *(ns++) = c1; } *ns = 0; CImg _level = get_level(_expr); expr.swap(_expr); pexpr.swap(_pexpr); level.swap(_level); s0 = user_macro; user_macro = macro_def[l]; pos = compile(expr._data, expr._data + expr._width - 1, depth1, p_ref, is_single); user_macro = s0; level.swap(_level); pexpr.swap(_pexpr); expr.swap(_expr); _cimg_mp_return(pos); } if (arg3) { // Macro name matched but number of arguments // does not CImg sig_nargs(arg3); arg1 = 0; cimglist_for( macro_def, l) if (!std::strcmp(macro_def[l], variable_name)) sig_nargs[arg1++] = (unsigned int)macro_def[l].back(); *se = saved_char; cimg::strellipsize(variable_name, 64); s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); if (sig_nargs._width > 1) { sig_nargs.sort(); arg1 = sig_nargs.back(); --sig_nargs._width; throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: Function '%s()': Number of " "specified arguments (%u) " "does not match macro declaration (defined for " "%s or %u arguments), " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, variable_name._data, p1, sig_nargs.value_string()._data, arg1, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } else throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: Function '%s()': Number of " "specified arguments (%u) " "does not match macro declaration (defined for " "%u argument%s), " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, variable_name._data, p1, *sig_nargs, *sig_nargs != 1 ? "s" : "", s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } } } // if (se1==')') // Char / string initializer. if (*se1 == '\'' && ((se1 > ss && *ss == '\'') || (se1 > ss1 && *ss == '_' && *ss1 == '\''))) { if (*ss == '_') { _cimg_mp_op("Char initializer"); s1 = ss2; } else { _cimg_mp_op("String initializer"); s1 = ss1; } arg1 = (unsigned int)(se1 - s1); // Original string length if (arg1) { CImg(s1, arg1 + 1).move_to(variable_name).back() = 0; cimg::strunescape(variable_name); arg1 = (unsigned int)std::strlen(variable_name); } if (!arg1) _cimg_mp_return(0); // Empty string -> 0 if (*ss == '_') { if (arg1 == 1) _cimg_mp_constant(*variable_name); *se = saved_char; cimg::strellipsize(variable_name, 64); s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s: Literal %s contains more than one " "character, " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, ss1, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } pos = vector(arg1); CImg::vector((ulongT)mp_string_init, pos, arg1) .move_to(l_opcode); CImg( 1, arg1 / sizeof(ulongT) + (arg1 % sizeof(ulongT) ? 1 : 0)) .move_to(l_opcode); std::memcpy((char*)l_opcode[1]._data, variable_name, arg1); (l_opcode > 'y').move_to(code); _cimg_mp_return(pos); } // Vector initializer [ ... ]. if (*ss == '[' && *se1 == ']') { _cimg_mp_op("Vector initializer"); s1 = ss1; while (s1 < se2 && cimg::is_blank(*s1)) ++s1; s2 = se2; while (s2 > s1 && cimg::is_blank(*s2)) --s2; if (s2 > s1 && *s1 == '\'' && *s2 == '\'') { // Vector values provided as a string arg1 = (unsigned int)(s2 - s1 - 1); // Original string length if (arg1) { CImg(s1 + 1, arg1 + 1) .move_to(variable_name) .back() = 0; cimg::strunescape(variable_name); arg1 = (unsigned int)std::strlen(variable_name); } if (!arg1) _cimg_mp_return(0); // Empty string -> 0 pos = vector(arg1); CImg::vector((ulongT)mp_string_init, pos, arg1) .move_to(l_opcode); CImg(1, arg1 / sizeof(ulongT) + (arg1 % sizeof(ulongT) ? 1 : 0)) .move_to(l_opcode); std::memcpy((char*)l_opcode[1]._data, variable_name, arg1); (l_opcode > 'y').move_to(code); } else { // Vector values provided as list of items arg1 = 0; // Number of specified values if (*ss1 != ']') for (s = ss1; s < se; ++s) { ns = s; while (ns < se && (*ns != ',' || level[ns - expr._data] != clevel1) && (*ns != ']' || level[ns - expr._data] != clevel)) ++ns; arg2 = compile(s, ns, depth1, 0, is_single); if (_cimg_mp_is_vector(arg2)) { arg3 = _cimg_mp_size(arg2); CImg::sequence(arg3, arg2 + 1, arg2 + arg3) .move_to(l_opcode); arg1 += arg3; } else { CImg::vector(arg2).move_to(l_opcode); ++arg1; } s = ns; } if (!arg1) _cimg_mp_return(0); pos = vector(arg1); l_opcode.insert(CImg::vector((ulongT)mp_vector_init, pos, 0, arg1), 0); (l_opcode > 'y').move_to(opcode); opcode[2] = opcode._height; opcode.move_to(code); } _cimg_mp_return(pos); } // Variables related to the input list of images. if (*ss1 == '#' && ss2 < se) { arg1 = compile(ss2, se, depth1, 0, is_single); p1 = (unsigned int)(listin._width && _cimg_mp_is_constant(arg1) ? cimg::mod((int)mem[arg1], listin.width()) : ~0U); switch (*ss) { case 'w': // w#ind if (!listin) _cimg_mp_return(0); if (p1 != ~0U) _cimg_mp_constant(listin[p1]._width); _cimg_mp_scalar1(mp_list_width, arg1); case 'h': // h#ind if (!listin) _cimg_mp_return(0); if (p1 != ~0U) _cimg_mp_constant(listin[p1]._height); _cimg_mp_scalar1(mp_list_height, arg1); case 'd': // d#ind if (!listin) _cimg_mp_return(0); if (p1 != ~0U) _cimg_mp_constant(listin[p1]._depth); _cimg_mp_scalar1(mp_list_depth, arg1); case 'r': // r#ind if (!listin) _cimg_mp_return(0); if (p1 != ~0U) _cimg_mp_constant(listin[p1]._is_shared); _cimg_mp_scalar1(mp_list_is_shared, arg1); case 's': // s#ind if (!listin) _cimg_mp_return(0); if (p1 != ~0U) _cimg_mp_constant(listin[p1]._spectrum); _cimg_mp_scalar1(mp_list_spectrum, arg1); case 'i': // i#ind if (!listin) _cimg_mp_return(0); _cimg_mp_scalar7(mp_list_ixyzc, arg1, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, _cimg_mp_slot_c, 0, _cimg_mp_boundary); case 'I': // I#ind p2 = p1 != ~0U ? listin[p1]._spectrum : listin._width ? ~0U : 0; if (!p2) _cimg_mp_return(0); pos = vector(p2); CImg::vector((ulongT)mp_list_Joff, pos, p1, 0, 0, p2) .move_to(code); _cimg_mp_return(pos); case 'R': // R#ind if (!listin) _cimg_mp_return(0); _cimg_mp_scalar7(mp_list_ixyzc, arg1, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, 0, 0, _cimg_mp_boundary); case 'G': // G#ind if (!listin) _cimg_mp_return(0); _cimg_mp_scalar7(mp_list_ixyzc, arg1, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, 1, 0, _cimg_mp_boundary); case 'B': // B#ind if (!listin) _cimg_mp_return(0); _cimg_mp_scalar7(mp_list_ixyzc, arg1, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, 2, 0, _cimg_mp_boundary); case 'A': // A#ind if (!listin) _cimg_mp_return(0); _cimg_mp_scalar7(mp_list_ixyzc, arg1, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, 3, 0, _cimg_mp_boundary); } } if (*ss1 && *ss2 == '#' && ss3 < se) { arg1 = compile(ss3, se, depth1, 0, is_single); p1 = (unsigned int)(listin._width && _cimg_mp_is_constant(arg1) ? cimg::mod((int)mem[arg1], listin.width()) : ~0U); if (*ss == 'w' && *ss1 == 'h') { // wh#ind if (!listin) _cimg_mp_return(0); if (p1 != ~0U) _cimg_mp_constant(listin[p1]._width * listin[p1]._height); _cimg_mp_scalar1(mp_list_wh, arg1); } arg2 = ~0U; if (*ss == 'i') { if (*ss1 == 'c') { // ic#ind if (!listin) _cimg_mp_return(0); if (_cimg_mp_is_constant(arg1)) { if (!list_median) list_median.assign(listin._width); if (!list_median[p1]) CImg::vector(listin[p1].median()) .move_to(list_median[p1]); _cimg_mp_constant(*list_median[p1]); } _cimg_mp_scalar1(mp_list_median, arg1); } if (*ss1 >= '0' && *ss1 <= '9') { // i0#ind...i9#ind if (!listin) _cimg_mp_return(0); _cimg_mp_scalar7(mp_list_ixyzc, arg1, _cimg_mp_slot_x, _cimg_mp_slot_y, _cimg_mp_slot_z, *ss1 - '0', 0, _cimg_mp_boundary); } switch (*ss1) { case 'm': arg2 = 0; break; // im#ind case 'M': arg2 = 1; break; // iM#ind case 'a': arg2 = 2; break; // ia#ind case 'v': arg2 = 3; break; // iv#ind case 's': arg2 = 12; break; // is#ind case 'p': arg2 = 13; break; // ip#ind } } else if (*ss1 == 'm') switch (*ss) { case 'x': arg2 = 4; break; // xm#ind case 'y': arg2 = 5; break; // ym#ind case 'z': arg2 = 6; break; // zm#ind case 'c': arg2 = 7; break; // cm#ind } else if (*ss1 == 'M') switch (*ss) { case 'x': arg2 = 8; break; // xM#ind case 'y': arg2 = 9; break; // yM#ind case 'z': arg2 = 10; break; // zM#ind case 'c': arg2 = 11; break; // cM#ind } if (arg2 != ~0U) { if (!listin) _cimg_mp_return(0); if (_cimg_mp_is_constant(arg1)) { if (!list_stats) list_stats.assign(listin._width); if (!list_stats[p1]) list_stats[p1] .assign(1, 14, 1, 1, 0) .fill(listin[p1].get_stats(), false); _cimg_mp_constant(list_stats(p1, arg2)); } _cimg_mp_scalar2(mp_list_stats, arg1, arg2); } } if (*ss == 'w' && *ss1 == 'h' && *ss2 == 'd' && *ss3 == '#' && ss4 < se) { // whd#ind arg1 = compile(ss4, se, depth1, 0, is_single); if (!listin) _cimg_mp_return(0); p1 = (unsigned int)(_cimg_mp_is_constant(arg1) ? cimg::mod((int)mem[arg1], listin.width()) : ~0U); if (p1 != ~0U) _cimg_mp_constant(listin[p1]._width * listin[p1]._height * listin[p1]._depth); _cimg_mp_scalar1(mp_list_whd, arg1); } if (*ss == 'w' && *ss1 == 'h' && *ss2 == 'd' && *ss3 == 's' && *ss4 == '#' && ss5 < se) { // whds#ind arg1 = compile(ss5, se, depth1, 0, is_single); if (!listin) _cimg_mp_return(0); p1 = (unsigned int)(_cimg_mp_is_constant(arg1) ? cimg::mod((int)mem[arg1], listin.width()) : ~0U); if (p1 != ~0U) _cimg_mp_constant(listin[p1]._width * listin[p1]._height * listin[p1]._depth * listin[p1]._spectrum); _cimg_mp_scalar1(mp_list_whds, arg1); } if (!std::strcmp(ss, "interpolation")) _cimg_mp_return(_cimg_mp_interpolation); // interpolation if (!std::strcmp(ss, "boundary")) _cimg_mp_return(_cimg_mp_boundary); // boundary // No known item found, assuming this is an already initialized // variable. variable_name.assign(ss, (unsigned int)(se - ss + 1)).back() = 0; if (variable_name[1]) { // Multi-char variable cimglist_for(variable_def, i) if (!std::strcmp(variable_name, variable_def[i])) _cimg_mp_return(variable_pos[i]); } else if (reserved_label[(int)*variable_name] != ~0U) // Single-char variable _cimg_mp_return(reserved_label[(int)*variable_name]); // Reached an unknown item -> error. is_sth = true; // is_valid_variable_name if (*variable_name >= '0' && *variable_name <= '9') is_sth = false; else for (ns = variable_name._data; *ns; ++ns) if (!is_varchar(*ns)) { is_sth = false; break; } *se = saved_char; c1 = *se1; cimg::strellipsize(variable_name, 64); s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); if (is_sth) throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: Undefined variable '%s' in expression " "'%s%s%s'.", pixel_type(), _cimg_mp_calling_function, variable_name._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); s1 = std::strchr(ss, '('); s_op = s1 && c1 == ')' ? "function call" : "item"; throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: Unrecognized %s '%s' in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, variable_name._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } // Evaluation procedure. double operator()(const double x, const double y, const double z, const double c) { mem[_cimg_mp_slot_x] = x; mem[_cimg_mp_slot_y] = y; mem[_cimg_mp_slot_z] = z; mem[_cimg_mp_slot_c] = c; for (p_code = code; p_code < p_code_end; ++p_code) { opcode._data = p_code->_data; const ulongT target = opcode[1]; mem[target] = _cimg_mp_defunc(*this); } return *result; } // Evaluation procedure (return output values in vector 'output'). template void operator()(const double x, const double y, const double z, const double c, t* const output) { mem[_cimg_mp_slot_x] = x; mem[_cimg_mp_slot_y] = y; mem[_cimg_mp_slot_z] = z; mem[_cimg_mp_slot_c] = c; for (p_code = code; p_code < p_code_end; ++p_code) { opcode._data = p_code->_data; const ulongT target = opcode[1]; mem[target] = _cimg_mp_defunc(*this); } if (result_dim) { const double* ptrs = result + 1; t* ptrd = output; for (unsigned int k = 0; k < result_dim; ++k) *(ptrd++) = (t) * (ptrs++); } else *output = (t)*result; } // Evaluation procedure for the end() blocks. void end() { if (code_end.is_empty()) return; if (imgin) { mem[_cimg_mp_slot_x] = imgin._width - 1.; mem[_cimg_mp_slot_y] = imgin._height - 1.; mem[_cimg_mp_slot_z] = imgin._depth - 1.; mem[_cimg_mp_slot_c] = imgin._spectrum - 1.; } else mem[_cimg_mp_slot_x] = mem[_cimg_mp_slot_y] = mem[_cimg_mp_slot_z] = mem[_cimg_mp_slot_c] = 0; p_code_end = code_end.end(); for (p_code = code_end; p_code < p_code_end; ++p_code) { opcode._data = p_code->_data; const ulongT target = opcode[1]; mem[target] = _cimg_mp_defunc(*this); } } // Return type of a memory element as a string. CImg s_type(const unsigned int arg) const { CImg res; if (_cimg_mp_is_vector(arg)) { // Vector CImg::string("vectorXXXXXXXXXXXXXXXX").move_to(res); cimg_sprintf(res._data + 6, "%u", _cimg_mp_size(arg)); } else CImg::string("scalar").move_to(res); return res; } // Insert constant value in memory. unsigned int constant(const double val) { // Search for built-in constant. if (cimg::type::is_nan(val)) return _cimg_mp_slot_nan; if (val == (double)(int)val) { if (val >= 0 && val <= 10) return (unsigned int)val; if (val < 0 && val >= -5) return (unsigned int)(10 - val); } if (val == 0.5) return 16; // Search for constant already requested before (in const cache). unsigned int ind = ~0U; if (constcache_size < 1024) { if (!constcache_size) { constcache_vals.assign(16, 1, 1, 1, 0); constcache_inds.assign(16, 1, 1, 1, 0); *constcache_vals = val; constcache_size = 1; ind = 0; } else { // Dichotomic search const double val_beg = *constcache_vals, val_end = constcache_vals[constcache_size - 1]; if (val_beg >= val) ind = 0; else if (val_end == val) ind = constcache_size - 1; else if (val_end < val) ind = constcache_size; else { unsigned int i0 = 1, i1 = constcache_size - 2; while (i0 <= i1) { const unsigned int mid = (i0 + i1) / 2; if (constcache_vals[mid] == val) { i0 = mid; break; } else if (constcache_vals[mid] < val) i0 = mid + 1; else i1 = mid - 1; } ind = i0; } if (ind >= constcache_size || constcache_vals[ind] != val) { ++constcache_size; if (constcache_size > constcache_vals._width) { constcache_vals.resize(-200, 1, 1, 1, 0); constcache_inds.resize(-200, 1, 1, 1, 0); } const int l = constcache_size - (int)ind - 1; if (l > 0) { std::memmove(&constcache_vals[ind + 1], &constcache_vals[ind], l * sizeof(double)); std::memmove(&constcache_inds[ind + 1], &constcache_inds[ind], l * sizeof(unsigned int)); } constcache_vals[ind] = val; constcache_inds[ind] = 0; } } if (constcache_inds[ind]) return constcache_inds[ind]; } // Insert new constant in memory if necessary. if (mempos >= mem._width) { mem.resize(-200, 1, 1, 1, 0); memtype.resize(-200, 1, 1, 1, 0); } const unsigned int pos = mempos++; mem[pos] = val; memtype[pos] = 1; // Set constant property if (ind != ~0U) constcache_inds[ind] = pos; return pos; } // Insert code instructions for processing scalars. unsigned int scalar() { // Insert new scalar in memory if (mempos >= mem._width) { mem.resize(-200, 1, 1, 1, 0); memtype.resize(mem._width, 1, 1, 1, 0); } return mempos++; } unsigned int scalar0(const mp_func op) { const unsigned int pos = scalar(); CImg::vector((ulongT)op, pos).move_to(code); return pos; } unsigned int scalar1(const mp_func op, const unsigned int arg1) { const unsigned int pos = arg1 != ~0U && arg1 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg1) && op != mp_copy ? arg1 : scalar(); CImg::vector((ulongT)op, pos, arg1).move_to(code); return pos; } unsigned int scalar2(const mp_func op, const unsigned int arg1, const unsigned int arg2) { const unsigned int pos = arg1 != ~0U && arg1 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg1) ? arg1 : arg2 != ~0U && arg2 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg2) ? arg2 : scalar(); CImg::vector((ulongT)op, pos, arg1, arg2).move_to(code); return pos; } unsigned int scalar3(const mp_func op, const unsigned int arg1, const unsigned int arg2, const unsigned int arg3) { const unsigned int pos = arg1 != ~0U && arg1 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg1) ? arg1 : arg2 != ~0U && arg2 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg2) ? arg2 : arg3 != ~0U && arg3 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg3) ? arg3 : scalar(); CImg::vector((ulongT)op, pos, arg1, arg2, arg3) .move_to(code); return pos; } unsigned int scalar4(const mp_func op, const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, const unsigned int arg4) { const unsigned int pos = arg1 != ~0U && arg1 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg1) ? arg1 : arg2 != ~0U && arg2 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg2) ? arg2 : arg3 != ~0U && arg3 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg3) ? arg3 : arg4 != ~0U && arg4 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg4) ? arg4 : scalar(); CImg::vector((ulongT)op, pos, arg1, arg2, arg3, arg4) .move_to(code); return pos; } unsigned int scalar5(const mp_func op, const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, const unsigned int arg4, const unsigned int arg5) { const unsigned int pos = arg1 != ~0U && arg1 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg1) ? arg1 : arg2 != ~0U && arg2 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg2) ? arg2 : arg3 != ~0U && arg3 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg3) ? arg3 : arg4 != ~0U && arg4 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg4) ? arg4 : arg5 != ~0U && arg5 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg5) ? arg5 : scalar(); CImg::vector((ulongT)op, pos, arg1, arg2, arg3, arg4, arg5) .move_to(code); return pos; } unsigned int scalar6(const mp_func op, const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, const unsigned int arg4, const unsigned int arg5, const unsigned int arg6) { const unsigned int pos = arg1 != ~0U && arg1 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg1) ? arg1 : arg2 != ~0U && arg2 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg2) ? arg2 : arg3 != ~0U && arg3 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg3) ? arg3 : arg4 != ~0U && arg4 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg4) ? arg4 : arg5 != ~0U && arg5 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg5) ? arg5 : arg6 != ~0U && arg6 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg6) ? arg6 : scalar(); CImg::vector((ulongT)op, pos, arg1, arg2, arg3, arg4, arg5, arg6) .move_to(code); return pos; } unsigned int scalar7(const mp_func op, const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, const unsigned int arg4, const unsigned int arg5, const unsigned int arg6, const unsigned int arg7) { const unsigned int pos = arg1 != ~0U && arg1 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg1) ? arg1 : arg2 != ~0U && arg2 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg2) ? arg2 : arg3 != ~0U && arg3 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg3) ? arg3 : arg4 != ~0U && arg4 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg4) ? arg4 : arg5 != ~0U && arg5 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg5) ? arg5 : arg6 != ~0U && arg6 > _cimg_mp_slot_c && _cimg_mp_is_comp(arg6) ? arg6 : arg7 != ~0U && arg7 > _cimg_mp_slot_c && _cimg_mp_is_comp( arg7) ? arg7 : scalar(); CImg::vector((ulongT)op, pos, arg1, arg2, arg3, arg4, arg5, arg6, arg7) .move_to(code); return pos; } // Return a string that defines the calling function + the user-defined // function scope. CImg calling_function_s() const { CImg res; const unsigned int l1 = calling_function ? (unsigned int)std::strlen( calling_function) : 0U, l2 = user_macro ? (unsigned int)std::strlen(user_macro) : 0U; if (l2) { res.assign(l1 + l2 + 48); cimg_snprintf(res, res._width, "%s(): When substituting function '%s()'", calling_function, user_macro); } else { res.assign(l1 + l2 + 4); cimg_snprintf(res, res._width, "%s()", calling_function); } return res; } // Return true if specified argument can be a part of an allowed // variable name. bool is_varchar(const char c) const { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '_'; } // Insert code instructions for processing vectors. bool is_comp_vector(const unsigned int arg) const { unsigned int siz = _cimg_mp_size(arg); if (siz > 8) return false; const int* ptr = memtype.data(arg + 1); bool is_tmp = true; while (siz-- > 0) if (*(ptr++)) { is_tmp = false; break; } return is_tmp; } void set_variable_vector(const unsigned int arg) { unsigned int siz = _cimg_mp_size(arg); int* ptr = memtype.data(arg + 1); while (siz-- > 0) *(ptr++) = -1; } unsigned int vector( const unsigned int siz) { // Insert new vector of specified size in memory if (mempos + siz >= mem._width) { mem.resize(2 * mem._width + siz, 1, 1, 1, 0); memtype.resize(mem._width, 1, 1, 1, 0); } const unsigned int pos = mempos++; mem[pos] = cimg::type::nan(); memtype[pos] = siz + 1; mempos += siz; return pos; } unsigned int vector( const unsigned int siz, const double value) { // Insert new initialized vector const unsigned int pos = vector(siz); double* ptr = &mem[pos] + 1; for (unsigned int i = 0; i < siz; ++i) *(ptr++) = value; return pos; } unsigned int vector_copy( const unsigned int arg) { // Insert new copy of specified vector in memory const unsigned int siz = _cimg_mp_size(arg), pos = vector(siz); CImg::vector((ulongT)mp_vector_copy, pos, arg, siz) .move_to(code); return pos; } void self_vector_s(const unsigned int pos, const mp_func op, const unsigned int arg1) { const unsigned int siz = _cimg_mp_size(pos); if (siz > 24) CImg::vector((ulongT)mp_self_map_vector_s, pos, siz, (ulongT)op, arg1) .move_to(code); else { code.insert(siz); for (unsigned int k = 1; k <= siz; ++k) CImg::vector((ulongT)op, pos + k, arg1) .move_to(code[code._width - 1 - siz + k]); } } void self_vector_v(const unsigned int pos, const mp_func op, const unsigned int arg1) { const unsigned int siz = _cimg_mp_size(pos); if (siz > 24) CImg::vector((ulongT)mp_self_map_vector_v, pos, siz, (ulongT)op, arg1) .move_to(code); else { code.insert(siz); for (unsigned int k = 1; k <= siz; ++k) CImg::vector((ulongT)op, pos + k, arg1 + k) .move_to(code[code._width - 1 - siz + k]); } } unsigned int vector1_v(const mp_func op, const unsigned int arg1) { const unsigned int siz = _cimg_mp_size(arg1), pos = is_comp_vector(arg1) ? arg1 : vector(siz); if (siz > 24) CImg::vector((ulongT)mp_vector_map_v, pos, siz, (ulongT)op, arg1) .move_to(code); else { code.insert(siz); for (unsigned int k = 1; k <= siz; ++k) CImg::vector((ulongT)op, pos + k, arg1 + k) .move_to(code[code._width - 1 - siz + k]); } return pos; } unsigned int vector2_vv(const mp_func op, const unsigned int arg1, const unsigned int arg2) { const unsigned int siz = _cimg_mp_size(arg1), pos = is_comp_vector(arg1) ? arg1 : is_comp_vector(arg2) ? arg2 : vector(siz); if (siz > 24) CImg::vector((ulongT)mp_vector_map_vv, pos, siz, (ulongT)op, arg1, arg2) .move_to(code); else { code.insert(siz); for (unsigned int k = 1; k <= siz; ++k) CImg::vector((ulongT)op, pos + k, arg1 + k, arg2 + k) .move_to(code[code._width - 1 - siz + k]); } return pos; } unsigned int vector2_vs(const mp_func op, const unsigned int arg1, const unsigned int arg2) { const unsigned int siz = _cimg_mp_size(arg1), pos = is_comp_vector(arg1) ? arg1 : vector(siz); if (siz > 24) CImg::vector((ulongT)mp_vector_map_vs, pos, siz, (ulongT)op, arg1, arg2) .move_to(code); else { code.insert(siz); for (unsigned int k = 1; k <= siz; ++k) CImg::vector((ulongT)op, pos + k, arg1 + k, arg2) .move_to(code[code._width - 1 - siz + k]); } return pos; } unsigned int vector2_sv(const mp_func op, const unsigned int arg1, const unsigned int arg2) { const unsigned int siz = _cimg_mp_size(arg2), pos = is_comp_vector(arg2) ? arg2 : vector(siz); if (siz > 24) CImg::vector((ulongT)mp_vector_map_sv, pos, siz, (ulongT)op, arg1, arg2) .move_to(code); else { code.insert(siz); for (unsigned int k = 1; k <= siz; ++k) CImg::vector((ulongT)op, pos + k, arg1, arg2 + k) .move_to(code[code._width - 1 - siz + k]); } return pos; } unsigned int vector3_vss(const mp_func op, const unsigned int arg1, const unsigned int arg2, const unsigned int arg3) { const unsigned int siz = _cimg_mp_size(arg1), pos = is_comp_vector(arg1) ? arg1 : vector(siz); if (siz > 24) CImg::vector((ulongT)mp_vector_map_vss, pos, siz, (ulongT)op, arg1, arg2, arg3) .move_to(code); else { code.insert(siz); for (unsigned int k = 1; k <= siz; ++k) CImg::vector((ulongT)op, pos + k, arg1 + k, arg2, arg3) .move_to(code[code._width - 1 - siz + k]); } return pos; } static const char* s_argth(const unsigned int n_arg) { const char* _s_arg[] = { "", "First", "Second", "Third", "Fourth", "Fifth", "Sixth", "Seventh", "Eighth", "Ninth", "10th", "11th", "12th", "13th", "14th", "15th", "16th", "17th", "18th", "19th", "20th", "21st", "22nd", "23rd", "24th", "25th", "26th", "27th", "28th", "One of the"}; return _s_arg[n_arg < sizeof(_s_arg) / sizeof(char*) ? n_arg : sizeof(_s_arg) / sizeof(char*) - 1]; } // Check if a memory slot is a positive integer constant scalar value. // 'mode' can be: // { 0=constant | 1=integer constant | 2=positive integer constant | // 3=strictly-positive integer constant } void check_constant(const unsigned int arg, const unsigned int n_arg, const unsigned int mode, char* const ss, char* const se, const char saved_char) { _cimg_mp_check_type(arg, n_arg, 1, 0); if (!(_cimg_mp_is_constant(arg) && (!mode || (double)(int)mem[arg] == mem[arg]) && (mode < 2 || mem[arg] >= (mode == 3)))) { const char* const s_arg = s_argth(n_arg); *se = saved_char; char* const s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s%s %s%s (of type '%s') is not a%s " "constant, " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, *s_op ? ":" : "", s_arg, *s_arg ? " argument" : " Argument", s_type(arg)._data, !mode ? "" : mode == 1 ? "n integer" : mode == 2 ? " positive integer" : " strictly positive integer", s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } } // Check a matrix is square. void check_matrix_square(const unsigned int arg, const unsigned int n_arg, char* const ss, char* const se, const char saved_char) { _cimg_mp_check_type(arg, n_arg, 2, 0); const unsigned int siz = _cimg_mp_size(arg), n = (unsigned int)cimg::round( std::sqrt((float)siz)); if (n * n != siz) { const char* s_arg; if (*s_op != 'F') s_arg = !n_arg ? "" : n_arg == 1 ? "Left-hand" : "Right-hand"; else s_arg = !n_arg ? "" : n_arg == 1 ? "First" : n_arg == 2 ? "Second" : n_arg == 3 ? "Third" : "One"; *se = saved_char; char* const s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s%s %s%s (of type '%s') " "cannot be considered as a square matrix, in expression " "'%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, *s_op ? ":" : "", s_arg, *s_op == 'F' ? (*s_arg ? " argument" : " Argument") : (*s_arg ? " operand" : " Operand"), s_type(arg)._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } } // Check type compatibility for one argument. // Bits of 'mode' tells what types are allowed: // { 1 = scalar | 2 = vectorN }. // If 'N' is not zero, it also restricts the vectors to be of size N // only. void check_type(const unsigned int arg, const unsigned int n_arg, const unsigned int mode, const unsigned int N, char* const ss, char* const se, const char saved_char) { const bool is_scalar = _cimg_mp_is_scalar(arg), is_vector = _cimg_mp_is_vector(arg) && (!N || _cimg_mp_size(arg) == N); bool cond = false; if (mode & 1) cond |= is_scalar; if (mode & 2) cond |= is_vector; if (!cond) { const char* s_arg; if (*s_op != 'F') s_arg = !n_arg ? "" : n_arg == 1 ? "Left-hand" : "Right-hand"; else s_arg = s_argth(n_arg); CImg sb_type(32); if (mode == 1) cimg_snprintf(sb_type, sb_type._width, "'scalar'"); else if (mode == 2) { if (N) cimg_snprintf(sb_type, sb_type._width, "'vector%u'", N); else cimg_snprintf(sb_type, sb_type._width, "'vector'"); } else { if (N) cimg_snprintf(sb_type, sb_type._width, "'scalar' or 'vector%u'", N); else cimg_snprintf(sb_type, sb_type._width, "'scalar' or 'vector'"); } *se = saved_char; char* const s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s%s %s%s has invalid type '%s' (should be " "%s), " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, *s_op ? ":" : "", s_arg, *s_op == 'F' ? (*s_arg ? " argument" : " Argument") : (*s_arg ? " operand" : " Operand"), s_type(arg)._data, sb_type._data, s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } } // Check that listin or listout are not empty. void check_list(const bool is_out, char* const ss, char* const se, const char saved_char) { if ((!is_out && !listin) || (is_out && !listout)) { *se = saved_char; char* const s0 = ss - 4 > expr._data ? ss - 4 : expr._data; cimg::strellipsize(s0, 64); throw CImgArgumentException( "[" cimg_appname "_math_parser] " "CImg<%s>::%s: %s%s Invalid call with an empty image list, " "in expression '%s%s%s'.", pixel_type(), _cimg_mp_calling_function, s_op, *s_op ? ":" : "", s0 != expr._data ? "..." : "", s0, se < &expr.back() ? "..." : ""); } } // Evaluation functions, known by the parser. // Defining these functions 'static' ensures that // sizeof(mp_func)==sizeof(ulongT), so we can store pointers to them // directly in the opcode vectors. #ifdef _mp_arg #undef _mp_arg #endif #define _mp_arg(x) mp.mem[mp.opcode[x]] static double mp_abs(_cimg_math_parser& mp) { return cimg::abs(_mp_arg(2)); } static double mp_add(_cimg_math_parser& mp) { return _mp_arg(2) + _mp_arg(3); } static double mp_acos(_cimg_math_parser& mp) { return std::acos(_mp_arg(2)); } static double mp_acosh(_cimg_math_parser& mp) { return cimg::acosh(_mp_arg(2)); } static double mp_asinh(_cimg_math_parser& mp) { return cimg::asinh(_mp_arg(2)); } static double mp_atanh(_cimg_math_parser& mp) { return cimg::atanh(_mp_arg(2)); } static double mp_arg(_cimg_math_parser& mp) { const int _ind = (int)_mp_arg(4); const unsigned int nb_args = (unsigned int)mp.opcode[2] - 4, ind = _ind < 0 ? _ind + nb_args : (unsigned int)_ind, siz = (unsigned int)mp.opcode[3]; if (siz > 0) { if (ind >= nb_args) std::memset(&_mp_arg(1) + 1, 0, siz * sizeof(double)); else std::memcpy(&_mp_arg(1) + 1, &_mp_arg(ind + 4) + 1, siz * sizeof(double)); return cimg::type::nan(); } if (ind >= nb_args) return 0; return _mp_arg(ind + 4); } static double mp_argkth(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; const double val = mp_kth(mp); for (unsigned int i = 4; i < i_end; ++i) if (val == _mp_arg(i)) return i - 3.; return 1; } static double mp_argmin(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; double val = _mp_arg(3); unsigned int argval = 0; for (unsigned int i = 4; i < i_end; ++i) { const double _val = _mp_arg(i); if (_val < val) { val = _val; argval = i - 3; } } return (double)argval; } static double mp_argmax(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; double val = _mp_arg(3); unsigned int argval = 0; for (unsigned int i = 4; i < i_end; ++i) { const double _val = _mp_arg(i); if (_val > val) { val = _val; argval = i - 3; } } return (double)argval; } static double mp_asin(_cimg_math_parser& mp) { return std::asin(_mp_arg(2)); } static double mp_atan(_cimg_math_parser& mp) { return std::atan(_mp_arg(2)); } static double mp_atan2(_cimg_math_parser& mp) { return std::atan2(_mp_arg(2), _mp_arg(3)); } static double mp_avg(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; double val = _mp_arg(3); for (unsigned int i = 4; i < i_end; ++i) val += _mp_arg(i); return val / (i_end - 3); } static double mp_bitwise_and(_cimg_math_parser& mp) { return (double)((longT)_mp_arg(2) & (longT)_mp_arg(3)); } static double mp_bitwise_left_shift(_cimg_math_parser& mp) { return (double)((longT)_mp_arg(2) << (unsigned int)_mp_arg(3)); } static double mp_bitwise_not(_cimg_math_parser& mp) { // Limit result to 32bits such that it can be entirely represented // as a 'double'. return (double)~(unsigned int)_mp_arg(2); } static double mp_bitwise_or(_cimg_math_parser& mp) { return (double)((longT)_mp_arg(2) | (longT)_mp_arg(3)); } static double mp_bitwise_right_shift(_cimg_math_parser& mp) { return (double)((longT)_mp_arg(2) >> (unsigned int)_mp_arg(3)); } static double mp_bitwise_xor(_cimg_math_parser& mp) { return (double)((longT)_mp_arg(2) ^ (longT)_mp_arg(3)); } static double mp_bool(_cimg_math_parser& mp) { return (double)(bool)_mp_arg(2); } static double mp_break(_cimg_math_parser& mp) { mp.break_type = 1; mp.p_code = mp.p_break - 1; return cimg::type::nan(); } static double mp_breakpoint(_cimg_math_parser& mp) { cimg_abort_init; cimg_abort_test; cimg::unused(mp); return cimg::type::nan(); } static double mp_cats(_cimg_math_parser& mp) { const double* ptrd = &_mp_arg(1) + 1; const unsigned int sizd = (unsigned int)mp.opcode[2], nb_args = (unsigned int)(mp.opcode[3] - 4) / 2; CImgList _str; for (unsigned int n = 0; n < nb_args; ++n) { const unsigned int siz = (unsigned int)mp.opcode[5 + 2 * n]; if (siz) { // Vector argument const double* ptrs = &_mp_arg(4 + 2 * n) + 1; unsigned int l = 0; while (l < siz && ptrs[l]) ++l; CImg(ptrs, l, 1, 1, 1, true).move_to(_str); } else CImg::vector((char)_mp_arg(4 + 2 * n)) .move_to(_str); // Scalar argument } CImg(1, 1, 1, 1, 0).move_to(_str); const CImg str = _str > 'x'; const unsigned int l = std::min(str._width, sizd); CImg(ptrd, l, 1, 1, 1, true) = str.get_shared_points(0, l - 1); return cimg::type::nan(); } static double mp_cbrt(_cimg_math_parser& mp) { return cimg::cbrt(_mp_arg(2)); } static double mp_ceil(_cimg_math_parser& mp) { return std::ceil(_mp_arg(2)); } static double mp_complex_abs(_cimg_math_parser& mp) { return cimg::_hypot(_mp_arg(2), _mp_arg(3)); } static double mp_complex_conj(_cimg_math_parser& mp) { const double* ptrs = &_mp_arg(2) + 1; double* ptrd = &_mp_arg(1) + 1; *(ptrd++) = *(ptrs++); *ptrd = -*(ptrs); return cimg::type::nan(); } static double mp_complex_div_sv(_cimg_math_parser& mp) { const double *ptr2 = &_mp_arg(3) + 1, r1 = _mp_arg(2), r2 = *(ptr2++), i2 = *ptr2; double* ptrd = &_mp_arg(1) + 1; const double denom = r2 * r2 + i2 * i2; *(ptrd++) = r1 * r2 / denom; *ptrd = -r1 * i2 / denom; return cimg::type::nan(); } static double mp_complex_div_vv(_cimg_math_parser& mp) { const double *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1, r1 = *(ptr1++), i1 = *ptr1, r2 = *(ptr2++), i2 = *ptr2; double* ptrd = &_mp_arg(1) + 1; const double denom = r2 * r2 + i2 * i2; *(ptrd++) = (r1 * r2 + i1 * i2) / denom; *ptrd = (r2 * i1 - r1 * i2) / denom; return cimg::type::nan(); } static double mp_complex_exp(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const double *ptrs = &_mp_arg(2) + 1, r = *(ptrs++), i = *(ptrs), er = std::exp(r); *(ptrd++) = er * std::cos(i); *(ptrd++) = er * std::sin(i); return cimg::type::nan(); } static double mp_complex_log(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const double *ptrs = &_mp_arg(2) + 1, r = *(ptrs++), i = *(ptrs); *(ptrd++) = 0.5 * std::log(r * r + i * i); *(ptrd++) = std::atan2(i, r); return cimg::type::nan(); } static double mp_complex_mul(_cimg_math_parser& mp) { const double *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1, r1 = *(ptr1++), i1 = *ptr1, r2 = *(ptr2++), i2 = *ptr2; double* ptrd = &_mp_arg(1) + 1; *(ptrd++) = r1 * r2 - i1 * i2; *(ptrd++) = r1 * i2 + r2 * i1; return cimg::type::nan(); } static void _mp_complex_pow(const double r1, const double i1, const double r2, const double i2, double* ptrd) { double ro, io; if (cimg::abs(i2) < 1e-15) { // Exponent is real if (cimg::abs(r1) < 1e-15 && cimg::abs(i1) < 1e-15) { if (cimg::abs(r2) < 1e-15) { ro = 1; io = 0; } else ro = io = 0; } else { const double mod1_2 = r1 * r1 + i1 * i1, phi1 = std::atan2(i1, r1), modo = std::pow(mod1_2, 0.5 * r2), phio = r2 * phi1; ro = modo * std::cos(phio); io = modo * std::sin(phio); } } else { // Exponent is complex if (cimg::abs(r1) < 1e-15 && cimg::abs(i1) < 1e-15) ro = io = 0; const double mod1_2 = r1 * r1 + i1 * i1, phi1 = std::atan2(i1, r1), modo = std::pow(mod1_2, 0.5 * r2) * std::exp(-i2 * phi1), phio = r2 * phi1 + 0.5 * i2 * std::log(mod1_2); ro = modo * std::cos(phio); io = modo * std::sin(phio); } *(ptrd++) = ro; *ptrd = io; } static double mp_complex_pow_ss(_cimg_math_parser& mp) { const double val1 = _mp_arg(2), val2 = _mp_arg(3); double* ptrd = &_mp_arg(1) + 1; _mp_complex_pow(val1, 0, val2, 0, ptrd); return cimg::type::nan(); } static double mp_complex_pow_sv(_cimg_math_parser& mp) { const double val1 = _mp_arg(2), *ptr2 = &_mp_arg(3) + 1; double* ptrd = &_mp_arg(1) + 1; _mp_complex_pow(val1, 0, ptr2[0], ptr2[1], ptrd); return cimg::type::nan(); } static double mp_complex_pow_vs(_cimg_math_parser& mp) { const double *ptr1 = &_mp_arg(2) + 1, val2 = _mp_arg(3); double* ptrd = &_mp_arg(1) + 1; _mp_complex_pow(ptr1[0], ptr1[1], val2, 0, ptrd); return cimg::type::nan(); } static double mp_complex_pow_vv(_cimg_math_parser& mp) { const double *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1; double* ptrd = &_mp_arg(1) + 1; _mp_complex_pow(ptr1[0], ptr1[1], ptr2[0], ptr2[1], ptrd); return cimg::type::nan(); } static double mp_continue(_cimg_math_parser& mp) { mp.break_type = 2; mp.p_code = mp.p_break - 1; return cimg::type::nan(); } static double mp_convolve(_cimg_math_parser& mp) { return _mp_correlate(mp, true); } static double mp_correlate(_cimg_math_parser& mp) { return _mp_correlate(mp, false); } static double _mp_correlate(_cimg_math_parser& mp, bool is_convolve) { double* ptrd = &_mp_arg(1) + 1; const double *const ptrA = &_mp_arg(2) + 1, *const ptrM = &_mp_arg(7) + 1; const unsigned int wA = (unsigned int)mp.opcode[3], hA = (unsigned int)mp.opcode[4], dA = (unsigned int)mp.opcode[5], sA = (unsigned int)mp.opcode[6], wM = (unsigned int)mp.opcode[8], hM = (unsigned int)mp.opcode[9], dM = (unsigned int)mp.opcode[10], sM = (unsigned int)mp.opcode[11], boundary_conditions = (unsigned int)_mp_arg(12), channel_mode = (unsigned int)mp.opcode[14], xcenter = (unsigned int)_mp_arg(15), ycenter = (unsigned int)_mp_arg(16), zcenter = (unsigned int)_mp_arg(17), xstart = (unsigned int)mp.opcode[18], ystart = (unsigned int)mp.opcode[19], zstart = (unsigned int)mp.opcode[20], xend = (unsigned int)mp.opcode[21], yend = (unsigned int)mp.opcode[22], zend = (unsigned int)mp.opcode[23]; const bool is_normalized = (bool)_mp_arg(13); const float xstride = (float)_mp_arg(24), ystride = (float)_mp_arg(25), zstride = (float)_mp_arg(26), xdilation = (float)_mp_arg(27), ydilation = (float)_mp_arg(28), zdilation = (float)_mp_arg(29); CImg res; if (is_convolve) res = CImg(ptrA, wA, hA, dA, sA, true) .get_convolve( CImg(ptrM, wM, hM, dM, sM, true), boundary_conditions, is_normalized, channel_mode, xcenter, ycenter, zcenter, xstart, ystart, zstart, xend, yend, zend, xstride, ystride, zstride, xdilation, ydilation, zdilation); else res = CImg(ptrA, wA, hA, dA, sA, true) .get_correlate( CImg(ptrM, wM, hM, dM, sM, true), boundary_conditions, is_normalized, channel_mode, xcenter, ycenter, zcenter, xstart, ystart, zstart, xend, yend, zend, xstride, ystride, zstride, xdilation, ydilation, zdilation); CImg(ptrd, res._width, res._height, res._depth, res._spectrum, true) = res; return cimg::type::nan(); } static double mp_cos(_cimg_math_parser& mp) { return std::cos(_mp_arg(2)); } static double mp_cosh(_cimg_math_parser& mp) { return std::cosh(_mp_arg(2)); } static double mp_critical(_cimg_math_parser& mp) { const double res = _mp_arg(1); cimg_pragma_openmp(critical(mp_critical)) { for (const CImg* const p_end = ++mp.p_code + mp.opcode[2]; mp.p_code < p_end; ++mp.p_code) { // Evaluate body mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } } --mp.p_code; return res; } static double mp_crop(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const int x = (int)_mp_arg(3), y = (int)_mp_arg(4), z = (int)_mp_arg(5), c = (int)_mp_arg(6); const unsigned int dx = (unsigned int)mp.opcode[7], dy = (unsigned int)mp.opcode[8], dz = (unsigned int)mp.opcode[9], dc = (unsigned int)mp.opcode[10]; const unsigned int boundary_conditions = (unsigned int)_mp_arg(11); unsigned int ind = (unsigned int)mp.opcode[2]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = ind == ~0U ? mp.imgin : mp.listin[ind]; if (!img) std::memset(ptrd, 0, dx * dy * dz * dc * sizeof(double)); else CImg(ptrd, dx, dy, dz, dc, true) = img.get_crop(x, y, z, c, x + dx - 1, y + dy - 1, z + dz - 1, c + dc - 1, boundary_conditions); return cimg::type::nan(); } static double mp_cross(_cimg_math_parser& mp) { CImg vout(&_mp_arg(1) + 1, 1, 3, 1, 1, true), v1(&_mp_arg(2) + 1, 1, 3, 1, 1, true), v2(&_mp_arg(3) + 1, 1, 3, 1, 1, true); (vout = v1).cross(v2); return cimg::type::nan(); } static double mp_cut(_cimg_math_parser& mp) { double val = _mp_arg(2), cmin = _mp_arg(3), cmax = _mp_arg(4); return val < cmin ? cmin : val > cmax ? cmax : val; } static double mp_date(_cimg_math_parser& mp) { const unsigned int siz_out = (unsigned int)mp.opcode[2], siz_arg1 = (unsigned int)mp.opcode[4], siz_arg2 = (unsigned int)mp.opcode[6]; double* ptr_out = &_mp_arg(1) + (siz_out ? 1 : 0); const double *ptr_arg1 = siz_arg1 == ~0U ? 0 : &_mp_arg(3) + (siz_arg1 ? 1 : 0), *ptr_arg2 = siz_arg2 == ~0U ? 0 : &_mp_arg(5) + 1; if (!ptr_arg2) { // No filename specified if (!siz_arg1) return cimg::date((unsigned int)*ptr_arg1); if (siz_arg1 == ~0U) for (unsigned int k = 0; k < siz_out; ++k) ptr_out[k] = k; else for (unsigned int k = 0; k < siz_out; ++k) ptr_out[k] = ptr_arg1[k]; cimg::date(ptr_out, siz_out); return cimg::type::nan(); } // Filename specified. CImg ss(siz_arg2 + 1); cimg_forX(ss, i) ss[i] = (char)ptr_arg2[i]; ss.back() = 0; if (!siz_arg1) return cimg::fdate(ss, (unsigned int)*ptr_arg1); for (unsigned int k = 0; k < siz_out; ++k) ptr_out[k] = ptr_arg1[k]; cimg::fdate(ss, ptr_out, siz_out); return cimg::type::nan(); } static double mp_debug(_cimg_math_parser& mp) { CImg expr(mp.opcode[2] - 4); { const ulongT* ptrs = mp.opcode._data + 4; cimg_for(expr, ptrd, char)* ptrd = (char)*(ptrs++); } cimg::strellipsize(expr); const ulongT g_target = mp.opcode[1]; #if cimg_use_openmp == 0 const unsigned int n_thread = 0; #else const unsigned int n_thread = omp_get_thread_num(); #endif cimg_pragma_openmp(critical(mp_debug)) { std::fprintf(cimg::output(), "\n[" cimg_appname "_math_parser] %p[thread #%u]:%*c" "Start debugging expression '%s', code length %u " "-> mem[%u] (memsize: %u)", (void*)&mp, n_thread, mp.debug_indent, ' ', expr._data, (unsigned int)mp.opcode[3], (unsigned int)g_target, mp.mem._width); std::fflush(cimg::output()); mp.debug_indent += 3; } const CImg* const p_end = (++mp.p_code) + mp.opcode[3]; CImg _op; for (; mp.p_code < p_end; ++mp.p_code) { const CImg& op = *mp.p_code; mp.opcode._data = op._data; _op.assign(1, op._height - 1); const ulongT* ptrs = op._data + 1; for (ulongT *ptrd = _op._data, *const ptrde = _op._data + _op._height; ptrd < ptrde; ++ptrd) *ptrd = *(ptrs++); const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); cimg_pragma_openmp(critical(mp_debug)) { std::fprintf(cimg::output(), "\n[" cimg_appname "_math_parser] %p[thread #%u]:%*c" "Opcode %p = [ %p,%s ] -> mem[%u] = %g", (void*)&mp, n_thread, mp.debug_indent, ' ', (void*)mp.opcode._data, (void*)*mp.opcode, _op.value_string().data(), (unsigned int)target, mp.mem[target]); std::fflush(cimg::output()); } } cimg_pragma_openmp(critical(mp_debug)) { mp.debug_indent -= 3; std::fprintf(cimg::output(), "\n[" cimg_appname "_math_parser] %p[thread #%u]:%*c" "End debugging expression '%s' -> mem[%u] = %g " "(memsize: %u)", (void*)&mp, n_thread, mp.debug_indent, ' ', expr._data, (unsigned int)g_target, mp.mem[g_target], mp.mem._width); std::fflush(cimg::output()); } --mp.p_code; return mp.mem[g_target]; } static double mp_decrement(_cimg_math_parser& mp) { return _mp_arg(2) - 1; } static double mp_det(_cimg_math_parser& mp) { const double* ptrs = &_mp_arg(2) + 1; const unsigned int k = (unsigned int)mp.opcode[3]; return CImg(ptrs, k, k, 1, 1, true).det(); } static double mp_diag(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2], siz = mp.opcode[2] - 3; double* ptrd = &_mp_arg(1) + 1; std::memset(ptrd, 0, siz * siz * sizeof(double)); for (unsigned int i = 3; i < i_end; ++i) { *(ptrd++) = _mp_arg(i); ptrd += siz; } return cimg::type::nan(); } static double mp_display_memory(_cimg_math_parser& mp) { cimg::unused(mp); std::fputc('\n', cimg::output()); mp.mem.display("[" cimg_appname "_math_parser] Memory snapshot"); return cimg::type::nan(); } static double mp_display(_cimg_math_parser& mp) { const unsigned int _siz = (unsigned int)mp.opcode[3], siz = _siz ? _siz : 1; const double* const ptr = &_mp_arg(1) + (_siz ? 1 : 0); const int w = (int)_mp_arg(4), h = (int)_mp_arg(5), d = (int)_mp_arg(6), s = (int)_mp_arg(7); CImg img; if (w > 0 && h > 0 && d > 0 && s > 0) { if ((unsigned int)w * h * d * s <= siz) img.assign(ptr, w, h, d, s, true); else img.assign(ptr, siz).resize(w, h, d, s, -1); } else img.assign(ptr, 1, siz, 1, 1, true); CImg expr(mp.opcode[2] - 8); const ulongT* ptrs = mp.opcode._data + 8; cimg_for(expr, ptrd, char)* ptrd = (char)*(ptrs++); ((CImg::string("[" cimg_appname "_math_parser] ", false, true), expr) > 'x') .move_to(expr); cimg::strellipsize(expr); std::fputc('\n', cimg::output()); img.display(expr._data); return cimg::type::nan(); } static double mp_div(_cimg_math_parser& mp) { return _mp_arg(2) / _mp_arg(3); } static double mp_dot(_cimg_math_parser& mp) { const unsigned int siz = (unsigned int)mp.opcode[4]; return CImg(&_mp_arg(2) + 1, 1, siz, 1, 1, true) .dot(CImg(&_mp_arg(3) + 1, 1, siz, 1, 1, true)); } static double mp_do(_cimg_math_parser& mp) { const ulongT mem_body = mp.opcode[1], mem_cond = mp.opcode[2]; const CImg*const p_body = ++mp.p_code, *const p_cond = p_body + mp.opcode[3], *const p_end = p_cond + mp.opcode[4]; const unsigned int vsiz = (unsigned int)mp.opcode[5]; if (mp.opcode[6]) { // Set default value for result and condition // if necessary if (vsiz) CImg(&mp.mem[mem_body] + 1, vsiz, 1, 1, 1, true) .fill(cimg::type::nan()); else mp.mem[mem_body] = cimg::type::nan(); } if (mp.opcode[7]) mp.mem[mem_cond] = 0; const unsigned int _break_type = mp.break_type; mp.break_type = 0; do { for (mp.p_code = p_body; mp.p_code < p_cond; ++mp.p_code) { // Evaluate body mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } if (mp.break_type == 1) break; else if (mp.break_type == 2) mp.break_type = 0; for (mp.p_code = p_cond; mp.p_code < p_end; ++mp.p_code) { // Evaluate condition mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } if (mp.break_type == 1) break; else if (mp.break_type == 2) mp.break_type = 0; } while (mp.mem[mem_cond]); mp.break_type = _break_type; mp.p_code = p_end - 1; return mp.mem[mem_body]; } static double mp_draw(_cimg_math_parser& mp) { const int x = (int)_mp_arg(4), y = (int)_mp_arg(5), z = (int)_mp_arg(6), c = (int)_mp_arg(7); unsigned int ind = (unsigned int)mp.opcode[3]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(3), mp.listin.width()); CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; unsigned int dx = (unsigned int)mp.opcode[8], dy = (unsigned int)mp.opcode[9], dz = (unsigned int)mp.opcode[10], dc = (unsigned int)mp.opcode[11]; dx = dx == ~0U ? img._width : (unsigned int)_mp_arg(8); dy = dy == ~0U ? img._height : (unsigned int)_mp_arg(9); dz = dz == ~0U ? img._depth : (unsigned int)_mp_arg(10); dc = dc == ~0U ? img._spectrum : (unsigned int)_mp_arg(11); const ulongT sizS = mp.opcode[2]; if (sizS < (ulongT)dx * dy * dz * dc) throw CImgArgumentException( "[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': " "Sprite dimension (%lu values) and specified sprite " "geometry (%u,%u,%u,%u) " "(%lu values) do not match.", mp.imgin.pixel_type(), sizS, dx, dy, dz, dc, (ulongT)dx * dy * dz * dc); CImg S(&_mp_arg(1) + 1, dx, dy, dz, dc, true); const float opacity = (float)_mp_arg(12); if (img._data) { if (mp.opcode[13] != ~0U) { // Opacity mask specified const ulongT sizM = mp.opcode[14]; if (sizM < (ulongT)dx * dy * dz) throw CImgArgumentException( "[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': " "Mask dimension (%lu values) and specified sprite " "geometry (%u,%u,%u,%u) " "(%lu values) do not match.", mp.imgin.pixel_type(), sizS, dx, dy, dz, dc, (ulongT)dx * dy * dz * dc); const CImg M(&_mp_arg(13) + 1, dx, dy, dz, (unsigned int)(sizM / (dx * dy * dz)), true); img.draw_image(x, y, z, c, S, M, opacity, (float)_mp_arg(15)); } else img.draw_image(x, y, z, c, S, opacity); } return cimg::type::nan(); } static double mp_echo(_cimg_math_parser& mp) { const unsigned int nb_args = (unsigned int)(mp.opcode[2] - 3) / 2; CImgList _str; CImg it; for (unsigned int n = 0; n < nb_args; ++n) { const unsigned int siz = (unsigned int)mp.opcode[4 + 2 * n]; if (siz) { // Vector argument -> string const double* ptr = &_mp_arg(3 + 2 * n) + 1; unsigned int l = 0; while (l < siz && ptr[l]) ++l; CImg(ptr, l, 1, 1, 1, true).move_to(_str); } else { // Scalar argument -> number it.assign(256); cimg_snprintf(it, it._width, "%.17g", _mp_arg(3 + 2 * n)); CImg::string(it, false, true).move_to(_str); } } CImg(1, 1, 1, 1, 0).move_to(_str); const CImg str = _str > 'x'; std::fprintf(cimg::output(), "\n%s", str._data); return cimg::type::nan(); } static double mp_ellipse(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; unsigned int ind = (unsigned int)mp.opcode[3]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(3), mp.listin.width()); CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; CImg color(img._spectrum, 1, 1, 1, 0); bool is_invalid_arguments = false, is_outlined = false; float r1 = 0, r2 = 0, angle = 0, opacity = 1; unsigned int i = 4, pattern = ~0U; int x0 = 0, y0 = 0; if (i >= i_end) is_invalid_arguments = true; else { x0 = (int)cimg::round(_mp_arg(i++)); if (i >= i_end) is_invalid_arguments = true; else { y0 = (int)cimg::round(_mp_arg(i++)); if (i >= i_end) is_invalid_arguments = true; else { r1 = (float)_mp_arg(i++); if (i >= i_end) r2 = r1; else { r2 = (float)_mp_arg(i++); if (i < i_end) { angle = (float)_mp_arg(i++); if (i < i_end) { opacity = (float)_mp_arg(i++); if (r1 < 0 && r2 < 0) { pattern = (unsigned int)_mp_arg(i++); is_outlined = true; r1 = -r1; r2 = -r2; } if (i < i_end) { cimg_forX(color, k) if (i < i_end) color[k] = (T)_mp_arg(i++); else { color.resize(k, 1, 1, 1, -1); break; } color.resize(img._spectrum, 1, 1, 1, 0, 2); } } } } } } } if (!is_invalid_arguments) { if (is_outlined) img.draw_ellipse(x0, y0, r1, r2, angle, color._data, opacity, pattern); else img.draw_ellipse(x0, y0, r1, r2, angle, color._data, opacity); } else { CImg args(i_end - 4); cimg_forX(args, k) args[k] = _mp_arg(4 + k); if (ind == ~0U) throw CImgArgumentException( "[" cimg_appname "_math_parser] CImg<%s>: Function 'ellipse()': " "Invalid arguments '%s'. ", mp.imgin.pixel_type(), args.value_string()._data); else throw CImgArgumentException( "[" cimg_appname "_math_parser] CImg<%s>: Function 'ellipse()': " "Invalid arguments '#%u%s%s'. ", mp.imgin.pixel_type(), ind, args._width ? "," : "", args.value_string()._data); } return cimg::type::nan(); } static double mp_eq(_cimg_math_parser& mp) { return (double)(_mp_arg(2) == _mp_arg(3)); } static double mp_ext(_cimg_math_parser& mp) { const unsigned int nb_args = (unsigned int)(mp.opcode[2] - 3) / 2; CImgList _str; CImg it; for (unsigned int n = 0; n < nb_args; ++n) { const unsigned int siz = (unsigned int)mp.opcode[4 + 2 * n]; if (siz) { // Vector argument -> string const double* ptr = &_mp_arg(3 + 2 * n) + 1; unsigned int l = 0; while (l < siz && ptr[l]) ++l; CImg(ptr, l, 1, 1, 1, true).move_to(_str); } else { // Scalar argument -> number it.assign(256); cimg_snprintf(it, it._width, "%.17g", _mp_arg(3 + 2 * n)); CImg::string(it, false, true).move_to(_str); } } CImg(1, 1, 1, 1, 0).move_to(_str); CImg str = _str > 'x'; #ifdef cimg_mp_ext_function cimg_mp_ext_function(str); #endif return cimg::type::nan(); } static double mp_exp(_cimg_math_parser& mp) { return std::exp(_mp_arg(2)); } static double mp_eye(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const unsigned int k = (unsigned int)mp.opcode[2]; CImg(ptrd, k, k, 1, 1, true).identity_matrix(); return cimg::type::nan(); } static double mp_factorial(_cimg_math_parser& mp) { return cimg::factorial((int)_mp_arg(2)); } static double mp_fibonacci(_cimg_math_parser& mp) { return cimg::fibonacci((int)_mp_arg(2)); } static double mp_find(_cimg_math_parser& mp) { const bool is_forward = (bool)_mp_arg(5); const ulongT siz = (ulongT)mp.opcode[3]; longT ind = (longT)(mp.opcode[6] != _cimg_mp_slot_nan ? _mp_arg(6) : is_forward ? 0 : siz - 1); if (ind < 0 || ind >= (longT)siz) return -1.; const double *const ptrb = &_mp_arg(2) + 1, *const ptre = ptrb + siz, val = _mp_arg(4), *ptr = ptrb + ind; // Forward search if (is_forward) { while (ptr < ptre && *ptr != val) ++ptr; return ptr == ptre ? -1. : (double)(ptr - ptrb); } // Backward search. while (ptr >= ptrb && *ptr != val) --ptr; return ptr < ptrb ? -1. : (double)(ptr - ptrb); } static double mp_find_seq(_cimg_math_parser& mp) { const bool is_forward = (bool)_mp_arg(6); const ulongT siz1 = (ulongT)mp.opcode[3], siz2 = (ulongT)mp.opcode[5]; longT ind = (longT)(mp.opcode[7] != _cimg_mp_slot_nan ? _mp_arg(7) : is_forward ? 0 : siz1 - 1); if (ind < 0 || ind >= (longT)siz1) return -1.; const double *const ptr1b = &_mp_arg(2) + 1, *const ptr1e = ptr1b + siz1, *const ptr2b = &_mp_arg(4) + 1, *const ptr2e = ptr2b + siz2, *ptr1 = ptr1b + ind, *p1 = 0, *p2 = 0; // Forward search. if (is_forward) { do { while (ptr1 < ptr1e && *ptr1 != *ptr2b) ++ptr1; if (ptr1 >= ptr1e) return -1.; p1 = ptr1 + 1; p2 = ptr2b + 1; while (p1 < ptr1e && p2 < ptr2e && *p1 == *p2) { ++p1; ++p2; } } while (p2 < ptr2e && ++ptr1 < ptr1e); return p2 < ptr2e ? -1. : (double)(ptr1 - ptr1b); } // Backward search. do { while (ptr1 >= ptr1b && *ptr1 != *ptr2b) --ptr1; if (ptr1 < ptr1b) return -1.; p1 = ptr1 + 1; p2 = ptr2b + 1; while (p1 < ptr1e && p2 < ptr2e && *p1 == *p2) { ++p1; ++p2; } } while (p2 < ptr2e && --ptr1 >= ptr1b); return p2 < ptr2e ? -1. : (double)(ptr1 - ptr1b); } static double mp_floor(_cimg_math_parser& mp) { return std::floor(_mp_arg(2)); } static double mp_for(_cimg_math_parser& mp) { const ulongT mem_body = mp.opcode[1], mem_cond = mp.opcode[3]; const CImg*const p_init = ++mp.p_code, *const p_cond = p_init + mp.opcode[4], *const p_body = p_cond + mp.opcode[5], *const p_post = p_body + mp.opcode[6], *const p_end = p_post + mp.opcode[7]; const unsigned int vsiz = (unsigned int)mp.opcode[2]; bool is_cond = false; if (mp.opcode[8]) { // Set default value for result and condition // if necessary if (vsiz) CImg(&mp.mem[mem_body] + 1, vsiz, 1, 1, 1, true) .fill(cimg::type::nan()); else mp.mem[mem_body] = cimg::type::nan(); } if (mp.opcode[9]) mp.mem[mem_cond] = 0; const unsigned int _break_type = mp.break_type; mp.break_type = 0; for (mp.p_code = p_init; mp.p_code < p_cond; ++mp.p_code) { // Evaluate init mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } if (!mp.break_type) do { for (mp.p_code = p_cond; mp.p_code < p_body; ++mp.p_code) { // Evaluate condition mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } if (mp.break_type == 1) break; is_cond = (bool)mp.mem[mem_cond]; if (is_cond && !mp.break_type) { for (mp.p_code = p_body; mp.p_code < p_post; ++mp.p_code) { // Evaluate body mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } if (mp.break_type == 1) break; else if (mp.break_type == 2) mp.break_type = 0; for (mp.p_code = p_post; mp.p_code < p_end; ++mp.p_code) { // Evaluate post-code mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } if (mp.break_type == 1) break; else if (mp.break_type == 2) mp.break_type = 0; } } while (is_cond); mp.break_type = _break_type; mp.p_code = p_end - 1; return mp.mem[mem_body]; } static double mp_fsize(_cimg_math_parser& mp) { const double* ptrs = &_mp_arg(2) + 1; const ulongT siz = (ulongT)mp.opcode[3]; CImg ss(siz + 1); cimg_forX(ss, i) ss[i] = (char)ptrs[i]; ss.back() = 0; return (double)cimg::fsize(ss); } static double mp_g(_cimg_math_parser& mp) { cimg::unused(mp); return cimg::grand(&mp.rng); } static double mp_gauss(_cimg_math_parser& mp) { const double x = _mp_arg(2), s = _mp_arg(3); return std::exp(-x * x / (2 * s * s)) / (_mp_arg(4) ? std::sqrt(2 * s * s * cimg::PI) : 1); } static double mp_gcd(_cimg_math_parser& mp) { return cimg::gcd((long)_mp_arg(2), (long)_mp_arg(3)); } static double mp_gt(_cimg_math_parser& mp) { return (double)(_mp_arg(2) > _mp_arg(3)); } static double mp_gte(_cimg_math_parser& mp) { return (double)(_mp_arg(2) >= _mp_arg(3)); } static double mp_i(_cimg_math_parser& mp) { return (double)mp.imgin.atXYZC((int)mp.mem[_cimg_mp_slot_x], (int)mp.mem[_cimg_mp_slot_y], (int)mp.mem[_cimg_mp_slot_z], (int)mp.mem[_cimg_mp_slot_c], (T)0); } static double mp_if(_cimg_math_parser& mp) { const bool is_cond = (bool)_mp_arg(2); const ulongT mem_left = mp.opcode[3], mem_right = mp.opcode[4]; const CImg*const p_right = ++mp.p_code + mp.opcode[5], *const p_end = p_right + mp.opcode[6]; const unsigned int vtarget = (unsigned int)mp.opcode[1], vsiz = (unsigned int)mp.opcode[7]; if (is_cond) for (; mp.p_code < p_right; ++mp.p_code) { mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } else for (mp.p_code = p_right; mp.p_code < p_end; ++mp.p_code) { mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } if (mp.p_code == mp.p_break) --mp.p_code; else mp.p_code = p_end - 1; if (vsiz) std::memcpy(&mp.mem[vtarget] + 1, &mp.mem[is_cond ? mem_left : mem_right] + 1, sizeof(double) * vsiz); return mp.mem[is_cond ? mem_left : mem_right]; } static double mp_image_d(_cimg_math_parser& mp) { unsigned int ind = (unsigned int)mp.opcode[2]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; return (double)img.depth(); } static double mp_image_display(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listout.width()); cimg::mutex(6); CImg& img = mp.listout[ind]; CImg title(256); std::fputc('\n', cimg::output()); cimg_snprintf(title, title._width, "[ Image #%u ]", ind); img.display(title); cimg::mutex(6, 0); return cimg::type::nan(); } static double mp_image_h(_cimg_math_parser& mp) { unsigned int ind = (unsigned int)mp.opcode[2]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; return (double)img.height(); } static double mp_image_median(_cimg_math_parser& mp) { unsigned int ind = (unsigned int)mp.opcode[2]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; return (double)img.median(); } static double mp_image_print(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listout.width()); cimg::mutex(6); CImg& img = mp.listout[ind]; CImg title(256); std::fputc('\n', cimg::output()); cimg_snprintf(title, title._width, "[ Image #%u ]", ind); img.print(title); cimg::mutex(6, 0); return cimg::type::nan(); } static double mp_image_resize(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listout.width()); cimg::mutex(6); CImg& img = mp.listout[ind]; const double _w = mp.opcode[3] == ~0U ? -100 : _mp_arg(3), _h = mp.opcode[4] == ~0U ? -100 : _mp_arg(4), _d = mp.opcode[5] == ~0U ? -100 : _mp_arg(5), _s = mp.opcode[6] == ~0U ? -100 : _mp_arg(6); const unsigned int w = (unsigned int)(_w >= 0 ? _w : -_w * img.width() / 100), h = (unsigned int)(_h >= 0 ? _h : -_h * img.height() / 100), d = (unsigned int)(_d >= 0 ? _d : -_d * img.depth() / 100), s = (unsigned int)(_s >= 0 ? _s : -_s * img.spectrum() / 100), interp = (int)_mp_arg(7); if (mp.is_fill && img._data == mp.imgout._data) { cimg::mutex(6, 0); throw CImgArgumentException( "[" cimg_appname "_math_parser] CImg<%s>: Function 'resize()': " "Cannot both fill and resize image (%u,%u,%u,%u) " "to new dimensions (%u,%u,%u,%u).", img.pixel_type(), img._width, img._height, img._depth, img._spectrum, w, h, d, s); } const unsigned int boundary = (int)_mp_arg(8); const float cx = (float)_mp_arg(9), cy = (float)_mp_arg(10), cz = (float)_mp_arg(11), cc = (float)_mp_arg(12); img.resize(w, h, d, s, interp, boundary, cx, cy, cz, cc); cimg::mutex(6, 0); return cimg::type::nan(); } static double mp_image_s(_cimg_math_parser& mp) { unsigned int ind = (unsigned int)mp.opcode[2]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; return (double)img.spectrum(); } static double mp_image_sort(_cimg_math_parser& mp) { const bool is_increasing = (bool)_mp_arg(3); const unsigned int ind = (unsigned int)cimg::mod( (int)_mp_arg(2), mp.listout.width()), axis = (unsigned int)_mp_arg(4); cimg::mutex(6); CImg& img = mp.listout[ind]; img.sort(is_increasing, axis == 0 || axis == 'x' ? 'x' : axis == 1 || axis == 'y' ? 'y' : axis == 2 || axis == 'z' ? 'z' : axis == 3 || axis == 'c' ? 'c' : 0); cimg::mutex(6, 0); return cimg::type::nan(); } static double mp_image_stats(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; unsigned int ind = (unsigned int)mp.opcode[2]; if (ind == ~0U) CImg(ptrd, 14, 1, 1, 1, true) = mp.imgout.get_stats(); else { ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg(ptrd, 14, 1, 1, 1, true) = mp.listout[ind].get_stats(); } return cimg::type::nan(); } static double mp_image_w(_cimg_math_parser& mp) { unsigned int ind = (unsigned int)mp.opcode[2]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; return (double)img.width(); } static double mp_image_wh(_cimg_math_parser& mp) { unsigned int ind = (unsigned int)mp.opcode[2]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; return (double)img.width() * img.height(); } static double mp_image_whd(_cimg_math_parser& mp) { unsigned int ind = (unsigned int)mp.opcode[2]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; return (double)img.width() * img.height() * img.depth(); } static double mp_image_whds(_cimg_math_parser& mp) { unsigned int ind = (unsigned int)mp.opcode[2]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; return (double)img.width() * img.height() * img.depth() * img.spectrum(); } static double mp_increment(_cimg_math_parser& mp) { return _mp_arg(2) + 1; } static double mp_int(_cimg_math_parser& mp) { return (double)(longT)_mp_arg(2); } static double mp_ioff(_cimg_math_parser& mp) { const unsigned int boundary_conditions = (unsigned int)_mp_arg(3); const CImg& img = mp.imgin; const longT off = (longT)_mp_arg(2), whds = (longT)img.size(); if (off >= 0 && off < whds) return (double)img[off]; if (img._data) switch (boundary_conditions) { case 3: { // Mirror const longT whds2 = 2 * whds, moff = cimg::mod(off, whds2); return ( double)img[moff < whds ? moff : whds2 - moff - 1]; } case 2: // Periodic return (double)img[cimg::mod(off, whds)]; case 1: // Neumann return (double)img[off < 0 ? 0 : whds - 1]; default: // Dirichlet return 0; } return 0; } static double mp_isbool(_cimg_math_parser& mp) { const double val = _mp_arg(2); return (double)(val == 0. || val == 1.); } static double mp_isdir(_cimg_math_parser& mp) { const double* ptrs = &_mp_arg(2) + 1; const ulongT siz = (ulongT)mp.opcode[3]; CImg ss(siz + 1); cimg_forX(ss, i) ss[i] = (char)ptrs[i]; ss.back() = 0; return (double)cimg::is_directory(ss); } static double mp_isin(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; const double val = _mp_arg(3); for (unsigned int i = 4; i < i_end; ++i) if (val == _mp_arg(i)) return 1.; return 0.; } static double mp_isinf(_cimg_math_parser& mp) { return (double)cimg::type::is_inf(_mp_arg(2)); } static double mp_isint(_cimg_math_parser& mp) { return (double)(cimg::mod(_mp_arg(2), 1.) == 0); } static double mp_isfile(_cimg_math_parser& mp) { const double* ptrs = &_mp_arg(2) + 1; const ulongT siz = (ulongT)mp.opcode[3]; CImg ss(siz + 1); cimg_forX(ss, i) ss[i] = (char)ptrs[i]; ss.back() = 0; return (double)cimg::is_file(ss); } static double mp_isnan(_cimg_math_parser& mp) { return (double)cimg::type::is_nan(_mp_arg(2)); } static double mp_ixyzc(_cimg_math_parser& mp) { const unsigned int interpolation = (unsigned int)_mp_arg(6), boundary_conditions = (unsigned int)_mp_arg(7); const CImg& img = mp.imgin; const double x = _mp_arg(2), y = _mp_arg(3), z = _mp_arg(4), c = _mp_arg(5); switch (interpolation) { case 2: // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), s2 = 2.f * img.spectrum(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), mc = cimg::mod((float)c, s2); return (double)img._cubic_atXYZ( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, (int)(mc < img.spectrum() ? mc : s2 - mc - 1)); } case 2: // Periodic return (double)img._cubic_atXYZ_p( (float)x, (float)y, (float)z, (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._cubic_atXYZ( (float)x, (float)y, (float)z, (int)(c < 0 ? 0 : c >= img._spectrum ? img._spectrum - 1 : c)); default: // Dirichlet if (c < 0 || c >= img._spectrum) return (T)0; return (double)img.cubic_atXYZ( (float)x, (float)y, (float)z, (int)c, (T)0); } case 1: // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), s2 = 2.f * img.spectrum(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), mc = cimg::mod((float)c, s2); return (double)img._linear_atXYZ( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, (int)(mc < img.spectrum() ? mc : s2 - mc - 1)); } case 2: // Periodic return (double)img._linear_atXYZ_p( (float)x, (float)y, (float)z, (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._linear_atXYZ( (float)x, (float)y, (float)z, (int)(c < 0 ? 0 : c >= img._spectrum ? img._spectrum - 1 : c)); default: // Dirichlet if (c < 0 || c >= img._spectrum) return (T)0; return (double)img.linear_atXYZ( (float)x, (float)y, (float)z, (int)c, (T)0); } default: // Nearest neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * img.width(), h2 = 2 * img.height(), d2 = 2 * img.depth(), s2 = 2 * img.spectrum(), mx = cimg::mod((int)x, w2), my = cimg::mod((int)y, h2), mz = cimg::mod((int)z, d2), mc = cimg::mod((int)c, s2); return (double)img( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, mc < img.spectrum() ? mc : s2 - mc - 1); } case 2: // Periodic return (double)img( (int)cimg::mod(x, (double)img._width), (int)cimg::mod(y, (double)img._height), (int)cimg::mod(z, (double)img._depth), (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._atXYZC((int)x, (int)y, (int)z, (int)c); default: // Dirichlet return (double)img.atXYZC((int)x, (int)y, (int)z, (int)c, (T)0); } } } static double mp_joff(_cimg_math_parser& mp) { const unsigned int boundary_conditions = (unsigned int)_mp_arg(3); const int ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; const CImg& img = mp.imgin; const longT off = img.offset(ox, oy, oz, oc) + (longT)_mp_arg(2), whds = (longT)img.size(); if (off >= 0 && off < whds) return (double)img[off]; if (img._data) switch (boundary_conditions) { case 3: { // Mirror const longT whds2 = 2 * whds, moff = cimg::mod(off, whds2); return ( double)img[moff < whds ? moff : whds2 - moff - 1]; } case 2: // Periodic return (double)img[cimg::mod(off, whds)]; case 1: // Neumann return (double)img[off < 0 ? 0 : whds - 1]; default: // Dirichlet return 0; } return 0; } static double mp_jxyzc(_cimg_math_parser& mp) { const unsigned int interpolation = (unsigned int)_mp_arg(6), boundary_conditions = (unsigned int)_mp_arg(7); const CImg& img = mp.imgin; const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c], x = ox + _mp_arg(2), y = oy + _mp_arg(3), z = oz + _mp_arg(4), c = oc + _mp_arg(5); switch (interpolation) { case 2: // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), s2 = 2.f * img.spectrum(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), mc = cimg::mod((float)c, s2); return (double)img._cubic_atXYZ( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, (int)(mc < img.spectrum() ? mc : s2 - mc - 1)); } case 2: // Periodic return (double)img._cubic_atXYZ_p( (float)x, (float)y, (float)z, (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._cubic_atXYZ( (float)x, (float)y, (float)z, (int)(c < 0 ? 0 : c >= img._spectrum ? img._spectrum - 1 : c)); default: // Dirichlet if (c < 0 || c >= img._spectrum) return (T)0; return (double)img.cubic_atXYZ( (float)x, (float)y, (float)z, (int)c, (T)0); } case 1: // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), s2 = 2.f * img.spectrum(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), mc = cimg::mod((float)c, s2); return (double)img._linear_atXYZ( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, (int)(mc < img.spectrum() ? mc : s2 - mc - 1)); } case 2: // Periodic return (double)img._linear_atXYZ_p( (float)x, (float)y, (float)z, (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._linear_atXYZ( (float)x, (float)y, (float)z, (int)(c < 0 ? 0 : c >= img._spectrum ? img._spectrum - 1 : c)); default: // Dirichlet if (c < 0 || c >= img._spectrum) return (T)0; return (double)img.linear_atXYZ( (float)x, (float)y, (float)z, (int)c, (T)0); } default: // Nearest neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * img.width(), h2 = 2 * img.height(), d2 = 2 * img.depth(), s2 = 2 * img.spectrum(), mx = cimg::mod((int)x, w2), my = cimg::mod((int)y, h2), mz = cimg::mod((int)z, d2), mc = cimg::mod((int)c, s2); return (double)img( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, mc < img.spectrum() ? mc : s2 - mc - 1); } case 2: // Periodic return (double)img( (int)cimg::mod(x, (double)img._width), (int)cimg::mod(y, (double)img._height), (int)cimg::mod(z, (double)img._depth), (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._atXYZC((int)x, (int)y, (int)z, (int)c); default: // Dirichlet return (double)img.atXYZC((int)x, (int)y, (int)z, (int)c, (T)0); } } } static double mp_kth(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; CImg vals(i_end - 4); double* p = vals.data(); for (unsigned int i = 4; i < i_end; ++i) *(p++) = _mp_arg(i); int ind = (int)cimg::round(_mp_arg(3)); if (ind < 0) ind += vals.width() + 1; ind = std::max(1, std::min(vals.width(), ind)); return vals.kth_smallest(ind - 1); } static double mp_linear_add(_cimg_math_parser& mp) { return _mp_arg(2) * _mp_arg(3) + _mp_arg(4); } static double mp_linear_sub_left(_cimg_math_parser& mp) { return _mp_arg(2) * _mp_arg(3) - _mp_arg(4); } static double mp_linear_sub_right(_cimg_math_parser& mp) { return _mp_arg(4) - _mp_arg(2) * _mp_arg(3); } static double mp_list_depth(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); return (double)mp.listin[ind]._depth; } static double mp_list_find(_cimg_math_parser& mp) { const unsigned int indi = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = mp.listin[indi]; const bool is_forward = (bool)_mp_arg(4); const ulongT siz = (ulongT)img.size(); longT ind = (longT)(mp.opcode[5] != _cimg_mp_slot_nan ? _mp_arg(5) : is_forward ? 0 : siz - 1); if (ind < 0 || ind >= (longT)siz) return -1.; const T *const ptrb = img.data(), *const ptre = img.end(), *ptr = ptrb + ind; const double val = _mp_arg(3); // Forward search if (is_forward) { while (ptr < ptre && (double)*ptr != val) ++ptr; return ptr == ptre ? -1. : (double)(ptr - ptrb); } // Backward search. while (ptr >= ptrb && (double)*ptr != val) --ptr; return ptr < ptrb ? -1. : (double)(ptr - ptrb); } static double mp_list_find_seq(_cimg_math_parser& mp) { const unsigned int indi = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); const CImg& img = mp.listin[indi]; const bool is_forward = (bool)_mp_arg(5); const ulongT siz1 = (ulongT)img.size(), siz2 = (ulongT)mp.opcode[4]; longT ind = (longT)(mp.opcode[6] != _cimg_mp_slot_nan ? _mp_arg(6) : is_forward ? 0 : siz1 - 1); if (ind < 0 || ind >= (longT)siz1) return -1.; const T *const ptr1b = img.data(), *const ptr1e = ptr1b + siz1, *ptr1 = ptr1b + ind, *p1 = 0; const double *const ptr2b = &_mp_arg(3) + 1, *const ptr2e = ptr2b + siz2, *p2 = 0; // Forward search. if (is_forward) { do { while (ptr1 < ptr1e && *ptr1 != *ptr2b) ++ptr1; if (ptr1 >= ptr1e) return -1.; p1 = ptr1 + 1; p2 = ptr2b + 1; while (p1 < ptr1e && p2 < ptr2e && *p1 == *p2) { ++p1; ++p2; } } while (p2 < ptr2e && ++ptr1 < ptr1e); return p2 < ptr2e ? -1. : (double)(ptr1 - ptr1b); } // Backward search. do { while (ptr1 >= ptr1b && *ptr1 != *ptr2b) --ptr1; if (ptr1 < ptr1b) return -1.; p1 = ptr1 + 1; p2 = ptr2b + 1; while (p1 < ptr1e && p2 < ptr2e && *p1 == *p2) { ++p1; ++p2; } } while (p2 < ptr2e && --ptr1 >= ptr1b); return p2 < ptr2e ? -1. : (double)(ptr1 - ptr1b); } static double mp_list_height(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); return (double)mp.listin[ind]._height; } static double mp_list_ioff(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()), boundary_conditions = (unsigned int)_mp_arg(4); const CImg& img = mp.listin[ind]; const longT off = (longT)_mp_arg(3), whds = (longT)img.size(); if (off >= 0 && off < whds) return (double)img[off]; if (img._data) switch (boundary_conditions) { case 3: { // Mirror const longT whds2 = 2 * whds, moff = cimg::mod(off, whds2); return ( double)img[moff < whds ? moff : whds2 - moff - 1]; } case 2: // Periodic return (double)img[cimg::mod(off, whds)]; case 1: // Neumann return (double)img[off < 0 ? 0 : whds - 1]; default: // Dirichlet return 0; } return 0; } static double mp_list_is_shared(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); return (double)mp.listin[ind]._is_shared; } static double mp_list_ixyzc(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()), interpolation = (unsigned int)_mp_arg(7), boundary_conditions = (unsigned int)_mp_arg(8); const CImg& img = mp.listin[ind]; const double x = _mp_arg(3), y = _mp_arg(4), z = _mp_arg(5), c = _mp_arg(6); switch (interpolation) { case 2: // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), s2 = 2.f * img.spectrum(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), mc = cimg::mod((float)c, s2); return (double)img._cubic_atXYZ( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, (int)(mc < img.spectrum() ? mc : s2 - mc - 1)); } case 2: // Periodic return (double)img._cubic_atXYZ_p( (float)x, (float)y, (float)z, (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._cubic_atXYZ( (float)x, (float)y, (float)z, (int)(c < 0 ? 0 : c >= img._spectrum ? img._spectrum - 1 : c)); default: // Dirichlet if (c < 0 || c >= img._spectrum) return (T)0; return (double)img.cubic_atXYZ( (float)x, (float)y, (float)z, (int)c, (T)0); } case 1: // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), s2 = 2.f * img.spectrum(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), mc = cimg::mod((float)c, s2); return (double)img._linear_atXYZ( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, (int)(mc < img.spectrum() ? mc : s2 - mc - 1)); } case 2: // Periodic return (double)img._linear_atXYZ_p( (float)x, (float)y, (float)z, (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._linear_atXYZ( (float)x, (float)y, (float)z, (int)(c < 0 ? 0 : c >= img._spectrum ? img._spectrum - 1 : c)); default: // Dirichlet if (c < 0 || c >= img._spectrum) return (T)0; return (double)img.linear_atXYZ( (float)x, (float)y, (float)z, (int)c, (T)0); } default: // Nearest neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * img.width(), h2 = 2 * img.height(), d2 = 2 * img.depth(), s2 = 2 * img.spectrum(), mx = cimg::mod((int)x, w2), my = cimg::mod((int)y, h2), mz = cimg::mod((int)z, d2), mc = cimg::mod((int)c, s2); return (double)img( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, mc < img.spectrum() ? mc : s2 - mc - 1); } case 2: // Periodic return (double)img( (int)cimg::mod(x, (double)img._width), (int)cimg::mod(y, (double)img._height), (int)cimg::mod(z, (double)img._depth), (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._atXYZC((int)x, (int)y, (int)z, (int)c); default: // Dirichlet return (double)img.atXYZC((int)x, (int)y, (int)z, (int)c, (T)0); } } } static double mp_list_joff(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()), boundary_conditions = (unsigned int)_mp_arg(4); const int ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; const CImg& img = mp.listin[ind]; const longT off = img.offset(ox, oy, oz, oc) + (longT)_mp_arg(3), whds = (longT)img.size(); if (off >= 0 && off < whds) return (double)img[off]; if (img._data) switch (boundary_conditions) { case 3: { // Mirror const longT whds2 = 2 * whds, moff = cimg::mod(off, whds2); return ( double)img[moff < whds ? moff : whds2 - moff - 1]; } case 2: // Periodic return (double)img[cimg::mod(off, whds)]; case 1: // Neumann return (double)img[off < 0 ? 0 : whds - 1]; default: // Dirichlet return 0; } return 0; } static double mp_list_jxyzc(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()), interpolation = (unsigned int)_mp_arg(7), boundary_conditions = (unsigned int)_mp_arg(8); const CImg& img = mp.listin[ind]; const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c], x = ox + _mp_arg(3), y = oy + _mp_arg(4), z = oz + _mp_arg(5), c = oc + _mp_arg(6); switch (interpolation) { case 2: // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), s2 = 2.f * img.spectrum(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), mc = cimg::mod((float)c, s2); return (double)img._cubic_atXYZ( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, (int)(mc < img.spectrum() ? mc : s2 - mc - 1)); } case 2: // Periodic return (double)img._cubic_atXYZ_p( (float)x, (float)y, (float)z, (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._cubic_atXYZ( (float)x, (float)y, (float)z, (int)(c < 0 ? 0 : c >= img._spectrum ? img._spectrum - 1 : c)); default: // Dirichlet if (c < 0 || c >= img._spectrum) return (T)0; return (double)img.cubic_atXYZ( (float)x, (float)y, (float)z, (int)c, (T)0); } case 1: // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), s2 = 2.f * img.spectrum(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), mc = cimg::mod((float)c, s2); return (double)img._linear_atXYZ( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, (int)(mc < img.spectrum() ? mc : s2 - mc - 1)); } case 2: // Periodic return (double)img._linear_atXYZ_p( (float)x, (float)y, (float)z, (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._linear_atXYZ( (float)x, (float)y, (float)z, (int)(c < 0 ? 0 : c >= img._spectrum ? img._spectrum - 1 : c)); default: // Dirichlet if (c < 0 || c >= img._spectrum) return (T)0; return (double)img.linear_atXYZ( (float)x, (float)y, (float)z, (int)c, (T)0); } default: // Nearest neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * img.width(), h2 = 2 * img.height(), d2 = 2 * img.depth(), s2 = 2 * img.spectrum(), mx = cimg::mod((int)x, w2), my = cimg::mod((int)y, h2), mz = cimg::mod((int)z, d2), mc = cimg::mod((int)c, s2); return (double)img( mx < img.width() ? mx : w2 - mx - 1, my < img.height() ? my : h2 - my - 1, mz < img.depth() ? mz : d2 - mz - 1, mc < img.spectrum() ? mc : s2 - mc - 1); } case 2: // Periodic return (double)img( (int)cimg::mod(x, (double)img._width), (int)cimg::mod(y, (double)img._height), (int)cimg::mod(z, (double)img._depth), (int)cimg::mod(c, (double)img._spectrum)); case 1: // Neumann return (double)img._atXYZC((int)x, (int)y, (int)z, (int)c); default: // Dirichlet return (double)img.atXYZC((int)x, (int)y, (int)z, (int)c, (T)0); } } } static double mp_list_l(_cimg_math_parser& mp) { return (double)mp.listout.width(); } static double mp_list_median(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); if (!mp.list_median) mp.list_median.assign(mp.listin._width); if (!mp.list_median[ind]) CImg::vector(mp.listin[ind].median()) .move_to(mp.list_median[ind]); return *mp.list_median[ind]; } static double mp_list_set_ioff(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const longT off = (longT)_mp_arg(3), whds = (longT)img.size(); const double val = _mp_arg(1); if (off >= 0 && off < whds) img[off] = (T)val; return val; } static double mp_list_set_ixyzc(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const int x = (int)_mp_arg(3), y = (int)_mp_arg(4), z = (int)_mp_arg(5), c = (int)_mp_arg(6); const double val = _mp_arg(1); if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth() && c >= 0 && c < img.spectrum()) img(x, y, z, c) = (T)val; return val; } static double mp_list_set_joff(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const int ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; const longT off = img.offset(ox, oy, oz, oc) + (longT)_mp_arg(3), whds = (longT)img.size(); const double val = _mp_arg(1); if (off >= 0 && off < whds) img[off] = (T)val; return val; } static double mp_list_set_jxyzc(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c]; const int x = (int)(ox + _mp_arg(3)), y = (int)(oy + _mp_arg(4)), z = (int)(oz + _mp_arg(5)), c = (int)(oc + _mp_arg(6)); const double val = _mp_arg(1); if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth() && c >= 0 && c < img.spectrum()) img(x, y, z, c) = (T)val; return val; } static double mp_list_set_Ioff_s(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const longT off = (longT)_mp_arg(3), whd = (longT)img.width() * img.height() * img.depth(); const T val = (T)_mp_arg(1); if (off >= 0 && off < whd) { T* ptrd = &img[off]; cimg_forC(img, c) { *ptrd = val; ptrd += whd; } } return _mp_arg(1); } static double mp_list_set_Ioff_v(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const longT off = (longT)_mp_arg(3), whd = (longT)img.width() * img.height() * img.depth(); const double* ptrs = &_mp_arg(1) + 1; if (off >= 0 && off < whd) { const unsigned int vsiz = (unsigned int)mp.opcode[4]; T* ptrd = &img[off]; cimg_for_inC(img, 0, vsiz - 1, c) { *ptrd = (T) * (ptrs++); ptrd += whd; } } return cimg::type::nan(); } static double mp_list_set_Ixyz_s(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const int x = (int)_mp_arg(3), y = (int)_mp_arg(4), z = (int)_mp_arg(5); const T val = (T)_mp_arg(1); if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth()) { T* ptrd = &img(x, y, z); const ulongT whd = (ulongT)img._width * img._height * img._depth; cimg_forC(img, c) { *ptrd = val; ptrd += whd; } } return _mp_arg(1); } static double mp_list_set_Ixyz_v(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const int x = (int)_mp_arg(3), y = (int)_mp_arg(4), z = (int)_mp_arg(5); const double* ptrs = &_mp_arg(1) + 1; if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth()) { const unsigned int vsiz = (unsigned int)mp.opcode[6]; T* ptrd = &img(x, y, z); const ulongT whd = (ulongT)img._width * img._height * img._depth; cimg_for_inC(img, 0, vsiz - 1, c) { *ptrd = (T) * (ptrs++); ptrd += whd; } } return cimg::type::nan(); } static double mp_list_set_Joff_s(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const int ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; const longT off = img.offset(ox, oy, oz, oc) + (longT)_mp_arg(3), whd = (longT)img.width() * img.height() * img.depth(); const T val = (T)_mp_arg(1); if (off >= 0 && off < whd) { T* ptrd = &img[off]; cimg_forC(img, c) { *ptrd = val; ptrd += whd; } } return _mp_arg(1); } static double mp_list_set_Joff_v(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const int ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; const longT off = img.offset(ox, oy, oz, oc) + (longT)_mp_arg(3), whd = (longT)img.width() * img.height() * img.depth(); const double* ptrs = &_mp_arg(1) + 1; if (off >= 0 && off < whd) { const unsigned int vsiz = (unsigned int)mp.opcode[4]; T* ptrd = &img[off]; cimg_for_inC(img, 0, vsiz - 1, c) { *ptrd = (T) * (ptrs++); ptrd += whd; } } return cimg::type::nan(); } static double mp_list_set_Jxyz_s(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; const int x = (int)(ox + _mp_arg(3)), y = (int)(oy + _mp_arg(4)), z = (int)(oz + _mp_arg(5)); const T val = (T)_mp_arg(1); if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth()) { T* ptrd = &img(x, y, z); const ulongT whd = (ulongT)img._width * img._height * img._depth; cimg_forC(img, c) { *ptrd = val; ptrd += whd; } } return _mp_arg(1); } static double mp_list_set_Jxyz_v(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); CImg& img = mp.listout[ind]; const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; const int x = (int)(ox + _mp_arg(3)), y = (int)(oy + _mp_arg(4)), z = (int)(oz + _mp_arg(5)); const double* ptrs = &_mp_arg(1) + 1; if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth()) { const unsigned int vsiz = (unsigned int)mp.opcode[6]; T* ptrd = &img(x, y, z); const ulongT whd = (ulongT)img._width * img._height * img._depth; cimg_for_inC(img, 0, vsiz - 1, c) { *ptrd = (T) * (ptrs++); ptrd += whd; } } return cimg::type::nan(); } static double mp_list_spectrum(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); return (double)mp.listin[ind]._spectrum; } static double mp_list_stats(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()), k = (unsigned int)mp.opcode[3]; if (!mp.list_stats) mp.list_stats.assign(mp.listin._width); if (!mp.list_stats[ind]) mp.list_stats[ind] .assign(1, 14, 1, 1, 0) .fill(mp.listin[ind].get_stats(), false); return mp.list_stats(ind, k); } static double mp_list_wh(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); return (double)mp.listin[ind]._width * mp.listin[ind]._height; } static double mp_list_whd(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); return (double)mp.listin[ind]._width * mp.listin[ind]._height * mp.listin[ind]._depth; } static double mp_list_whds(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); return (double)mp.listin[ind]._width * mp.listin[ind]._height * mp.listin[ind]._depth * mp.listin[ind]._spectrum; } static double mp_list_width(_cimg_math_parser& mp) { const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()); return (double)mp.listin[ind]._width; } static double mp_list_Ioff(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()), boundary_conditions = (unsigned int)_mp_arg(4), vsiz = (unsigned int)mp.opcode[5]; const CImg& img = mp.listin[ind]; const longT off = (longT)_mp_arg(3), whd = (longT)img.width() * img.height() * img.depth(); const T* ptrs; if (off >= 0 && off < whd) { ptrs = &img[off]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); } if (img._data) switch (boundary_conditions) { case 3: { // Mirror const longT whd2 = 2 * whd, moff = cimg::mod(off, whd2); ptrs = &img[moff < whd ? moff : whd2 - moff - 1]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); } case 2: // Periodic ptrs = &img[cimg::mod(off, whd)]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); case 1: // Neumann ptrs = off < 0 ? &img[0] : &img[whd - 1]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); default: // Dirichlet std::memset(ptrd, 0, vsiz * sizeof(double)); return cimg::type::nan(); } std::memset(ptrd, 0, vsiz * sizeof(double)); return cimg::type::nan(); } static double mp_list_Ixyz(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()), interpolation = (unsigned int)_mp_arg(6), boundary_conditions = (unsigned int)_mp_arg(7), vsiz = (unsigned int)mp.opcode[8]; const CImg& img = mp.listin[ind]; const double x = _mp_arg(3), y = _mp_arg(4), z = _mp_arg(5); const ulongT whd = (ulongT)img._width * img._height * img._depth; const T* ptrs; switch (interpolation) { case 2: // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ(cx, cy, cz, c); } break; case 2: // Periodic cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ_p((float)x, (float)y, (float)z, c); break; case 1: // Neumann cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ((float)x, (float)y, (float)z, c); break; default: // Dirichlet cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img.cubic_atXYZ((float)x, (float)y, (float)z, c, (T)0); } break; case 1: // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ(cx, cy, cz, c); } break; case 2: // Periodic cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ_p((float)x, (float)y, (float)z, c); break; case 1: // Neumann cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ((float)x, (float)y, (float)z, c); break; default: // Dirichlet cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img.linear_atXYZ((float)x, (float)y, (float)z, c, (T)0); } break; default: // Nearest neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * img.width(), h2 = 2 * img.height(), d2 = 2 * img.depth(), mx = cimg::mod((int)x, w2), my = cimg::mod((int)y, h2), mz = cimg::mod((int)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; ptrs = &img(cx, cy, cz); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; case 2: { // Periodic const int cx = (int)cimg::mod(x, (double)img._width), cy = (int)cimg::mod(y, (double)img._height), cz = (int)cimg::mod(z, (double)img._depth); ptrs = &img(cx, cy, cz); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; case 1: { // Neumann ptrs = &img._atXYZ((int)x, (int)y, (int)z); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; default: // Dirichlet if (img.containsXYZC((int)x, (int)y, (int)z)) { ptrs = &img((int)x, (int)y, (int)z); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } else std::memset(ptrd, 0, vsiz * sizeof(double)); } } return cimg::type::nan(); } static double mp_list_Joff(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()), boundary_conditions = (unsigned int)_mp_arg(4), vsiz = (unsigned int)mp.opcode[5]; const int ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z]; const CImg& img = mp.listin[ind]; const longT off = img.offset(ox, oy, oz) + (longT)_mp_arg(3), whd = (longT)img.width() * img.height() * img.depth(); const T* ptrs; if (off >= 0 && off < whd) { ptrs = &img[off]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); } if (img._data) switch (boundary_conditions) { case 3: { // Mirror const longT whd2 = 2 * whd, moff = cimg::mod(off, whd2); ptrs = &img[moff < whd ? moff : whd2 - moff - 1]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); } case 2: // Periodic ptrs = &img[cimg::mod(off, whd)]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); case 1: // Neumann ptrs = off < 0 ? &img[0] : &img[whd - 1]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); default: // Dirichlet std::memset(ptrd, 0, vsiz * sizeof(double)); return cimg::type::nan(); } std::memset(ptrd, 0, vsiz * sizeof(double)); return cimg::type::nan(); } static double mp_list_Jxyz(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2), mp.listin.width()), interpolation = (unsigned int)_mp_arg(6), boundary_conditions = (unsigned int)_mp_arg(7), vsiz = (unsigned int)mp.opcode[8]; const CImg& img = mp.listin[ind]; const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z], x = ox + _mp_arg(3), y = oy + _mp_arg(4), z = oz + _mp_arg(5); const ulongT whd = (ulongT)img._width * img._height * img._depth; const T* ptrs; switch (interpolation) { case 2: // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ(cx, cy, cz, c); } break; case 2: // Periodic cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ_p((float)x, (float)y, (float)z, c); break; case 1: // Neumann cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ((float)x, (float)y, (float)z, c); break; default: // Dirichlet cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img.cubic_atXYZ((float)x, (float)y, (float)z, c, (T)0); } break; case 1: // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ(cx, cy, cz, c); } break; case 2: // Periodic cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ_p((float)x, (float)y, (float)z, c); break; case 1: // Neumann cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ((float)x, (float)y, (float)z, c); break; default: // Dirichlet cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img.linear_atXYZ((float)x, (float)y, (float)z, c, (T)0); } break; case 0: // Nearest neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * img.width(), h2 = 2 * img.height(), d2 = 2 * img.depth(), mx = cimg::mod((int)x, w2), my = cimg::mod((int)y, h2), mz = cimg::mod((int)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; ptrs = &img(cx, cy, cz); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; case 2: { // Periodic const int cx = (int)cimg::mod(x, (double)img._width), cy = (int)cimg::mod(y, (double)img._height), cz = (int)cimg::mod(z, (double)img._depth); ptrs = &img(cx, cy, cz); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; case 1: { // Neumann ptrs = &img._atXYZ((int)x, (int)y, (int)z); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; default: // Dirichlet if (img.containsXYZC((int)x, (int)y, (int)z)) { ptrs = &img((int)x, (int)y, (int)z); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } else std::memset(ptrd, 0, vsiz * sizeof(double)); } } return cimg::type::nan(); } static double mp_log(_cimg_math_parser& mp) { return std::log(_mp_arg(2)); } static double mp_log10(_cimg_math_parser& mp) { return std::log10(_mp_arg(2)); } static double mp_log2(_cimg_math_parser& mp) { return cimg::log2(_mp_arg(2)); } static double mp_logical_and(_cimg_math_parser& mp) { const bool val_left = (bool)_mp_arg(2); const CImg* const p_end = ++mp.p_code + mp.opcode[4]; if (!val_left) { mp.p_code = p_end - 1; return 0; } const ulongT mem_right = mp.opcode[3]; for (; mp.p_code < p_end; ++mp.p_code) { mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } --mp.p_code; return (double)(bool)mp.mem[mem_right]; } static double mp_logical_not(_cimg_math_parser& mp) { return (double)!_mp_arg(2); } static double mp_logical_or(_cimg_math_parser& mp) { const bool val_left = (bool)_mp_arg(2); const CImg* const p_end = ++mp.p_code + mp.opcode[4]; if (val_left) { mp.p_code = p_end - 1; return 1; } const ulongT mem_right = mp.opcode[3]; for (; mp.p_code < p_end; ++mp.p_code) { mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } --mp.p_code; return (double)(bool)mp.mem[mem_right]; } static double mp_lowercase(_cimg_math_parser& mp) { return cimg::lowercase(_mp_arg(2)); } static double mp_lt(_cimg_math_parser& mp) { return (double)(_mp_arg(2) < _mp_arg(3)); } static double mp_lte(_cimg_math_parser& mp) { return (double)(_mp_arg(2) <= _mp_arg(3)); } static double mp_matrix_eig(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const double* ptr1 = &_mp_arg(2) + 1; const unsigned int k = (unsigned int)mp.opcode[3]; CImg val, vec; CImg(ptr1, k, k, 1, 1, true).symmetric_eigen(val, vec); CImg(ptrd, 1, k, 1, 1, true) = val; CImg(ptrd + k, k, k, 1, 1, true) = vec.get_transpose(); return cimg::type::nan(); } static double mp_matrix_inv(_cimg_math_parser& mp) { double* const ptrd = &_mp_arg(1) + 1; const double* const ptr1 = &_mp_arg(2) + 1; const unsigned int k = (unsigned int)mp.opcode[3]; CImg(ptrd, k, k, 1, 1, true) = CImg(ptr1, k, k, 1, 1, true).get_invert(); return cimg::type::nan(); } static double mp_matrix_mul(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const double *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1; const unsigned int k = (unsigned int)mp.opcode[4], l = (unsigned int)mp.opcode[5], m = (unsigned int)mp.opcode[6]; CImg(ptrd, m, k, 1, 1, true) = CImg(ptr1, l, k, 1, 1, true) * CImg(ptr2, m, l, 1, 1, true); return cimg::type::nan(); } static double mp_matrix_pseudoinv(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const double* ptr1 = &_mp_arg(2) + 1; const unsigned int k = (unsigned int)mp.opcode[3], l = (unsigned int)mp.opcode[4]; CImg(ptrd, l, k, 1, 1, true) = CImg(ptr1, k, l, 1, 1, true).get_pseudoinvert(); return cimg::type::nan(); } static double mp_matrix_svd(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const double* ptr1 = &_mp_arg(2) + 1; const unsigned int k = (unsigned int)mp.opcode[3], l = (unsigned int)mp.opcode[4]; CImg U, S, V; CImg(ptr1, k, l, 1, 1, true).SVD(U, S, V); CImg(ptrd, 1, k, 1, 1, true) = S; CImg(ptrd + k, k, l, 1, 1, true) = U; CImg(ptrd + k + k * l, k, k, 1, 1, true) = V; return cimg::type::nan(); } static double mp_max(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; double val = _mp_arg(3); for (unsigned int i = 4; i < i_end; ++i) val = std::max(val, _mp_arg(i)); return val; } static double* _mp_memcopy_double(_cimg_math_parser& mp, const unsigned int ind, const ulongT* const p_ref, const longT siz, const long inc) { const longT off = *p_ref ? p_ref[1] + (longT)mp.mem[(longT)p_ref[2]] + 1 : ind, eoff = off + (siz - 1) * inc; if (off < 0 || eoff >= mp.mem.width()) throw CImgArgumentException( "[" cimg_appname "_math_parser] CImg<%s>: Function 'copy()': " "Out-of-bounds variable pointer " "(length: %ld, increment: %ld, offset start: %ld, " "offset end: %ld, offset max: %u).", mp.imgin.pixel_type(), siz, inc, off, eoff, mp.mem._width - 1); return &mp.mem[off]; } static float* _mp_memcopy_float(_cimg_math_parser& mp, const ulongT* const p_ref, const longT siz, const long inc, const bool is_out) { const unsigned ind = (unsigned int)p_ref[1]; const CImg& img = is_out ? (ind == ~0U ? mp.imgout : mp.listout[cimg::mod((int)mp.mem[ind], mp.listout.width())]) : (ind == ~0U ? mp.imgin : mp.listin[cimg::mod((int)mp.mem[ind], mp.listin.width())]); const bool is_relative = (bool)p_ref[2]; int ox, oy, oz, oc; longT off = 0; if (is_relative) { ox = (int)mp.mem[_cimg_mp_slot_x]; oy = (int)mp.mem[_cimg_mp_slot_y]; oz = (int)mp.mem[_cimg_mp_slot_z]; oc = (int)mp.mem[_cimg_mp_slot_c]; off = img.offset(ox, oy, oz, oc); } if ((*p_ref) % 2) { const int x = (int)mp.mem[p_ref[3]], y = (int)mp.mem[p_ref[4]], z = (int)mp.mem[p_ref[5]], c = *p_ref == 5 ? 0 : (int)mp.mem[p_ref[6]]; off += img.offset(x, y, z, c); } else off += (longT)mp.mem[p_ref[3]]; const longT eoff = off + (siz - 1) * inc; if (off < 0 || eoff >= (longT)img.size()) throw CImgArgumentException( "[" cimg_appname "_math_parser] CImg<%s>: Function 'copy()': " "Out-of-bounds image pointer " "(length: %ld, increment: %ld, offset start: %ld, " "offset end: %ld, offset max: %lu).", mp.imgin.pixel_type(), siz, inc, off, eoff, img.size() - 1); return (float*)&img[off]; } static double mp_memcopy(_cimg_math_parser& mp) { longT siz = (longT)_mp_arg(4); const longT inc_d = (longT)_mp_arg(5), inc_s = (longT)_mp_arg(6); const float _opacity = (float)_mp_arg(7), opacity = (float)cimg::abs(_opacity), omopacity = 1 - std::max(_opacity, 0.f); if (siz > 0) { const bool is_doubled = mp.opcode[8] <= 1, is_doubles = mp.opcode[15] <= 1; if (is_doubled && is_doubles) { // (double*) <- (double*) double* ptrd = _mp_memcopy_double(mp, (unsigned int)mp.opcode[2], &mp.opcode[8], siz, inc_d); const double* ptrs = _mp_memcopy_double(mp, (unsigned int)mp.opcode[3], &mp.opcode[15], siz, inc_s); if (inc_d == 1 && inc_s == 1 && _opacity >= 1) { if (ptrs + siz - 1 < ptrd || ptrs > ptrd + siz - 1) std::memcpy(ptrd, ptrs, siz * sizeof(double)); else std::memmove(ptrd, ptrs, siz * sizeof(double)); } else { if (ptrs + (siz - 1) * inc_s < ptrd || ptrs > ptrd + (siz - 1) * inc_d) { if (_opacity >= 1) while (siz-- > 0) { *ptrd = *ptrs; ptrd += inc_d; ptrs += inc_s; } else while (siz-- > 0) { *ptrd = omopacity * *ptrd + opacity * *ptrs; ptrd += inc_d; ptrs += inc_s; } } else { // Overlapping buffers CImg buf((unsigned int)siz); cimg_for(buf, ptr, double) { *ptr = *ptrs; ptrs += inc_s; } ptrs = buf; if (_opacity >= 1) while (siz-- > 0) { *ptrd = *(ptrs++); ptrd += inc_d; } else while (siz-- > 0) { *ptrd = omopacity * *ptrd + opacity * *(ptrs++); ptrd += inc_d; } } } } else if (is_doubled && !is_doubles) { // (double*) <- (float*) double* ptrd = _mp_memcopy_double(mp, (unsigned int)mp.opcode[2], &mp.opcode[8], siz, inc_d); const float* ptrs = _mp_memcopy_float(mp, &mp.opcode[15], siz, inc_s, false); if (_opacity >= 1) while (siz-- > 0) { *ptrd = *ptrs; ptrd += inc_d; ptrs += inc_s; } else while (siz-- > 0) { *ptrd = omopacity * *ptrd + _opacity * *ptrs; ptrd += inc_d; ptrs += inc_s; } } else if (!is_doubled && is_doubles) { // (float*) <- (double*) float* ptrd = _mp_memcopy_float(mp, &mp.opcode[8], siz, inc_d, true); const double* ptrs = _mp_memcopy_double(mp, (unsigned int)mp.opcode[3], &mp.opcode[15], siz, inc_s); if (_opacity >= 1) while (siz-- > 0) { *ptrd = (float)*ptrs; ptrd += inc_d; ptrs += inc_s; } else while (siz-- > 0) { *ptrd = (float)(omopacity * *ptrd + opacity * *ptrs); ptrd += inc_d; ptrs += inc_s; } } else { // (float*) <- (float*) float* ptrd = _mp_memcopy_float(mp, &mp.opcode[8], siz, inc_d, true); const float* ptrs = _mp_memcopy_float(mp, &mp.opcode[15], siz, inc_s, false); if (inc_d == 1 && inc_s == 1 && _opacity >= 1) { if (ptrs + siz - 1 < ptrd || ptrs > ptrd + siz - 1) std::memcpy(ptrd, ptrs, siz * sizeof(float)); else std::memmove(ptrd, ptrs, siz * sizeof(float)); } else { if (ptrs + (siz - 1) * inc_s < ptrd || ptrs > ptrd + (siz - 1) * inc_d) { if (_opacity >= 1) while (siz-- > 0) { *ptrd = *ptrs; ptrd += inc_d; ptrs += inc_s; } else while (siz-- > 0) { *ptrd = omopacity * *ptrd + opacity * *ptrs; ptrd += inc_d; ptrs += inc_s; } } else { // Overlapping buffers CImg buf((unsigned int)siz); cimg_for(buf, ptr, float) { *ptr = *ptrs; ptrs += inc_s; } ptrs = buf; if (_opacity >= 1) while (siz-- > 0) { *ptrd = *(ptrs++); ptrd += inc_d; } else while (siz-- > 0) { *ptrd = omopacity * *ptrd + opacity * *(ptrs++); ptrd += inc_d; } } } } } return _mp_arg(1); } static double mp_min(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; double val = _mp_arg(3); for (unsigned int i = 4; i < i_end; ++i) val = std::min(val, _mp_arg(i)); return val; } static double mp_minus(_cimg_math_parser& mp) { return -_mp_arg(2); } static double mp_median(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; switch (i_end - 3) { case 1: return _mp_arg(3); case 2: return cimg::median(_mp_arg(3), _mp_arg(4)); case 3: return cimg::median(_mp_arg(3), _mp_arg(4), _mp_arg(5)); case 5: return cimg::median(_mp_arg(3), _mp_arg(4), _mp_arg(5), _mp_arg(6), _mp_arg(7)); case 7: return cimg::median(_mp_arg(3), _mp_arg(4), _mp_arg(5), _mp_arg(6), _mp_arg(7), _mp_arg(8), _mp_arg(9)); case 9: return cimg::median(_mp_arg(3), _mp_arg(4), _mp_arg(5), _mp_arg(6), _mp_arg(7), _mp_arg(8), _mp_arg(9), _mp_arg(10), _mp_arg(11)); case 13: return cimg::median(_mp_arg(3), _mp_arg(4), _mp_arg(5), _mp_arg(6), _mp_arg(7), _mp_arg(8), _mp_arg(9), _mp_arg(10), _mp_arg(11), _mp_arg(12), _mp_arg(13), _mp_arg(14), _mp_arg(15)); } CImg vals(i_end - 3); double* p = vals.data(); for (unsigned int i = 3; i < i_end; ++i) *(p++) = _mp_arg(i); return vals.median(); } static double mp_modulo(_cimg_math_parser& mp) { return cimg::mod(_mp_arg(2), _mp_arg(3)); } static double mp_mul(_cimg_math_parser& mp) { return _mp_arg(2) * _mp_arg(3); } static double mp_mul2(_cimg_math_parser& mp) { return _mp_arg(2) * _mp_arg(3) * _mp_arg(4); } static double mp_neq(_cimg_math_parser& mp) { return (double)(_mp_arg(2) != _mp_arg(3)); } static double mp_norm0(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; switch (i_end - 3) { case 1: return _mp_arg(3) != 0; case 2: return (_mp_arg(3) != 0) + (_mp_arg(4) != 0); } double res = 0; for (unsigned int i = 3; i < i_end; ++i) res += _mp_arg(i) == 0 ? 0 : 1; return res; } static double mp_norm1(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; switch (i_end - 3) { case 1: return cimg::abs(_mp_arg(3)); case 2: return cimg::abs(_mp_arg(3)) + cimg::abs(_mp_arg(4)); } double res = 0; for (unsigned int i = 3; i < i_end; ++i) res += cimg::abs(_mp_arg(i)); return res; } static double mp_norm2(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; switch (i_end - 3) { case 1: return cimg::abs(_mp_arg(3)); case 2: return cimg::_hypot(_mp_arg(3), _mp_arg(4)); } double res = 0; for (unsigned int i = 3; i < i_end; ++i) res += cimg::sqr(_mp_arg(i)); return std::sqrt(res); } static double mp_norminf(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; switch (i_end - 3) { case 1: return cimg::abs(_mp_arg(3)); case 2: return std::max(cimg::abs(_mp_arg(3)), cimg::abs(_mp_arg(4))); } double res = 0; for (unsigned int i = 3; i < i_end; ++i) { const double val = cimg::abs(_mp_arg(i)); if (val > res) res = val; } return res; } static double mp_normp(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; if (i_end == 4) return cimg::abs(_mp_arg(3)); const double p = (double)mp.opcode[3]; double res = 0; for (unsigned int i = 4; i < i_end; ++i) res += std::pow(cimg::abs(_mp_arg(i)), p); res = std::pow(res, 1 / p); return res > 0 ? res : 0.; } static double mp_permutations(_cimg_math_parser& mp) { return cimg::permutations((int)_mp_arg(2), (int)_mp_arg(3), (bool)_mp_arg(4)); } static double mp_polygon(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; unsigned int ind = (unsigned int)mp.opcode[3]; if (ind != ~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(3), mp.listin.width()); CImg& img = ind == ~0U ? mp.imgout : mp.listout[ind]; bool is_invalid_arguments = i_end <= 4, is_outlined = false; if (!is_invalid_arguments) { int nbv = (int)_mp_arg(4); if (!nbv) is_invalid_arguments = true; else { if (nbv < 0) { nbv = -nbv; is_outlined = true; } CImg points(nbv, 2, 1, 1, 0); CImg color(img._spectrum, 1, 1, 1, 0); float opacity = 1; unsigned int i = 5, pattern = ~0U; cimg_foroff(points, k) if (i < i_end) points(k / 2, k % 2) = (int)cimg::round(_mp_arg(i++)); else { is_invalid_arguments = true; break; } if (!is_invalid_arguments) { if (i < i_end) opacity = (float)_mp_arg(i++); if (is_outlined && i < i_end) pattern = (unsigned int)_mp_arg(i++); cimg_forX(color, k) if (i < i_end) color[k] = (T)_mp_arg(i++); else { color.resize(k, 1, 1, 1, -1); break; } color.resize(img._spectrum, 1, 1, 1, 0, 2); if (is_outlined) img.draw_polygon(points, color._data, opacity, pattern); else img.draw_polygon(points, color._data, opacity); } } } if (is_invalid_arguments) { CImg args(i_end - 4); cimg_forX(args, k) args[k] = _mp_arg(4 + k); if (ind == ~0U) throw CImgArgumentException( "[" cimg_appname "_math_parser] CImg<%s>: Function 'polygon()': " "Invalid arguments '%s'. ", mp.imgin.pixel_type(), args.value_string()._data); else throw CImgArgumentException( "[" cimg_appname "_math_parser] CImg<%s>: Function 'polygon()': " "Invalid arguments '#%u%s%s'. ", mp.imgin.pixel_type(), ind, args._width ? "," : "", args.value_string()._data); } return cimg::type::nan(); } static double mp_pow(_cimg_math_parser& mp) { const double v = _mp_arg(2), p = _mp_arg(3); return std::pow(v, p); } static double mp_pow0_25(_cimg_math_parser& mp) { const double val = _mp_arg(2); return std::sqrt(std::sqrt(val)); } static double mp_pow3(_cimg_math_parser& mp) { const double val = _mp_arg(2); return val * val * val; } static double mp_pow4(_cimg_math_parser& mp) { const double val = _mp_arg(2); return val * val * val * val; } static double mp_print(_cimg_math_parser& mp) { const double val = _mp_arg(1); const bool print_char = (bool)mp.opcode[3]; cimg_pragma_openmp(critical(mp_print)) { CImg _expr(mp.opcode[2] - 4); const ulongT* ptrs = mp.opcode._data + 4; cimg_for(_expr, ptrd, char)* ptrd = (char)*(ptrs++); cimg::strellipsize(_expr); cimg::mutex(6); if (print_char) std::fprintf(cimg::output(), "\n[" cimg_appname "_math_parser] %s = %g = '%c'", _expr._data, val, (int)val); else std::fprintf(cimg::output(), "\n[" cimg_appname "_math_parser] %s = %g", _expr._data, val); std::fflush(cimg::output()); cimg::mutex(6, 0); } return val; } static double mp_prod(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; double val = _mp_arg(3); for (unsigned int i = 4; i < i_end; ++i) val *= _mp_arg(i); return val; } static double mp_copy(_cimg_math_parser& mp) { return _mp_arg(2); } static double mp_rol(_cimg_math_parser& mp) { return cimg::rol(_mp_arg(2), (unsigned int)_mp_arg(3)); } static double mp_ror(_cimg_math_parser& mp) { return cimg::ror(_mp_arg(2), (unsigned int)_mp_arg(3)); } static double mp_rot2d(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const float theta = (float)_mp_arg(2) * cimg::PI / 180, ca = std::cos(theta), sa = std::sin(theta); *(ptrd++) = ca; *(ptrd++) = -sa; *(ptrd++) = sa; *ptrd = ca; return cimg::type::nan(); } static double mp_rot3d(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const float x = (float)_mp_arg(2), y = (float)_mp_arg(3), z = (float)_mp_arg(4), theta = (float)_mp_arg(5); CImg(ptrd, 3, 3, 1, 1, true) = CImg::rotation_matrix(x, y, z, theta); return cimg::type::nan(); } static double mp_round(_cimg_math_parser& mp) { return cimg::round(_mp_arg(2), _mp_arg(3), (int)_mp_arg(4)); } static double mp_self_add(_cimg_math_parser& mp) { return _mp_arg(1) += _mp_arg(2); } static double mp_self_bitwise_and(_cimg_math_parser& mp) { double& val = _mp_arg(1); return val = (double)((longT)val & (longT)_mp_arg(2)); } static double mp_self_bitwise_left_shift(_cimg_math_parser& mp) { double& val = _mp_arg(1); return val = (double)((longT)val << (unsigned int)_mp_arg(2)); } static double mp_self_bitwise_or(_cimg_math_parser& mp) { double& val = _mp_arg(1); return val = (double)((longT)val | (longT)_mp_arg(2)); } static double mp_self_bitwise_right_shift(_cimg_math_parser& mp) { double& val = _mp_arg(1); return val = (double)((longT)val >> (unsigned int)_mp_arg(2)); } static double mp_self_decrement(_cimg_math_parser& mp) { return --_mp_arg(1); } static double mp_self_increment(_cimg_math_parser& mp) { return ++_mp_arg(1); } static double mp_self_map_vector_s( _cimg_math_parser& mp) { // Vector += scalar unsigned int ptrd = (unsigned int)mp.opcode[1] + 1, siz = (unsigned int)mp.opcode[2]; mp_func op = (mp_func)mp.opcode[3]; CImg l_opcode(1, 3); l_opcode[2] = mp.opcode[4]; // Scalar argument l_opcode.swap(mp.opcode); ulongT& target = mp.opcode[1]; while (siz-- > 0) { target = ptrd++; (*op)(mp); } l_opcode.swap(mp.opcode); return cimg::type::nan(); } static double mp_self_map_vector_v( _cimg_math_parser& mp) { // Vector += vector unsigned int ptrd = (unsigned int)mp.opcode[1] + 1, siz = (unsigned int)mp.opcode[2], ptrs = (unsigned int)mp.opcode[4] + 1; mp_func op = (mp_func)mp.opcode[3]; CImg l_opcode(1, 4); l_opcode.swap(mp.opcode); ulongT &target = mp.opcode[1], &argument = mp.opcode[2]; while (siz-- > 0) { target = ptrd++; argument = ptrs++; (*op)(mp); } l_opcode.swap(mp.opcode); return cimg::type::nan(); } static double mp_self_mul(_cimg_math_parser& mp) { return _mp_arg(1) *= _mp_arg(2); } static double mp_self_div(_cimg_math_parser& mp) { return _mp_arg(1) /= _mp_arg(2); } static double mp_self_modulo(_cimg_math_parser& mp) { double& val = _mp_arg(1); return val = cimg::mod(val, _mp_arg(2)); } static double mp_self_pow(_cimg_math_parser& mp) { double& val = _mp_arg(1); return val = std::pow(val, _mp_arg(2)); } static double mp_self_sub(_cimg_math_parser& mp) { return _mp_arg(1) -= _mp_arg(2); } static double mp_set_ioff(_cimg_math_parser& mp) { CImg& img = mp.imgout; const longT off = (longT)_mp_arg(2), whds = (longT)img.size(); const double val = _mp_arg(1); if (off >= 0 && off < whds) img[off] = (T)val; return val; } static double mp_set_ixyzc(_cimg_math_parser& mp) { CImg& img = mp.imgout; const int x = (int)_mp_arg(2), y = (int)_mp_arg(3), z = (int)_mp_arg(4), c = (int)_mp_arg(5); const double val = _mp_arg(1); if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth() && c >= 0 && c < img.spectrum()) img(x, y, z, c) = (T)val; return val; } static double mp_set_joff(_cimg_math_parser& mp) { CImg& img = mp.imgout; const int ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; const longT off = img.offset(ox, oy, oz, oc) + (longT)_mp_arg(2), whds = (longT)img.size(); const double val = _mp_arg(1); if (off >= 0 && off < whds) img[off] = (T)val; return val; } static double mp_set_jxyzc(_cimg_math_parser& mp) { CImg& img = mp.imgout; const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c]; const int x = (int)(ox + _mp_arg(2)), y = (int)(oy + _mp_arg(3)), z = (int)(oz + _mp_arg(4)), c = (int)(oc + _mp_arg(5)); const double val = _mp_arg(1); if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth() && c >= 0 && c < img.spectrum()) img(x, y, z, c) = (T)val; return val; } static double mp_set_Ioff_s(_cimg_math_parser& mp) { CImg& img = mp.imgout; const longT off = (longT)_mp_arg(2), whd = (longT)img.width() * img.height() * img.depth(); const T val = (T)_mp_arg(1); if (off >= 0 && off < whd) { T* ptrd = &img[off]; cimg_forC(img, c) { *ptrd = val; ptrd += whd; } } return _mp_arg(1); } static double mp_set_Ioff_v(_cimg_math_parser& mp) { CImg& img = mp.imgout; const longT off = (longT)_mp_arg(2), whd = (longT)img.width() * img.height() * img.depth(); const double* ptrs = &_mp_arg(1) + 1; if (off >= 0 && off < whd) { const unsigned int vsiz = (unsigned int)mp.opcode[3]; T* ptrd = &img[off]; cimg_for_inC(img, 0, vsiz - 1, c) { *ptrd = (T) * (ptrs++); ptrd += whd; } } return cimg::type::nan(); } static double mp_set_Ixyz_s(_cimg_math_parser& mp) { CImg& img = mp.imgout; const int x = (int)_mp_arg(2), y = (int)_mp_arg(3), z = (int)_mp_arg(4); const T val = (T)_mp_arg(1); if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth()) { T* ptrd = &img(x, y, z); const ulongT whd = (ulongT)img._width * img._height * img._depth; cimg_forC(img, c) { *ptrd = val; ptrd += whd; } } return _mp_arg(1); } static double mp_set_Ixyz_v(_cimg_math_parser& mp) { CImg& img = mp.imgout; const int x = (int)_mp_arg(2), y = (int)_mp_arg(3), z = (int)_mp_arg(4); const double* ptrs = &_mp_arg(1) + 1; if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth()) { const unsigned int vsiz = (unsigned int)mp.opcode[5]; T* ptrd = &img(x, y, z); const ulongT whd = (ulongT)img._width * img._height * img._depth; cimg_for_inC(img, 0, vsiz - 1, c) { *ptrd = (T) * (ptrs++); ptrd += whd; } } return cimg::type::nan(); } static double mp_set_Joff_s(_cimg_math_parser& mp) { CImg& img = mp.imgout; const int ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; const longT off = img.offset(ox, oy, oz, oc) + (longT)_mp_arg(2), whd = (longT)img.width() * img.height() * img.depth(); const T val = (T)_mp_arg(1); if (off >= 0 && off < whd) { T* ptrd = &img[off]; cimg_forC(img, c) { *ptrd = val; ptrd += whd; } } return _mp_arg(1); } static double mp_set_Joff_v(_cimg_math_parser& mp) { CImg& img = mp.imgout; const int ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; const longT off = img.offset(ox, oy, oz, oc) + (longT)_mp_arg(2), whd = (longT)img.width() * img.height() * img.depth(); const double* ptrs = &_mp_arg(1) + 1; if (off >= 0 && off < whd) { const unsigned int vsiz = (unsigned int)mp.opcode[3]; T* ptrd = &img[off]; cimg_for_inC(img, 0, vsiz - 1, c) { *ptrd = (T) * (ptrs++); ptrd += whd; } } return cimg::type::nan(); } static double mp_set_Jxyz_s(_cimg_math_parser& mp) { CImg& img = mp.imgout; const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; const int x = (int)(ox + _mp_arg(2)), y = (int)(oy + _mp_arg(3)), z = (int)(oz + _mp_arg(4)); const T val = (T)_mp_arg(1); if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth()) { T* ptrd = &img(x, y, z); const ulongT whd = (ulongT)img._width * img._height * img._depth; cimg_forC(img, c) { *ptrd = val; ptrd += whd; } } return _mp_arg(1); } static double mp_set_Jxyz_v(_cimg_math_parser& mp) { CImg& img = mp.imgout; const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; const int x = (int)(ox + _mp_arg(2)), y = (int)(oy + _mp_arg(3)), z = (int)(oz + _mp_arg(4)); const double* ptrs = &_mp_arg(1) + 1; if (x >= 0 && x < img.width() && y >= 0 && y < img.height() && z >= 0 && z < img.depth()) { const unsigned int vsiz = (unsigned int)mp.opcode[5]; T* ptrd = &img(x, y, z); const ulongT whd = (ulongT)img._width * img._height * img._depth; cimg_for_inC(img, 0, vsiz - 1, c) { *ptrd = (T) * (ptrs++); ptrd += whd; } } return cimg::type::nan(); } static double mp_shift(_cimg_math_parser& mp) { double* const ptrd = &_mp_arg(1) + 1; const double* const ptrs = &_mp_arg(2) + 1; const unsigned int siz = (unsigned int)mp.opcode[3]; const int shift = (int)_mp_arg(4), boundary_conditions = (int)_mp_arg(5); CImg(ptrd, siz, 1, 1, 1, true) = CImg(ptrs, siz, 1, 1, 1, true) .shift(shift, 0, 0, 0, boundary_conditions); return cimg::type::nan(); } static double mp_sign(_cimg_math_parser& mp) { return cimg::sign(_mp_arg(2)); } static double mp_sin(_cimg_math_parser& mp) { return std::sin(_mp_arg(2)); } static double mp_sinc(_cimg_math_parser& mp) { return cimg::sinc(_mp_arg(2)); } static double mp_sinh(_cimg_math_parser& mp) { return std::sinh(_mp_arg(2)); } static double mp_solve(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const double *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1; const unsigned int k = (unsigned int)mp.opcode[4], l = (unsigned int)mp.opcode[5], m = (unsigned int)mp.opcode[6]; CImg(ptrd, m, k, 1, 1, true) = CImg(ptr2, m, l, 1, 1, true) .get_solve(CImg(ptr1, k, l, 1, 1, true)); return cimg::type::nan(); } static double mp_sort(_cimg_math_parser& mp) { double* const ptrd = &_mp_arg(1) + 1; const double* const ptrs = &_mp_arg(2) + 1; const unsigned int siz = (unsigned int)mp.opcode[3], chunk_siz = (unsigned int)mp.opcode[5]; const bool is_increasing = (bool)_mp_arg(4); CImg(ptrd, chunk_siz, siz / chunk_siz, 1, 1, true) = CImg(ptrs, chunk_siz, siz / chunk_siz, 1, 1, true) .get_sort(is_increasing, chunk_siz > 1 ? 'y' : 0); return cimg::type::nan(); } static double mp_sqr(_cimg_math_parser& mp) { return cimg::sqr(_mp_arg(2)); } static double mp_sqrt(_cimg_math_parser& mp) { return std::sqrt(_mp_arg(2)); } static double mp_srand(_cimg_math_parser& mp) { mp.rng = (ulongT)_mp_arg(2); return cimg::type::nan(); } static double mp_srand0(_cimg_math_parser& mp) { cimg::srand(&mp.rng); #if cimg_use_openmp != 0 mp.rng += omp_get_thread_num(); #endif return cimg::type::nan(); } static double mp_std(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; CImg vals(i_end - 3); double* p = vals.data(); for (unsigned int i = 3; i < i_end; ++i) *(p++) = _mp_arg(i); return std::sqrt(vals.variance()); } static double mp_string_init(_cimg_math_parser& mp) { const char* ptrs = (char*)&mp.opcode[3]; unsigned int ptrd = (unsigned int)mp.opcode[1] + 1, siz = (unsigned int)mp.opcode[2]; while (siz-- > 0) mp.mem[ptrd++] = (double)*(ptrs++); return cimg::type::nan(); } static double mp_stov(_cimg_math_parser& mp) { const double* ptrs = &_mp_arg(2); const ulongT siz = (ulongT)mp.opcode[3]; longT ind = (longT)_mp_arg(4); const bool is_strict = (bool)_mp_arg(5); double val = cimg::type::nan(); if (ind < 0 || ind >= (longT)siz) return val; if (!siz) return *ptrs >= '0' && *ptrs <= '9' ? *ptrs - '0' : val; CImg ss(siz + 1 - ind); ptrs += 1 + ind; cimg_forX(ss, i) ss[i] = (char)ptrs[i]; ss.back() = 0; const char* s = ss._data; while (*s && *s <= 32) ++s; const bool is_negative = *s == '-'; if (is_negative || *s == '+') ++s; int err = 0; char sep; if (*s == '0' && (s[1] == 'x' || s[1] == 'X') && s[2] > 32) { // Hexadecimal number unsigned int ival; err = cimg_sscanf(s + 2, "%x%c", &ival, &sep); if (err > 0) val = (double)ival; } else if (*s > 32) { // Decimal number err = cimg_sscanf(s, "%lf%c", &val, &sep); #if cimg_OS == 2 // Check for +/-NaN and +/-inf as Microsoft's sscanf() version // is not able to read those particular values. if (!err && (*s == 'i' || *s == 'I' || *s == 'n' || *s == 'N')) { if (!cimg::strncasecmp(s, "inf", 3)) { val = cimg::type::inf(); err = 1 + (s[3] != 0); } else if (!cimg::strncasecmp(s, "nan", 3)) { val = cimg::type::nan(); err = 1 + (s[3] != 0); } } #endif } if (err <= 0 || (is_strict && err != 1)) return cimg::type::nan(); if (is_negative) val = -val; return val; } static double mp_sub(_cimg_math_parser& mp) { return _mp_arg(2) - _mp_arg(3); } static double mp_sum(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; double val = _mp_arg(3); for (unsigned int i = 4; i < i_end; ++i) val += _mp_arg(i); return val; } static double mp_tan(_cimg_math_parser& mp) { return std::tan(_mp_arg(2)); } static double mp_tanh(_cimg_math_parser& mp) { return std::tanh(_mp_arg(2)); } static double mp_trace(_cimg_math_parser& mp) { const double* ptrs = &_mp_arg(2) + 1; const unsigned int k = (unsigned int)mp.opcode[3]; return CImg(ptrs, k, k, 1, 1, true).trace(); } static double mp_transp(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const double* ptrs = &_mp_arg(2) + 1; const unsigned int k = (unsigned int)mp.opcode[3], l = (unsigned int)mp.opcode[4]; CImg(ptrd, l, k, 1, 1, true) = CImg(ptrs, k, l, 1, 1, true).get_transpose(); return cimg::type::nan(); } static double mp_u(_cimg_math_parser& mp) { return cimg::rand(_mp_arg(2), _mp_arg(3), &mp.rng); } static double mp_uppercase(_cimg_math_parser& mp) { return cimg::uppercase(_mp_arg(2)); } static double mp_var(_cimg_math_parser& mp) { const unsigned int i_end = (unsigned int)mp.opcode[2]; CImg vals(i_end - 3); double* p = vals.data(); for (unsigned int i = 3; i < i_end; ++i) *(p++) = _mp_arg(i); return vals.variance(); } static double mp_vector_copy(_cimg_math_parser& mp) { std::memcpy(&_mp_arg(1) + 1, &_mp_arg(2) + 1, sizeof(double) * mp.opcode[3]); return cimg::type::nan(); } static double mp_vector_crop(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const double* ptrs = &_mp_arg(2) + 1; const longT length = (longT)mp.opcode[3], start = (longT)_mp_arg(4), sublength = (longT)mp.opcode[5], step = (longT)_mp_arg(6); if (start < 0 || start + step * (sublength - 1) >= length) throw CImgArgumentException( "[" cimg_appname "_math_parser] CImg<%s>: Value accessor '[]': " "Out-of-bounds sub-vector request " "(length: %ld, start: %ld, sub-length: %ld, step: %ld).", mp.imgin.pixel_type(), length, start, sublength, step); ptrs += start; if (step == 1) std::memcpy(ptrd, ptrs, sublength * sizeof(double)); else for (longT k = 0; k < sublength; ++k) { *(ptrd++) = *ptrs; ptrs += step; } return cimg::type::nan(); } static double mp_vector_init(_cimg_math_parser& mp) { unsigned int ptrs = 4U, ptrd = (unsigned int)mp.opcode[1] + 1, siz = (unsigned int)mp.opcode[3]; switch (mp.opcode[2] - 4) { case 0: std::memset(mp.mem._data + ptrd, 0, siz * sizeof(double)); break; // 0 values given case 1: { const double val = _mp_arg(ptrs); while (siz-- > 0) mp.mem[ptrd++] = val; } break; default: while (siz-- > 0) { mp.mem[ptrd++] = _mp_arg(ptrs++); if (ptrs >= mp.opcode[2]) ptrs = 4U; } } return cimg::type::nan(); } static double mp_vector_eq(_cimg_math_parser& mp) { const double *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(4) + 1; unsigned int p1 = (unsigned int)mp.opcode[3], p2 = (unsigned int)mp.opcode[5], n; const int N = (int)_mp_arg(6); const bool case_sensitive = (bool)_mp_arg(7); bool still_equal = true; double value; if (!N) return true; // Compare all values. if (N < 0) { if (p1 > 0 && p2 > 0) { // Vector == vector if (p1 != p2) return false; if (case_sensitive) while (still_equal && p1--) still_equal = *(ptr1++) == *(ptr2++); else while (still_equal && p1--) still_equal = cimg::lowercase(*(ptr1++)) == cimg::lowercase(*(ptr2++)); return still_equal; } else if (p1 > 0 && !p2) { // Vector == scalar value = _mp_arg(4); if (!case_sensitive) value = cimg::lowercase(value); while (still_equal && p1--) still_equal = *(ptr1++) == value; return still_equal; } else if (!p1 && p2 > 0) { // Scalar == vector value = _mp_arg(2); if (!case_sensitive) value = cimg::lowercase(value); while (still_equal && p2--) still_equal = *(ptr2++) == value; return still_equal; } else { // Scalar == scalar if (case_sensitive) return _mp_arg(2) == _mp_arg(4); else return cimg::lowercase(_mp_arg(2)) == cimg::lowercase(_mp_arg(4)); } } // Compare only first N values. if (p1 > 0 && p2 > 0) { // Vector == vector n = cimg::min((unsigned int)N, p1, p2); if (case_sensitive) while (still_equal && n--) still_equal = *(ptr1++) == (*ptr2++); else while (still_equal && n--) still_equal = cimg::lowercase(*(ptr1++)) == cimg::lowercase(*(ptr2++)); return still_equal; } else if (p1 > 0 && !p2) { // Vector == scalar n = std::min((unsigned int)N, p1); value = _mp_arg(4); if (!case_sensitive) value = cimg::lowercase(value); while (still_equal && n--) still_equal = *(ptr1++) == value; return still_equal; } else if (!p1 && p2 > 0) { // Scalar == vector n = std::min((unsigned int)N, p2); value = _mp_arg(2); if (!case_sensitive) value = cimg::lowercase(value); while (still_equal && n--) still_equal = *(ptr2++) == value; return still_equal; } // Scalar == scalar if (case_sensitive) return _mp_arg(2) == _mp_arg(4); return cimg::lowercase(_mp_arg(2)) == cimg::lowercase(_mp_arg(4)); } static double mp_vector_off(_cimg_math_parser& mp) { const unsigned int ptr = (unsigned int)mp.opcode[2] + 1, siz = (unsigned int)mp.opcode[3]; const int off = (int)_mp_arg(4); return off >= 0 && off < (int)siz ? mp.mem[ptr + off] : cimg::type::nan(); } static double mp_vector_map_sv( _cimg_math_parser& mp) { // Operator(scalar,vector) unsigned int siz = (unsigned int)mp.opcode[2], ptrs = (unsigned int)mp.opcode[5] + 1; double* ptrd = &_mp_arg(1) + 1; mp_func op = (mp_func)mp.opcode[3]; CImg l_opcode(4); l_opcode[2] = mp.opcode[4]; // Scalar argument1 l_opcode.swap(mp.opcode); ulongT& argument2 = mp.opcode[3]; while (siz-- > 0) { argument2 = ptrs++; *(ptrd++) = (*op)(mp); } l_opcode.swap(mp.opcode); return cimg::type::nan(); } static double mp_vector_map_v( _cimg_math_parser& mp) { // Operator(vector) unsigned int siz = (unsigned int)mp.opcode[2], ptrs = (unsigned int)mp.opcode[4] + 1; double* ptrd = &_mp_arg(1) + 1; mp_func op = (mp_func)mp.opcode[3]; CImg l_opcode(1, 3); l_opcode.swap(mp.opcode); ulongT& argument = mp.opcode[2]; while (siz-- > 0) { argument = ptrs++; *(ptrd++) = (*op)(mp); } l_opcode.swap(mp.opcode); return cimg::type::nan(); } static double mp_vector_map_vs( _cimg_math_parser& mp) { // Operator(vector,scalar) unsigned int siz = (unsigned int)mp.opcode[2], ptrs = (unsigned int)mp.opcode[4] + 1; double* ptrd = &_mp_arg(1) + 1; mp_func op = (mp_func)mp.opcode[3]; CImg l_opcode(1, 4); l_opcode[3] = mp.opcode[5]; // Scalar argument2 l_opcode.swap(mp.opcode); ulongT& argument1 = mp.opcode[2]; while (siz-- > 0) { argument1 = ptrs++; *(ptrd++) = (*op)(mp); } l_opcode.swap(mp.opcode); return cimg::type::nan(); } static double mp_vector_map_vss( _cimg_math_parser& mp) { // Operator(vector,scalar,scalar) unsigned int siz = (unsigned int)mp.opcode[2], ptrs = (unsigned int)mp.opcode[4] + 1; double* ptrd = &_mp_arg(1) + 1; mp_func op = (mp_func)mp.opcode[3]; CImg l_opcode(1, 5); l_opcode[3] = mp.opcode[5]; // Scalar argument2 l_opcode[4] = mp.opcode[6]; // Scalar argument3 l_opcode.swap(mp.opcode); ulongT& argument1 = mp.opcode[2]; while (siz-- > 0) { argument1 = ptrs++; *(ptrd++) = (*op)(mp); } l_opcode.swap(mp.opcode); return cimg::type::nan(); } static double mp_vector_map_vv( _cimg_math_parser& mp) { // Operator(vector,vector) unsigned int siz = (unsigned int)mp.opcode[2], ptrs1 = (unsigned int)mp.opcode[4] + 1, ptrs2 = (unsigned int)mp.opcode[5] + 1; double* ptrd = &_mp_arg(1) + 1; mp_func op = (mp_func)mp.opcode[3]; CImg l_opcode(1, 4); l_opcode.swap(mp.opcode); ulongT &argument1 = mp.opcode[2], &argument2 = mp.opcode[3]; while (siz-- > 0) { argument1 = ptrs1++; argument2 = ptrs2++; *(ptrd++) = (*op)(mp); } l_opcode.swap(mp.opcode); return cimg::type::nan(); } static double mp_vector_neq(_cimg_math_parser& mp) { return !mp_vector_eq(mp); } static double mp_vector_print(_cimg_math_parser& mp) { const bool print_string = (bool)mp.opcode[4]; cimg_pragma_openmp(critical(mp_vector_print)) { CImg _expr(mp.opcode[2] - 5); const ulongT* ptrs = mp.opcode._data + 5; cimg_for(_expr, ptrd, char)* ptrd = (char)*(ptrs++); cimg::strellipsize(_expr); unsigned int ptr = (unsigned int)mp.opcode[1] + 1, siz0 = (unsigned int)mp.opcode[3], siz = siz0; cimg::mutex(6); std::fprintf(cimg::output(), "\n[" cimg_appname "_math_parser] %s = [ ", _expr._data); unsigned int count = 0; while (siz-- > 0) { if (count >= 64 && siz >= 64) { std::fprintf(cimg::output(), "...,"); ptr = (unsigned int)mp.opcode[1] + 1 + siz0 - 64; siz = 64; } else std::fprintf(cimg::output(), "%g%s", mp.mem[ptr++], siz ? "," : ""); ++count; } if (print_string) { CImg str(siz0 + 1); ptr = (unsigned int)mp.opcode[1] + 1; for (unsigned int k = 0; k < siz0; ++k) str[k] = (char)mp.mem[ptr++]; str[siz0] = 0; cimg::strellipsize(str, 1024, false); std::fprintf(cimg::output(), " ] = '%s' (size: %u)", str._data, siz0); } else std::fprintf(cimg::output(), " ] (size: %u)", siz0); std::fflush(cimg::output()); cimg::mutex(6, 0); } return cimg::type::nan(); } static double mp_vector_resize(_cimg_math_parser& mp) { double* const ptrd = &_mp_arg(1) + 1; const unsigned int p1 = (unsigned int)mp.opcode[2], p2 = (unsigned int)mp.opcode[4]; const int interpolation = (int)_mp_arg(5), boundary_conditions = (int)_mp_arg(6); if (p2) { // Resize vector const double* const ptrs = &_mp_arg(3) + 1; CImg(ptrd, p1, 1, 1, 1, true) = CImg(ptrs, p2, 1, 1, 1, true) .get_resize(p1, 1, 1, 1, interpolation, boundary_conditions); } else { // Resize scalar const double value = _mp_arg(3); CImg(ptrd, p1, 1, 1, 1, true) = CImg(1, 1, 1, 1, value) .resize(p1, 1, 1, 1, interpolation, boundary_conditions); } return cimg::type::nan(); } static double mp_vector_reverse(_cimg_math_parser& mp) { double* const ptrd = &_mp_arg(1) + 1; const double* const ptrs = &_mp_arg(2) + 1; const unsigned int p1 = (unsigned int)mp.opcode[3]; CImg(ptrd, p1, 1, 1, 1, true) = CImg(ptrs, p1, 1, 1, 1, true).get_mirror('x'); return cimg::type::nan(); } static double mp_vector_set_off(_cimg_math_parser& mp) { const unsigned int ptr = (unsigned int)mp.opcode[2] + 1, siz = (unsigned int)mp.opcode[3]; const int off = (int)_mp_arg(4); if (off >= 0 && off < (int)siz) mp.mem[ptr + off] = _mp_arg(5); return _mp_arg(5); } static double mp_vtos(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const unsigned int sizd = (unsigned int)mp.opcode[2], sizs = (unsigned int)mp.opcode[4]; const int nb_digits = (int)_mp_arg(5); CImg format(8); switch (nb_digits) { case -1: std::strcpy(format, "%g"); break; case 0: std::strcpy(format, "%.17g"); break; default: cimg_snprintf(format, format._width, "%%.%dg", nb_digits); } CImg str; if (sizs) { // Vector expression const double* ptrs = &_mp_arg(3) + 1; CImg(ptrs, sizs, 1, 1, 1, true) .value_string(',', sizd + 1, format) .move_to(str); } else { // Scalar expression str.assign(sizd + 1); cimg_snprintf(str, sizd + 1, format, _mp_arg(3)); } const unsigned int l = std::min(sizd, (unsigned int)std::strlen(str) + 1); CImg(ptrd, l, 1, 1, 1, true) = str.get_shared_points(0, l - 1); return cimg::type::nan(); } static double mp_while(_cimg_math_parser& mp) { const ulongT mem_body = mp.opcode[1], mem_cond = mp.opcode[2]; const CImg*const p_cond = ++mp.p_code, *const p_body = p_cond + mp.opcode[3], *const p_end = p_body + mp.opcode[4]; const unsigned int vsiz = (unsigned int)mp.opcode[5]; bool is_cond = false; if (mp.opcode[6]) { // Set default value for result and condition // if necessary if (vsiz) CImg(&mp.mem[mem_body] + 1, vsiz, 1, 1, 1, true) .fill(cimg::type::nan()); else mp.mem[mem_body] = cimg::type::nan(); } if (mp.opcode[7]) mp.mem[mem_cond] = 0; const unsigned int _break_type = mp.break_type; mp.break_type = 0; do { for (mp.p_code = p_cond; mp.p_code < p_body; ++mp.p_code) { // Evaluate condition mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } if (mp.break_type == 1) break; is_cond = (bool)mp.mem[mem_cond]; if (is_cond && !mp.break_type) // Evaluate body for (mp.p_code = p_body; mp.p_code < p_end; ++mp.p_code) { mp.opcode._data = mp.p_code->_data; const ulongT target = mp.opcode[1]; mp.mem[target] = _cimg_mp_defunc(mp); } if (mp.break_type == 1) break; else if (mp.break_type == 2) mp.break_type = 0; } while (is_cond); mp.break_type = _break_type; mp.p_code = p_end - 1; return mp.mem[mem_body]; } static double mp_Ioff(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const unsigned int boundary_conditions = (unsigned int)_mp_arg(3), vsiz = (unsigned int)mp.opcode[4]; const CImg& img = mp.imgin; const longT off = (longT)_mp_arg(2), whd = (longT)img.width() * img.height() * img.depth(); const T* ptrs; if (off >= 0 && off < whd) { ptrs = &img[off]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); } if (img._data) switch (boundary_conditions) { case 3: { // Mirror const longT whd2 = 2 * whd, moff = cimg::mod(off, whd2); ptrs = &img[moff < whd ? moff : whd2 - moff - 1]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); } case 2: // Periodic ptrs = &img[cimg::mod(off, whd)]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); case 1: // Neumann ptrs = off < 0 ? &img[0] : &img[whd - 1]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); default: // Dirichlet std::memset(ptrd, 0, vsiz * sizeof(double)); return cimg::type::nan(); } std::memset(ptrd, 0, vsiz * sizeof(double)); return cimg::type::nan(); } static double mp_Ixyz(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const unsigned int interpolation = (unsigned int)_mp_arg(5), boundary_conditions = (unsigned int)_mp_arg(6), vsiz = (unsigned int)mp.opcode[7]; const CImg& img = mp.imgin; const double x = _mp_arg(2), y = _mp_arg(3), z = _mp_arg(4); const ulongT whd = (ulongT)img._width * img._height * img._depth; const T* ptrs; switch (interpolation) { case 2: // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ(cx, cy, cz, c); } break; case 2: // Periodic cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ_p((float)x, (float)y, (float)z, c); break; case 1: // Neumann cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ((float)x, (float)y, (float)z, c); break; default: // Dirichlet cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img.cubic_atXYZ((float)x, (float)y, (float)z, c, (T)0); } break; case 1: // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ(cx, cy, cz, c); } break; case 2: // Periodic cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ_p((float)x, (float)y, (float)z, c); break; case 1: // Neumann cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ((float)x, (float)y, (float)z, c); break; default: // Dirichlet cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img.linear_atXYZ((float)x, (float)y, (float)z, c, (T)0); } break; default: // Nearest neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * img.width(), h2 = 2 * img.height(), d2 = 2 * img.depth(), mx = cimg::mod((int)x, w2), my = cimg::mod((int)y, h2), mz = cimg::mod((int)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; ptrs = &img(cx, cy, cz); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; case 2: { // Periodic const int cx = (int)cimg::mod(x, (double)img._width), cy = (int)cimg::mod(y, (double)img._height), cz = (int)cimg::mod(z, (double)img._depth); ptrs = &img(cx, cy, cz); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; case 1: { // Neumann ptrs = &img._atXYZ((int)x, (int)y, (int)z); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; default: // Dirichlet if (img.containsXYZC((int)x, (int)y, (int)z)) { ptrs = &img((int)x, (int)y, (int)z); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } else std::memset(ptrd, 0, vsiz * sizeof(double)); } } return cimg::type::nan(); } static double mp_Joff(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const unsigned int boundary_conditions = (unsigned int)_mp_arg(3), vsiz = (unsigned int)mp.opcode[4]; const CImg& img = mp.imgin; const int ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z]; const longT off = img.offset(ox, oy, oz) + (longT)_mp_arg(2), whd = (longT)img.width() * img.height() * img.depth(); const T* ptrs; if (off >= 0 && off < whd) { ptrs = &img[off]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); } if (img._data) switch (boundary_conditions) { case 3: { // Mirror const longT whd2 = 2 * whd, moff = cimg::mod(off, whd2); ptrs = &img[moff < whd ? moff : whd2 - moff - 1]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); } case 2: // Periodic ptrs = &img[cimg::mod(off, whd)]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); case 1: // Neumann ptrs = off < 0 ? &img[0] : &img[whd - 1]; cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = *ptrs; ptrs += whd; } return cimg::type::nan(); default: // Dirichlet std::memset(ptrd, 0, vsiz * sizeof(double)); return cimg::type::nan(); } std::memset(ptrd, 0, vsiz * sizeof(double)); return cimg::type::nan(); } static double mp_Jxyz(_cimg_math_parser& mp) { double* ptrd = &_mp_arg(1) + 1; const unsigned int interpolation = (unsigned int)_mp_arg(5), boundary_conditions = (unsigned int)_mp_arg(6), vsiz = (unsigned int)mp.opcode[7]; const CImg& img = mp.imgin; const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z], x = ox + _mp_arg(2), y = oy + _mp_arg(3), z = oz + _mp_arg(4); const ulongT whd = (ulongT)img._width * img._height * img._depth; const T* ptrs; switch (interpolation) { case 2: // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ(cx, cy, cz, c); } break; case 2: // Periodic cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ_p((float)x, (float)y, (float)z, c); break; case 1: // Neumann cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._cubic_atXYZ((float)x, (float)y, (float)z, c); break; default: // Dirichlet cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img.cubic_atXYZ((float)x, (float)y, (float)z, c, (T)0); } break; case 1: // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * img.width(), h2 = 2.f * img.height(), d2 = 2.f * img.depth(), mx = cimg::mod((float)x, w2), my = cimg::mod((float)y, h2), mz = cimg::mod((float)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ(cx, cy, cz, c); } break; case 2: // Periodic cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ_p((float)x, (float)y, (float)z, c); break; case 1: // Neumann cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img._linear_atXYZ((float)x, (float)y, (float)z, c); break; default: // Dirichlet cimg_for_inC(img, 0, vsiz - 1, c) * (ptrd++) = (double)img.linear_atXYZ((float)x, (float)y, (float)z, c, (T)0); } break; default: // Nearest neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * img.width(), h2 = 2 * img.height(), d2 = 2 * img.depth(), mx = cimg::mod((int)x, w2), my = cimg::mod((int)y, h2), mz = cimg::mod((int)z, d2), cx = mx < img.width() ? mx : w2 - mx - 1, cy = my < img.height() ? my : h2 - my - 1, cz = mz < img.depth() ? mz : d2 - mz - 1; ptrs = &img(cx, cy, cz); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; case 2: { // Periodic const int cx = (int)cimg::mod(x, (double)img._width), cy = (int)cimg::mod(y, (double)img._height), cz = (int)cimg::mod(z, (double)img._depth); ptrs = &img(cx, cy, cz); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; case 1: { // Neumann ptrs = &img._atXYZ((int)x, (int)y, (int)z); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } break; default: // Dirichlet if (img.containsXYZC((int)x, (int)y, (int)z)) { ptrs = &img((int)x, (int)y, (int)z); cimg_for_inC(img, 0, vsiz - 1, c) { *(ptrd++) = (double)*ptrs; ptrs += whd; } } else std::memset(ptrd, 0, vsiz * sizeof(double)); } } return cimg::type::nan(); } #undef _mp_arg }; // struct _cimg_math_parser {} #define _cimg_create_pointwise_functions(name, func, min_size) \ CImg& name() { \ if (is_empty()) return *this; \ cimg_openmp_for(*this, func((double)*ptr), min_size); \ return *this; \ } \ CImg get_##name() const { \ return CImg(*this, false).name(); \ } //! Compute the square value of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its square value \f$I_{(x,y,z,c)}^2\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. \par Example \code const CImg img("reference.jpg"); (img,img.get_sqr().normalize(0,255)).display(); \endcode \image html ref_sqr.jpg **/ _cimg_create_pointwise_functions(sqr, cimg::sqr, 524288) //! Compute the square root of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its square root \f$\sqrt{I_{(x,y,z,c)}}\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. \par Example \code const CImg img("reference.jpg"); (img,img.get_sqrt().normalize(0,255)).display(); \endcode \image html ref_sqrt.jpg **/ _cimg_create_pointwise_functions(sqrt, std::sqrt, 8192) //! Compute the exponential of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its exponential \f$e^{I_{(x,y,z,c)}}\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(exp, std::exp, 4096) //! Compute the logarithm of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its logarithm \f$\mathrm{log}_{e}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(log, std::log, 262144) //! Compute the base-2 logarithm of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its base-2 logarithm \f$\mathrm{log}_{2}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(log2, cimg::log2, 4096) //! Compute the base-10 logarithm of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its base-10 logarithm \f$\mathrm{log}_{10}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(log10, std::log10, 4096) //! Compute the absolute value of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its absolute value \f$|I_{(x,y,z,c)}|\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(abs, cimg::abs, 524288) //! Compute the sign of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sign \f$\mathrm{sign}(I_{(x,y,z,c)})\f$. \note - The sign is set to: - \c 1 if pixel value is strictly positive. - \c -1 if pixel value is strictly negative. - \c 0 if pixel value is equal to \c 0. - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(sign, cimg::sign, 32768) //! Compute the cosine of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its cosine \f$\cos(I_{(x,y,z,c)})\f$. \note - Pixel values are regarded as being in \e radian. - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(cos, std::cos, 8192) //! Compute the sine of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sine \f$\sin(I_{(x,y,z,c)})\f$. \note - Pixel values are regarded as being in \e radian. - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(sin, std::sin, 8192) //! Compute the sinc of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sinc \f$\mathrm{sinc}(I_{(x,y,z,c)})\f$. \note - Pixel values are regarded as being exin \e radian. - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(sinc, cimg::sinc, 2048) //! Compute the tangent of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its tangent \f$\tan(I_{(x,y,z,c)})\f$. \note - Pixel values are regarded as being exin \e radian. - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(tan, std::tan, 2048) //! Compute the hyperbolic cosine of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic cosine \f$\mathrm{cosh}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(cosh, std::cosh, 2048) //! Compute the hyperbolic sine of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic sine \f$\mathrm{sinh}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(sinh, std::sinh, 2048) //! Compute the hyperbolic tangent of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic tangent \f$\mathrm{tanh}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(tanh, std::tanh, 2048) //! Compute the arccosine of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arccosine \f$\mathrm{acos}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(acos, std::acos, 8192) //! Compute the arcsine of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arcsine \f$\mathrm{asin}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(asin, std::asin, 8192) //! Compute the arctangent of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arctangent \f$\mathrm{atan}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(atan, std::atan, 8192) //! Compute the arctangent2 of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arctangent2 \f$\mathrm{atan2}(I_{(x,y,z,c)})\f$. \param img Image whose pixel values specify the second argument of the \c atan2() function. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. \par Example \code const CImg img_x(100,100,1,1,"x-w/2",false), // Define an horizontal centered gradient, from '-width/2' to 'width/2' img_y(100,100,1,1,"y-h/2",false), // Define a vertical centered gradient, from '-height/2' to 'height/2' img_atan2 = img_y.get_atan2(img_x); // Compute atan2(y,x) for each pixel value (img_x,img_y,img_atan2).display(); \endcode **/ template CImg& atan2(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return atan2(+img); T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)std::atan2((double)*ptrd, (double)*(ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)std::atan2((double)*ptrd, (double)*(ptrs++)); } return *this; } //! Compute the arctangent2 of each pixel value \newinstance. template CImg get_atan2(const CImg& img) const { return CImg(*this, false).atan2(img); } //! Compute the hyperbolic arccosine of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arccosineh \f$\mathrm{acosh}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(acosh, cimg::acosh, 8192) //! Compute the hyperbolic arcsine of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic arcsine \f$\mathrm{asinh}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(asinh, cimg::asinh, 8192) //! Compute the hyperbolic arctangent of each pixel value. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic arctangent \f$\mathrm{atanh}(I_{(x,y,z,c)})\f$. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. **/ _cimg_create_pointwise_functions(atanh, cimg::atanh, 8192) //! In-place pointwise multiplication. /** Compute the pointwise multiplication between the image instance and the specified input image \c img. \param img Input image, as the second operand of the multiplication. \note - Similar to operator+=(const CImg&), except that it performs a pointwise multiplication instead of an addition. - It does \e not perform a \e matrix multiplication. For this purpose, use operator*=(const CImg&) instead. \par Example \code CImg img("reference.jpg"), shade(img.width,img.height(),1,1,"-(x-w/2)^2-(y-h/2)^2",false); shade.normalize(0,1); (img,shade,img.get_mul(shade)).display(); \endcode **/ template CImg& mul(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return mul(+img); T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)(*ptrd * *(ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)(*ptrd * *(ptrs++)); } return *this; } //! In-place pointwise multiplication \newinstance. template CImg<_cimg_Tt> get_mul(const CImg& img) const { return CImg<_cimg_Tt>(*this, false).mul(img); } //! In-place pointwise division. /** Similar to mul(const CImg&), except that it performs a pointwise division instead of a multiplication. **/ template CImg& div(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return div(+img); T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)(*ptrd / *(ptrs++)); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)(*ptrd / *(ptrs++)); } return *this; } //! In-place pointwise division \newinstance. template CImg<_cimg_Tt> get_div(const CImg& img) const { return CImg<_cimg_Tt>(*this, false).div(img); } //! Raise each pixel value to a specified power. /** Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its power \f$I_{(x,y,z,c)}^p\f$. \param p Exponent value. \note - The \inplace of this method statically casts the computed values to the pixel type \c T. - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. \par Example \code const CImg img0("reference.jpg"), // Load reference color image img1 = (img0/255).pow(1.8)*=255, // Compute gamma correction, with gamma = 1.8 img2 = (img0/255).pow(0.5)*=255; // Compute gamma correction, with gamma = 0.5 (img0,img1,img2).display(); \endcode **/ CImg& pow(const double p) { if (is_empty()) return *this; if (p == -4) { cimg_openmp_for(*this, 1 / (Tfloat)cimg::pow4(*ptr), 32768); return *this; } if (p == -3) { cimg_openmp_for(*this, 1 / (Tfloat)cimg::pow3(*ptr), 32768); return *this; } if (p == -2) { cimg_openmp_for(*this, 1 / (Tfloat)cimg::sqr(*ptr), 32768); return *this; } if (p == -1) { cimg_openmp_for(*this, 1 / (Tfloat)*ptr, 32768); return *this; } if (p == -0.5) { cimg_openmp_for(*this, 1 / std::sqrt((Tfloat)*ptr), 8192); return *this; } if (p == 0) return fill((T)1); if (p == 0.5) return sqrt(); if (p == 1) return *this; if (p == 2) return sqr(); if (p == 3) { cimg_openmp_for(*this, cimg::pow3(*ptr), 262144); return *this; } if (p == 4) { cimg_openmp_for(*this, cimg::pow4(*ptr), 131072); return *this; } cimg_openmp_for(*this, std::pow((Tfloat)*ptr, (Tfloat)p), 1024); return *this; } //! Raise each pixel value to a specified power \newinstance. CImg get_pow(const double p) const { return CImg(*this, false).pow(p); } //! Raise each pixel value to a power, specified from an expression. /** Similar to operator+=(const char*), except it performs a pointwise exponentiation instead of an addition. **/ CImg& pow(const char* const expression) { return pow((+*this)._fill(expression, true, 1, 0, 0, "pow", this)); } //! Raise each pixel value to a power, specified from an expression //! \newinstance. CImg get_pow(const char* const expression) const { return CImg(*this, false).pow(expression); } //! Raise each pixel value to a power, pointwisely specified from another //! image. /** Similar to operator+=(const CImg& img), except that it performs an exponentiation instead of an addition. **/ template CImg& pow(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return pow(+img); T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)std::pow((double)*ptrd, (double)(*(ptrs++))); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)std::pow((double)*ptrd, (double)(*(ptrs++))); } return *this; } //! Raise each pixel value to a power, pointwisely specified from another //! image \newinstance. template CImg get_pow(const CImg& img) const { return CImg(*this, false).pow(img); } //! Compute the bitwise left rotation of each pixel value. /** Similar to operator<<=(unsigned int), except that it performs a left rotation instead of a left shift. **/ CImg& rol(const unsigned int n = 1) { if (is_empty()) return *this; cimg_openmp_for(*this, cimg::rol(*ptr, n), 32768); return *this; } //! Compute the bitwise left rotation of each pixel value \newinstance. CImg get_rol(const unsigned int n = 1) const { return (+*this).rol(n); } //! Compute the bitwise left rotation of each pixel value. /** Similar to operator<<=(const char*), except that it performs a left rotation instead of a left shift. **/ CImg& rol(const char* const expression) { return rol((+*this)._fill(expression, true, 1, 0, 0, "rol", this)); } //! Compute the bitwise left rotation of each pixel value \newinstance. CImg get_rol(const char* const expression) const { return (+*this).rol(expression); } //! Compute the bitwise left rotation of each pixel value. /** Similar to operator<<=(const CImg&), except that it performs a left rotation instead of a left shift. **/ template CImg& rol(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return rol(+img); T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)cimg::rol(*ptrd, (unsigned int)(*(ptrs++))); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)cimg::rol(*ptrd, (unsigned int)(*(ptrs++))); } return *this; } //! Compute the bitwise left rotation of each pixel value \newinstance. template CImg get_rol(const CImg& img) const { return (+*this).rol(img); } //! Compute the bitwise right rotation of each pixel value. /** Similar to operator>>=(unsigned int), except that it performs a right rotation instead of a right shift. **/ CImg& ror(const unsigned int n = 1) { if (is_empty()) return *this; cimg_openmp_for(*this, cimg::ror(*ptr, n), 32768); return *this; } //! Compute the bitwise right rotation of each pixel value \newinstance. CImg get_ror(const unsigned int n = 1) const { return (+*this).ror(n); } //! Compute the bitwise right rotation of each pixel value. /** Similar to operator>>=(const char*), except that it performs a right rotation instead of a right shift. **/ CImg& ror(const char* const expression) { return ror((+*this)._fill(expression, true, 1, 0, 0, "ror", this)); } //! Compute the bitwise right rotation of each pixel value \newinstance. CImg get_ror(const char* const expression) const { return (+*this).ror(expression); } //! Compute the bitwise right rotation of each pixel value. /** Similar to operator>>=(const CImg&), except that it performs a right rotation instead of a right shift. **/ template CImg& ror(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return ror(+img); T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = (T)cimg::ror(*ptrd, (unsigned int)(*(ptrs++))); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = (T)cimg::ror(*ptrd, (unsigned int)(*(ptrs++))); } return *this; } //! Compute the bitwise right rotation of each pixel value \newinstance. template CImg get_ror(const CImg& img) const { return (+*this).ror(img); } //! Pointwise min operator between instance image and a value. /** \param val Value used as the reference argument of the min operator. \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by \f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{val})\f$. **/ CImg& min(const T& value) { if (is_empty()) return *this; cimg_openmp_for(*this, std::min(*ptr, value), 65536); return *this; } //! Pointwise min operator between instance image and a value \newinstance. CImg get_min(const T& value) const { return (+*this).min(value); } //! Pointwise min operator between two images. /** \param img Image used as the reference argument of the min operator. \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by \f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$. **/ template CImg& min(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return min(+img); T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = std::min((T) * (ptrs++), *ptrd); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = std::min((T) * (ptrs++), *ptrd); } return *this; } //! Pointwise min operator between two images \newinstance. template CImg<_cimg_Tt> get_min(const CImg& img) const { return CImg<_cimg_Tt>(*this, false).min(img); } //! Pointwise min operator between an image and an expression. /** \param expression Math formula as a C-string. \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by \f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$. **/ CImg& min(const char* const expression) { return min((+*this)._fill(expression, true, 1, 0, 0, "min", this)); } //! Pointwise min operator between an image and an expression \newinstance. CImg get_min(const char* const expression) const { return CImg(*this, false).min(expression); } //! Pointwise max operator between instance image and a value. /** \param val Value used as the reference argument of the max operator. \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by \f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{val})\f$. **/ CImg& max(const T& value) { if (is_empty()) return *this; cimg_openmp_for(*this, std::max(*ptr, value), 65536); return *this; } //! Pointwise max operator between instance image and a value \newinstance. CImg get_max(const T& value) const { return (+*this).max(value); } //! Pointwise max operator between two images. /** \param img Image used as the reference argument of the max operator. \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by \f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$. **/ template CImg& max(const CImg& img) { const ulongT siz = size(), isiz = img.size(); if (siz && isiz) { if (is_overlapped(img)) return max(+img); T *ptrd = _data, *const ptre = _data + siz; if (siz > isiz) for (ulongT n = siz / isiz; n; --n) for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs < ptrs_end; ++ptrd) *ptrd = std::max((T) * (ptrs++), *ptrd); for (const t* ptrs = img._data; ptrd < ptre; ++ptrd) *ptrd = std::max((T) * (ptrs++), *ptrd); } return *this; } //! Pointwise max operator between two images \newinstance. template CImg<_cimg_Tt> get_max(const CImg& img) const { return CImg<_cimg_Tt>(*this, false).max(img); } //! Pointwise max operator between an image and an expression. /** \param expression Math formula as a C-string. \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by \f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$. **/ CImg& max(const char* const expression) { return max((+*this)._fill(expression, true, 1, 0, 0, "max", this)); } //! Pointwise max operator between an image and an expression \newinstance. CImg get_max(const char* const expression) const { return CImg(*this, false).max(expression); } //! Return a reference to the minimum pixel value. /** **/ T& min() { if (is_empty()) throw CImgInstanceException(_cimg_instance "min(): Empty instance.", cimg_instance); T* ptr_min = _data; T min_value = *ptr_min; cimg_for(*this, ptrs, T) if (*ptrs < min_value) min_value = *(ptr_min = ptrs); return *ptr_min; } //! Return a reference to the minimum pixel value \const. const T& min() const { if (is_empty()) throw CImgInstanceException(_cimg_instance "min(): Empty instance.", cimg_instance); const T* ptr_min = _data; T min_value = *ptr_min; cimg_for(*this, ptrs, T) if (*ptrs < min_value) min_value = *(ptr_min = ptrs); return *ptr_min; } //! Return a reference to the maximum pixel value. /** **/ T& max() { if (is_empty()) throw CImgInstanceException(_cimg_instance "max(): Empty instance.", cimg_instance); T* ptr_max = _data; T max_value = *ptr_max; cimg_for(*this, ptrs, T) if (*ptrs > max_value) max_value = *(ptr_max = ptrs); return *ptr_max; } //! Return a reference to the maximum pixel value \const. const T& max() const { if (is_empty()) throw CImgInstanceException(_cimg_instance "max(): Empty instance.", cimg_instance); const T* ptr_max = _data; T max_value = *ptr_max; cimg_for(*this, ptrs, T) if (*ptrs > max_value) max_value = *(ptr_max = ptrs); return *ptr_max; } //! Return a reference to the minimum pixel value as well as the maximum //! pixel value. /** \param[out] max_val Maximum pixel value. **/ template T& min_max(t& max_val) { if (is_empty()) throw CImgInstanceException( _cimg_instance "min_max(): Empty instance.", cimg_instance); T* ptr_min = _data; T min_value = *ptr_min, max_value = min_value; cimg_for(*this, ptrs, T) { const T val = *ptrs; if (val < min_value) { min_value = val; ptr_min = ptrs; } if (val > max_value) max_value = val; } max_val = (t)max_value; return *ptr_min; } //! Return a reference to the minimum pixel value as well as the maximum //! pixel value \const. template const T& min_max(t& max_val) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "min_max(): Empty instance.", cimg_instance); const T* ptr_min = _data; T min_value = *ptr_min, max_value = min_value; cimg_for(*this, ptrs, T) { const T val = *ptrs; if (val < min_value) { min_value = val; ptr_min = ptrs; } if (val > max_value) max_value = val; } max_val = (t)max_value; return *ptr_min; } //! Return a reference to the maximum pixel value as well as the minimum //! pixel value. /** \param[out] min_val Minimum pixel value. **/ template T& max_min(t& min_val) { if (is_empty()) throw CImgInstanceException( _cimg_instance "max_min(): Empty instance.", cimg_instance); T* ptr_max = _data; T max_value = *ptr_max, min_value = max_value; cimg_for(*this, ptrs, T) { const T val = *ptrs; if (val > max_value) { max_value = val; ptr_max = ptrs; } if (val < min_value) min_value = val; } min_val = (t)min_value; return *ptr_max; } //! Return a reference to the maximum pixel value as well as the minimum //! pixel value \const. template const T& max_min(t& min_val) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "max_min(): Empty instance.", cimg_instance); const T* ptr_max = _data; T max_value = *ptr_max, min_value = max_value; cimg_for(*this, ptrs, T) { const T val = *ptrs; if (val > max_value) { max_value = val; ptr_max = ptrs; } if (val < min_value) min_value = val; } min_val = (t)min_value; return *ptr_max; } //! Return the kth smallest pixel value. /** \param k Rank of the search smallest element. **/ T kth_smallest(const ulongT k) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "kth_smallest(): Empty instance.", cimg_instance); CImg arr(*this, false); ulongT l = 0, ir = size() - 1; for (;;) { if (ir <= l + 1) { if (ir == l + 1 && arr[ir] < arr[l]) cimg::swap(arr[l], arr[ir]); return arr[k]; } else { const ulongT mid = (l + ir) >> 1; cimg::swap(arr[mid], arr[l + 1]); if (arr[l] > arr[ir]) cimg::swap(arr[l], arr[ir]); if (arr[l + 1] > arr[ir]) cimg::swap(arr[l + 1], arr[ir]); if (arr[l] > arr[l + 1]) cimg::swap(arr[l], arr[l + 1]); ulongT i = l + 1, j = ir; const T pivot = arr[l + 1]; for (;;) { do ++i; while (arr[i] < pivot); do --j; while (arr[j] > pivot); if (j < i) break; cimg::swap(arr[i], arr[j]); } arr[l + 1] = arr[j]; arr[j] = pivot; if (j >= k) ir = j - 1; if (j <= k) l = i; } } } //! Return the median pixel value. /** **/ T median() const { if (is_empty()) throw CImgInstanceException( _cimg_instance "median(): Empty instance.", cimg_instance); const ulongT s = size(); switch (s) { case 1: return _data[0]; case 2: return cimg::median(_data[0], _data[1]); case 3: return cimg::median(_data[0], _data[1], _data[2]); case 5: return cimg::median(_data[0], _data[1], _data[2], _data[3], _data[4]); case 7: return cimg::median(_data[0], _data[1], _data[2], _data[3], _data[4], _data[5], _data[6]); case 9: return cimg::median(_data[0], _data[1], _data[2], _data[3], _data[4], _data[5], _data[6], _data[7], _data[8]); case 13: return cimg::median(_data[0], _data[1], _data[2], _data[3], _data[4], _data[5], _data[6], _data[7], _data[8], _data[9], _data[10], _data[11], _data[12]); } const T res = kth_smallest(s >> 1); return (s % 2) ? res : (T)((res + kth_smallest((s >> 1) - 1)) / 2); } //! Return the product of all the pixel values. /** **/ double product() const { if (is_empty()) return 0; double res = 1; cimg_for(*this, ptrs, T) res *= (double)*ptrs; return res; } //! Return the sum of all the pixel values. /** **/ double sum() const { double res = 0; cimg_for(*this, ptrs, T) res += (double)*ptrs; return res; } //! Return the average pixel value. /** **/ double mean() const { double res = 0; cimg_for(*this, ptrs, T) res += (double)*ptrs; return res / size(); } //! Return the variance of the pixel values. /** \param variance_method Method used to estimate the variance. Can be: - \c 0: Second moment, computed as \f$1/N \sum\limits_{k=1}^{N} (x_k - \bar x)^2 = 1/N \left( \sum\limits_{k=1}^N x_k^2 - \left( \sum\limits_{k=1}^N x_k \right)^2 / N \right)\f$ with \f$ \bar x = 1/N \sum\limits_{k=1}^N x_k \f$. - \c 1: Best unbiased estimator, computed as \f$\frac{1}{N - 1} \sum\limits_{k=1}^{N} (x_k - \bar x)^2 \f$. - \c 2: Least median of squares. - \c 3: Least trimmed of squares. **/ double variance(const unsigned int variance_method = 1) const { double foo; return variance_mean(variance_method, foo); } //! Return the variance as well as the average of the pixel values. /** \param variance_method Method used to estimate the variance (see variance(const unsigned int) const). \param[out] mean Average pixel value. **/ template double variance_mean(const unsigned int variance_method, t& mean) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "variance_mean(): Empty instance.", cimg_instance); double variance = 0, average = 0; const ulongT siz = size(); switch (variance_method) { case 0: { // Least mean square (standard definition) double S = 0, S2 = 0; cimg_for(*this, ptrs, T) { const double val = (double)*ptrs; S += val; S2 += val * val; } variance = (S2 - S * S / siz) / siz; average = S; } break; case 1: { // Least mean square (robust definition) double S = 0, S2 = 0; cimg_for(*this, ptrs, T) { const double val = (double)*ptrs; S += val; S2 += val * val; } variance = siz > 1 ? (S2 - S * S / siz) / (siz - 1) : 0; average = S; } break; case 2: { // Least Median of Squares (MAD) CImg buf(*this, false); buf.sort(); const ulongT siz2 = siz >> 1; const double med_i = (double)buf[siz2]; cimg_for(buf, ptrs, Tfloat) { const double val = (double)*ptrs; *ptrs = (Tfloat)cimg::abs(val - med_i); average += val; } buf.sort(); const double sig = (double)(1.4828 * buf[siz2]); variance = sig * sig; } break; default: { // Least trimmed of Squares CImg buf(*this, false); const ulongT siz2 = siz >> 1; cimg_for(buf, ptrs, Tfloat) { const double val = (double)*ptrs; (*ptrs) = (Tfloat)((*ptrs) * val); average += val; } buf.sort(); double a = 0; const Tfloat* ptrs = buf._data; for (ulongT j = 0; j < siz2; ++j) a += (double)*(ptrs++); const double sig = (double)(2.6477 * std::sqrt(a / siz2)); variance = sig * sig; } } mean = (t)(average / siz); return variance > 0 ? variance : 0; } //! Return estimated variance of the noise. /** \param variance_method Method used to compute the variance (see variance(const unsigned int) const). \note Because of structures such as edges in images it is recommanded to use a robust variance estimation. The variance of the noise is estimated by computing the variance of the Laplacian \f$(\Delta I)^2 \f$ scaled by a factor \f$c\f$ insuring \f$ c E[(\Delta I)^2]= \sigma^2\f$ where \f$\sigma\f$ is the noise variance. **/ double variance_noise(const unsigned int variance_method = 2) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "variance_noise(): Empty instance.", cimg_instance); const ulongT siz = size(); if (!siz || !_data) return 0; if (variance_method > 1) { // Compute a scaled version of the Laplacian CImg tmp(*this, false); if (_depth == 1) { const double cste = 1. / std::sqrt(20.); // Depends on how the Laplacian is computed cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*262144 && _spectrum>=2)) cimg_forC(*this,c) { CImg_3x3(I, T); cimg_for3x3(*this, x, y, 0, c, I, T) { tmp(x, y, c) = cste * ((double)Inc + (double)Ipc + (double)Icn + (double)Icp - 4 * (double)Icc); } } } else { const double cste = 1. / std::sqrt(42.); // Depends on how the Laplacian is computed cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*262144 && _spectrum>=2)) cimg_forC(*this,c) { CImg_3x3x3(I, T); cimg_for3x3x3(*this, x, y, z, c, I, T) { tmp(x, y, z, c) = cste * ((double)Incc + (double)Ipcc + (double)Icnc + (double)Icpc + (double)Iccn + (double)Iccp - 6 * (double)Iccc); } } } return tmp.variance(variance_method); } // Version that doesn't need intermediate images. double variance = 0, S = 0, S2 = 0; if (_depth == 1) { const double cste = 1. / std::sqrt(20.); CImg_3x3(I, T); cimg_forC(*this, c) cimg_for3x3(*this, x, y, 0, c, I, T) { const double val = cste * ((double)Inc + (double)Ipc + (double)Icn + (double)Icp - 4 * (double)Icc); S += val; S2 += val * val; } } else { const double cste = 1. / std::sqrt(42.); CImg_3x3x3(I, T); cimg_forC(*this, c) cimg_for3x3x3(*this, x, y, z, c, I, T) { const double val = cste * ((double)Incc + (double)Ipcc + (double)Icnc + (double)Icpc + (double)Iccn + (double)Iccp - 6 * (double)Iccc); S += val; S2 += val * val; } } if (variance_method) variance = siz > 1 ? (S2 - S * S / siz) / (siz - 1) : 0; else variance = (S2 - S * S / siz) / siz; return variance > 0 ? variance : 0; } //! Compute the MSE (Mean-Squared Error) between two images. /** \param img Image used as the second argument of the MSE operator. **/ template double MSE(const CImg& img) const { if (img.size() != size()) throw CImgArgumentException( _cimg_instance "MSE(): Instance and specified image (%u,%u,%u,%u,%p) have " "different dimensions.", cimg_instance, img._width, img._height, img._depth, img._spectrum, img._data); double vMSE = 0; const t* ptr2 = img._data; cimg_for(*this, ptr1, T) { const double diff = (double)*ptr1 - (double)*(ptr2++); vMSE += diff * diff; } const ulongT siz = img.size(); if (siz) vMSE /= siz; return vMSE; } //! Compute the PSNR (Peak Signal-to-Noise Ratio) between two images. /** \param img Image used as the second argument of the PSNR operator. \param max_value Maximum theoretical value of the signal. **/ template double PSNR(const CImg& img, const double max_value = 255) const { const double vMSE = (double)std::sqrt(MSE(img)); return (vMSE != 0) ? (double)(20 * std::log10(max_value / vMSE)) : (double)(cimg::type::max()); } //! Evaluate math formula. /** \param expression Math formula, as a C-string. \param x Value of the pre-defined variable \c x. \param y Value of the pre-defined variable \c y. \param z Value of the pre-defined variable \c z. \param c Value of the pre-defined variable \c c. \param list_inputs A list of input images attached to the specified math formula. \param[out] list_outputs A pointer to a list of output images attached to the specified math formula. **/ double eval(const char* const expression, const double x = 0, const double y = 0, const double z = 0, const double c = 0, const CImgList* const list_inputs = 0, CImgList* const list_outputs = 0) { return _eval(this, expression, x, y, z, c, list_inputs, list_outputs); } //! Evaluate math formula \const. double eval(const char* const expression, const double x = 0, const double y = 0, const double z = 0, const double c = 0, const CImgList* const list_inputs = 0, CImgList* const list_outputs = 0) const { return _eval(0, expression, x, y, z, c, list_inputs, list_outputs); } double _eval(CImg* const img_output, const char* const expression, const double x, const double y, const double z, const double c, const CImgList* const list_inputs, CImgList* const list_outputs) const { if (!expression || !*expression) return 0; if (!expression[1]) switch (*expression) { // Single-char optimization case 'w': return (double)_width; case 'h': return (double)_height; case 'd': return (double)_depth; case 's': return (double)_spectrum; case 'r': return (double)_is_shared; } _cimg_math_parser mp( expression + (*expression == '>' || *expression == '<' || *expression == '*' || *expression == ':'), "eval", *this, img_output, list_inputs, list_outputs, false); const double val = mp(x, y, z, c); mp.end(); return val; } //! Evaluate math formula. /** \param[out] output Contains values of output vector returned by the evaluated expression (or is empty if the returned type is scalar). \param expression Math formula, as a C-string. \param x Value of the pre-defined variable \c x. \param y Value of the pre-defined variable \c y. \param z Value of the pre-defined variable \c z. \param c Value of the pre-defined variable \c c. \param list_inputs A list of input images attached to the specified math formula. \param[out] list_outputs A pointer to a list of output images attached to the specified math formula. **/ template void eval(CImg& output, const char* const expression, const double x = 0, const double y = 0, const double z = 0, const double c = 0, const CImgList* const list_inputs = 0, CImgList* const list_outputs = 0) { _eval(output, this, expression, x, y, z, c, list_inputs, list_outputs); } //! Evaluate math formula \const. template void eval(CImg& output, const char* const expression, const double x = 0, const double y = 0, const double z = 0, const double c = 0, const CImgList* const list_inputs = 0, CImgList* const list_outputs = 0) const { _eval(output, 0, expression, x, y, z, c, list_inputs, list_outputs); } template void _eval(CImg& output, CImg* const img_output, const char* const expression, const double x, const double y, const double z, const double c, const CImgList* const list_inputs, CImgList* const list_outputs) const { if (!expression || !*expression) { output.assign(1); *output = 0; } if (!expression[1]) switch (*expression) { // Single-char optimization case 'w': output.assign(1); *output = (t)_width; break; case 'h': output.assign(1); *output = (t)_height; break; case 'd': output.assign(1); *output = (t)_depth; break; case 's': output.assign(1); *output = (t)_spectrum; break; case 'r': output.assign(1); *output = (t)_is_shared; break; } _cimg_math_parser mp( expression + (*expression == '>' || *expression == '<' || *expression == '*' || *expression == ':'), "eval", *this, img_output, list_inputs, list_outputs, false); output.assign(1, std::max(1U, mp.result_dim)); mp(x, y, z, c, output._data); mp.end(); } //! Evaluate math formula on a set of variables. /** \param expression Math formula, as a C-string. \param xyzc Set of values (x,y,z,c) used for the evaluation. \param list_inputs A list of input images attached to the specified math formula. \param[out] list_outputs A pointer to a list of output images attached to the specified math formula. **/ template CImg eval(const char* const expression, const CImg& xyzc, const CImgList* const list_inputs = 0, CImgList* const list_outputs = 0) { return _eval(this, expression, xyzc, list_inputs, list_outputs); } //! Evaluate math formula on a set of variables \const. template CImg eval(const char* const expression, const CImg& xyzc, const CImgList* const list_inputs = 0, CImgList* const list_outputs = 0) const { return _eval(0, expression, xyzc, list_inputs, list_outputs); } template CImg _eval(CImg* const output, const char* const expression, const CImg& xyzc, const CImgList* const list_inputs = 0, CImgList* const list_outputs = 0) const { CImg res(1, xyzc.size() / 4); if (!expression || !*expression) return res.fill(0); _cimg_math_parser mp(expression, "eval", *this, output, list_inputs, list_outputs, false); #if cimg_use_openmp != 0 cimg_pragma_openmp(parallel if (res._height >= 512)) { _cimg_math_parser _mp = omp_get_thread_num() ? mp : _cimg_math_parser(), &lmp = omp_get_thread_num() ? _mp : mp; cimg_pragma_openmp(for) for (int i = 0; i[min, max, mean, variance, xmin, ymin, zmin, cmin, xmax, ymax, zmax, cmax, sum, product]. **/ CImg get_stats(const unsigned int variance_method = 1) const { if (is_empty()) return CImg(); const ulongT siz = size(); const longT off_end = (longT)siz; double S = 0, S2 = 0, P = 1; longT offm = 0, offM = 0; T m = *_data, M = m; cimg_pragma_openmp(parallel reduction(+:S,S2) reduction(*:P) cimg_openmp_if_size(siz,131072)) { longT loffm = 0, loffM = 0; T lm = *_data, lM = lm; cimg_pragma_openmp(for) for (longT off = 0; off lM) { lM = val; loffM = off; } S += _val; S2 += _val * _val; P *= _val; } cimg_pragma_openmp(critical(get_stats)) { if (lm < m || (lm == m && loffm < offm)) { m = lm; offm = loffm; } if (lM > M || (lM == M && loffM < offM)) { M = lM; offM = loffM; } } } const double mean_value = S / siz, _variance_value = variance_method == 0 ? (S2 - S * S / siz) / siz : (variance_method == 1 ? (siz > 1 ? (S2 - S * S / siz) / (siz - 1) : 0) : variance(variance_method)), variance_value = _variance_value > 0 ? _variance_value : 0; int xm = 0, ym = 0, zm = 0, cm = 0, xM = 0, yM = 0, zM = 0, cM = 0; contains(_data[offm], xm, ym, zm, cm); contains(_data[offM], xM, yM, zM, cM); return CImg(1, 14).fill( (double)m, (double)M, mean_value, variance_value, (double)xm, (double)ym, (double)zm, (double)cm, (double)xM, (double)yM, (double)zM, (double)cM, S, P); } //! Compute statistics vector from the pixel values \inplace. CImg& stats(const unsigned int variance_method = 1) { return get_stats(variance_method).move_to(*this); } //@} //------------------------------------- // //! \name Vector / Matrix Operations //@{ //------------------------------------- //! Compute norm of the image, viewed as a matrix. /** \param magnitude_type Norm type. Can be: - \c -1: Linf-norm - \c 0: L0-norm - \c 1: L1-norm - \c 2: L2-norm **/ double magnitude(const int magnitude_type = 2) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "magnitude(): Empty instance.", cimg_instance); double res = 0; switch (magnitude_type) { case -1: { cimg_for(*this, ptrs, T) { const double val = (double)cimg::abs(*ptrs); if (val > res) res = val; } } break; case 1: { cimg_for(*this, ptrs, T) res += (double)cimg::abs(*ptrs); } break; default: { cimg_for(*this, ptrs, T) res += (double)cimg::sqr(*ptrs); res = (double)std::sqrt(res); } } return res; } //! Compute the trace of the image, viewed as a matrix. /** **/ double trace() const { if (is_empty()) throw CImgInstanceException( _cimg_instance "trace(): Empty instance.", cimg_instance); double res = 0; cimg_forX(*this, k) res += (double)(*this)(k, k); return res; } //! Compute the determinant of the image, viewed as a matrix. /** **/ double det() const { if (is_empty() || _width != _height || _depth != 1 || _spectrum != 1) throw CImgInstanceException( _cimg_instance "det(): Instance is not a square matrix.", cimg_instance); switch (_width) { case 1: return (double)((*this)(0, 0)); case 2: return (double)((*this)(0, 0)) * (double)((*this)(1, 1)) - (double)((*this)(0, 1)) * (double)((*this)(1, 0)); case 3: { const double a = (double)_data[0], d = (double)_data[1], g = (double)_data[2], b = (double)_data[3], e = (double)_data[4], h = (double)_data[5], c = (double)_data[6], f = (double)_data[7], i = (double)_data[8]; return i * a * e - a * h * f - i * b * d + b * g * f + c * d * h - c * g * e; } default: { CImg lu(*this, false); CImg indx; bool d; lu._LU(indx, d); double res = d ? (double)1 : (double)-1; cimg_forX(lu, i) res *= lu(i, i); return res; } } } //! Compute the dot product between instance and argument, viewed as //! matrices. /** \param img Image used as a second argument of the dot product. **/ template double dot(const CImg& img) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "dot(): Empty instance.", cimg_instance); if (!img) throw CImgArgumentException( _cimg_instance "dot(): Empty specified image.", cimg_instance); const ulongT nb = std::min(size(), img.size()); double res = 0; for (ulongT off = 0; off < nb; ++off) res += (double)_data[off] * (double)img[off]; return res; } //! Get vector-valued pixel located at specified position. /** \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. **/ CImg get_vector_at(const unsigned int x, const unsigned int y = 0, const unsigned int z = 0) const { CImg res; if (res._height != _spectrum) res.assign(1, _spectrum); const ulongT whd = (ulongT)_width * _height * _depth; const T* ptrs = data(x, y, z); T* ptrd = res._data; cimg_forC(*this, c) { *(ptrd++) = *ptrs; ptrs += whd; } return res; } //! Get (square) matrix-valued pixel located at specified position. /** \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \note - The spectrum() of the image must be a square. **/ CImg get_matrix_at(const unsigned int x = 0, const unsigned int y = 0, const unsigned int z = 0) const { const int n = (int)cimg::round(std::sqrt((double)_spectrum)); const T* ptrs = data(x, y, z, 0); const ulongT whd = (ulongT)_width * _height * _depth; CImg res(n, n); T* ptrd = res._data; cimg_forC(*this, c) { *(ptrd++) = *ptrs; ptrs += whd; } return res; } //! Get tensor-valued pixel located at specified position. /** \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. **/ CImg get_tensor_at(const unsigned int x, const unsigned int y = 0, const unsigned int z = 0) const { const T* ptrs = data(x, y, z, 0); const ulongT whd = (ulongT)_width * _height * _depth; if (_spectrum == 6) return tensor(*ptrs, *(ptrs + whd), *(ptrs + 2 * whd), *(ptrs + 3 * whd), *(ptrs + 4 * whd), *(ptrs + 5 * whd)); if (_spectrum == 3) return tensor(*ptrs, *(ptrs + whd), *(ptrs + 2 * whd)); return tensor(*ptrs); } //! Set vector-valued pixel at specified position. /** \param vec Vector to put on the instance image. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. **/ template CImg& set_vector_at(const CImg& vec, const unsigned int x, const unsigned int y = 0, const unsigned int z = 0) { if (x < _width && y < _height && z < _depth) { const t* ptrs = vec._data; const ulongT whd = (ulongT)_width * _height * _depth; T* ptrd = data(x, y, z); for (unsigned int k = std::min((unsigned int)vec.size(), _spectrum); k; --k) { *ptrd = (T) * (ptrs++); ptrd += whd; } } return *this; } //! Set (square) matrix-valued pixel at specified position. /** \param mat Matrix to put on the instance image. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. **/ template CImg& set_matrix_at(const CImg& mat, const unsigned int x = 0, const unsigned int y = 0, const unsigned int z = 0) { return set_vector_at(mat, x, y, z); } //! Set tensor-valued pixel at specified position. /** \param ten Tensor to put on the instance image. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. **/ template CImg& set_tensor_at(const CImg& ten, const unsigned int x = 0, const unsigned int y = 0, const unsigned int z = 0) { T* ptrd = data(x, y, z, 0); const ulongT siz = (ulongT)_width * _height * _depth; if (ten._height == 2) { *ptrd = (T)ten[0]; ptrd += siz; *ptrd = (T)ten[1]; ptrd += siz; *ptrd = (T)ten[3]; } else { *ptrd = (T)ten[0]; ptrd += siz; *ptrd = (T)ten[1]; ptrd += siz; *ptrd = (T)ten[2]; ptrd += siz; *ptrd = (T)ten[4]; ptrd += siz; *ptrd = (T)ten[5]; ptrd += siz; *ptrd = (T)ten[8]; } return *this; } //! Unroll pixel values along axis \c y. /** \note Equivalent to \code unroll('y'); \endcode. **/ CImg& vector() { return unroll('y'); } //! Unroll pixel values along axis \c y \newinstance. CImg get_vector() const { return get_unroll('y'); } //! Resize image to become a scalar square matrix. /** **/ CImg& matrix() { const ulongT siz = size(); switch (siz) { case 1: break; case 4: _width = _height = 2; break; case 9: _width = _height = 3; break; case 16: _width = _height = 4; break; case 25: _width = _height = 5; break; case 36: _width = _height = 6; break; case 49: _width = _height = 7; break; case 64: _width = _height = 8; break; case 81: _width = _height = 9; break; case 100: _width = _height = 10; break; default: { ulongT i = 11, i2 = i * i; while (i2 < siz) { i2 += 2 * i + 1; ++i; } if (i2 == siz) _width = _height = i; else throw CImgInstanceException( _cimg_instance "matrix(): Invalid instance size %u (should be a " "square integer).", cimg_instance, siz); } } return *this; } //! Resize image to become a scalar square matrix \newinstance. CImg get_matrix() const { return (+*this).matrix(); } //! Resize image to become a symmetric tensor. /** **/ CImg& tensor() { return get_tensor().move_to(*this); } //! Resize image to become a symmetric tensor \newinstance. CImg get_tensor() const { CImg res; const ulongT siz = size(); switch (siz) { case 1: break; case 3: res.assign(2, 2); res(0, 0) = (*this)(0); res(1, 0) = res(0, 1) = (*this)(1); res(1, 1) = (*this)(2); break; case 6: res.assign(3, 3); res(0, 0) = (*this)(0); res(1, 0) = res(0, 1) = (*this)(1); res(2, 0) = res(0, 2) = (*this)(2); res(1, 1) = (*this)(3); res(2, 1) = res(1, 2) = (*this)(4); res(2, 2) = (*this)(5); break; default: throw CImgInstanceException( _cimg_instance "tensor(): Invalid instance size (does not define a 1x1, " "2x2 or 3x3 tensor).", cimg_instance); } return res; } //! Resize image to become a diagonal matrix. /** \note Transform the image as a diagonal matrix so that each of its initial value becomes a diagonal coefficient. **/ CImg& diagonal() { return get_diagonal().move_to(*this); } //! Resize image to become a diagonal matrix \newinstance. CImg get_diagonal() const { if (is_empty()) return *this; const unsigned int siz = (unsigned int)size(); CImg res(siz, siz, 1, 1, 0); cimg_foroff(*this, off) res((unsigned int)off, (unsigned int)off) = (*this)[off]; return res; } //! Replace the image by an identity matrix. /** \note If the instance image is not square, it is resized to a square matrix using its maximum dimension as a reference. **/ CImg& identity_matrix() { return identity_matrix(std::max(_width, _height)).move_to(*this); } //! Replace the image by an identity matrix \newinstance. CImg get_identity_matrix() const { return identity_matrix(std::max(_width, _height)); } //! Fill image with a linear sequence of values. /** \param a0 Starting value of the sequence. \param a1 Ending value of the sequence. **/ CImg& sequence(const T& a0, const T& a1) { if (is_empty()) return *this; const ulongT siz = size() - 1; T* ptr = _data; if (siz) { const double delta = (double)a1 - (double)a0; cimg_foroff(*this, l) * (ptr++) = (T)(a0 + delta * l / siz); } else *ptr = a0; return *this; } //! Fill image with a linear sequence of values \newinstance. CImg get_sequence(const T& a0, const T& a1) const { return (+*this).sequence(a0, a1); } //! Transpose the image, viewed as a matrix. /** \note Equivalent to \code permute_axes("yxzc"); \endcode. **/ CImg& transpose() { if (_width == 1) { _width = _height; _height = 1; return *this; } if (_height == 1) { _height = _width; _width = 1; return *this; } if (_width == _height) { cimg_forYZC(*this, y, z, c) for (int x = y; x < width(); ++x) cimg::swap((*this)(x, y, z, c), (*this)(y, x, z, c)); return *this; } return get_transpose().move_to(*this); } //! Transpose the image, viewed as a matrix \newinstance. CImg get_transpose() const { return get_permute_axes("yxzc"); } //! Compute the cross product between two \c 1x3 images, viewed as 3D //! vectors. /** \param img Image used as the second argument of the cross product. \note The first argument of the cross product is \c *this. **/ template CImg& cross(const CImg& img) { if (_width != 1 || _height < 3 || img._width != 1 || img._height < 3) throw CImgInstanceException( _cimg_instance "cross(): Instance and/or specified image (%u,%u,%u,%u,%p) are " "not 3D vectors.", cimg_instance, img._width, img._height, img._depth, img._spectrum, img._data); const T x = (*this)[0], y = (*this)[1], z = (*this)[2]; (*this)[0] = (T)(y * img[2] - z * img[1]); (*this)[1] = (T)(z * img[0] - x * img[2]); (*this)[2] = (T)(x * img[1] - y * img[0]); return *this; } //! Compute the cross product between two \c 1x3 images, viewed as 3D //! vectors \newinstance. template CImg<_cimg_Tt> get_cross(const CImg& img) const { return CImg<_cimg_Tt>(*this).cross(img); } //! Invert the instance image, viewed as a matrix. /** \param use_LU Choose the inverting algorithm. Can be: - \c true: LU-based matrix inversion. - \c false: SVD-based matrix inversion. **/ CImg& invert(const bool use_LU = true) { if (_width != _height || _depth != 1 || _spectrum != 1) throw CImgInstanceException( _cimg_instance "invert(): Instance is not a square matrix.", cimg_instance); const double dete = _width > 3 ? -1. : det(); if (dete != 0. && _width == 2) { const double a = _data[0], c = _data[1], b = _data[2], d = _data[3]; _data[0] = (T)(d / dete); _data[1] = (T)(-c / dete); _data[2] = (T)(-b / dete); _data[3] = (T)(a / dete); } else if (dete != 0. && _width == 3) { const double a = _data[0], d = _data[1], g = _data[2], b = _data[3], e = _data[4], h = _data[5], c = _data[6], f = _data[7], i = _data[8]; _data[0] = (T)((i * e - f * h) / dete), _data[1] = (T)((g * f - i * d) / dete), _data[2] = (T)((d * h - g * e) / dete); _data[3] = (T)((h * c - i * b) / dete), _data[4] = (T)((i * a - c * g) / dete), _data[5] = (T)((g * b - a * h) / dete); _data[6] = (T)((b * f - e * c) / dete), _data[7] = (T)((d * c - a * f) / dete), _data[8] = (T)((a * e - d * b) / dete); } else { #ifdef cimg_use_lapack int INFO = (int)use_LU, N = _width, LWORK = 4 * N, *const IPIV = new int[N]; Tfloat *const lapA = new Tfloat[N * N], *const WORK = new Tfloat[LWORK]; cimg_forXY(*this, k, l) lapA[k * N + l] = (Tfloat)((*this)(k, l)); cimg::getrf(N, lapA, IPIV, INFO); if (INFO) cimg::warn(_cimg_instance "invert(): LAPACK function dgetrf_() returned error " "code %d.", cimg_instance, INFO); else { cimg::getri(N, lapA, IPIV, WORK, LWORK, INFO); if (INFO) cimg::warn(_cimg_instance "invert(): LAPACK function dgetri_() returned " "error code %d.", cimg_instance, INFO); } if (!INFO) cimg_forXY(*this, k, l) (*this)(k, l) = (T)(lapA[k * N + l]); else fill(0); delete[] IPIV; delete[] lapA; delete[] WORK; #else if (use_LU) { // LU-based inverse computation CImg A(*this, false), indx, col(1, _width); bool d; A._LU(indx, d); cimg_forX(*this, j) { col.fill(0); col(j) = 1; col._solve(A, indx); cimg_forX(*this, i) (*this)(j, i) = (T)col(i); } } else { // SVD-based inverse computation CImg U(_width, _width), S(1, _width), V(_width, _width); SVD(U, S, V, false); U.transpose(); cimg_forY(S, k) if (S[k] != 0) S[k] = 1 / S[k]; S.diagonal(); *this = V * S * U; } #endif } return *this; } //! Invert the instance image, viewed as a matrix \newinstance. CImg get_invert(const bool use_LU = true) const { return CImg(*this, false).invert(use_LU); } //! Compute the Moore-Penrose pseudo-inverse of the instance image, viewed //! as a matrix. /** **/ CImg& pseudoinvert() { return get_pseudoinvert().move_to(*this); } //! Compute the Moore-Penrose pseudo-inverse of the instance image, viewed //! as a matrix \newinstance. CImg get_pseudoinvert() const { CImg U, S, V; SVD(U, S, V); const Tfloat tolerance = (sizeof(Tfloat) <= 4 ? 5.96e-8f : 1.11e-16f) * std::max(_width, _height) * S.max(); cimg_forX(V, x) { const Tfloat s = S(x), invs = s > tolerance ? 1 / s : 0; cimg_forY(V, y) V(x, y) *= invs; } return V * U.transpose(); } //! Solve a system of linear equations. /** \param A Matrix of the linear system. \note Solve \c AX = B where \c B=*this. **/ template CImg& solve(const CImg& A) { if (_depth != 1 || _spectrum != 1 || _height != A._height || A._depth != 1 || A._spectrum != 1) throw CImgArgumentException( _cimg_instance "solve(): Instance and specified matrix (%u,%u,%u,%u,%p) have " "incompatible dimensions.", cimg_instance, A._width, A._height, A._depth, A._spectrum, A._data); typedef _cimg_Ttfloat Ttfloat; if (A.size() == 1) return (*this) /= A[0]; if (A._width == 2 && A._height == 2 && _height == 2) { const double a = (double)A[0], b = (double)A[1], c = (double)A[2], d = (double)A[3], fa = std::fabs(a), fb = std::fabs(b), fc = std::fabs(c), fd = std::fabs(d), det = a * d - b * c, fM = cimg::max(fa, fb, fc, fd); if (fM == fa) cimg_forX(*this, k) { const double u = (double)(*this)(k, 0), v = (double)(*this)(k, 1), y = (a * v - c * u) / det; (*this)(k, 0) = (T)((u - b * y) / a); (*this)(k, 1) = (T)y; } else if (fM == fc) cimg_forX(*this, k) { const double u = (double)(*this)(k, 0), v = (double)(*this)(k, 1), y = (a * v - c * u) / det; (*this)(k, 0) = (T)((v - d * y) / c); (*this)(k, 1) = (T)y; } else if (fM == fb) cimg_forX(*this, k) { const double u = (double)(*this)(k, 0), v = (double)(*this)(k, 1), x = (d * u - b * v) / det; (*this)(k, 0) = (T)x; (*this)(k, 1) = (T)((u - a * x) / b); } else cimg_forX(*this, k) { const double u = (double)(*this)(k, 0), v = (double)(*this)(k, 1), x = (d * u - b * v) / det; (*this)(k, 0) = (T)x; (*this)(k, 1) = (T)((v - c * x) / d); } return *this; } if (_width != 1) { // Process column-by-column CImg res(_width, A._width); cimg_forX(*this, i) res.draw_image(i, get_column(i).solve(A)); return res.move_to(*this); } if (A._width == A._height) { // Square linear system #ifdef cimg_use_lapack char TRANS = 'N'; int INFO, N = _height, LWORK = 4 * N, *const IPIV = new int[N]; Ttfloat *const lapA = new Ttfloat[N * N], *const lapB = new Ttfloat[N], *const WORK = new Ttfloat[LWORK]; cimg_forXY(A, k, l) lapA[k * N + l] = (Ttfloat)(A(k, l)); cimg_forY(*this, i) lapB[i] = (Ttfloat)((*this)(i)); cimg::getrf(N, lapA, IPIV, INFO); if (INFO) cimg::warn(_cimg_instance "solve(): LAPACK library function dgetrf_() " "returned error code %d.", cimg_instance, INFO); if (!INFO) { cimg::getrs(TRANS, N, lapA, IPIV, lapB, INFO); if (INFO) cimg::warn(_cimg_instance "solve(): LAPACK library function dgetrs_() " "returned error code %d.", cimg_instance, INFO); } if (!INFO) cimg_forY(*this, i) (*this)(i) = (T)(lapB[i]); else fill(0); delete[] IPIV; delete[] lapA; delete[] lapB; delete[] WORK; #else CImg lu(A, false); CImg indx; bool d; lu._LU(indx, d); _solve(lu, indx); #endif } else { // Least-square solution for non-square systems #ifdef cimg_use_lapack char TRANS = 'N'; int INFO, N = A._width, M = A._height, LWORK = -1, LDA = M, LDB = M, NRHS = _width; Ttfloat WORK_QUERY; Ttfloat *const lapA = new Ttfloat[M * N], *const lapB = new Ttfloat[M * NRHS]; cimg::sgels(TRANS, M, N, NRHS, lapA, LDA, lapB, LDB, &WORK_QUERY, LWORK, INFO); LWORK = (int)WORK_QUERY; Ttfloat* const WORK = new Ttfloat[LWORK]; cimg_forXY(A, k, l) lapA[k * M + l] = (Ttfloat)(A(k, l)); cimg_forXY(*this, k, l) lapB[k * M + l] = (Ttfloat)((*this)(k, l)); cimg::sgels(TRANS, M, N, NRHS, lapA, LDA, lapB, LDB, WORK, LWORK, INFO); if (INFO != 0) cimg::warn(_cimg_instance "solve(): LAPACK library function sgels() returned " "error code %d.", cimg_instance, INFO); assign(NRHS, N); if (!INFO) cimg_forXY(*this, k, l) (*this)(k, l) = (T)lapB[k * M + l]; else assign(A.get_pseudoinvert() * (*this)); delete[] lapA; delete[] lapB; delete[] WORK; #else assign(A.get_pseudoinvert() * (*this)); #endif } return *this; } //! Solve a system of linear equations \newinstance. template CImg<_cimg_Ttfloat> get_solve(const CImg& A) const { typedef _cimg_Ttfloat Ttfloat; return CImg(*this, false).solve(A); } template CImg& _solve(const CImg& A, const CImg& indx) { typedef _cimg_Ttfloat Ttfloat; const int N = (int)size(); int ii = -1; Ttfloat sum; for (int i = 0; i < N; ++i) { const int ip = (int)indx[i]; sum = (*this)(ip); (*this)(ip) = (*this)(i); if (ii >= 0) for (int j = ii; j <= i - 1; ++j) sum -= A(j, i) * (*this)(j); else if (sum != 0) ii = i; (*this)(i) = (T)sum; } for (int i = N - 1; i >= 0; --i) { sum = (*this)(i); for (int j = i + 1; j < N; ++j) sum -= A(j, i) * (*this)(j); (*this)(i) = (T)(sum / A(i, i)); } return *this; } //! Solve a tridiagonal system of linear equations. /** \param A Coefficients of the tridiagonal system. A is a tridiagonal matrix A = [ b0,c0,0,...; a1,b1,c1,0,... ; ... ; ...,0,aN,bN ], stored as a 3 columns matrix \note Solve AX=B where \c B=*this, using the Thomas algorithm. **/ template CImg& solve_tridiagonal(const CImg& A) { const unsigned int siz = (unsigned int)size(); if (A._width != 3 || A._height != siz) throw CImgArgumentException( _cimg_instance "solve_tridiagonal(): Instance and tridiagonal matrix " "(%u,%u,%u,%u,%p) have incompatible dimensions.", cimg_instance, A._width, A._height, A._depth, A._spectrum, A._data); typedef _cimg_Ttfloat Ttfloat; const Ttfloat epsilon = 1e-4f; CImg B = A.get_column(1), V(*this, false); for (int i = 1; i < (int)siz; ++i) { const Ttfloat m = A(0, i) / (B[i - 1] ? B[i - 1] : epsilon); B[i] -= m * A(2, i - 1); V[i] -= m * V[i - 1]; } (*this)[siz - 1] = (T)(V[siz - 1] / (B[siz - 1] ? B[siz - 1] : epsilon)); for (int i = (int)siz - 2; i >= 0; --i) (*this)[i] = (T)((V[i] - A(2, i) * (*this)[i + 1]) / (B[i] ? B[i] : epsilon)); return *this; } //! Solve a tridiagonal system of linear equations \newinstance. template CImg<_cimg_Ttfloat> get_solve_tridiagonal(const CImg& A) const { return CImg<_cimg_Ttfloat>(*this, false).solve_tridiagonal(A); } //! Compute eigenvalues and eigenvectors of the instance image, viewed as a //! matrix. /** \param[out] val Vector of the estimated eigenvalues, in decreasing order. \param[out] vec Matrix of the estimated eigenvectors, sorted by columns. **/ template const CImg& eigen(CImg& val, CImg& vec) const { if (is_empty()) { val.assign(); vec.assign(); } else { if (_width != _height || _depth > 1 || _spectrum > 1) throw CImgInstanceException( _cimg_instance "eigen(): Instance is not a square matrix.", cimg_instance); if (val.size() < (ulongT)_width) val.assign(1, _width); if (vec.size() < (ulongT)_width * _width) vec.assign(_width, _width); switch (_width) { case 1: { val[0] = (t)(*this)[0]; vec[0] = (t)1; } break; case 2: { const double a = (*this)[0], b = (*this)[1], c = (*this)[2], d = (*this)[3], e = a + d; double f = e * e - 4 * (a * d - b * c); if (f < 0) cimg::warn(_cimg_instance "eigen(): Complex eigenvalues found.", cimg_instance); f = std::sqrt(f); const double l1 = 0.5 * (e - f), l2 = 0.5 * (e + f), b2 = b * b, norm1 = std::sqrt(cimg::sqr(l2 - a) + b2), norm2 = std::sqrt(cimg::sqr(l1 - a) + b2); val[0] = (t)l2; val[1] = (t)l1; if (norm1 > 0) { vec(0, 0) = (t)(b / norm1); vec(0, 1) = (t)((l2 - a) / norm1); } else { vec(0, 0) = 1; vec(0, 1) = 0; } if (norm2 > 0) { vec(1, 0) = (t)(b / norm2); vec(1, 1) = (t)((l1 - a) / norm2); } else { vec(1, 0) = 1; vec(1, 1) = 0; } } break; default: throw CImgInstanceException( _cimg_instance "eigen(): Eigenvalues computation of general matrices " "is limited " "to 2x2 matrices.", cimg_instance); } } return *this; } //! Compute eigenvalues and eigenvectors of the instance image, viewed as a //! matrix. /** \return A list of two images [val; vec], whose meaning is similar as in eigen(CImg&,CImg&) const. **/ CImgList get_eigen() const { CImgList res(2); eigen(res[0], res[1]); return res; } //! Compute eigenvalues and eigenvectors of the instance image, viewed as a //! symmetric matrix. /** \param[out] val Vector of the estimated eigenvalues, in decreasing order. \param[out] vec Matrix of the estimated eigenvectors, sorted by columns. **/ template const CImg& symmetric_eigen(CImg& val, CImg& vec) const { if (is_empty()) { val.assign(); vec.assign(); return *this; } if (_width != _height || _depth > 1 || _spectrum > 1) throw CImgInstanceException( _cimg_instance "eigen(): Instance is not a square matrix.", cimg_instance); val.assign(1, _width); vec.assign(_width, _width); if (_width == 1) { val[0] = cimg::abs((*this)[0]); vec[0] = 1; return *this; } if (_width == 2) { const double a = (*this)[0], b = (*this)[1], c = (*this)[2], d = (*this)[3], e = a + d, f = std::sqrt( std::max(e * e - 4 * (a * d - b * c), 0.0)), l1 = 0.5 * (e - f), l2 = 0.5 * (e + f), n = std::sqrt(cimg::sqr(l2 - a) + b * b); val[0] = (t)l2; val[1] = (t)l1; if (n > 0) { vec[0] = (t)(b / n); vec[2] = (t)((l2 - a) / n); } else { vec[0] = 1; vec[2] = 0; } vec[1] = -vec[2]; vec[3] = vec[0]; return *this; } #ifdef cimg_use_lapack char JOB = 'V', UPLO = 'U'; int N = _width, LWORK = 4 * N, INFO; Tfloat *const lapA = new Tfloat[N * N], *const lapW = new Tfloat[N], *const WORK = new Tfloat[LWORK]; cimg_forXY(*this, k, l) lapA[k * N + l] = (Tfloat)((*this)(k, l)); cimg::syev(JOB, UPLO, N, lapA, lapW, WORK, LWORK, INFO); if (INFO) cimg::warn(_cimg_instance "symmetric_eigen(): LAPACK library function dsyev_() " "returned error code %d.", cimg_instance, INFO); if (!INFO) { cimg_forY(val, i) val(i) = (T)lapW[N - 1 - i]; cimg_forXY(vec, k, l) vec(k, l) = (T)(lapA[(N - 1 - k) * N + l]); } else { val.fill(0); vec.fill(0); } delete[] lapA; delete[] lapW; delete[] WORK; #else CImg V(_width, _width); Tfloat M = 0, m = (Tfloat)min_max(M), maxabs = cimg::max((Tfloat)1, cimg::abs(m), cimg::abs(M)); (CImg(*this, false) /= maxabs).SVD(vec, val, V, false); if (maxabs != 1) val *= maxabs; bool is_ambiguous = false; float eig = 0; cimg_forY(val, p) { // Check for ambiguous cases if (val[p] > eig) eig = (float)val[p]; t scal = 0; cimg_forY(vec, y) scal += vec(p, y) * V(p, y); if (cimg::abs(scal) < 0.9f) is_ambiguous = true; if (scal < 0) val[p] = -val[p]; } if (is_ambiguous) { ++(eig *= 2); SVD(vec, val, V, false, 40, eig); val -= eig; } CImg permutations; // Sort eigenvalues in decreasing order CImg tmp(_width); val.sort(permutations, false); cimg_forY(vec, k) { cimg_forY(permutations, y) tmp(y) = vec(permutations(y), k); std::memcpy(vec.data(0, k), tmp._data, sizeof(t) * _width); } #endif return *this; } //! Compute eigenvalues and eigenvectors of the instance image, viewed as a //! symmetric matrix. /** \return A list of two images [val; vec], whose meaning are similar as in symmetric_eigen(CImg&,CImg&) const. **/ CImgList get_symmetric_eigen() const { CImgList res(2); symmetric_eigen(res[0], res[1]); return res; } //! Sort pixel values and get sorting permutations. /** \param[out] permutations Permutation map used for the sorting. \param is_increasing Tells if pixel values are sorted in an increasing (\c true) or decreasing (\c false) way. **/ template CImg& sort(CImg& permutations, const bool is_increasing = true) { permutations.assign(_width, _height, _depth, _spectrum); if (is_empty()) return *this; cimg_foroff(permutations, off) permutations[off] = (t)off; return _quicksort(0, size() - 1, permutations, is_increasing, true); } //! Sort pixel values and get sorting permutations \newinstance. template CImg get_sort(CImg& permutations, const bool is_increasing = true) const { return (+*this).sort(permutations, is_increasing); } //! Sort pixel values. /** \param is_increasing Tells if pixel values are sorted in an increasing (\c true) or decreasing (\c false) way. \param axis Tells if the value sorting must be done along a specific axis. Can be: - \c 0: All pixel values are sorted, independently on their initial position. - \c 'x': Image columns are sorted, according to the first value in each column. - \c 'y': Image rows are sorted, according to the first value in each row. - \c 'z': Image slices are sorted, according to the first value in each slice. - \c 'c': Image channels are sorted, according to the first value in each channel. **/ CImg& sort(const bool is_increasing = true, const char axis = 0) { if (is_empty()) return *this; CImg perm; switch (cimg::lowercase(axis)) { case 0: _quicksort(0, size() - 1, perm, is_increasing, false); break; case 'x': { perm.assign(_width); get_crop(0, 0, 0, 0, _width - 1, 0, 0, 0) .sort(perm, is_increasing); CImg img(*this, false); cimg_forXYZC(*this, x, y, z, c) (*this)(x, y, z, c) = img(perm[x], y, z, c); } break; case 'y': { perm.assign(_height); get_crop(0, 0, 0, 0, 0, _height - 1, 0, 0) .sort(perm, is_increasing); CImg img(*this, false); cimg_forXYZC(*this, x, y, z, c) (*this)(x, y, z, c) = img(x, perm[y], z, c); } break; case 'z': { perm.assign(_depth); get_crop(0, 0, 0, 0, 0, 0, _depth - 1, 0) .sort(perm, is_increasing); CImg img(*this, false); cimg_forXYZC(*this, x, y, z, c) (*this)(x, y, z, c) = img(x, y, perm[z], c); } break; case 'c': { perm.assign(_spectrum); get_crop(0, 0, 0, 0, 0, 0, 0, _spectrum - 1) .sort(perm, is_increasing); CImg img(*this, false); cimg_forXYZC(*this, x, y, z, c) (*this)(x, y, z, c) = img(x, y, z, perm[c]); } break; default: throw CImgArgumentException( _cimg_instance "sort(): Invalid specified axis '%c' " "(should be { x | y | z | c }).", cimg_instance, axis); } return *this; } //! Sort pixel values \newinstance. CImg get_sort(const bool is_increasing = true, const char axis = 0) const { return (+*this).sort(is_increasing, axis); } template CImg& _quicksort(const long indm, const long indM, CImg& permutations, const bool is_increasing, const bool is_permutations) { if (indm < indM) { const long mid = (indm + indM) / 2; if (is_increasing) { if ((*this)[indm] > (*this)[mid]) { cimg::swap((*this)[indm], (*this)[mid]); if (is_permutations) cimg::swap(permutations[indm], permutations[mid]); } if ((*this)[mid] > (*this)[indM]) { cimg::swap((*this)[indM], (*this)[mid]); if (is_permutations) cimg::swap(permutations[indM], permutations[mid]); } if ((*this)[indm] > (*this)[mid]) { cimg::swap((*this)[indm], (*this)[mid]); if (is_permutations) cimg::swap(permutations[indm], permutations[mid]); } } else { if ((*this)[indm] < (*this)[mid]) { cimg::swap((*this)[indm], (*this)[mid]); if (is_permutations) cimg::swap(permutations[indm], permutations[mid]); } if ((*this)[mid] < (*this)[indM]) { cimg::swap((*this)[indM], (*this)[mid]); if (is_permutations) cimg::swap(permutations[indM], permutations[mid]); } if ((*this)[indm] < (*this)[mid]) { cimg::swap((*this)[indm], (*this)[mid]); if (is_permutations) cimg::swap(permutations[indm], permutations[mid]); } } if (indM - indm >= 3) { const T pivot = (*this)[mid]; long i = indm, j = indM; if (is_increasing) { do { while ((*this)[i] < pivot) ++i; while ((*this)[j] > pivot) --j; if (i <= j) { if (is_permutations) cimg::swap(permutations[i], permutations[j]); cimg::swap((*this)[i++], (*this)[j--]); } } while (i <= j); } else { do { while ((*this)[i] > pivot) ++i; while ((*this)[j] < pivot) --j; if (i <= j) { if (is_permutations) cimg::swap(permutations[i], permutations[j]); cimg::swap((*this)[i++], (*this)[j--]); } } while (i <= j); } if (indm < j) _quicksort(indm, j, permutations, is_increasing, is_permutations); if (i < indM) _quicksort(i, indM, permutations, is_increasing, is_permutations); } } return *this; } //! Compute the SVD of the instance image, viewed as a general matrix. /** Compute the SVD decomposition \c *this=U*S*V' where \c U and \c V are orthogonal matrices and \c S is a diagonal matrix. \c V' denotes the matrix transpose of \c V. \param[out] U First matrix of the SVD product. \param[out] S Coefficients of the second (diagonal) matrix of the SVD product. These coefficients are stored as a vector. \param[out] V Third matrix of the SVD product. \param sorting Tells if the diagonal coefficients are sorted (in decreasing order). \param max_iteration Maximum number of iterations considered for the algorithm convergence. \param lambda Epsilon used for the algorithm convergence. \note The instance matrix can be computed from \c U,\c S and \c V by \code const CImg<> A; // Input matrix (assumed to contain some values) CImg<> U,S,V; A.SVD(U,S,V) \endcode **/ template const CImg& SVD(CImg& U, CImg& S, CImg& V, const bool sorting = true, const unsigned int max_iteration = 40, const float lambda = 0) const { typedef _cimg_Ttfloat Ttfloat; if (is_empty()) { U.assign(); S.assign(); V.assign(); } else { U = *this; if (lambda != 0) { const unsigned int delta = std::min(U._width, U._height); for (unsigned int i = 0; i < delta; ++i) U(i, i) = (t)(U(i, i) + lambda); } if (S.size() < _width) S.assign(1, _width); if (V._width < _width || V._height < _height) V.assign(_width, _width); CImg rv1(_width); Ttfloat anorm = 0, c, f, g = 0, h, s, scale = 0; int l = 0, nm = 0; cimg_forX(U, i) { l = i + 1; rv1[i] = scale * g; g = s = scale = 0; if (i < height()) { for (int k = i; k < height(); ++k) scale += cimg::abs(U(i, k)); if (scale) { for (int k = i; k < height(); ++k) { U(i, k) /= scale; s += U(i, k) * U(i, k); } f = U(i, i); g = (Ttfloat)((f >= 0 ? -1 : 1) * std::sqrt(s)); h = f * g - s; U(i, i) = f - g; for (int j = l; j < width(); ++j) { s = 0; for (int k = i; k < height(); ++k) s += U(i, k) * U(j, k); f = s / h; for (int k = i; k < height(); ++k) U(j, k) += f * U(i, k); } for (int k = i; k < height(); ++k) U(i, k) *= scale; } } S[i] = scale * g; g = s = scale = 0; if (i < height() && i != width() - 1) { for (int k = l; k < width(); ++k) scale += cimg::abs(U(k, i)); if (scale) { for (int k = l; k < width(); ++k) { U(k, i) /= scale; s += U(k, i) * U(k, i); } f = U(l, i); g = (Ttfloat)((f >= 0 ? -1 : 1) * std::sqrt(s)); h = f * g - s; U(l, i) = f - g; for (int k = l; k < width(); ++k) rv1[k] = U(k, i) / h; for (int j = l; j < height(); ++j) { s = 0; for (int k = l; k < width(); ++k) s += U(k, j) * U(k, i); for (int k = l; k < width(); ++k) U(k, j) += s * rv1[k]; } for (int k = l; k < width(); ++k) U(k, i) *= scale; } } anorm = (Ttfloat)std::max( (float)anorm, (float)(cimg::abs(S[i]) + cimg::abs(rv1[i]))); } for (int i = width() - 1; i >= 0; --i) { if (i < width() - 1) { if (g) { for (int j = l; j < width(); ++j) V(i, j) = (U(j, i) / U(l, i)) / g; for (int j = l; j < width(); ++j) { s = 0; for (int k = l; k < width(); ++k) s += U(k, i) * V(j, k); for (int k = l; k < width(); ++k) V(j, k) += s * V(i, k); } } for (int j = l; j < width(); ++j) V(j, i) = V(i, j) = (t)0.; } V(i, i) = (t)1.; g = rv1[i]; l = i; } for (int i = std::min(width(), height()) - 1; i >= 0; --i) { l = i + 1; g = S[i]; for (int j = l; j < width(); ++j) U(j, i) = 0; if (g) { g = 1 / g; for (int j = l; j < width(); ++j) { s = 0; for (int k = l; k < height(); ++k) s += U(i, k) * U(j, k); f = (s / U(i, i)) * g; for (int k = i; k < height(); ++k) U(j, k) += f * U(i, k); } for (int j = i; j < height(); ++j) U(i, j) *= g; } else for (int j = i; j < height(); ++j) U(i, j) = 0; ++U(i, i); } for (int k = width() - 1; k >= 0; --k) { for (unsigned int its = 0; its < max_iteration; ++its) { bool flag = true; for (l = k; l >= 1; --l) { nm = l - 1; if ((cimg::abs(rv1[l]) + anorm) == anorm) { flag = false; break; } if ((cimg::abs(S[nm]) + anorm) == anorm) break; } if (flag) { c = 0; s = 1; for (int i = l; i <= k; ++i) { f = s * rv1[i]; rv1[i] = c * rv1[i]; if ((cimg::abs(f) + anorm) == anorm) break; g = S[i]; h = cimg::_hypot(f, g); S[i] = h; h = 1 / h; c = g * h; s = -f * h; cimg_forY(U, j) { const t y = U(nm, j), z = U(i, j); U(nm, j) = y * c + z * s; U(i, j) = z * c - y * s; } } } const t z = S[k]; if (l == k) { if (z < 0) { S[k] = -z; cimg_forX(U, j) V(k, j) = -V(k, j); } break; } nm = k - 1; t x = S[l], y = S[nm]; g = rv1[nm]; h = rv1[k]; f = ((y - z) * (y + z) + (g - h) * (g + h)) / std::max((Ttfloat)1e-25, (Ttfloat)2 * h * y); g = cimg::_hypot(f, (Ttfloat)1); f = ((x - z) * (x + z) + h * ((y / (f + (f >= 0 ? g : -g))) - h)) / std::max((Ttfloat)1e-25, (Ttfloat)x); c = s = 1; for (int j = l; j <= nm; ++j) { const int i = j + 1; g = rv1[i]; h = s * g; g = c * g; t y1 = S[i]; t z1 = cimg::_hypot(f, h); rv1[j] = z1; c = f / std::max((Ttfloat)1e-25, (Ttfloat)z1); s = h / std::max((Ttfloat)1e-25, (Ttfloat)z1); f = x * c + g * s; g = g * c - x * s; h = y1 * s; y1 *= c; cimg_forX(U, jj) { const t x2 = V(j, jj), z2 = V(i, jj); V(j, jj) = x2 * c + z2 * s; V(i, jj) = z2 * c - x2 * s; } z1 = cimg::_hypot(f, h); S[j] = z1; if (z1) { z1 = 1 / std::max((Ttfloat)1e-25, (Ttfloat)z1); c = f * z1; s = h * z1; } f = c * g + s * y1; x = c * y1 - s * g; cimg_forY(U, jj) { const t y2 = U(j, jj), z2 = U(i, jj); U(j, jj) = y2 * c + z2 * s; U(i, jj) = z2 * c - y2 * s; } } rv1[l] = 0; rv1[k] = f; S[k] = x; } } if (sorting) { CImg permutations; CImg tmp(_width); S.sort(permutations, false); cimg_forY(U, k) { cimg_forY(permutations, y) tmp(y) = U(permutations(y), k); std::memcpy(U.data(0, k), tmp._data, sizeof(t) * _width); } cimg_forY(V, k) { cimg_forY(permutations, y) tmp(y) = V(permutations(y), k); std::memcpy(V.data(0, k), tmp._data, sizeof(t) * _width); } } } return *this; } //! Compute the SVD of the instance image, viewed as a general matrix. /** \return A list of three images [U; S; V], whose meaning is similar as in SVD(CImg&,CImg&,CImg&,bool,unsigned int,float) const. **/ CImgList get_SVD(const bool sorting = true, const unsigned int max_iteration = 40, const float lambda = 0) const { CImgList res(3); SVD(res[0], res[1], res[2], sorting, max_iteration, lambda); return res; } // [internal] Compute the LU decomposition of a permuted matrix. template CImg& _LU(CImg& indx, bool& d) { const int N = width(); int imax = 0; CImg vv(N); indx.assign(N); d = true; bool return0 = false; cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=512)) cimg_forX(*this,i) { Tfloat vmax = 0; cimg_forX(*this, j) { const Tfloat tmp = cimg::abs((*this)(j, i)); if (tmp > vmax) vmax = tmp; } if (vmax == 0) return0 = true; else vv[i] = 1 / vmax; } if (return0) { indx.fill(0); return fill(0); } cimg_forX(*this, j) { for (int i = 0; i < j; ++i) { Tfloat sum = (*this)(j, i); for (int k = 0; k < i; ++k) sum -= (*this)(k, i) * (*this)(j, k); (*this)(j, i) = (T)sum; } Tfloat vmax = 0; for (int i = j; i < width(); ++i) { Tfloat sum = (*this)(j, i); for (int k = 0; k < j; ++k) sum -= (*this)(k, i) * (*this)(j, k); (*this)(j, i) = (T)sum; const Tfloat tmp = vv[i] * cimg::abs(sum); if (tmp >= vmax) { vmax = tmp; imax = i; } } if (j != imax) { cimg_forX(*this, k) cimg::swap((*this)(k, imax), (*this)(k, j)); d = !d; vv[imax] = vv[j]; } indx[j] = (t)imax; if ((*this)(j, j) == 0) (*this)(j, j) = (T)1e-20; if (j < N) { const Tfloat tmp = 1 / (Tfloat)(*this)(j, j); for (int i = j + 1; i < N; ++i) (*this)(j, i) = (T)((*this)(j, i) * tmp); } } return *this; } //! Compute minimal path in a graph, using the Dijkstra algorithm. /** \param distance An object having operator()(unsigned int i, unsigned int j) which returns distance between two nodes (i,j). \param nb_nodes Number of graph nodes. \param starting_node Index of the starting node. \param ending_node Index of the ending node (set to ~0U to ignore ending node). \param previous_node Array that gives the previous node index in the path to the starting node (optional parameter). \return Array of distances of each node to the starting node. **/ template static CImg dijkstra(const tf& distance, const unsigned int nb_nodes, const unsigned int starting_node, const unsigned int ending_node, CImg& previous_node) { if (starting_node >= nb_nodes) throw CImgArgumentException( "CImg<%s>::dijkstra(): Specified index of starting node %u is " "higher " "than number of nodes %u.", pixel_type(), starting_node, nb_nodes); CImg dist(1, nb_nodes, 1, 1, cimg::type::max()); dist(starting_node) = 0; previous_node.assign(1, nb_nodes, 1, 1, (t)-1); previous_node(starting_node) = (t)starting_node; CImg Q(nb_nodes); cimg_forX(Q, u) Q(u) = (unsigned int)u; cimg::swap(Q(starting_node), Q(0)); unsigned int sizeQ = nb_nodes; while (sizeQ) { // Update neighbors from minimal vertex const unsigned int umin = Q(0); if (umin == ending_node) sizeQ = 0; else { const T dmin = dist(umin); const T infty = cimg::type::max(); for (unsigned int q = 1; q < sizeQ; ++q) { const unsigned int v = Q(q); const T d = (T)distance(v, umin); if (d < infty) { const T alt = dmin + d; if (alt < dist(v)) { dist(v) = alt; previous_node(v) = (t)umin; const T distpos = dist(Q(q)); for (unsigned int pos = q, par = 0; pos && distpos < dist(Q(par = (pos + 1) / 2 - 1)); pos = par) cimg::swap(Q(pos), Q(par)); } } } // Remove minimal vertex from queue Q(0) = Q(--sizeQ); const T distpos = dist(Q(0)); for (unsigned int pos = 0, left = 0, right = 0; ((right = 2 * (pos + 1), (left = right - 1)) < sizeQ && distpos > dist(Q(left))) || (right < sizeQ && distpos > dist(Q(right)));) { if (right < sizeQ) { if (dist(Q(left)) < dist(Q(right))) { cimg::swap(Q(pos), Q(left)); pos = left; } else { cimg::swap(Q(pos), Q(right)); pos = right; } } else { cimg::swap(Q(pos), Q(left)); pos = left; } } } } return dist; } //! Return minimal path in a graph, using the Dijkstra algorithm. template static CImg dijkstra(const tf& distance, const unsigned int nb_nodes, const unsigned int starting_node, const unsigned int ending_node = ~0U) { CImg foo; return dijkstra(distance, nb_nodes, starting_node, ending_node, foo); } //! Return minimal path in a graph, using the Dijkstra algorithm. /** \param starting_node Index of the starting node. \param ending_node Index of the ending node. \param previous_node Array that gives the previous node index in the path to the starting node (optional parameter). \return Array of distances of each node to the starting node. \note image instance corresponds to the adjacency matrix of the graph. **/ template CImg& dijkstra(const unsigned int starting_node, const unsigned int ending_node, CImg& previous_node) { return get_dijkstra(starting_node, ending_node, previous_node) .move_to(*this); } //! Return minimal path in a graph, using the Dijkstra algorithm //! \newinstance. template CImg get_dijkstra(const unsigned int starting_node, const unsigned int ending_node, CImg& previous_node) const { if (_width != _height || _depth != 1 || _spectrum != 1) throw CImgInstanceException( _cimg_instance "dijkstra(): Instance is not a graph adjacency matrix.", cimg_instance); return dijkstra(*this, _width, starting_node, ending_node, previous_node); } //! Return minimal path in a graph, using the Dijkstra algorithm. CImg& dijkstra(const unsigned int starting_node, const unsigned int ending_node = ~0U) { return get_dijkstra(starting_node, ending_node).move_to(*this); } //! Return minimal path in a graph, using the Dijkstra algorithm //! \newinstance. CImg get_dijkstra(const unsigned int starting_node, const unsigned int ending_node = ~0U) const { CImg foo; return get_dijkstra(starting_node, ending_node, foo); } //! Return an image containing the Ascii codes of the specified string. /** \param str input C-string to encode as an image. \param is_last_zero Tells if the ending \c '0' character appear in the resulting image. \param is_shared Return result that shares its buffer with \p str. **/ static CImg string(const char* const str, const bool is_last_zero = true, const bool is_shared = false) { if (!str) return CImg(); return CImg(str, (unsigned int)std::strlen(str) + (is_last_zero ? 1 : 0), 1, 1, 1, is_shared); } //! Return a \c 1x1 image containing specified value. /** \param a0 First vector value. **/ static CImg vector(const T& a0) { CImg r(1, 1); r[0] = a0; return r; } //! Return a \c 1x2 image containing specified values. /** \param a0 First vector value. \param a1 Second vector value. **/ static CImg vector(const T& a0, const T& a1) { CImg r(1, 2); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; return r; } //! Return a \c 1x3 image containing specified values. /** \param a0 First vector value. \param a1 Second vector value. \param a2 Third vector value. **/ static CImg vector(const T& a0, const T& a1, const T& a2) { CImg r(1, 3); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; return r; } //! Return a \c 1x4 image containing specified values. /** \param a0 First vector value. \param a1 Second vector value. \param a2 Third vector value. \param a3 Fourth vector value. **/ static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3) { CImg r(1, 4); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; return r; } //! Return a \c 1x5 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4) { CImg r(1, 5); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; return r; } //! Return a \c 1x6 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5) { CImg r(1, 6); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; return r; } //! Return a \c 1x7 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6) { CImg r(1, 7); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; return r; } //! Return a \c 1x8 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7) { CImg r(1, 8); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; return r; } //! Return a \c 1x9 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8) { CImg r(1, 9); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; return r; } //! Return a \c 1x10 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8, const T& a9) { CImg r(1, 10); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; return r; } //! Return a \c 1x11 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8, const T& a9, const T& a10) { CImg r(1, 11); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; return r; } //! Return a \c 1x12 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8, const T& a9, const T& a10, const T& a11) { CImg r(1, 12); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; return r; } //! Return a \c 1x13 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8, const T& a9, const T& a10, const T& a11, const T& a12) { CImg r(1, 13); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; *(ptr++) = a12; return r; } //! Return a \c 1x14 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8, const T& a9, const T& a10, const T& a11, const T& a12, const T& a13) { CImg r(1, 14); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; *(ptr++) = a12; *(ptr++) = a13; return r; } //! Return a \c 1x15 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8, const T& a9, const T& a10, const T& a11, const T& a12, const T& a13, const T& a14) { CImg r(1, 15); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; return r; } //! Return a \c 1x16 image containing specified values. static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8, const T& a9, const T& a10, const T& a11, const T& a12, const T& a13, const T& a14, const T& a15) { CImg r(1, 16); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; *(ptr++) = a15; return r; } //! Return a 1x1 matrix containing specified coefficients. /** \param a0 First matrix value. \note Equivalent to vector(const T&). **/ static CImg matrix(const T& a0) { return vector(a0); } //! Return a 2x2 matrix containing specified coefficients. /** \param a0 First matrix value. \param a1 Second matrix value. \param a2 Third matrix value. \param a3 Fourth matrix value. **/ static CImg matrix(const T& a0, const T& a1, const T& a2, const T& a3) { CImg r(2, 2); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; return r; } //! Return a 3x3 matrix containing specified coefficients. /** \param a0 First matrix value. \param a1 Second matrix value. \param a2 Third matrix value. \param a3 Fourth matrix value. \param a4 Fifth matrix value. \param a5 Sixth matrix value. \param a6 Seventh matrix value. \param a7 Eighth matrix value. \param a8 Nineth matrix value. **/ static CImg matrix(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8) { CImg r(3, 3); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; return r; } //! Return a 4x4 matrix containing specified coefficients. static CImg matrix(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8, const T& a9, const T& a10, const T& a11, const T& a12, const T& a13, const T& a14, const T& a15) { CImg r(4, 4); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; *(ptr++) = a15; return r; } //! Return a 5x5 matrix containing specified coefficients. static CImg matrix(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5, const T& a6, const T& a7, const T& a8, const T& a9, const T& a10, const T& a11, const T& a12, const T& a13, const T& a14, const T& a15, const T& a16, const T& a17, const T& a18, const T& a19, const T& a20, const T& a21, const T& a22, const T& a23, const T& a24) { CImg r(5, 5); T* ptr = r._data; *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; *(ptr++) = a15; *(ptr++) = a16; *(ptr++) = a17; *(ptr++) = a18; *(ptr++) = a19; *(ptr++) = a20; *(ptr++) = a21; *(ptr++) = a22; *(ptr++) = a23; *(ptr++) = a24; return r; } //! Return a 1x1 symmetric matrix containing specified coefficients. /** \param a0 First matrix value. \note Equivalent to vector(const T&). **/ static CImg tensor(const T& a0) { return matrix(a0); } //! Return a 2x2 symmetric matrix tensor containing specified coefficients. static CImg tensor(const T& a0, const T& a1, const T& a2) { return matrix(a0, a1, a1, a2); } //! Return a 3x3 symmetric matrix containing specified coefficients. static CImg tensor(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5) { return matrix(a0, a1, a2, a1, a3, a4, a2, a4, a5); } //! Return a 1x1 diagonal matrix containing specified coefficients. static CImg diagonal(const T& a0) { return matrix(a0); } //! Return a 2x2 diagonal matrix containing specified coefficients. static CImg diagonal(const T& a0, const T& a1) { return matrix(a0, 0, 0, a1); } //! Return a 3x3 diagonal matrix containing specified coefficients. static CImg diagonal(const T& a0, const T& a1, const T& a2) { return matrix(a0, 0, 0, 0, a1, 0, 0, 0, a2); } //! Return a 4x4 diagonal matrix containing specified coefficients. static CImg diagonal(const T& a0, const T& a1, const T& a2, const T& a3) { return matrix(a0, 0, 0, 0, 0, a1, 0, 0, 0, 0, a2, 0, 0, 0, 0, a3); } //! Return a 5x5 diagonal matrix containing specified coefficients. static CImg diagonal(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4) { return matrix(a0, 0, 0, 0, 0, 0, a1, 0, 0, 0, 0, 0, a2, 0, 0, 0, 0, 0, a3, 0, 0, 0, 0, 0, a4); } //! Return a NxN identity matrix. /** \param N Dimension of the matrix. **/ static CImg identity_matrix(const unsigned int N) { CImg res(N, N, 1, 1, 0); cimg_forX(res, x) res(x, x) = 1; return res; } //! Return a N-numbered sequence vector from \p a0 to \p a1. /** \param N Size of the resulting vector. \param a0 Starting value of the sequence. \param a1 Ending value of the sequence. **/ static CImg sequence(const unsigned int N, const T& a0, const T& a1) { if (N) return CImg(1, N).sequence(a0, a1); return CImg(); } //! Return a 3x3 rotation matrix from an { axis + angle } or a quaternion. /** \param x X-coordinate of the rotation axis, or first quaternion coordinate. \param y Y-coordinate of the rotation axis, or second quaternion coordinate. \param z Z-coordinate of the rotation axis, or third quaternion coordinate. \param w Angle of the rotation axis (in degree), or fourth quaternion coordinate. \param is_quaternion Tell is the four arguments denotes a set { axis + angle } or a quaternion (x,y,z,w). **/ static CImg rotation_matrix(const float x, const float y, const float z, const float w, const bool is_quaternion = false) { double X, Y, Z, W, N; if (is_quaternion) { N = std::sqrt((double)x * x + (double)y * y + (double)z * z + (double)w * w); if (N > 0) { X = x / N; Y = y / N; Z = z / N; W = w / N; } else { X = Y = Z = 0; W = 1; } return CImg::matrix( (T)(X * X + Y * Y - Z * Z - W * W), (T)(2 * Y * Z - 2 * X * W), (T)(2 * X * Z + 2 * Y * W), (T)(2 * X * W + 2 * Y * Z), (T)(X * X - Y * Y + Z * Z - W * W), (T)(2 * Z * W - 2 * X * Y), (T)(2 * Y * W - 2 * X * Z), (T)(2 * X * Y + 2 * Z * W), (T)(X * X - Y * Y - Z * Z + W * W)); } N = cimg::hypot((double)x, (double)y, (double)z); if (N > 0) { X = x / N; Y = y / N; Z = z / N; } else { X = Y = 0; Z = 1; } const double ang = w * cimg::PI / 180, c = std::cos(ang), omc = 1 - c, s = std::sin(ang); return CImg::matrix((T)(X * X * omc + c), (T)(X * Y * omc - Z * s), (T)(X * Z * omc + Y * s), (T)(X * Y * omc + Z * s), (T)(Y * Y * omc + c), (T)(Y * Z * omc - X * s), (T)(X * Z * omc - Y * s), (T)(Y * Z * omc + X * s), (T)(Z * Z * omc + c)); } //@} //----------------------------------- // //! \name Value Manipulation //@{ //----------------------------------- //! Fill all pixel values with specified value. /** \param val Fill value. **/ CImg& fill(const T& val) { if (is_empty()) return *this; if (val && sizeof(T) != 1) cimg_for(*this, ptrd, T)* ptrd = val; else std::memset( _data, (int)(ulongT)val, sizeof(T) * size()); // Double cast to allow val to be (void*) return *this; } //! Fill all pixel values with specified value \newinstance. CImg get_fill(const T& val) const { return CImg(_width, _height, _depth, _spectrum).fill(val); } //! Fill sequentially all pixel values with specified values. /** \param val0 First fill value. \param val1 Second fill value. **/ CImg& fill(const T& val0, const T& val1) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 1; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; } if (ptrd != ptre + 1) *(ptrd++) = val0; return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1) const { return CImg(_width, _height, _depth, _spectrum).fill(val0, val1); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 2; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; } ptre += 2; switch (ptre - ptrd) { case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 3; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; } ptre += 3; switch (ptre - ptrd) { case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 4; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; } ptre += 4; switch (ptre - ptrd) { case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 5; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; } ptre += 5; switch (ptre - ptrd) { case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 6; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; } ptre += 6; switch (ptre - ptrd) { case 6: *(--ptre) = val5; // fallthrough case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5, val6); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 7; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; } ptre += 7; switch (ptre - ptrd) { case 7: *(--ptre) = val6; // fallthrough case 6: *(--ptre) = val5; // fallthrough case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5, val6, val7); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 8; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; } ptre += 8; switch (ptre - ptrd) { case 8: *(--ptre) = val7; // fallthrough case 7: *(--ptre) = val6; // fallthrough case 6: *(--ptre) = val5; // fallthrough case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5, val6, val7, val8); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 9; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; } ptre += 9; switch (ptre - ptrd) { case 9: *(--ptre) = val8; // fallthrough case 8: *(--ptre) = val7; // fallthrough case 7: *(--ptre) = val6; // fallthrough case 6: *(--ptre) = val5; // fallthrough case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5, val6, val7, val8, val9); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 10; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; } ptre += 10; switch (ptre - ptrd) { case 10: *(--ptre) = val9; // fallthrough case 9: *(--ptre) = val8; // fallthrough case 8: *(--ptre) = val7; // fallthrough case 7: *(--ptre) = val6; // fallthrough case 6: *(--ptre) = val5; // fallthrough case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5, val6, val7, val8, val9, val10); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 11; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; *(ptrd++) = val11; } ptre += 11; switch (ptre - ptrd) { case 11: *(--ptre) = val10; // fallthrough case 10: *(--ptre) = val9; // fallthrough case 9: *(--ptre) = val8; // fallthrough case 8: *(--ptre) = val7; // fallthrough case 7: *(--ptre) = val6; // fallthrough case 6: *(--ptre) = val5; // fallthrough case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5, val6, val7, val8, val9, val10, val11); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, const T& val12) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 12; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; *(ptrd++) = val11; *(ptrd++) = val12; } ptre += 12; switch (ptre - ptrd) { case 12: *(--ptre) = val11; // fallthrough case 11: *(--ptre) = val10; // fallthrough case 10: *(--ptre) = val9; // fallthrough case 9: *(--ptre) = val8; // fallthrough case 8: *(--ptre) = val7; // fallthrough case 7: *(--ptre) = val6; // fallthrough case 6: *(--ptre) = val5; // fallthrough case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, const T& val12) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5, val6, val7, val8, val9, val10, val11, val12); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, const T& val12, const T& val13) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 13; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; *(ptrd++) = val11; *(ptrd++) = val12; *(ptrd++) = val13; } ptre += 13; switch (ptre - ptrd) { case 13: *(--ptre) = val12; // fallthrough case 12: *(--ptre) = val11; // fallthrough case 11: *(--ptre) = val10; // fallthrough case 10: *(--ptre) = val9; // fallthrough case 9: *(--ptre) = val8; // fallthrough case 8: *(--ptre) = val7; // fallthrough case 7: *(--ptre) = val6; // fallthrough case 6: *(--ptre) = val5; // fallthrough case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, const T& val12, const T& val13) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5, val6, val7, val8, val9, val10, val11, val12, val13); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, const T& val12, const T& val13, const T& val14) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 14; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; *(ptrd++) = val11; *(ptrd++) = val12; *(ptrd++) = val13; *(ptrd++) = val14; } ptre += 14; switch (ptre - ptrd) { case 14: *(--ptre) = val13; // fallthrough case 13: *(--ptre) = val12; // fallthrough case 12: *(--ptre) = val11; // fallthrough case 11: *(--ptre) = val10; // fallthrough case 10: *(--ptre) = val9; // fallthrough case 9: *(--ptre) = val8; // fallthrough case 8: *(--ptre) = val7; // fallthrough case 7: *(--ptre) = val6; // fallthrough case 6: *(--ptre) = val5; // fallthrough case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, const T& val12, const T& val13, const T& val14) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5, val6, val7, val8, val9, val10, val11, val12, val13, val14); } //! Fill sequentially all pixel values with specified values \overloading. CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, const T& val12, const T& val13, const T& val14, const T& val15) { if (is_empty()) return *this; T *ptrd, *ptre = end() - 15; for (ptrd = _data; ptrd < ptre;) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; *(ptrd++) = val11; *(ptrd++) = val12; *(ptrd++) = val13; *(ptrd++) = val14; *(ptrd++) = val15; } ptre += 15; switch (ptre - ptrd) { case 15: *(--ptre) = val14; // fallthrough case 14: *(--ptre) = val13; // fallthrough case 13: *(--ptre) = val12; // fallthrough case 12: *(--ptre) = val11; // fallthrough case 11: *(--ptre) = val10; // fallthrough case 10: *(--ptre) = val9; // fallthrough case 9: *(--ptre) = val8; // fallthrough case 8: *(--ptre) = val7; // fallthrough case 7: *(--ptre) = val6; // fallthrough case 6: *(--ptre) = val5; // fallthrough case 5: *(--ptre) = val4; // fallthrough case 4: *(--ptre) = val3; // fallthrough case 3: *(--ptre) = val2; // fallthrough case 2: *(--ptre) = val1; // fallthrough case 1: *(--ptre) = val0; // fallthrough } return *this; } //! Fill sequentially all pixel values with specified values \newinstance. CImg get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, const T& val12, const T& val13, const T& val14, const T& val15) const { return CImg(_width, _height, _depth, _spectrum) .fill(val0, val1, val2, val3, val4, val5, val6, val7, val8, val9, val10, val11, val12, val13, val14, val15); } //! Fill sequentially pixel values according to a given expression. /** \param expression C-string describing a math formula, or a sequence of values. \param repeat_values In case a list of values is provided, tells if this list must be repeated for the filling. \param allow_formula Tells that mathematical formulas are authorized for the filling. \param list_inputs In case of a mathematical expression, attach a list of images to the specified expression. \param[out] list_outputs In case of a math expression, list of images atatched to the specified expression. **/ CImg& fill(const char* const expression, const bool repeat_values, const bool allow_formula = true, const CImgList* const list_inputs = 0, CImgList* const list_outputs = 0) { return _fill(expression, repeat_values, allow_formula ? 1 : 0, list_inputs, list_outputs, "fill", 0); } // 'formula_mode' = { 0 = does not allow formula | 1 = allow formula | // 2 = allow formula but do not fill image values }. CImg& _fill(const char* const expression, const bool repeat_values, const unsigned int formula_mode, const CImgList* const list_inputs, CImgList* const list_outputs, const char* const calling_function, const CImg* provides_copy) { if (is_empty() || !expression || !*expression) return *this; const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); CImg is_error; bool is_value_sequence = false; cimg_abort_init; if (formula_mode) { // Try to pre-detect regular value sequence to avoid exception // thrown by _cimg_math_parser. double value; char sep; const int err = cimg_sscanf(expression, "%lf %c", &value, &sep); if (err == 1 || (err == 2 && sep == ',')) { if (err == 1) return fill((T)value); else is_value_sequence = true; } // Try to fill values according to a formula. _cimg_abort_init_openmp; if (!is_value_sequence) try { CImg base = provides_copy ? provides_copy->get_shared() : get_shared(); _cimg_math_parser mp( expression + (*expression == '>' || *expression == '<' || *expression == '*' || *expression == ':'), calling_function, base, this, list_inputs, list_outputs, true); if (!provides_copy && expression && *expression != '>' && *expression != '<' && *expression != ':' && mp.need_input_copy) base.assign().assign(*this, false); // Needs input copy bool do_in_parallel = false; #if cimg_use_openmp != 0 cimg_openmp_if(*expression == '*' || *expression == ':' || (mp.is_parallelizable && _width >= (cimg_openmp_sizefactor)*320 && _height * _depth * _spectrum >= 2)) do_in_parallel = true; #endif if (mp.result_dim) { // Vector-valued expression const unsigned int N = std::min(mp.result_dim, _spectrum); const ulongT whd = (ulongT)_width * _height * _depth; T* ptrd = *expression == '<' ? _data + _width * _height * _depth - 1 : _data; if (*expression == '<') { CImg res(1, mp.result_dim); cimg_rofYZ(*this, y, z) { cimg_abort_test; if (formula_mode == 2) cimg_rofX(*this, x) mp(x, y, z, 0); else cimg_rofX(*this, x) { mp(x, y, z, 0, res._data); const double* ptrs = res._data; T* _ptrd = ptrd--; for (unsigned int n = N; n > 0; --n) { *_ptrd = (T)(*ptrs++); _ptrd += whd; } } } } else if (*expression == '>' || !do_in_parallel) { CImg res(1, mp.result_dim); cimg_forYZ(*this, y, z) { cimg_abort_test; if (formula_mode == 2) cimg_forX(*this, x) mp(x, y, z, 0); else cimg_forX(*this, x) { mp(x, y, z, 0, res._data); const double* ptrs = res._data; T* _ptrd = ptrd++; for (unsigned int n = N; n > 0; --n) { *_ptrd = (T)(*ptrs++); _ptrd += whd; } } } } else { #if cimg_use_openmp != 0 cimg_pragma_openmp(parallel) { _cimg_math_parser _mp = omp_get_thread_num() ? mp : _cimg_math_parser(), &lmp = omp_get_thread_num() ? _mp : mp; lmp.is_fill = true; cimg_pragma_openmp(for cimg_openmp_collapse(2)) cimg_forYZ(*this,y,z) _cimg_abort_try_openmp { cimg_abort_test; if (formula_mode == 2) cimg_forX(*this, x) lmp(x, y, z, 0); else { CImg res(1, lmp.result_dim); T* __ptrd = data(0, y, z, 0); cimg_forX(*this, x) { lmp(x, y, z, 0, res._data); const double* ptrs = res._data; T* _ptrd = __ptrd++; for (unsigned int n = N; n > 0; --n) { *_ptrd = (T)(*ptrs++); _ptrd += whd; } } } } _cimg_abort_catch_openmp _cimg_abort_catch_fill_openmp } #endif } } else { // Scalar-valued expression T* ptrd = *expression == '<' ? end() - 1 : _data; if (*expression == '<') { if (formula_mode == 2) cimg_rofYZC(*this, y, z, c) { cimg_abort_test; cimg_rofX(*this, x) mp(x, y, z, c); } else cimg_rofYZC(*this, y, z, c) { cimg_abort_test; cimg_rofX(*this, x) * (ptrd--) = (T)mp(x, y, z, c); } } else if (*expression == '>' || !do_in_parallel) { if (formula_mode == 2) cimg_forYZC(*this, y, z, c) { cimg_abort_test; cimg_forX(*this, x) mp(x, y, z, c); } else cimg_forYZC(*this, y, z, c) { cimg_abort_test; cimg_forX(*this, x) * (ptrd++) = (T)mp(x, y, z, c); } } else { #if cimg_use_openmp != 0 cimg_pragma_openmp(parallel) { _cimg_math_parser _mp = omp_get_thread_num() ? mp : _cimg_math_parser(), &lmp = omp_get_thread_num() ? _mp : mp; lmp.is_fill = true; cimg_pragma_openmp(for cimg_openmp_collapse(3)) cimg_forYZC(*this,y,z,c) _cimg_abort_try_openmp { cimg_abort_test; if (formula_mode == 2) cimg_forX(*this, x) lmp(x, y, z, c); else { T* _ptrd = data(0, y, z, c); cimg_forX(*this, x) * (_ptrd++) = (T)lmp(x, y, z, c); } } _cimg_abort_catch_openmp _cimg_abort_catch_fill_openmp } #endif } } mp.end(); } catch (CImgException& e) { CImg::string(e._message).move_to(is_error); } } // Try to fill values according to a value sequence. if (!formula_mode || is_value_sequence || is_error) { CImg item(256); char sep = 0; const char* nexpression = expression; ulongT nb = 0; const ulongT siz = size(); T* ptrd = _data; for (double val = 0; *nexpression && nb < siz; ++nb) { sep = 0; const int err = cimg_sscanf( nexpression, "%255[ \n\t0-9.eEinfa+-]%c", item._data, &sep); if (err > 0 && cimg_sscanf(item, "%lf", &val) == 1 && (sep == ',' || sep == ';' || err == 1)) { nexpression += std::strlen(item) + (err > 1); *(ptrd++) = (T)val; } else break; } cimg::exception_mode(omode); if (nb < siz && (sep || *nexpression)) { if (is_error) throw CImgArgumentException("%s", is_error._data); else throw CImgArgumentException( _cimg_instance "%s(): Invalid sequence of filling values '%s'.", cimg_instance, calling_function, expression); } if (repeat_values && nb && nb < siz) for (T *ptrs = _data, *const ptre = _data + siz; ptrd < ptre; ++ptrs) *(ptrd++) = *ptrs; } cimg::exception_mode(omode); cimg_abort_test; return *this; } //! Fill sequentially pixel values according to a given expression //! \newinstance. CImg get_fill(const char* const expression, const bool repeat_values, const bool allow_formula = true, const CImgList* const list_inputs = 0, CImgList* const list_outputs = 0) const { return (+*this).fill(expression, repeat_values, allow_formula ? 1 : 0, list_inputs, list_outputs); } //! Fill sequentially pixel values according to the values found in another //! image. /** \param values Image containing the values used for the filling. \param repeat_values In case there are less values than necessary in \c values, tells if these values must be repeated for the filling. **/ template CImg& fill(const CImg& values, const bool repeat_values = true) { if (is_empty() || !values) return *this; T *ptrd = _data, *ptre = ptrd + size(); for (t *ptrs = values._data, *ptrs_end = ptrs + values.size(); ptrs < ptrs_end && ptrd < ptre; ++ptrs) *(ptrd++) = (T)*ptrs; if (repeat_values && ptrd < ptre) for (T* ptrs = _data; ptrd < ptre; ++ptrs) *(ptrd++) = *ptrs; return *this; } //! Fill sequentially pixel values according to the values found in another //! image \newinstance. template CImg get_fill(const CImg& values, const bool repeat_values = true) const { return repeat_values ? CImg(_width, _height, _depth, _spectrum) .fill(values, repeat_values) : (+*this).fill(values, repeat_values); } //! Fill pixel values along the X-axis at a specified pixel position. /** \param y Y-coordinate of the filled column. \param z Z-coordinate of the filled column. \param c C-coordinate of the filled column. \param a0 First fill value. **/ CImg& fillX(const unsigned int y, const unsigned int z, const unsigned int c, const int a0, ...) { #define _cimg_fill1(x, y, z, c, off, siz, t) \ { \ va_list ap; \ va_start(ap, a0); \ T* ptrd = data(x, y, z, c); \ *ptrd = (T)a0; \ for (unsigned int k = 1; k < siz; ++k) { \ ptrd += off; \ *ptrd = (T)va_arg(ap, t); \ } \ va_end(ap); \ } if (y < _height && z < _depth && c < _spectrum) _cimg_fill1(0, y, z, c, 1, _width, int); return *this; } //! Fill pixel values along the X-axis at a specified pixel position //! \overloading. CImg& fillX(const unsigned int y, const unsigned int z, const unsigned int c, const double a0, ...) { if (y < _height && z < _depth && c < _spectrum) _cimg_fill1(0, y, z, c, 1, _width, double); return *this; } //! Fill pixel values along the Y-axis at a specified pixel position. /** \param x X-coordinate of the filled row. \param z Z-coordinate of the filled row. \param c C-coordinate of the filled row. \param a0 First fill value. **/ CImg& fillY(const unsigned int x, const unsigned int z, const unsigned int c, const int a0, ...) { if (x < _width && z < _depth && c < _spectrum) _cimg_fill1(x, 0, z, c, _width, _height, int); return *this; } //! Fill pixel values along the Y-axis at a specified pixel position //! \overloading. CImg& fillY(const unsigned int x, const unsigned int z, const unsigned int c, const double a0, ...) { if (x < _width && z < _depth && c < _spectrum) _cimg_fill1(x, 0, z, c, _width, _height, double); return *this; } //! Fill pixel values along the Z-axis at a specified pixel position. /** \param x X-coordinate of the filled slice. \param y Y-coordinate of the filled slice. \param c C-coordinate of the filled slice. \param a0 First fill value. **/ CImg& fillZ(const unsigned int x, const unsigned int y, const unsigned int c, const int a0, ...) { const ulongT wh = (ulongT)_width * _height; if (x < _width && y < _height && c < _spectrum) _cimg_fill1(x, y, 0, c, wh, _depth, int); return *this; } //! Fill pixel values along the Z-axis at a specified pixel position //! \overloading. CImg& fillZ(const unsigned int x, const unsigned int y, const unsigned int c, const double a0, ...) { const ulongT wh = (ulongT)_width * _height; if (x < _width && y < _height && c < _spectrum) _cimg_fill1(x, y, 0, c, wh, _depth, double); return *this; } //! Fill pixel values along the C-axis at a specified pixel position. /** \param x X-coordinate of the filled channel. \param y Y-coordinate of the filled channel. \param z Z-coordinate of the filled channel. \param a0 First filling value. **/ CImg& fillC(const unsigned int x, const unsigned int y, const unsigned int z, const int a0, ...) { const ulongT whd = (ulongT)_width * _height * _depth; if (x < _width && y < _height && z < _depth) _cimg_fill1(x, y, z, 0, whd, _spectrum, int); return *this; } //! Fill pixel values along the C-axis at a specified pixel position //! \overloading. CImg& fillC(const unsigned int x, const unsigned int y, const unsigned int z, const double a0, ...) { const ulongT whd = (ulongT)_width * _height * _depth; if (x < _width && y < _height && z < _depth) _cimg_fill1(x, y, z, 0, whd, _spectrum, double); return *this; } //! Discard specified sequence of values in the image buffer, along a //! specific axis. /** \param values Sequence of values to discard. \param axis Axis along which the values are discarded. If set to \c 0 (default value) the method does it for all the buffer values and returns a one-column vector. \note Discarded values will change the image geometry, so the resulting image is returned as a one-column vector. **/ template CImg& discard(const CImg& values, const char axis = 0) { if (is_empty() || !values) return *this; return get_discard(values, axis).move_to(*this); } template CImg get_discard(const CImg& values, const char axis = 0) const { CImg res; if (!values) return +*this; if (is_empty()) return res; const ulongT vsiz = values.size(); const char _axis = cimg::lowercase(axis); ulongT j = 0; unsigned int k = 0; int i0 = 0; res.assign(width(), height(), depth(), spectrum()); switch (_axis) { case 'x': { cimg_forX(*this, i) { if ((*this)(i) != (T)values[j]) { if (j) --i; res.draw_image(k, get_columns(i0, i)); k += i - i0 + 1; i0 = i + 1; j = 0; } else { ++j; if (j >= vsiz) { j = 0; i0 = i + 1; } } } if (i0 < width()) { res.draw_image(k, get_columns(i0, width() - 1)); k += width() - i0; } res.resize(k, -100, -100, -100, 0); } break; case 'y': { cimg_forY(*this, i) { if ((*this)(0, i) != (T)values[j]) { if (j) --i; res.draw_image(0, k, get_rows(i0, i)); k += i - i0 + 1; i0 = i + 1; j = 0; } else { ++j; if (j >= vsiz) { j = 0; i0 = i + 1; } } } if (i0 < height()) { res.draw_image(0, k, get_rows(i0, height() - 1)); k += height() - i0; } res.resize(-100, k, -100, -100, 0); } break; case 'z': { cimg_forZ(*this, i) { if ((*this)(0, 0, i) != (T)values[j]) { if (j) --i; res.draw_image(0, 0, k, get_slices(i0, i)); k += i - i0 + 1; i0 = i + 1; j = 0; } else { ++j; if (j >= vsiz) { j = 0; i0 = i + 1; } } } if (i0 < depth()) { res.draw_image(0, 0, k, get_slices(i0, height() - 1)); k += depth() - i0; } res.resize(-100, -100, k, -100, 0); } break; case 'c': { cimg_forC(*this, i) { if ((*this)(0, 0, 0, i) != (T)values[j]) { if (j) --i; res.draw_image(0, 0, 0, k, get_channels(i0, i)); k += i - i0 + 1; i0 = i + 1; j = 0; } else { ++j; if (j >= vsiz) { j = 0; i0 = i + 1; } } } if (i0 < spectrum()) { res.draw_image(0, 0, k, get_channels(i0, height() - 1)); k += spectrum() - i0; } res.resize(-100, -100, -100, k, 0); } break; default: { res.unroll('y'); cimg_foroff(*this, i) { if ((*this)[i] != (T)values[j]) { if (j) --i; std::memcpy(res._data + k, _data + i0, (i - i0 + 1) * sizeof(T)); k += i - i0 + 1; i0 = (int)i + 1; j = 0; } else { ++j; if (j >= vsiz) { j = 0; i0 = (int)i + 1; } } } const ulongT siz = size(); if ((ulongT)i0 < siz) { std::memcpy(res._data + k, _data + i0, (siz - i0) * sizeof(T)); k += siz - i0; } res.resize(1, k, 1, 1, 0); } } return res; } //! Discard neighboring duplicates in the image buffer, along the specified //! axis. CImg& discard(const char axis = 0) { return get_discard(axis).move_to(*this); } //! Discard neighboring duplicates in the image buffer, along the specified //! axis \newinstance. CImg get_discard(const char axis = 0) const { CImg res; if (is_empty()) return res; const char _axis = cimg::lowercase(axis); T current = *_data ? (T)0 : (T)1; int j = 0; res.assign(width(), height(), depth(), spectrum()); switch (_axis) { case 'x': { cimg_forX(*this, i) if ((*this)(i) != current) { res.draw_image(j++, get_column(i)); current = (*this)(i); } res.resize(j, -100, -100, -100, 0); } break; case 'y': { cimg_forY(*this, i) if ((*this)(0, i) != current) { res.draw_image(0, j++, get_row(i)); current = (*this)(0, i); } res.resize(-100, j, -100, -100, 0); } break; case 'z': { cimg_forZ(*this, i) if ((*this)(0, 0, i) != current) { res.draw_image(0, 0, j++, get_slice(i)); current = (*this)(0, 0, i); } res.resize(-100, -100, j, -100, 0); } break; case 'c': { cimg_forC(*this, i) if ((*this)(0, 0, 0, i) != current) { res.draw_image(0, 0, 0, j++, get_channel(i)); current = (*this)(0, 0, 0, i); } res.resize(-100, -100, -100, j, 0); } break; default: { res.unroll('y'); cimg_foroff(*this, i) if ((*this)[i] != current) res[j++] = current = (*this)[i]; res.resize(-100, j, -100, -100, 0); } } return res; } //! Invert endianness of all pixel values. /** **/ CImg& invert_endianness() { cimg::invert_endianness(_data, size()); return *this; } //! Invert endianness of all pixel values \newinstance. CImg get_invert_endianness() const { return (+*this).invert_endianness(); } //! Fill image with random values in specified range. /** \param val_min Minimal authorized random value. \param val_max Maximal authorized random value. \note Random variables are uniformely distributed in [val_min,val_max]. **/ CImg& rand(const T& val_min, const T& val_max) { const float delta = (float)val_max - (float)val_min + (cimg::type::is_float() ? 0 : 1); if (cimg::type::is_float()) cimg_pragma_openmp(parallel cimg_openmp_if_size(size(), 524288)) { ulongT rng = (cimg::_rand(), cimg::rng()); #if cimg_use_openmp != 0 rng += omp_get_thread_num(); #endif cimg_pragma_openmp(for) cimg_rofoff(*this,off) _data[off] = (T)(val_min + delta*cimg::rand(1,&rng)); cimg::srand(rng); } else cimg_pragma_openmp(parallel cimg_openmp_if_size(size(), 524288)) { ulongT rng = (cimg::_rand(), cimg::rng()); #if cimg_use_openmp != 0 rng += omp_get_thread_num(); #endif cimg_pragma_openmp(for) cimg_rofoff(*this,off) _data[off] = std::min(val_max,(T)(val_min + delta*cimg::rand(1,&rng))); cimg::srand(rng); } return *this; } //! Fill image with random values in specified range \newinstance. CImg get_rand(const T& val_min, const T& val_max) const { return (+*this).rand(val_min, val_max); } //! Round pixel values. /** \param y Rounding precision. \param rounding_type Rounding type. Can be: - \c -1: Backward. - \c 0: Nearest. - \c 1: Forward. **/ CImg& round(const double y = 1, const int rounding_type = 0) { if (y > 0) cimg_openmp_for(*this, cimg::round(*ptr, y, rounding_type), 8192); return *this; } //! Round pixel values \newinstance. CImg get_round(const double y = 1, const unsigned int rounding_type = 0) const { return (+*this).round(y, rounding_type); } //! Add random noise to pixel values. /** \param sigma Amplitude of the random additive noise. If \p sigma<0, it stands for a percentage of the global value range. \param noise_type Type of additive noise (can be \p 0=gaussian, \p 1=uniform, \p 2=Salt and Pepper, \p 3=Poisson or \p 4=Rician). \return A reference to the modified image instance. \note - For Poisson noise (\p noise_type=3), parameter \p sigma is ignored, as Poisson noise only depends on the image value itself. - Function \p CImg::get_noise() is also defined. It returns a non-shared modified copy of the image instance. \par Example \code const CImg img("reference.jpg"), res = img.get_noise(40); (img,res.normalize(0,255)).display(); \endcode \image html ref_noise.jpg **/ CImg& noise(const double sigma, const unsigned int noise_type = 0) { if (is_empty()) return *this; const Tfloat vmin = (Tfloat)cimg::type::min(), vmax = (Tfloat)cimg::type::max(); Tfloat nsigma = (Tfloat)sigma, m = 0, M = 0; if (nsigma == 0 && noise_type != 3) return *this; if (nsigma < 0 || noise_type == 2) m = (Tfloat)min_max(M); if (nsigma < 0) nsigma = (Tfloat)(-nsigma * (M - m) / 100.); switch (noise_type) { case 0: { // Gaussian noise cimg_pragma_openmp( parallel cimg_openmp_if_size(size(), 131072)) { ulongT rng = (cimg::_rand(), cimg::rng()); #if cimg_use_openmp != 0 rng += omp_get_thread_num(); #endif cimg_pragma_openmp(for) cimg_rofoff(*this,off) { Tfloat val = (Tfloat)(_data[off] + nsigma * cimg::grand(&rng)); if (val > vmax) val = vmax; if (val < vmin) val = vmin; _data[off] = (T)val; } cimg::srand(rng); } } break; case 1: { // Uniform noise cimg_pragma_openmp( parallel cimg_openmp_if_size(size(), 131072)) { ulongT rng = (cimg::_rand(), cimg::rng()); #if cimg_use_openmp != 0 rng += omp_get_thread_num(); #endif cimg_pragma_openmp(for) cimg_rofoff(*this,off) { Tfloat val = (Tfloat)(_data[off] + nsigma * cimg::rand(-1, 1, &rng)); if (val > vmax) val = vmax; if (val < vmin) val = vmin; _data[off] = (T)val; } cimg::srand(rng); } } break; case 2: { // Salt & Pepper noise if (nsigma < 0) nsigma = -nsigma; if (M == m) { if (cimg::type::is_float()) { --m; ++M; } else { m = (Tfloat)cimg::type::min(); M = (Tfloat)cimg::type::max(); } } cimg_pragma_openmp( parallel cimg_openmp_if_size(size(), 131072)) { ulongT rng = (cimg::_rand(), cimg::rng()); #if cimg_use_openmp != 0 rng += omp_get_thread_num(); #endif cimg_pragma_openmp(for) cimg_rofoff(*this,off) if (cimg::rand(100,&rng) vmax) val = vmax; if (val < vmin) val = vmin; _data[off] = (T)val; } cimg::srand(rng); } } break; default: throw CImgArgumentException( _cimg_instance "noise(): Invalid specified noise type %d " "(should be { 0=gaussian | 1=uniform | 2=salt&Pepper | " "3=poisson }).", cimg_instance, noise_type); } return *this; } //! Add random noise to pixel values \newinstance. CImg get_noise(const double sigma, const unsigned int noise_type = 0) const { return (+*this).noise(sigma, noise_type); } //! Linearly normalize pixel values. /** \param min_value Minimum desired value of the resulting image. \param max_value Maximum desired value of the resulting image. \par Example \code const CImg img("reference.jpg"), res = img.get_normalize(160,220); (img,res).display(); \endcode \image html ref_normalize2.jpg **/ CImg& normalize(const T& min_value, const T& max_value) { if (is_empty()) return *this; const T a = min_value < max_value ? min_value : max_value, b = min_value < max_value ? max_value : min_value; T m, M = max_min(m); const Tfloat fm = (Tfloat)m, fM = (Tfloat)M; if (m == M) return fill(min_value); if (m != a || M != b) cimg_rof(*this, ptrd, T)* ptrd = (T)((*ptrd - fm) / (fM - fm) * (b - a) + a); return *this; } //! Linearly normalize pixel values \newinstance. CImg get_normalize(const T& min_value, const T& max_value) const { return CImg(*this, false) .normalize((Tfloat)min_value, (Tfloat)max_value); } //! Normalize multi-valued pixels of the image instance, with respect to //! their L2-norm. /** \par Example \code const CImg img("reference.jpg"), res = img.get_normalize(); (img,res.normalize(0,255)).display(); \endcode \image html ref_normalize.jpg **/ CImg& normalize() { const ulongT whd = (ulongT)_width * _height * _depth; cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && _height*_depth>=16)) cimg_forYZ(*this,y,z) { T* ptrd = data(0, y, z, 0); cimg_forX(*this, x) { const T* ptrs = ptrd; float n = 0; cimg_forC(*this, c) { n += cimg::sqr((float)*ptrs); ptrs += whd; } n = (float)std::sqrt(n); T* _ptrd = ptrd++; if (n > 0) cimg_forC(*this, c) { *_ptrd = (T)(*_ptrd / n); _ptrd += whd; } else cimg_forC(*this, c) { *_ptrd = (T)0; _ptrd += whd; } } } return *this; } //! Normalize multi-valued pixels of the image instance, with respect to //! their L2-norm \newinstance. CImg get_normalize() const { return CImg(*this, false).normalize(); } //! Compute Lp-norm of each multi-valued pixel of the image instance. /** \param norm_type Type of computed vector norm (can be \p -1=Linf, or \p greater or equal than 0). \par Example \code const CImg img("reference.jpg"), res = img.get_norm(); (img,res.normalize(0,255)).display(); \endcode \image html ref_norm.jpg **/ CImg& norm(const int norm_type = 2) { if (_spectrum == 1 && norm_type) return abs(); return get_norm(norm_type).move_to(*this); } //! Compute L2-norm of each multi-valued pixel of the image instance //! \newinstance. CImg get_norm(const int norm_type = 2) const { if (is_empty()) return *this; if (_spectrum == 1 && norm_type) return get_abs(); const ulongT whd = (ulongT)_width * _height * _depth; CImg res(_width, _height, _depth); switch (norm_type) { case -1: { // Linf-norm cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && _height*_depth>=16)) cimg_forYZ(*this,y,z) { const ulongT off = (ulongT)offset(0, y, z); const T* ptrs = _data + off; Tfloat* ptrd = res._data + off; cimg_forX(*this, x) { Tfloat n = 0; const T* _ptrs = ptrs++; cimg_forC(*this, c) { const Tfloat val = (Tfloat)cimg::abs(*_ptrs); if (val > n) n = val; _ptrs += whd; } *(ptrd++) = n; } } } break; case 0: { // L0-norm cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && _height*_depth>=16)) cimg_forYZ(*this,y,z) { const ulongT off = (ulongT)offset(0, y, z); const T* ptrs = _data + off; Tfloat* ptrd = res._data + off; cimg_forX(*this, x) { unsigned int n = 0; const T* _ptrs = ptrs++; cimg_forC(*this, c) { n += *_ptrs == 0 ? 0 : 1; _ptrs += whd; } *(ptrd++) = (Tfloat)n; } } } break; case 1: { // L1-norm cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && _height*_depth>=16)) cimg_forYZ(*this,y,z) { const ulongT off = (ulongT)offset(0, y, z); const T* ptrs = _data + off; Tfloat* ptrd = res._data + off; cimg_forX(*this, x) { Tfloat n = 0; const T* _ptrs = ptrs++; cimg_forC(*this, c) { n += cimg::abs(*_ptrs); _ptrs += whd; } *(ptrd++) = n; } } } break; case 2: { // L2-norm cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && _height*_depth>=16)) cimg_forYZ(*this,y,z) { const ulongT off = (ulongT)offset(0, y, z); const T* ptrs = _data + off; Tfloat* ptrd = res._data + off; cimg_forX(*this, x) { Tfloat n = 0; const T* _ptrs = ptrs++; cimg_forC(*this, c) { n += cimg::sqr((Tfloat)*_ptrs); _ptrs += whd; } *(ptrd++) = (Tfloat)std::sqrt((Tfloat)n); } } } break; default: { // Linf-norm cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && _height*_depth>=16)) cimg_forYZ(*this,y,z) { const ulongT off = (ulongT)offset(0, y, z); const T* ptrs = _data + off; Tfloat* ptrd = res._data + off; cimg_forX(*this, x) { Tfloat n = 0; const T* _ptrs = ptrs++; cimg_forC(*this, c) { n += std::pow(cimg::abs((Tfloat)*_ptrs), (Tfloat)norm_type); _ptrs += whd; } *(ptrd++) = (Tfloat)std::pow((Tfloat)n, 1 / (Tfloat)norm_type); } } } } return res; } //! Cut pixel values in specified range. /** \param min_value Minimum desired value of the resulting image. \param max_value Maximum desired value of the resulting image. \par Example \code const CImg img("reference.jpg"), res = img.get_cut(160,220); (img,res).display(); \endcode \image html ref_cut.jpg **/ CImg& cut(const T& min_value, const T& max_value) { if (is_empty()) return *this; const T a = min_value < max_value ? min_value : max_value, b = min_value < max_value ? max_value : min_value; cimg_openmp_for(*this, cimg::cut(*ptr, a, b), 32768); return *this; } //! Cut pixel values in specified range \newinstance. CImg get_cut(const T& min_value, const T& max_value) const { return (+*this).cut(min_value, max_value); } //! Uniformly quantize pixel values. /** \param nb_levels Number of quantization levels. \param keep_range Tells if resulting values keep the same range as the original ones. \par Example \code const CImg img("reference.jpg"), res = img.get_quantize(4); (img,res).display(); \endcode \image html ref_quantize.jpg **/ CImg& quantize(const unsigned int nb_levels, const bool keep_range = true) { if (!nb_levels) throw CImgArgumentException( _cimg_instance "quantize(): Invalid quantization request with 0 values.", cimg_instance); if (is_empty()) return *this; Tfloat m, M = (Tfloat)max_min(m), range = M - m; if (range > 0) { if (keep_range) cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768)) cimg_rofoff(*this,off) { const unsigned int val = (unsigned int)((_data[off] - m) * nb_levels / range); _data[off] = (T)(m + std::min(val, nb_levels - 1) * range / nb_levels); } else cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768)) cimg_rofoff(*this,off) { const unsigned int val = (unsigned int)((_data[off] - m) * nb_levels / range); _data[off] = (T)std::min(val, nb_levels - 1); } } return *this; } //! Uniformly quantize pixel values \newinstance. CImg get_quantize(const unsigned int n, const bool keep_range = true) const { return (+*this).quantize(n, keep_range); } //! Threshold pixel values. /** \param value Threshold value \param soft_threshold Tells if soft thresholding must be applied (instead of hard one). \param strict_threshold Tells if threshold value is strict. \par Example \code const CImg img("reference.jpg"), res = img.get_threshold(128); (img,res.normalize(0,255)).display(); \endcode \image html ref_threshold.jpg **/ CImg& threshold(const T& value, const bool soft_threshold = false, const bool strict_threshold = false) { if (is_empty()) return *this; if (strict_threshold) { if (soft_threshold) cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768)) cimg_rofoff(*this,off) { const T v = _data[off]; _data[off] = v > value ? (T)(v - value) : v < -(float)value ? (T)(v + value) : (T)0; } else cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),65536)) cimg_rofoff(*this,off) _data[off] = _data[off]>value?(T)1:(T)0; } else { if (soft_threshold) cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768)) cimg_rofoff(*this,off) { const T v = _data[off]; _data[off] = v >= value ? (T)(v - value) : v <= -(float)value ? (T)(v + value) : (T)0; } else cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),65536)) cimg_rofoff(*this,off) _data[off] = _data[off]>=value?(T)1:(T)0; } return *this; } //! Threshold pixel values \newinstance. CImg get_threshold(const T& value, const bool soft_threshold = false, const bool strict_threshold = false) const { return (+*this).threshold(value, soft_threshold, strict_threshold); } //! Compute the histogram of pixel values. /** \param nb_levels Number of desired histogram levels. \param min_value Minimum pixel value considered for the histogram computation. All pixel values lower than \p min_value will not be counted. \param max_value Maximum pixel value considered for the histogram computation. All pixel values higher than \p max_value will not be counted. \note - The histogram H of an image I is the 1D function where H(x) counts the number of occurrences of the value x in the image I. - The resulting histogram is always defined in 1D. Histograms of multi-valued images are not multi-dimensional. \par Example \code const CImg img = CImg("reference.jpg").histogram(256); img.display_graph(0,3); \endcode \image html ref_histogram.jpg **/ CImg& histogram(const unsigned int nb_levels, const T& min_value, const T& max_value) { return get_histogram(nb_levels, min_value, max_value).move_to(*this); } //! Compute the histogram of pixel values \overloading. CImg& histogram(const unsigned int nb_levels) { return get_histogram(nb_levels).move_to(*this); } //! Compute the histogram of pixel values \newinstance. CImg get_histogram(const unsigned int nb_levels, const T& min_value, const T& max_value) const { if (!nb_levels || is_empty()) return CImg(); const double vmin = (double)(min_value < max_value ? min_value : max_value), vmax = (double)(min_value < max_value ? max_value : min_value); CImg res(nb_levels, 1, 1, 1, 0); cimg_rof(*this, ptrs, T) { const T val = *ptrs; if (val >= vmin && val <= vmax) ++res[val == vmax ? nb_levels - 1 : (unsigned int)((val - vmin) * nb_levels / (vmax - vmin))]; } return res; } //! Compute the histogram of pixel values \newinstance. CImg get_histogram(const unsigned int nb_levels) const { if (!nb_levels || is_empty()) return CImg(); T vmax = 0, vmin = min_max(vmax); return get_histogram(nb_levels, vmin, vmax); } //! Equalize histogram of pixel values. /** \param nb_levels Number of histogram levels used for the equalization. \param min_value Minimum pixel value considered for the histogram computation. All pixel values lower than \p min_value will not be counted. \param max_value Maximum pixel value considered for the histogram computation. All pixel values higher than \p max_value will not be counted. \par Example \code const CImg img("reference.jpg"), res = img.get_equalize(256); (img,res).display(); \endcode \image html ref_equalize.jpg **/ CImg& equalize(const unsigned int nb_levels, const T& min_value, const T& max_value) { if (!nb_levels || is_empty()) return *this; const T vmin = min_value < max_value ? min_value : max_value, vmax = min_value < max_value ? max_value : min_value; CImg hist = get_histogram(nb_levels, vmin, vmax); ulongT cumul = 0; cimg_forX(hist, pos) { cumul += hist[pos]; hist[pos] = cumul; } if (!cumul) cumul = 1; cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),1048576)) cimg_rofoff(*this,off) { const int pos = (int)((_data[off] - vmin) * (nb_levels - 1.) / (vmax - vmin)); if (pos >= 0 && pos < (int)nb_levels) _data[off] = (T)(vmin + (vmax - vmin) * hist[pos] / cumul); } return *this; } //! Equalize histogram of pixel values \overloading. CImg& equalize(const unsigned int nb_levels) { if (!nb_levels || is_empty()) return *this; T vmax = 0, vmin = min_max(vmax); return equalize(nb_levels, vmin, vmax); } //! Equalize histogram of pixel values \newinstance. CImg get_equalize(const unsigned int nblevels, const T& val_min, const T& val_max) const { return (+*this).equalize(nblevels, val_min, val_max); } //! Equalize histogram of pixel values \newinstance. CImg get_equalize(const unsigned int nblevels) const { return (+*this).equalize(nblevels); } //! Index multi-valued pixels regarding to a specified colormap. /** \param colormap Multi-valued colormap used as the basis for multi-valued pixel indexing. \param dithering Level of dithering (0=disable, 1=standard level). \param map_indexes Tell if the values of the resulting image are the colormap indices or the colormap vectors. \note - \p img.index(colormap,dithering,1) is equivalent to img.index(colormap,dithering,0).map(colormap). \par Example \code const CImg img("reference.jpg"), colormap(3,1,1,3, 0,128,255, 0,128,255, 0,128,255); const CImg res = img.get_index(colormap,1,true); (img,res).display(); \endcode \image html ref_index.jpg **/ template CImg& index(const CImg& colormap, const float dithering = 1, const bool map_indexes = false) { return get_index(colormap, dithering, map_indexes).move_to(*this); } //! Index multi-valued pixels regarding to a specified colormap //! \newinstance. template CImg::Tuint> get_index( const CImg& colormap, const float dithering = 1, const bool map_indexes = true) const { if (colormap._spectrum != _spectrum) throw CImgArgumentException( _cimg_instance "index(): Instance and specified colormap (%u,%u,%u,%u,%p) " "have incompatible dimensions.", cimg_instance, colormap._width, colormap._height, colormap._depth, colormap._spectrum, colormap._data); typedef typename CImg::Tuint tuint; if (is_empty()) return CImg(); const ulongT whd = (ulongT)_width * _height * _depth, pwhd = (ulongT)colormap._width * colormap._height * colormap._depth; CImg res(_width, _height, _depth, map_indexes ? _spectrum : 1); if (dithering > 0) { // Dithered versions tuint* ptrd = res._data; const float ndithering = cimg::cut(dithering, 0, 1) / 16; Tfloat valm = 0, valM = (Tfloat)max_min(valm); if (valm == valM && valm >= 0 && valM <= 255) { valm = 0; valM = 255; } CImg cache = get_crop(-1, 0, 0, 0, _width, 1, 0, _spectrum - 1); Tfloat *cache_current = cache.data(1, 0, 0, 0), *cache_next = cache.data(1, 1, 0, 0); const ulongT cwhd = (ulongT)cache._width * cache._height * cache._depth; switch (_spectrum) { case 1: { // Optimized for scalars cimg_forYZ(*this, y, z) { if (y < height() - 2) { Tfloat* ptrc0 = cache_next; const T* ptrs0 = data(0, y + 1, z, 0); cimg_forX(*this, x) * (ptrc0++) = (Tfloat) * (ptrs0++); } Tfloat *ptrs0 = cache_current, *ptrsn0 = cache_next; cimg_forX(*this, x) { const Tfloat _val0 = (Tfloat)*ptrs0, val0 = _val0 < valm ? valm : _val0 > valM ? valM : _val0; Tfloat distmin = cimg::type::max(); const t* ptrmin0 = colormap._data; for (const t *ptrp0 = colormap._data, *ptrp_end = ptrp0 + pwhd; ptrp0 < ptrp_end;) { const Tfloat pval0 = (Tfloat) * (ptrp0++) - val0, dist = pval0 * pval0; if (dist < distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; } } const Tfloat err0 = ((*(ptrs0++) = val0) - (Tfloat)*ptrmin0) * ndithering; *ptrs0 += 7 * err0; *(ptrsn0 - 1) += 3 * err0; *(ptrsn0++) += 5 * err0; *ptrsn0 += err0; if (map_indexes) *(ptrd++) = (tuint)*ptrmin0; else *(ptrd++) = (tuint)(ptrmin0 - colormap._data); } cimg::swap(cache_current, cache_next); } } break; case 2: { // Optimized for 2D vectors tuint* ptrd1 = ptrd + whd; cimg_forYZ(*this, y, z) { if (y < height() - 2) { Tfloat *ptrc0 = cache_next, *ptrc1 = ptrc0 + cwhd; const T *ptrs0 = data(0, y + 1, z, 0), *ptrs1 = ptrs0 + whd; cimg_forX(*this, x) { *(ptrc0++) = (Tfloat) * (ptrs0++); *(ptrc1++) = (Tfloat) * (ptrs1++); } } Tfloat *ptrs0 = cache_current, *ptrs1 = ptrs0 + cwhd, *ptrsn0 = cache_next, *ptrsn1 = ptrsn0 + cwhd; cimg_forX(*this, x) { const Tfloat _val0 = (Tfloat)*ptrs0, val0 = _val0 < valm ? valm : _val0 > valM ? valM : _val0, _val1 = (Tfloat)*ptrs1, val1 = _val1 < valm ? valm : _val1 > valM ? valM : _val1; Tfloat distmin = cimg::type::max(); const t* ptrmin0 = colormap._data; for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp_end = ptrp1; ptrp0 < ptrp_end;) { const Tfloat pval0 = (Tfloat) * (ptrp0++) - val0, pval1 = (Tfloat) * (ptrp1++) - val1, dist = pval0 * pval0 + pval1 * pval1; if (dist < distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; } } const t* const ptrmin1 = ptrmin0 + pwhd; const Tfloat err0 = ((*(ptrs0++) = val0) - (Tfloat)*ptrmin0) * ndithering, err1 = ((*(ptrs1++) = val1) - (Tfloat)*ptrmin1) * ndithering; *ptrs0 += 7 * err0; *ptrs1 += 7 * err1; *(ptrsn0 - 1) += 3 * err0; *(ptrsn1 - 1) += 3 * err1; *(ptrsn0++) += 5 * err0; *(ptrsn1++) += 5 * err1; *ptrsn0 += err0; *ptrsn1 += err1; if (map_indexes) { *(ptrd++) = (tuint)*ptrmin0; *(ptrd1++) = (tuint)*ptrmin1; } else *(ptrd++) = (tuint)(ptrmin0 - colormap._data); } cimg::swap(cache_current, cache_next); } } break; case 3: { // Optimized for 3D vectors (colors) tuint *ptrd1 = ptrd + whd, *ptrd2 = ptrd1 + whd; cimg_forYZ(*this, y, z) { if (y < height() - 2) { Tfloat *ptrc0 = cache_next, *ptrc1 = ptrc0 + cwhd, *ptrc2 = ptrc1 + cwhd; const T *ptrs0 = data(0, y + 1, z, 0), *ptrs1 = ptrs0 + whd, *ptrs2 = ptrs1 + whd; cimg_forX(*this, x) { *(ptrc0++) = (Tfloat) * (ptrs0++); *(ptrc1++) = (Tfloat) * (ptrs1++); *(ptrc2++) = (Tfloat) * (ptrs2++); } } Tfloat *ptrs0 = cache_current, *ptrs1 = ptrs0 + cwhd, *ptrs2 = ptrs1 + cwhd, *ptrsn0 = cache_next, *ptrsn1 = ptrsn0 + cwhd, *ptrsn2 = ptrsn1 + cwhd; cimg_forX(*this, x) { const Tfloat _val0 = (Tfloat)*ptrs0, val0 = _val0 < valm ? valm : _val0 > valM ? valM : _val0, _val1 = (Tfloat)*ptrs1, val1 = _val1 < valm ? valm : _val1 > valM ? valM : _val1, _val2 = (Tfloat)*ptrs2, val2 = _val2 < valm ? valm : _val2 > valM ? valM : _val2; Tfloat distmin = cimg::type::max(); const t* ptrmin0 = colormap._data; for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp2 = ptrp1 + pwhd, *ptrp_end = ptrp1; ptrp0 < ptrp_end;) { const Tfloat pval0 = (Tfloat) * (ptrp0++) - val0, pval1 = (Tfloat) * (ptrp1++) - val1, pval2 = (Tfloat) * (ptrp2++) - val2, dist = pval0 * pval0 + pval1 * pval1 + pval2 * pval2; if (dist < distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; } } const t *const ptrmin1 = ptrmin0 + pwhd, *const ptrmin2 = ptrmin1 + pwhd; const Tfloat err0 = ((*(ptrs0++) = val0) - (Tfloat)*ptrmin0) * ndithering, err1 = ((*(ptrs1++) = val1) - (Tfloat)*ptrmin1) * ndithering, err2 = ((*(ptrs2++) = val2) - (Tfloat)*ptrmin2) * ndithering; *ptrs0 += 7 * err0; *ptrs1 += 7 * err1; *ptrs2 += 7 * err2; *(ptrsn0 - 1) += 3 * err0; *(ptrsn1 - 1) += 3 * err1; *(ptrsn2 - 1) += 3 * err2; *(ptrsn0++) += 5 * err0; *(ptrsn1++) += 5 * err1; *(ptrsn2++) += 5 * err2; *ptrsn0 += err0; *ptrsn1 += err1; *ptrsn2 += err2; if (map_indexes) { *(ptrd++) = (tuint)*ptrmin0; *(ptrd1++) = (tuint)*ptrmin1; *(ptrd2++) = (tuint)*ptrmin2; } else *(ptrd++) = (tuint)(ptrmin0 - colormap._data); } cimg::swap(cache_current, cache_next); } } break; default: // Generic version cimg_forYZ(*this, y, z) { if (y < height() - 2) { Tfloat* ptrc = cache_next; cimg_forC(*this, c) { Tfloat* _ptrc = ptrc; const T* _ptrs = data(0, y + 1, z, c); cimg_forX(*this, x) * (_ptrc++) = (Tfloat) * (_ptrs++); ptrc += cwhd; } } Tfloat *ptrs = cache_current, *ptrsn = cache_next; cimg_forX(*this, x) { Tfloat distmin = cimg::type::max(); const t* ptrmin = colormap._data; for (const t *ptrp = colormap._data, *ptrp_end = ptrp + pwhd; ptrp < ptrp_end; ++ptrp) { Tfloat dist = 0; Tfloat* _ptrs = ptrs; const t* _ptrp = ptrp; cimg_forC(*this, c) { const Tfloat _val = *_ptrs, val = _val < valm ? valm : _val > valM ? valM : _val; dist += cimg::sqr((*_ptrs = val) - (Tfloat)*_ptrp); _ptrs += cwhd; _ptrp += pwhd; } if (dist < distmin) { ptrmin = ptrp; distmin = dist; } } const t* _ptrmin = ptrmin; Tfloat *_ptrs = ptrs++, *_ptrsn = (ptrsn++) - 1; cimg_forC(*this, c) { const Tfloat err = (*(_ptrs++) - (Tfloat)*_ptrmin) * ndithering; *_ptrs += 7 * err; *(_ptrsn++) += 3 * err; *(_ptrsn++) += 5 * err; *_ptrsn += err; _ptrmin += pwhd; _ptrs += cwhd - 1; _ptrsn += cwhd - 2; } if (map_indexes) { tuint* _ptrd = ptrd++; cimg_forC(*this, c) { *_ptrd = (tuint)*ptrmin; _ptrd += whd; ptrmin += pwhd; } } else *(ptrd++) = (tuint)(ptrmin - colormap._data); } cimg::swap(cache_current, cache_next); } } } else { // Non-dithered versions switch (_spectrum) { case 1: { // Optimized for scalars cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64 && _height*_depth>=16 && pwhd>=16)) cimg_forYZ(*this,y,z) { tuint* ptrd = res.data(0, y, z); for (const T *ptrs0 = data(0, y, z), *ptrs_end = ptrs0 + _width; ptrs0 < ptrs_end;) { const Tfloat val0 = (Tfloat) * (ptrs0++); Tfloat distmin = cimg::type::max(); const t* ptrmin0 = colormap._data; for (const t *ptrp0 = colormap._data, *ptrp_end = ptrp0 + pwhd; ptrp0 < ptrp_end;) { const Tfloat pval0 = (Tfloat) * (ptrp0++) - val0, dist = pval0 * pval0; if (dist < distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; } } if (map_indexes) *(ptrd++) = (tuint)*ptrmin0; else *(ptrd++) = (tuint)(ptrmin0 - colormap._data); } } } break; case 2: { // Optimized for 2D vectors cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64 && _height*_depth>=16 && pwhd>=16)) cimg_forYZ(*this,y,z) { tuint *ptrd = res.data(0, y, z), *ptrd1 = ptrd + whd; for (const T *ptrs0 = data(0, y, z), *ptrs1 = ptrs0 + whd, *ptrs_end = ptrs0 + _width; ptrs0 < ptrs_end;) { const Tfloat val0 = (Tfloat) * (ptrs0++), val1 = (Tfloat) * (ptrs1++); Tfloat distmin = cimg::type::max(); const t* ptrmin0 = colormap._data; for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp_end = ptrp1; ptrp0 < ptrp_end;) { const Tfloat pval0 = (Tfloat) * (ptrp0++) - val0, pval1 = (Tfloat) * (ptrp1++) - val1, dist = pval0 * pval0 + pval1 * pval1; if (dist < distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; } } if (map_indexes) { *(ptrd++) = (tuint)*ptrmin0; *(ptrd1++) = (tuint) * (ptrmin0 + pwhd); } else *(ptrd++) = (tuint)(ptrmin0 - colormap._data); } } } break; case 3: { // Optimized for 3D vectors (colors) cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64 && _height*_depth>=16 && pwhd>=16)) cimg_forYZ(*this,y,z) { tuint *ptrd = res.data(0, y, z), *ptrd1 = ptrd + whd, *ptrd2 = ptrd1 + whd; for (const T *ptrs0 = data(0, y, z), *ptrs1 = ptrs0 + whd, *ptrs2 = ptrs1 + whd, *ptrs_end = ptrs0 + _width; ptrs0 < ptrs_end;) { const Tfloat val0 = (Tfloat) * (ptrs0++), val1 = (Tfloat) * (ptrs1++), val2 = (Tfloat) * (ptrs2++); Tfloat distmin = cimg::type::max(); const t* ptrmin0 = colormap._data; for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp2 = ptrp1 + pwhd, *ptrp_end = ptrp1; ptrp0 < ptrp_end;) { const Tfloat pval0 = (Tfloat) * (ptrp0++) - val0, pval1 = (Tfloat) * (ptrp1++) - val1, pval2 = (Tfloat) * (ptrp2++) - val2, dist = pval0 * pval0 + pval1 * pval1 + pval2 * pval2; if (dist < distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; } } if (map_indexes) { *(ptrd++) = (tuint)*ptrmin0; *(ptrd1++) = (tuint) * (ptrmin0 + pwhd); *(ptrd2++) = (tuint) * (ptrmin0 + 2 * pwhd); } else *(ptrd++) = (tuint)(ptrmin0 - colormap._data); } } } break; default: // Generic version cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64 && _height*_depth>=16 && pwhd>=16)) cimg_forYZ(*this,y,z) { tuint* ptrd = res.data(0, y, z); for (const T *ptrs = data(0, y, z), *ptrs_end = ptrs + _width; ptrs < ptrs_end; ++ptrs) { Tfloat distmin = cimg::type::max(); const t* ptrmin = colormap._data; for (const t *ptrp = colormap._data, *ptrp_end = ptrp + pwhd; ptrp < ptrp_end; ++ptrp) { Tfloat dist = 0; const T* _ptrs = ptrs; const t* _ptrp = ptrp; cimg_forC(*this, c) { dist += cimg::sqr((Tfloat)*_ptrs - (Tfloat)*_ptrp); _ptrs += whd; _ptrp += pwhd; } if (dist < distmin) { ptrmin = ptrp; distmin = dist; } } if (map_indexes) { tuint* _ptrd = ptrd++; cimg_forC(*this, c) { *_ptrd = (tuint)*ptrmin; _ptrd += whd; ptrmin += pwhd; } } else *(ptrd++) = (tuint)(ptrmin - colormap._data); } } } } return res; } //! Map predefined colormap on the scalar (indexed) image instance. /** \param colormap Multi-valued colormap used for mapping the indexes. \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. \par Example \code const CImg img("reference.jpg"), colormap1(3,1,1,3, 0,128,255, 0,128,255, 0,128,255), colormap2(3,1,1,3, 255,0,0, 0,255,0, 0,0,255), res = img.get_index(colormap1,0).map(colormap2); (img,res).display(); \endcode \image html ref_map.jpg **/ template CImg& map(const CImg& colormap, const unsigned int boundary_conditions = 0) { return get_map(colormap, boundary_conditions).move_to(*this); } //! Map predefined colormap on the scalar (indexed) image instance //! \newinstance. template CImg get_map(const CImg& colormap, const unsigned int boundary_conditions = 0) const { const ulongT whd = (ulongT)_width * _height * _depth, siz = size(), cwhd = (ulongT)colormap._width * colormap._height * colormap._depth, cwhd2 = 2 * cwhd; CImg res(_width, _height, _depth, _spectrum * colormap._spectrum); switch (colormap._spectrum) { case 1: { // Optimized for scalars switch (boundary_conditions) { case 3: // Mirror cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)siz; ++off) { const ulongT ind = ((ulongT)_data[off]) % cwhd2; res[off] = colormap[ind < cwhd ? ind : cwhd2 - ind - 1]; } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)siz; ++off) { const ulongT ind = (ulongT)_data[off]; res[off] = colormap[ind % cwhd]; } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)siz; ++off) { const longT ind = (longT)_data[off]; res[off] = colormap[cimg::cut(ind, (longT)0, (longT)cwhd - 1)]; } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)siz; ++off) { const ulongT ind = (ulongT)_data[off]; res[off] = ind < cwhd ? colormap[ind] : (t)0; } } } break; case 2: { // Optimized for 2D vectors const t *const ptrp0 = colormap._data, *const ptrp1 = ptrp0 + cwhd; switch (boundary_conditions) { case 3: // Mirror cimg_forC(*this, c) { t *const ptrd0 = res.data(0, 0, 0, 2 * c), *const ptrd1 = ptrd0 + whd; const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const ulongT _ind = ((ulongT)ptrs[off]) % cwhd2, ind = _ind < cwhd ? _ind : cwhd2 - _ind - 1; ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; } } break; case 2: // Periodic cimg_forC(*this, c) { t *const ptrd0 = res.data(0, 0, 0, 2 * c), *const ptrd1 = ptrd0 + whd; const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const ulongT ind = ((ulongT)ptrs[off]) % cwhd; ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; } } break; case 1: // Neumann cimg_forC(*this, c) { t *const ptrd0 = res.data(0, 0, 0, 2 * c), *const ptrd1 = ptrd0 + whd; const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const longT ind = cimg::cut((longT)ptrs[off], (longT)0, (longT)cwhd - 1); ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; } } break; default: // Dirichlet cimg_forC(*this, c) { t *const ptrd0 = res.data(0, 0, 0, 2 * c), *const ptrd1 = ptrd0 + whd; const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const ulongT ind = (ulongT)ptrs[off]; if (ind < cwhd) { ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; } else ptrd0[off] = ptrd1[off] = (t)0; } } } } break; case 3: { // Optimized for 3D vectors (colors) const t *const ptrp0 = colormap._data, *ptrp1 = ptrp0 + cwhd, *ptrp2 = ptrp0 + 2 * cwhd; switch (boundary_conditions) { case 3: // Mirror cimg_forC(*this, c) { t *const ptrd0 = res.data(0, 0, 0, 3 * c), *const ptrd1 = ptrd0 + whd, *const ptrd2 = ptrd1 + whd; const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const ulongT _ind = ((ulongT)ptrs[off]) % cwhd2, ind = _ind < cwhd ? _ind : cwhd2 - _ind - 1; ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; ptrd2[off] = ptrp2[ind]; } } break; case 2: // Periodic cimg_forC(*this, c) { t *const ptrd0 = res.data(0, 0, 0, 3 * c), *const ptrd1 = ptrd0 + whd, *const ptrd2 = ptrd1 + whd; const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const ulongT ind = ((ulongT)ptrs[off]) % cwhd; ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; ptrd2[off] = ptrp2[ind]; } } break; case 1: // Neumann cimg_forC(*this, c) { t *const ptrd0 = res.data(0, 0, 0, 3 * c), *const ptrd1 = ptrd0 + whd, *const ptrd2 = ptrd1 + whd; const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const longT ind = cimg::cut((longT)ptrs[off], (longT)0, (longT)cwhd - 1); ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; ptrd2[off] = ptrp2[ind]; } } break; default: // Dirichlet cimg_forC(*this, c) { t *const ptrd0 = res.data(0, 0, 0, 3 * c), *const ptrd1 = ptrd0 + whd, *const ptrd2 = ptrd1 + whd; const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const ulongT ind = (ulongT)ptrs[off]; if (ind < cwhd) { ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; ptrd2[off] = ptrp2[ind]; } else ptrd0[off] = ptrd1[off] = ptrd2[off] = (t)0; } } } } break; default: { // Generic version switch (boundary_conditions) { case 3: // Mirror cimg_forC(*this, c) { t* const ptrd = res.data(0, 0, 0, colormap._spectrum * c); const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const ulongT _ind = ((ulongT)ptrs[off]) % cwhd, ind = _ind < cwhd ? _ind : cwhd2 - _ind - 1; t* const _ptrd = ptrd + off; const t* const ptrp = &colormap[ind]; cimg_forC(colormap, k) _ptrd[k * whd] = ptrp[k * cwhd]; } } break; case 2: // Periodic cimg_forC(*this, c) { t* const ptrd = res.data(0, 0, 0, colormap._spectrum * c); const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const ulongT ind = ((ulongT)ptrs[off]) % cwhd; t* const _ptrd = ptrd + off; const t* const ptrp = &colormap[ind]; cimg_forC(colormap, k) _ptrd[k * whd] = ptrp[k * cwhd]; } } break; case 1: // Neumann cimg_forC(*this, c) { t* const ptrd = res.data(0, 0, 0, colormap._spectrum * c); const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const longT ind = cimg::cut((longT)ptrs[off], (longT)0, (longT)cwhd - 1); t* const _ptrd = ptrd + off; const t* const ptrp = &colormap[ind]; cimg_forC(colormap, k) _ptrd[k * whd] = ptrp[k * cwhd]; } } break; default: // Dirichlet cimg_forC(*this, c) { t* const ptrd = res.data(0, 0, 0, colormap._spectrum * c); const T* const ptrs = data(0, 0, 0, c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) for (longT off = 0; off<(longT)whd; ++off) { const ulongT ind = (ulongT)ptrs[off]; t* const _ptrd = ptrd + off; if (ind < cwhd) { const t* const ptrp = &colormap[ind]; cimg_forC(colormap, k) _ptrd[k * whd] = ptrp[k * cwhd]; } else cimg_forC(colormap, k) _ptrd[k * whd] = (t)0; } } } } } return res; } //! Label connected components. /** \param is_high_connectivity Boolean that choose between 4(false)- or 8(true)-connectivity in 2D case, and between 6(false)- or 26(true)-connectivity in 3D case. \param tolerance Tolerance used to determine if two neighboring pixels belong to the same region. \note The algorithm of connected components computation has been primarily done by A. Meijster, according to the publication: 'W.H. Hesselink, A. Meijster, C. Bron, "Concurrent Determination of Connected Components.", In: Science of Computer Programming 41 (2001), pp. 173--194'. The submitted code has then been modified to fit CImg coding style and constraints. **/ CImg& label(const bool is_high_connectivity = false, const Tfloat tolerance = 0) { return get_label(is_high_connectivity, tolerance).move_to(*this); } //! Label connected components \newinstance. CImg get_label(const bool is_high_connectivity = false, const Tfloat tolerance = 0) const { if (is_empty()) return CImg(); // Create neighborhood tables. int dx[13], dy[13], dz[13], nb = 0; dx[nb] = 1; dy[nb] = 0; dz[nb++] = 0; dx[nb] = 0; dy[nb] = 1; dz[nb++] = 0; if (is_high_connectivity) { dx[nb] = 1; dy[nb] = 1; dz[nb++] = 0; dx[nb] = 1; dy[nb] = -1; dz[nb++] = 0; } if (_depth > 1) { // 3D version dx[nb] = 0; dy[nb] = 0; dz[nb++] = 1; if (is_high_connectivity) { dx[nb] = 1; dy[nb] = 1; dz[nb++] = -1; dx[nb] = 1; dy[nb] = 0; dz[nb++] = -1; dx[nb] = 1; dy[nb] = -1; dz[nb++] = -1; dx[nb] = 0; dy[nb] = 1; dz[nb++] = -1; dx[nb] = 0; dy[nb] = 1; dz[nb++] = 1; dx[nb] = 1; dy[nb] = -1; dz[nb++] = 1; dx[nb] = 1; dy[nb] = 0; dz[nb++] = 1; dx[nb] = 1; dy[nb] = 1; dz[nb++] = 1; } } return _label(nb, dx, dy, dz, tolerance); } //! Label connected components \overloading. /** \param connectivity_mask Mask of the neighboring pixels. \param tolerance Tolerance used to determine if two neighboring pixels belong to the same region. **/ template CImg& label(const CImg& connectivity_mask, const Tfloat tolerance = 0) { return get_label(connectivity_mask, tolerance).move_to(*this); } //! Label connected components \newinstance. template CImg get_label(const CImg& connectivity_mask, const Tfloat tolerance = 0) const { int nb = 0; cimg_for(connectivity_mask, ptr, t) if (*ptr)++ nb; CImg dx(nb, 1, 1, 1, 0), dy(nb, 1, 1, 1, 0), dz(nb, 1, 1, 1, 0); nb = 0; cimg_forXYZ(connectivity_mask, x, y, z) if ((x || y || z) && connectivity_mask(x, y, z)) { dx[nb] = x; dy[nb] = y; dz[nb++] = z; } return _label(nb, dx, dy, dz, tolerance); } CImg _label(const unsigned int nb, const int* const dx, const int* const dy, const int* const dz, const Tfloat tolerance) const { CImg res(_width, _height, _depth, _spectrum); cimg_forC(*this, c) { CImg _res = res.get_shared_channel(c); // Init label numbers. ulongT* ptr = _res.data(); cimg_foroff(_res, p) * (ptr++) = p; // For each neighbour-direction, label. for (unsigned int n = 0; n < nb; ++n) { const int _dx = dx[n], _dy = dy[n], _dz = dz[n]; if (_dx || _dy || _dz) { const int x0 = _dx < 0 ? -_dx : 0, x1 = _dx < 0 ? width() : width() - _dx, y0 = _dy < 0 ? -_dy : 0, y1 = _dy < 0 ? height() : height() - _dy, z0 = _dz < 0 ? -_dz : 0, z1 = _dz < 0 ? depth() : depth() - _dz; const longT wh = (longT)width() * height(), whd = (longT)width() * height() * depth(), offset = _dz * wh + _dy * width() + _dx; for (longT z = z0, nz = z0 + _dz, pz = z0 * wh; z < z1; ++z, ++nz, pz += wh) { for (longT y = y0, ny = y0 + _dy, py = y0 * width() + pz; y < y1; ++y, ++ny, py += width()) { for (longT x = x0, nx = x0 + _dx, p = x0 + py; x < x1; ++x, ++nx, ++p) { if (cimg::abs( (Tfloat)(*this)(x, y, z, c, wh, whd) - (Tfloat)(*this)(nx, ny, nz, c, wh, whd)) <= tolerance) { const longT q = p + offset; ulongT xk, yk; for (xk = (ulongT)(p < q ? q : p), yk = (ulongT)(p < q ? p : q); xk != yk && _res[xk] != xk;) { xk = _res[xk]; if (xk < yk) cimg::swap(xk, yk); } if (xk != yk) _res[xk] = (ulongT)yk; for (ulongT _p = (ulongT)p; _p != yk;) { const ulongT h = _res[_p]; _res[_p] = (ulongT)yk; _p = h; } for (ulongT _q = (ulongT)q; _q != yk;) { const ulongT h = _res[_q]; _res[_q] = (ulongT)yk; _q = h; } } } } } } } // Resolve equivalences. ulongT counter = 0; ptr = _res.data(); cimg_foroff(_res, p) { *ptr = *ptr == p ? counter++ : _res[*ptr]; ++ptr; } } return res; } // [internal] Replace possibly malicious characters for commands to be // called by system() by their escaped version. CImg& _system_strescape() { #define cimg_system_strescape(c, s) \ case c: \ if (p != ptrs) \ CImg(ptrs, (unsigned int)(p - ptrs), 1, 1, 1, false) \ .move_to(list); \ CImg(s, (unsigned int)std::strlen(s), 1, 1, 1, false) \ .move_to(list); \ ptrs = p + 1; \ break CImgList list; const T* ptrs = _data; cimg_for(*this, p, T) switch ((int)*p) { cimg_system_strescape('\\', "\\\\"); cimg_system_strescape('\"', "\\\""); cimg_system_strescape('!', "\"\\!\""); cimg_system_strescape('`', "\\`"); cimg_system_strescape('$', "\\$"); } if (ptrs < end()) CImg(ptrs, (unsigned int)(end() - ptrs), 1, 1, 1, false) .move_to(list); return (list > 'x').move_to(*this); } //@} //--------------------------------- // //! \name Color Base Management //@{ //--------------------------------- //! Return colormap \e "default", containing 256 colors entries in RGB. /** \return The following \c 256x1x1x3 colormap is returned: \image html ref_colormap_default.jpg **/ static const CImg& default_LUT256() { static CImg colormap; cimg::mutex(8); if (!colormap) { colormap.assign(1, 256, 1, 3); for (unsigned int index = 0, r = 16; r < 256; r += 32) for (unsigned int g = 16; g < 256; g += 32) for (unsigned int b = 32; b < 256; b += 64) { colormap(0, index, 0) = (Tuchar)r; colormap(0, index, 1) = (Tuchar)g; colormap(0, index++, 2) = (Tuchar)b; } } cimg::mutex(8, 0); return colormap; } //! Return colormap \e "HSV", containing 256 colors entries in RGB. /** \return The following \c 256x1x1x3 colormap is returned: \image html ref_colormap_hsv.jpg **/ static const CImg& HSV_LUT256() { static CImg colormap; cimg::mutex(8); if (!colormap) { CImg tmp(1, 256, 1, 3, 1); tmp.get_shared_channel(0).sequence(0, 359); colormap = tmp.HSVtoRGB(); } cimg::mutex(8, 0); return colormap; } //! Return colormap \e "lines", containing 256 colors entries in RGB. /** \return The following \c 256x1x1x3 colormap is returned: \image html ref_colormap_lines.jpg **/ static const CImg& lines_LUT256() { static const unsigned char pal[] = { 0, 255, 255, 0, 0, 28, 125, 125, 235, 210, 186, 182, 36, 0, 125, 255, 53, 32, 255, 210, 89, 186, 65, 45, 125, 210, 210, 97, 130, 194, 0, 125, 206, 53, 190, 89, 255, 146, 20, 190, 154, 73, 255, 36, 130, 215, 0, 138, 101, 210, 61, 194, 206, 0, 77, 45, 255, 154, 174, 0, 190, 239, 89, 125, 16, 36, 158, 223, 117, 0, 97, 69, 223, 255, 40, 239, 0, 0, 255, 0, 97, 170, 93, 255, 138, 40, 117, 210, 0, 170, 53, 158, 186, 255, 0, 121, 227, 121, 186, 40, 20, 190, 89, 255, 77, 57, 130, 142, 255, 73, 186, 85, 210, 8, 32, 166, 243, 130, 210, 40, 255, 45, 61, 142, 223, 49, 121, 255, 20, 162, 158, 73, 89, 255, 53, 138, 210, 190, 57, 235, 36, 73, 255, 49, 210, 0, 210, 85, 57, 97, 255, 121, 85, 174, 40, 255, 162, 178, 0, 121, 166, 125, 53, 146, 166, 255, 97, 121, 65, 89, 235, 231, 12, 170, 36, 190, 85, 255, 166, 97, 198, 77, 20, 146, 109, 166, 255, 28, 40, 202, 121, 81, 247, 0, 210, 255, 49, 0, 65, 255, 36, 166, 93, 77, 255, 85, 251, 0, 170, 178, 0, 182, 255, 0, 162, 16, 154, 142, 162, 223, 223, 0, 0, 81, 215, 4, 215, 162, 215, 125, 77, 206, 121, 36, 125, 231, 101, 16, 255, 121, 0, 57, 190, 215, 65, 125, 89, 142, 255, 101, 73, 53, 146, 223, 125, 125, 0, 255, 0, 255, 0, 206, 93, 138, 49, 255, 0, 202, 154, 85, 45, 219, 251, 53, 0, 255, 40, 130, 219, 158, 16, 117, 186, 130, 202, 49, 65, 239, 89, 202, 49, 28, 247, 134, 150, 0, 255, 117, 202, 4, 215, 81, 186, 57, 202, 89, 73, 210, 40, 93, 45, 251, 206, 28, 223, 142, 40, 134, 162, 125, 32, 247, 97, 170, 0, 255, 57, 134, 73, 247, 162, 0, 251, 40, 142, 142, 8, 166, 206, 81, 154, 194, 93, 89, 125, 243, 28, 109, 227, 0, 190, 65, 194, 186, 0, 255, 53, 45, 109, 186, 186, 0, 255, 130, 49, 170, 69, 210, 154, 0, 109, 227, 45, 255, 125, 105, 81, 81, 255, 0, 219, 134, 170, 85, 146, 28, 170, 89, 223, 97, 8, 210, 255, 158, 49, 40, 125, 174, 174, 125, 0, 227, 166, 28, 219, 130, 0, 93, 239, 0, 85, 255, 81, 178, 125, 49, 89, 255, 53, 206, 73, 113, 146, 255, 0, 150, 36, 219, 162, 0, 210, 125, 69, 134, 255, 85, 40, 89, 235, 49, 215, 121, 0, 206, 36, 223, 174, 69, 40, 182, 178, 130, 69, 45, 255, 210, 85, 77, 215, 0, 231, 146, 0, 194, 125, 174, 0, 255, 40, 89, 121, 206, 57, 0, 206, 170, 231, 150, 81, 0, 125, 255, 4, 174, 4, 190, 121, 255, 4, 166, 109, 130, 49, 239, 170, 93, 16, 174, 210, 0, 255, 16, 105, 158, 93, 255, 0, 125, 0, 255, 158, 85, 0, 255, 0, 0, 255, 170, 166, 61, 121, 28, 198, 215, 45, 243, 61, 97, 255, 53, 81, 130, 109, 255, 8, 117, 235, 121, 40, 178, 174, 0, 182, 49, 162, 121, 255, 69, 206, 0, 219, 125, 0, 101, 255, 239, 121, 32, 210, 130, 36, 231, 32, 125, 81, 142, 215, 158, 4, 178, 255, 0, 40, 251, 125, 125, 219, 89, 130, 0, 166, 255, 24, 65, 194, 125, 255, 125, 77, 125, 93, 125, 202, 24, 138, 174, 178, 32, 255, 85, 194, 40, 85, 36, 174, 174, 125, 210, 85, 255, 53, 16, 93, 206, 40, 130, 170, 202, 93, 255, 0, 24, 117, 255, 97, 113, 105, 81, 255, 186, 194, 57, 69, 206, 57, 53, 223, 190, 4, 255, 85, 97, 130, 255, 85, 0, 125, 223, 85, 219, 0, 215, 146, 77, 40, 239, 89, 36, 142, 154, 227, 0, 255, 85, 162, 0, 162, 0, 235, 178, 45, 166, 0, 247, 255, 20, 69, 210, 89, 142, 53, 255, 40, 146, 166, 255, 69, 0, 174, 154, 142, 130, 162, 0, 215, 255, 0, 89, 40, 255, 166, 61, 146, 69, 162, 40, 255, 32, 121, 255, 117, 178, 0, 186, 206, 0, 57, 215, 215, 81, 158, 77, 166, 210, 77, 89, 210, 0, 24, 202, 150, 186, 0, 255, 20, 97, 57, 170, 235, 251, 16, 73, 142, 251, 93, 0, 202, 0, 255, 121, 219, 4, 73, 219, 8, 162, 206, 16, 219, 93, 117, 0, 255, 8, 130, 174, 223, 45}; static const CImg colormap(pal, 1, 256, 1, 3, false); return colormap; } //! Return colormap \e "hot", containing 256 colors entries in RGB. /** \return The following \c 256x1x1x3 colormap is returned: \image html ref_colormap_hot.jpg **/ static const CImg& hot_LUT256() { static CImg colormap; cimg::mutex(8); if (!colormap) { colormap.assign(1, 4, 1, 3, (T)0); colormap[1] = colormap[2] = colormap[3] = colormap[6] = colormap[7] = colormap[11] = 255; colormap.resize(1, 256, 1, 3, 3); } cimg::mutex(8, 0); return colormap; } //! Return colormap \e "cool", containing 256 colors entries in RGB. /** \return The following \c 256x1x1x3 colormap is returned: \image html ref_colormap_cool.jpg **/ static const CImg& cool_LUT256() { static CImg colormap; cimg::mutex(8); if (!colormap) colormap.assign(1, 2, 1, 3) .fill((T)0, (T)255, (T)255, (T)0, (T)255, (T)255) .resize(1, 256, 1, 3, 3); cimg::mutex(8, 0); return colormap; } //! Return colormap \e "jet", containing 256 colors entries in RGB. /** \return The following \c 256x1x1x3 colormap is returned: \image html ref_colormap_jet.jpg **/ static const CImg& jet_LUT256() { static CImg colormap; cimg::mutex(8); if (!colormap) { colormap.assign(1, 4, 1, 3, (T)0); colormap[2] = colormap[3] = colormap[5] = colormap[6] = colormap[8] = colormap[9] = 255; colormap.resize(1, 256, 1, 3, 3); } cimg::mutex(8, 0); return colormap; } //! Return colormap \e "flag", containing 256 colors entries in RGB. /** \return The following \c 256x1x1x3 colormap is returned: \image html ref_colormap_flag.jpg **/ static const CImg& flag_LUT256() { static CImg colormap; cimg::mutex(8); if (!colormap) { colormap.assign(1, 4, 1, 3, (T)0); colormap[0] = colormap[1] = colormap[5] = colormap[9] = colormap[10] = 255; colormap.resize(1, 256, 1, 3, 0, 2); } cimg::mutex(8, 0); return colormap; } //! Return colormap \e "cube", containing 256 colors entries in RGB. /** \return The following \c 256x1x1x3 colormap is returned: \image html ref_colormap_cube.jpg **/ static const CImg& cube_LUT256() { static CImg colormap; cimg::mutex(8); if (!colormap) { colormap.assign(1, 8, 1, 3, (T)0); colormap[1] = colormap[3] = colormap[5] = colormap[7] = colormap[10] = colormap[11] = colormap[12] = colormap[13] = colormap[20] = colormap[21] = colormap[22] = colormap[23] = 255; colormap.resize(1, 256, 1, 3, 3); } cimg::mutex(8, 0); return colormap; } //! Convert pixel values from sRGB to RGB color spaces. CImg& sRGBtoRGB() { if (is_empty()) return *this; cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32)) cimg_rofoff(*this,off) { const Tfloat sval = (Tfloat)_data[off] / 255, val = (Tfloat)( sval <= 0.04045f ? sval / 12.92f : std::pow((sval + 0.055f) / (1.055f), 2.4f)); _data[off] = (T)cimg::cut(val * 255, 0, 255); } return *this; } //! Convert pixel values from sRGB to RGB color spaces \newinstance. CImg get_sRGBtoRGB() const { return CImg(*this, false).sRGBtoRGB(); } //! Convert pixel values from RGB to sRGB color spaces. CImg& RGBtosRGB() { if (is_empty()) return *this; cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32)) cimg_rofoff(*this,off) { const Tfloat val = (Tfloat)_data[off] / 255, sval = (Tfloat)(val <= 0.0031308f ? val * 12.92f : 1.055f * std::pow(val, 0.416667f) - 0.055f); _data[off] = (T)cimg::cut(sval * 255, 0, 255); } return *this; } //! Convert pixel values from RGB to sRGB color spaces \newinstance. CImg get_RGBtosRGB() const { return CImg(*this, false).RGBtosRGB(); } //! Convert pixel values from RGB to HSI color spaces. CImg& RGBtoHSI() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "RGBtoHSI(): Instance is not a RGB image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) for (longT N = 0; N get_RGBtoHSI() const { return CImg(*this, false).RGBtoHSI(); } //! Convert pixel values from HSI to RGB color spaces. CImg& HSItoRGB() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "HSItoRGB(): Instance is not a HSI image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) for (longT N = 0; N get_HSItoRGB() const { return CImg(*this, false).HSItoRGB(); } //! Convert pixel values from RGB to HSL color spaces. CImg& RGBtoHSL() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "RGBtoHSL(): Instance is not a RGB image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) for (longT N = 0; N get_RGBtoHSL() const { return CImg(*this, false).RGBtoHSL(); } //! Convert pixel values from HSL to RGB color spaces. CImg& HSLtoRGB() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "HSLtoRGB(): Instance is not a HSL image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) for (longT N = 0; N get_HSLtoRGB() const { return CImg(*this, false).HSLtoRGB(); } //! Convert pixel values from RGB to HSV color spaces. CImg& RGBtoHSV() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "RGBtoHSV(): Instance is not a RGB image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) for (longT N = 0; N get_RGBtoHSV() const { return CImg(*this, false).RGBtoHSV(); } //! Convert pixel values from HSV to RGB color spaces. CImg& HSVtoRGB() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "HSVtoRGB(): Instance is not a HSV image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) for (longT N = 0; N get_HSVtoRGB() const { return CImg(*this, false).HSVtoRGB(); } //! Convert pixel values from RGB to YCbCr color spaces. CImg& RGBtoYCbCr() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "RGBtoYCbCr(): Instance is not a RGB image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,512)) for (longT N = 0; N get_RGBtoYCbCr() const { return CImg(*this, false).RGBtoYCbCr(); } //! Convert pixel values from RGB to YCbCr color spaces. CImg& YCbCrtoRGB() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "YCbCrtoRGB(): Instance is not a YCbCr image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,512)) for (longT N = 0; N get_YCbCrtoRGB() const { return CImg(*this, false).YCbCrtoRGB(); } //! Convert pixel values from RGB to YUV color spaces. CImg& RGBtoYUV() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "RGBtoYUV(): Instance is not a RGB image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,16384)) for (longT N = 0; N get_RGBtoYUV() const { return CImg(*this, false).RGBtoYUV(); } //! Convert pixel values from YUV to RGB color spaces. CImg& YUVtoRGB() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "YUVtoRGB(): Instance is not a YUV image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,16384)) for (longT N = 0; N get_YUVtoRGB() const { return CImg(*this, false).YUVtoRGB(); } //! Convert pixel values from RGB to CMY color spaces. CImg& RGBtoCMY() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "RGBtoCMY(): Instance is not a RGB image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048)) for (longT N = 0; N get_RGBtoCMY() const { return CImg(*this, false).RGBtoCMY(); } //! Convert pixel values from CMY to RGB color spaces. CImg& CMYtoRGB() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "CMYtoRGB(): Instance is not a CMY image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048)) for (longT N = 0; N get_CMYtoRGB() const { return CImg(*this, false).CMYtoRGB(); } //! Convert pixel values from CMY to CMYK color spaces. CImg& CMYtoCMYK() { return get_CMYtoCMYK().move_to(*this); } //! Convert pixel values from CMY to CMYK color spaces \newinstance. CImg get_CMYtoCMYK() const { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "CMYtoCMYK(): Instance is not a CMY image.", cimg_instance); CImg res(_width, _height, _depth, 4); const T *ps1 = data(0, 0, 0, 0), *ps2 = data(0, 0, 0, 1), *ps3 = data(0, 0, 0, 2); Tfloat *pd1 = res.data(0, 0, 0, 0), *pd2 = res.data(0, 0, 0, 1), *pd3 = res.data(0, 0, 0, 2), *pd4 = res.data(0, 0, 0, 3); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,1024)) for (longT N = 0; N= 255) C = M = Y = 0; else { const Tfloat K1 = 255 - K; C = 255 * (C - K) / K1; M = 255 * (M - K) / K1; Y = 255 * (Y - K) / K1; } pd1[N] = (Tfloat)cimg::cut(C, 0, 255), pd2[N] = (Tfloat)cimg::cut(M, 0, 255), pd3[N] = (Tfloat)cimg::cut(Y, 0, 255), pd4[N] = (Tfloat)cimg::cut(K, 0, 255); } return res; } //! Convert pixel values from CMYK to CMY color spaces. CImg& CMYKtoCMY() { return get_CMYKtoCMY().move_to(*this); } //! Convert pixel values from CMYK to CMY color spaces \newinstance. CImg get_CMYKtoCMY() const { if (_spectrum != 4) throw CImgInstanceException( _cimg_instance "CMYKtoCMY(): Instance is not a CMYK image.", cimg_instance); CImg res(_width, _height, _depth, 3); const T *ps1 = data(0, 0, 0, 0), *ps2 = data(0, 0, 0, 1), *ps3 = data(0, 0, 0, 2), *ps4 = data(0, 0, 0, 3); Tfloat *pd1 = res.data(0, 0, 0, 0), *pd2 = res.data(0, 0, 0, 1), *pd3 = res.data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,1024)) for (longT N = 0; N& RGBtoXYZ(const bool use_D65 = true) { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "RGBtoXYZ(): Instance is not a RGB image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048)) for (longT N = 0; N get_RGBtoXYZ(const bool use_D65 = true) const { return CImg(*this, false).RGBtoXYZ(use_D65); } //! Convert pixel values from XYZ to RGB color spaces. /** \param use_D65 Tell to use the D65 illuminant (D50 otherwise). **/ CImg& XYZtoRGB(const bool use_D65 = true) { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "XYZtoRGB(): Instance is not a XYZ image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048)) for (longT N = 0; N get_XYZtoRGB(const bool use_D65 = true) const { return CImg(*this, false).XYZtoRGB(use_D65); } //! Convert pixel values from XYZ to Lab color spaces. CImg& XYZtoLab(const bool use_D65 = true) { #define _cimg_Labf(x) \ (24389 * (x) > 216 ? cimg::cbrt(x) : (24389 * (x) / 27 + 16) / 116) if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "XYZtoLab(): Instance is not a XYZ image.", cimg_instance); const CImg white = CImg(1, 1, 1, 3, 255).RGBtoXYZ(use_D65); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,128)) for (longT N = 0; N get_XYZtoLab(const bool use_D65 = true) const { return CImg(*this, false).XYZtoLab(use_D65); } //! Convert pixel values from Lab to XYZ color spaces. CImg& LabtoXYZ(const bool use_D65 = true) { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "LabtoXYZ(): Instance is not a Lab image.", cimg_instance); const CImg white = CImg(1, 1, 1, 3, 255).RGBtoXYZ(use_D65); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,128)) for (longT N = 0; N 216 ? cX * cX * cX : (116 * cX - 16) * 27 / 24389), Y = (Tfloat)(27 * L > 216 ? cY * cY * cY : 27 * L / 24389), Z = (Tfloat)(24389 * cZ > 216 ? cZ * cZ * cZ : (116 * cZ - 16) * 27 / 24389); p1[N] = (T)(X * white[0]); p2[N] = (T)(Y * white[1]); p3[N] = (T)(Z * white[2]); } return *this; } //! Convert pixel values from Lab to XYZ color spaces \newinstance. CImg get_LabtoXYZ(const bool use_D65 = true) const { return CImg(*this, false).LabtoXYZ(use_D65); } //! Convert pixel values from XYZ to xyY color spaces. CImg& XYZtoxyY() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "XYZtoxyY(): Instance is not a XYZ image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,4096)) for (longT N = 0; N 0 ? sum : 1; p1[N] = (T)(X / nsum); p2[N] = (T)(Y / nsum); p3[N] = (T)Y; } return *this; } //! Convert pixel values from XYZ to xyY color spaces \newinstance. CImg get_XYZtoxyY() const { return CImg(*this, false).XYZtoxyY(); } //! Convert pixel values from xyY pixels to XYZ color spaces. CImg& xyYtoXYZ() { if (_spectrum != 3) throw CImgInstanceException( _cimg_instance "xyYtoXYZ(): Instance is not a xyY image.", cimg_instance); T *p1 = data(0, 0, 0, 0), *p2 = data(0, 0, 0, 1), *p3 = data(0, 0, 0, 2); const longT whd = (longT)width() * height() * depth(); cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,4096)) for (longT N = 0; N 0 ? py : 1; p1[N] = (T)(px * Y / ny); p2[N] = (T)Y; p3[N] = (T)((1 - px - py) * Y / ny); } return *this; } //! Convert pixel values from xyY pixels to XYZ color spaces \newinstance. CImg get_xyYtoXYZ() const { return CImg(*this, false).xyYtoXYZ(); } //! Convert pixel values from RGB to Lab color spaces. CImg& RGBtoLab(const bool use_D65 = true) { return RGBtoXYZ(use_D65).XYZtoLab(use_D65); } //! Convert pixel values from RGB to Lab color spaces \newinstance. CImg get_RGBtoLab(const bool use_D65 = true) const { return CImg(*this, false).RGBtoLab(use_D65); } //! Convert pixel values from Lab to RGB color spaces. CImg& LabtoRGB(const bool use_D65 = true) { return LabtoXYZ().XYZtoRGB(use_D65); } //! Convert pixel values from Lab to RGB color spaces \newinstance. CImg get_LabtoRGB(const bool use_D65 = true) const { return CImg(*this, false).LabtoRGB(use_D65); } //! Convert pixel values from RGB to xyY color spaces. CImg& RGBtoxyY(const bool use_D65 = true) { return RGBtoXYZ(use_D65).XYZtoxyY(); } //! Convert pixel values from RGB to xyY color spaces \newinstance. CImg get_RGBtoxyY(const bool use_D65 = true) const { return CImg(*this, false).RGBtoxyY(use_D65); } //! Convert pixel values from xyY to RGB color spaces. CImg& xyYtoRGB(const bool use_D65 = true) { return xyYtoXYZ().XYZtoRGB(use_D65); } //! Convert pixel values from xyY to RGB color spaces \newinstance. CImg get_xyYtoRGB(const bool use_D65 = true) const { return CImg(*this, false).xyYtoRGB(use_D65); } //! Convert pixel values from RGB to CMYK color spaces. CImg& RGBtoCMYK() { return RGBtoCMY().CMYtoCMYK(); } //! Convert pixel values from RGB to CMYK color spaces \newinstance. CImg get_RGBtoCMYK() const { return CImg(*this, false).RGBtoCMYK(); } //! Convert pixel values from CMYK to RGB color spaces. CImg& CMYKtoRGB() { return CMYKtoCMY().CMYtoRGB(); } //! Convert pixel values from CMYK to RGB color spaces \newinstance. CImg get_CMYKtoRGB() const { return CImg(*this, false).CMYKtoRGB(); } //@} //------------------------------------------ // //! \name Geometric / Spatial Manipulation //@{ //------------------------------------------ static float _cimg_lanczos(const float x) { if (x <= -2 || x >= 2) return 0; const float a = (float)cimg::PI * x, b = 0.5f * a; return (float)(x ? std::sin(a) * std::sin(b) / (a * b) : 1); } //! Resize image to new dimensions. /** \param size_x Number of columns (new size along the X-axis). \param size_y Number of rows (new size along the Y-axis). \param size_z Number of slices (new size along the Z-axis). \param size_c Number of vector-channels (new size along the C-axis). \param interpolation_type Method of interpolation: - -1 = no interpolation: raw memory resizing. - 0 = no interpolation: additional space is filled according to \p boundary_conditions. - 1 = nearest-neighbor interpolation. - 2 = moving average interpolation. - 3 = linear interpolation. - 4 = grid interpolation. - 5 = cubic interpolation. - 6 = lanczos interpolation. \param boundary_conditions Type of boundary conditions used if necessary. \param centering_x Set centering type (only if \p interpolation_type=0). \param centering_y Set centering type (only if \p interpolation_type=0). \param centering_z Set centering type (only if \p interpolation_type=0). \param centering_c Set centering type (only if \p interpolation_type=0). \note If pd[x,y,z,v]<0, it corresponds to a percentage of the original size (the default value is -100). **/ CImg& resize(const int size_x, const int size_y = -100, const int size_z = -100, const int size_c = -100, const int interpolation_type = 1, const unsigned int boundary_conditions = 0, const float centering_x = 0, const float centering_y = 0, const float centering_z = 0, const float centering_c = 0) { if (!size_x || !size_y || !size_z || !size_c) return assign(); const unsigned int _sx = (unsigned int)(size_x < 0 ? -size_x * width() / 100 : size_x), _sy = (unsigned int)(size_y < 0 ? -size_y * height() / 100 : size_y), _sz = (unsigned int)(size_z < 0 ? -size_z * depth() / 100 : size_z), _sc = (unsigned int)(size_c < 0 ? -size_c * spectrum() / 100 : size_c), sx = _sx ? _sx : 1, sy = _sy ? _sy : 1, sz = _sz ? _sz : 1, sc = _sc ? _sc : 1; if (sx == _width && sy == _height && sz == _depth && sc == _spectrum) return *this; if (is_empty()) return assign(sx, sy, sz, sc, (T)0); if (interpolation_type == -1 && sx * sy * sz * sc == size()) { _width = sx; _height = sy; _depth = sz; _spectrum = sc; return *this; } return get_resize(sx, sy, sz, sc, interpolation_type, boundary_conditions, centering_x, centering_y, centering_z, centering_c) .move_to(*this); } //! Resize image to new dimensions \newinstance. CImg get_resize(const int size_x, const int size_y = -100, const int size_z = -100, const int size_c = -100, const int interpolation_type = 1, const unsigned int boundary_conditions = 0, const float centering_x = 0, const float centering_y = 0, const float centering_z = 0, const float centering_c = 0) const { if (centering_x < 0 || centering_x > 1 || centering_y < 0 || centering_y > 1 || centering_z < 0 || centering_z > 1 || centering_c < 0 || centering_c > 1) throw CImgArgumentException( _cimg_instance "resize(): Specified centering arguments (%g,%g,%g,%g) are " "outside range [0,1].", cimg_instance, centering_x, centering_y, centering_z, centering_c); if (!size_x || !size_y || !size_z || !size_c) return CImg(); const unsigned int sx = std::max( 1U, (unsigned int)(size_x >= 0 ? size_x : -size_x * width() / 100)), sy = std::max( 1U, (unsigned int)(size_y >= 0 ? size_y : -size_y * height() / 100)), sz = std::max( 1U, (unsigned int)(size_z >= 0 ? size_z : -size_z * depth() / 100)), sc = std::max( 1U, (unsigned int)(size_c >= 0 ? size_c : -size_c * spectrum() / 100)); if (sx == _width && sy == _height && sz == _depth && sc == _spectrum) return +*this; if (is_empty()) return CImg(sx, sy, sz, sc, (T)0); CImg res; switch (interpolation_type) { // Raw resizing. // case -1: std::memcpy( res.assign(sx, sy, sz, sc, (T)0)._data, _data, sizeof(T) * std::min(size(), (ulongT)sx * sy * sz * sc)); break; // No interpolation. // case 0: { const int xc = (int)(centering_x * ((int)sx - width())), yc = (int)(centering_y * ((int)sy - height())), zc = (int)(centering_z * ((int)sz - depth())), cc = (int)(centering_c * ((int)sc - spectrum())); switch (boundary_conditions) { case 3: { // Mirror res.assign(sx, sy, sz, sc); const int w2 = 2 * width(), h2 = 2 * height(), d2 = 2 * depth(), s2 = 2 * spectrum(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),65536)) cimg_forXYZC(res,x,y,z,c) { const int mx = cimg::mod(x - xc, w2), my = cimg::mod(y - yc, h2), mz = cimg::mod(z - zc, d2), mc = cimg::mod(c - cc, s2); res(x, y, z, c) = (*this)(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, mz < depth() ? mz : d2 - mz - 1, mc < spectrum() ? mc : s2 - mc - 1); } } break; case 2: { // Periodic res.assign(sx, sy, sz, sc); const int x0 = ((int)xc % width()) - width(), y0 = ((int)yc % height()) - height(), z0 = ((int)zc % depth()) - depth(), c0 = ((int)cc % spectrum()) - spectrum(), dx = width(), dy = height(), dz = depth(), dc = spectrum(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),65536)) for (int c = c0; c<(int)sc; c+=dc) for (int z = z0; z<(int)sz; z+=dz) for (int y = y0; y<(int)sy; y+=dy) for (int x = x0; x<(int)sx; x+=dx) res.draw_image(x,y,z,c,*this); } break; case 1: { // Neumann res.assign(sx, sy, sz, sc) .draw_image(xc, yc, zc, cc, *this); CImg sprite; if (xc > 0) { // X-backward res.get_crop(xc, yc, zc, cc, xc, yc + height() - 1, zc + depth() - 1, cc + spectrum() - 1) .move_to(sprite); for (int x = xc - 1; x >= 0; --x) res.draw_image(x, yc, zc, cc, sprite); } if (xc + width() < (int)sx) { // X-forward res.get_crop(xc + width() - 1, yc, zc, cc, xc + width() - 1, yc + height() - 1, zc + depth() - 1, cc + spectrum() - 1) .move_to(sprite); for (int x = xc + width(); x < (int)sx; ++x) res.draw_image(x, yc, zc, cc, sprite); } if (yc > 0) { // Y-backward res.get_crop(0, yc, zc, cc, sx - 1, yc, zc + depth() - 1, cc + spectrum() - 1) .move_to(sprite); for (int y = yc - 1; y >= 0; --y) res.draw_image(0, y, zc, cc, sprite); } if (yc + height() < (int)sy) { // Y-forward res.get_crop(0, yc + height() - 1, zc, cc, sx - 1, yc + height() - 1, zc + depth() - 1, cc + spectrum() - 1) .move_to(sprite); for (int y = yc + height(); y < (int)sy; ++y) res.draw_image(0, y, zc, cc, sprite); } if (zc > 0) { // Z-backward res.get_crop(0, 0, zc, cc, sx - 1, sy - 1, zc, cc + spectrum() - 1) .move_to(sprite); for (int z = zc - 1; z >= 0; --z) res.draw_image(0, 0, z, cc, sprite); } if (zc + depth() < (int)sz) { // Z-forward res.get_crop(0, 0, zc + depth() - 1, cc, sx - 1, sy - 1, zc + depth() - 1, cc + spectrum() - 1) .move_to(sprite); for (int z = zc + depth(); z < (int)sz; ++z) res.draw_image(0, 0, z, cc, sprite); } if (cc > 0) { // C-backward res.get_crop(0, 0, 0, cc, sx - 1, sy - 1, sz - 1, cc) .move_to(sprite); for (int c = cc - 1; c >= 0; --c) res.draw_image(0, 0, 0, c, sprite); } if (cc + spectrum() < (int)sc) { // C-forward res.get_crop(0, 0, 0, cc + spectrum() - 1, sx - 1, sy - 1, sz - 1, cc + spectrum() - 1) .move_to(sprite); for (int c = cc + spectrum(); c < (int)sc; ++c) res.draw_image(0, 0, 0, c, sprite); } } break; default: // Dirichlet res.assign(sx, sy, sz, sc, (T)0) .draw_image(xc, yc, zc, cc, *this); } break; } break; // Nearest neighbor interpolation. // case 1: { res.assign(sx, sy, sz, sc); CImg off_x(sx), off_y(sy + 1), off_z(sz + 1), off_c(sc + 1); const ulongT wh = (ulongT)_width * _height, whd = (ulongT)_width * _height * _depth, sxy = (ulongT)sx * sy, sxyz = (ulongT)sx * sy * sz, one = (ulongT)1; if (sx == _width) off_x.fill(1); else { ulongT *poff_x = off_x._data, curr = 0; cimg_forX(res, x) { const ulongT old = curr; curr = (x + one) * _width / sx; *(poff_x++) = curr - old; } } if (sy == _height) off_y.fill(_width); else { ulongT *poff_y = off_y._data, curr = 0; cimg_forY(res, y) { const ulongT old = curr; curr = (y + one) * _height / sy; *(poff_y++) = _width * (curr - old); } *poff_y = 0; } if (sz == _depth) off_z.fill(wh); else { ulongT *poff_z = off_z._data, curr = 0; cimg_forZ(res, z) { const ulongT old = curr; curr = (z + one) * _depth / sz; *(poff_z++) = wh * (curr - old); } *poff_z = 0; } if (sc == _spectrum) off_c.fill(whd); else { ulongT *poff_c = off_c._data, curr = 0; cimg_forC(res, c) { const ulongT old = curr; curr = (c + one) * _spectrum / sc; *(poff_c++) = whd * (curr - old); } *poff_c = 0; } T* ptrd = res._data; const T* ptrc = _data; const ulongT* poff_c = off_c._data; for (unsigned int c = 0; c < sc;) { const T* ptrz = ptrc; const ulongT* poff_z = off_z._data; for (unsigned int z = 0; z < sz;) { const T* ptry = ptrz; const ulongT* poff_y = off_y._data; for (unsigned int y = 0; y < sy;) { const T* ptrx = ptry; const ulongT* poff_x = off_x._data; cimg_forX(res, x) { *(ptrd++) = *ptrx; ptrx += *(poff_x++); } ++y; ulongT dy = *(poff_y++); for (; !dy && y < dy; std::memcpy(ptrd, ptrd - sx, sizeof(T) * sx), ++y, ptrd += sx, dy = *(poff_y++)) { } ptry += dy; } ++z; ulongT dz = *(poff_z++); for (; !dz && z < dz; std::memcpy(ptrd, ptrd - sxy, sizeof(T) * sxy), ++z, ptrd += sxy, dz = *(poff_z++)) { } ptrz += dz; } ++c; ulongT dc = *(poff_c++); for (; !dc && c < dc; std::memcpy(ptrd, ptrd - sxyz, sizeof(T) * sxyz), ++c, ptrd += sxyz, dc = *(poff_c++)) { } ptrc += dc; } } break; // Moving average. // case 2: { bool instance_first = true; if (sx != _width) { CImg tmp(sx, _height, _depth, _spectrum, 0); for (unsigned int a = _width * sx, b = _width, c = sx, s = 0, t = 0; a;) { const unsigned int d = std::min(b, c); a -= d; b -= d; c -= d; cimg_forYZC(tmp, y, z, v) tmp(t, y, z, v) += (Tfloat)(*this)(s, y, z, v) * d; if (!b) { cimg_forYZC(tmp, y, z, v) tmp(t, y, z, v) /= _width; ++t; b = _width; } if (!c) { ++s; c = sx; } } tmp.move_to(res); instance_first = false; } if (sy != _height) { CImg tmp(sx, sy, _depth, _spectrum, 0); for (unsigned int a = _height * sy, b = _height, c = sy, s = 0, t = 0; a;) { const unsigned int d = std::min(b, c); a -= d; b -= d; c -= d; if (instance_first) cimg_forXZC(tmp, x, z, v) tmp(x, t, z, v) += (Tfloat)(*this)(x, s, z, v) * d; else cimg_forXZC(tmp, x, z, v) tmp(x, t, z, v) += (Tfloat)res(x, s, z, v) * d; if (!b) { cimg_forXZC(tmp, x, z, v) tmp(x, t, z, v) /= _height; ++t; b = _height; } if (!c) { ++s; c = sy; } } tmp.move_to(res); instance_first = false; } if (sz != _depth) { CImg tmp(sx, sy, sz, _spectrum, 0); for (unsigned int a = _depth * sz, b = _depth, c = sz, s = 0, t = 0; a;) { const unsigned int d = std::min(b, c); a -= d; b -= d; c -= d; if (instance_first) cimg_forXYC(tmp, x, y, v) tmp(x, y, t, v) += (Tfloat)(*this)(x, y, s, v) * d; else cimg_forXYC(tmp, x, y, v) tmp(x, y, t, v) += (Tfloat)res(x, y, s, v) * d; if (!b) { cimg_forXYC(tmp, x, y, v) tmp(x, y, t, v) /= _depth; ++t; b = _depth; } if (!c) { ++s; c = sz; } } tmp.move_to(res); instance_first = false; } if (sc != _spectrum) { CImg tmp(sx, sy, sz, sc, 0); for (unsigned int a = _spectrum * sc, b = _spectrum, c = sc, s = 0, t = 0; a;) { const unsigned int d = std::min(b, c); a -= d; b -= d; c -= d; if (instance_first) cimg_forXYZ(tmp, x, y, z) tmp(x, y, z, t) += (Tfloat)(*this)(x, y, z, s) * d; else cimg_forXYZ(tmp, x, y, z) tmp(x, y, z, t) += (Tfloat)res(x, y, z, s) * d; if (!b) { cimg_forXYZ(tmp, x, y, z) tmp(x, y, z, t) /= _spectrum; ++t; b = _spectrum; } if (!c) { ++s; c = sc; } } tmp.move_to(res); instance_first = false; } } break; // Linear interpolation. // case 3: { CImg off(cimg::max(sx, sy, sz, sc)); CImg foff(off._width); CImg resx, resy, resz, resc; double curr, old; if (sx != _width) { if (_width == 1) get_resize(sx, _height, _depth, _spectrum, 1) .move_to(resx); else if (_width > sx) get_resize(sx, _height, _depth, _spectrum, 2) .move_to(resx); else { const double fx = (!boundary_conditions && sx > _width) ? (sx > 1 ? (_width - 1.) / (sx - 1) : 0) : (double)_width / sx; resx.assign(sx, _height, _depth, _spectrum); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forX(resx, x) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(width() - 1., curr + fx); *(poff++) = (unsigned int)curr - (unsigned int)old; } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resx.size(),65536)) cimg_forYZC(resx,y,z,c) { const T *ptrs = data(0, y, z, c), *const ptrsmax = ptrs + _width - 1; T* ptrd = resx.data(0, y, z, c); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forX(resx, x) { const double alpha = *(pfoff++); const T val1 = *ptrs, val2 = ptrs < ptrsmax ? *(ptrs + 1) : val1; *(ptrd++) = (T)((1 - alpha) * val1 + alpha * val2); ptrs += *(poff++); } } } } else resx.assign(*this, true); if (sy != _height) { if (_height == 1) resx.get_resize(sx, sy, _depth, _spectrum, 1) .move_to(resy); else { if (_height > sy) resx.get_resize(sx, sy, _depth, _spectrum, 2) .move_to(resy); else { const double fy = (!boundary_conditions && sy > _height) ? (sy > 1 ? (_height - 1.) / (sy - 1) : 0) : (double)_height / sy; resy.assign(sx, sy, _depth, _spectrum); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forY(resy, y) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(height() - 1., curr + fy); *(poff++) = sx * ((unsigned int)curr - (unsigned int)old); } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resy.size(),65536)) cimg_forXZC(resy,x,z,c) { const T *ptrs = resx.data(x, 0, z, c), *const ptrsmax = ptrs + (_height - 1) * sx; T* ptrd = resy.data(x, 0, z, c); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forY(resy, y) { const double alpha = *(pfoff++); const T val1 = *ptrs, val2 = ptrs < ptrsmax ? *(ptrs + sx) : val1; *ptrd = (T)((1 - alpha) * val1 + alpha * val2); ptrd += sx; ptrs += *(poff++); } } } } resx.assign(); } else resy.assign(resx, true); if (sz != _depth) { if (_depth == 1) resy.get_resize(sx, sy, sz, _spectrum, 1).move_to(resz); else { if (_depth > sz) resy.get_resize(sx, sy, sz, _spectrum, 2) .move_to(resz); else { const double fz = (!boundary_conditions && sz > _depth) ? (sz > 1 ? (_depth - 1.) / (sz - 1) : 0) : (double)_depth / sz; const unsigned int sxy = sx * sy; resz.assign(sx, sy, sz, _spectrum); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forZ(resz, z) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(depth() - 1., curr + fz); *(poff++) = sxy * ((unsigned int)curr - (unsigned int)old); } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resz.size(),65536)) cimg_forXYC(resz,x,y,c) { const T *ptrs = resy.data(x, y, 0, c), *const ptrsmax = ptrs + (_depth - 1) * sxy; T* ptrd = resz.data(x, y, 0, c); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forZ(resz, z) { const double alpha = *(pfoff++); const T val1 = *ptrs, val2 = ptrs < ptrsmax ? *(ptrs + sxy) : val1; *ptrd = (T)((1 - alpha) * val1 + alpha * val2); ptrd += sxy; ptrs += *(poff++); } } } } resy.assign(); } else resz.assign(resy, true); if (sc != _spectrum) { if (_spectrum == 1) resz.get_resize(sx, sy, sz, sc, 1).move_to(resc); else { if (_spectrum > sc) resz.get_resize(sx, sy, sz, sc, 2).move_to(resc); else { const double fc = (!boundary_conditions && sc > _spectrum) ? (sc > 1 ? (_spectrum - 1.) / (sc - 1) : 0) : (double)_spectrum / sc; const unsigned int sxyz = sx * sy * sz; resc.assign(sx, sy, sz, sc); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forC(resc, c) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(spectrum() - 1., curr + fc); *(poff++) = sxyz * ((unsigned int)curr - (unsigned int)old); } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resc.size(),65536)) cimg_forXYZ(resc,x,y,z) { const T *ptrs = resz.data(x, y, z, 0), *const ptrsmax = ptrs + (_spectrum - 1) * sxyz; T* ptrd = resc.data(x, y, z, 0); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forC(resc, c) { const double alpha = *(pfoff++); const T val1 = *ptrs, val2 = ptrs < ptrsmax ? *(ptrs + sxyz) : val1; *ptrd = (T)((1 - alpha) * val1 + alpha * val2); ptrd += sxyz; ptrs += *(poff++); } } } } resz.assign(); } else resc.assign(resz, true); return resc._is_shared ? (resz._is_shared ? (resy._is_shared ? (resx._is_shared ? (+(*this)) : resx) : resy) : resz) : resc; } break; // Grid interpolation. // case 4: { CImg resx, resy, resz, resc; if (sx != _width) { if (sx < _width) get_resize(sx, _height, _depth, _spectrum, 1) .move_to(resx); else { resx.assign(sx, _height, _depth, _spectrum, (T)0); const int dx = (int)(2 * sx), dy = 2 * width(); int err = (int)(dy + centering_x * (sx * dy / width() - dy)), xs = 0; cimg_forX(resx, x) if ((err -= dy) <= 0) { cimg_forYZC(resx, y, z, c) resx(x, y, z, c) = (*this)(xs, y, z, c); ++xs; err += dx; } } } else resx.assign(*this, true); if (sy != _height) { if (sy < _height) resx.get_resize(sx, sy, _depth, _spectrum, 1) .move_to(resy); else { resy.assign(sx, sy, _depth, _spectrum, (T)0); const int dx = (int)(2 * sy), dy = 2 * height(); int err = (int)(dy + centering_y * (sy * dy / height() - dy)), ys = 0; cimg_forY(resy, y) if ((err -= dy) <= 0) { cimg_forXZC(resy, x, z, c) resy(x, y, z, c) = resx(x, ys, z, c); ++ys; err += dx; } } resx.assign(); } else resy.assign(resx, true); if (sz != _depth) { if (sz < _depth) resy.get_resize(sx, sy, sz, _spectrum, 1).move_to(resz); else { resz.assign(sx, sy, sz, _spectrum, (T)0); const int dx = (int)(2 * sz), dy = 2 * depth(); int err = (int)(dy + centering_z * (sz * dy / depth() - dy)), zs = 0; cimg_forZ(resz, z) if ((err -= dy) <= 0) { cimg_forXYC(resz, x, y, c) resz(x, y, z, c) = resy(x, y, zs, c); ++zs; err += dx; } } resy.assign(); } else resz.assign(resy, true); if (sc != _spectrum) { if (sc < _spectrum) resz.get_resize(sx, sy, sz, sc, 1).move_to(resc); else { resc.assign(sx, sy, sz, sc, (T)0); const int dx = (int)(2 * sc), dy = 2 * spectrum(); int err = (int)(dy + centering_c * (sc * dy / spectrum() - dy)), cs = 0; cimg_forC(resc, c) if ((err -= dy) <= 0) { cimg_forXYZ(resc, x, y, z) resc(x, y, z, c) = resz(x, y, z, cs); ++cs; err += dx; } } resz.assign(); } else resc.assign(resz, true); return resc._is_shared ? (resz._is_shared ? (resy._is_shared ? (resx._is_shared ? (+(*this)) : resx) : resy) : resz) : resc; } break; // Cubic interpolation. // case 5: { const Tfloat vmin = (Tfloat)cimg::type::min(), vmax = (Tfloat)cimg::type::max(); CImg off(cimg::max(sx, sy, sz, sc)); CImg foff(off._width); CImg resx, resy, resz, resc; double curr, old; if (sx != _width) { if (_width == 1) get_resize(sx, _height, _depth, _spectrum, 1) .move_to(resx); else { if (_width > sx) get_resize(sx, _height, _depth, _spectrum, 2) .move_to(resx); else { const double fx = (!boundary_conditions && sx > _width) ? (sx > 1 ? (_width - 1.) / (sx - 1) : 0) : (double)_width / sx; resx.assign(sx, _height, _depth, _spectrum); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forX(resx, x) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(width() - 1., curr + fx); *(poff++) = (unsigned int)curr - (unsigned int)old; } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resx.size(),65536)) cimg_forYZC(resx,y,z,c) { const T *const ptrs0 = data(0, y, z, c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_width - 2); T* ptrd = resx.data(0, y, z, c); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forX(resx, x) { const double t = *(pfoff++), val1 = (double)*ptrs, val0 = ptrs > ptrs0 ? (double)*(ptrs - 1) : val1, val2 = ptrs <= ptrsmax ? (double)*(ptrs + 1) : val1, val3 = ptrs < ptrsmax ? (double)*(ptrs + 2) : val2, val = val1 + 0.5f * (t * (-val0 + val2) + t * t * (2 * val0 - 5 * val1 + 4 * val2 - val3) + t * t * t * (-val0 + 3 * val1 - 3 * val2 + val3)); *(ptrd++) = (T)(val < vmin ? vmin : val > vmax ? vmax : val); ptrs += *(poff++); } } } } } else resx.assign(*this, true); if (sy != _height) { if (_height == 1) resx.get_resize(sx, sy, _depth, _spectrum, 1) .move_to(resy); else { if (_height > sy) resx.get_resize(sx, sy, _depth, _spectrum, 2) .move_to(resy); else { const double fy = (!boundary_conditions && sy > _height) ? (sy > 1 ? (_height - 1.) / (sy - 1) : 0) : (double)_height / sy; resy.assign(sx, sy, _depth, _spectrum); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forY(resy, y) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(height() - 1., curr + fy); *(poff++) = sx * ((unsigned int)curr - (unsigned int)old); } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resy.size(),65536)) cimg_forXZC(resy,x,z,c) { const T *const ptrs0 = resx.data(x, 0, z, c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_height - 2) * sx; T* ptrd = resy.data(x, 0, z, c); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forY(resy, y) { const double t = *(pfoff++), val1 = (double)*ptrs, val0 = ptrs > ptrs0 ? (double)*(ptrs - sx) : val1, val2 = ptrs <= ptrsmax ? (double)*(ptrs + sx) : val1, val3 = ptrs < ptrsmax ? (double)*(ptrs + 2 * sx) : val2, val = val1 + 0.5f * (t * (-val0 + val2) + t * t * (2 * val0 - 5 * val1 + 4 * val2 - val3) + t * t * t * (-val0 + 3 * val1 - 3 * val2 + val3)); *ptrd = (T)(val < vmin ? vmin : val > vmax ? vmax : val); ptrd += sx; ptrs += *(poff++); } } } } resx.assign(); } else resy.assign(resx, true); if (sz != _depth) { if (_depth == 1) resy.get_resize(sx, sy, sz, _spectrum, 1).move_to(resz); else { if (_depth > sz) resy.get_resize(sx, sy, sz, _spectrum, 2) .move_to(resz); else { const double fz = (!boundary_conditions && sz > _depth) ? (sz > 1 ? (_depth - 1.) / (sz - 1) : 0) : (double)_depth / sz; const unsigned int sxy = sx * sy; resz.assign(sx, sy, sz, _spectrum); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forZ(resz, z) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(depth() - 1., curr + fz); *(poff++) = sxy * ((unsigned int)curr - (unsigned int)old); } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resz.size(),65536)) cimg_forXYC(resz,x,y,c) { const T *const ptrs0 = resy.data(x, y, 0, c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_depth - 2) * sxy; T* ptrd = resz.data(x, y, 0, c); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forZ(resz, z) { const double t = *(pfoff++), val1 = (double)*ptrs, val0 = ptrs > ptrs0 ? (double)*(ptrs - sxy) : val1, val2 = ptrs <= ptrsmax ? (double)*(ptrs + sxy) : val1, val3 = ptrs < ptrsmax ? (double)*(ptrs + 2 * sxy) : val2, val = val1 + 0.5f * (t * (-val0 + val2) + t * t * (2 * val0 - 5 * val1 + 4 * val2 - val3) + t * t * t * (-val0 + 3 * val1 - 3 * val2 + val3)); *ptrd = (T)(val < vmin ? vmin : val > vmax ? vmax : val); ptrd += sxy; ptrs += *(poff++); } } } } resy.assign(); } else resz.assign(resy, true); if (sc != _spectrum) { if (_spectrum == 1) resz.get_resize(sx, sy, sz, sc, 1).move_to(resc); else { if (_spectrum > sc) resz.get_resize(sx, sy, sz, sc, 2).move_to(resc); else { const double fc = (!boundary_conditions && sc > _spectrum) ? (sc > 1 ? (_spectrum - 1.) / (sc - 1) : 0) : (double)_spectrum / sc; const unsigned int sxyz = sx * sy * sz; resc.assign(sx, sy, sz, sc); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forC(resc, c) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(spectrum() - 1., curr + fc); *(poff++) = sxyz * ((unsigned int)curr - (unsigned int)old); } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resc.size(),65536)) cimg_forXYZ(resc,x,y,z) { const T *const ptrs0 = resz.data(x, y, z, 0), *ptrs = ptrs0, *const ptrsmax = ptrs + (_spectrum - 2) * sxyz; T* ptrd = resc.data(x, y, z, 0); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forC(resc, c) { const double t = *(pfoff++), val1 = (double)*ptrs, val0 = ptrs > ptrs0 ? (double)*(ptrs - sxyz) : val1, val2 = ptrs <= ptrsmax ? (double)*(ptrs + sxyz) : val1, val3 = ptrs < ptrsmax ? (double)*(ptrs + 2 * sxyz) : val2, val = val1 + 0.5f * (t * (-val0 + val2) + t * t * (2 * val0 - 5 * val1 + 4 * val2 - val3) + t * t * t * (-val0 + 3 * val1 - 3 * val2 + val3)); *ptrd = (T)(val < vmin ? vmin : val > vmax ? vmax : val); ptrd += sxyz; ptrs += *(poff++); } } } } resz.assign(); } else resc.assign(resz, true); return resc._is_shared ? (resz._is_shared ? (resy._is_shared ? (resx._is_shared ? (+(*this)) : resx) : resy) : resz) : resc; } break; // Lanczos interpolation. // case 6: { const double vmin = (double)cimg::type::min(), vmax = (double)cimg::type::max(); CImg off(cimg::max(sx, sy, sz, sc)); CImg foff(off._width); CImg resx, resy, resz, resc; double curr, old; if (sx != _width) { if (_width == 1) get_resize(sx, _height, _depth, _spectrum, 1) .move_to(resx); else { if (_width > sx) get_resize(sx, _height, _depth, _spectrum, 2) .move_to(resx); else { const double fx = (!boundary_conditions && sx > _width) ? (sx > 1 ? (_width - 1.) / (sx - 1) : 0) : (double)_width / sx; resx.assign(sx, _height, _depth, _spectrum); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forX(resx, x) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(width() - 1., curr + fx); *(poff++) = (unsigned int)curr - (unsigned int)old; } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resx.size(),65536)) cimg_forYZC(resx,y,z,c) { const T *const ptrs0 = data(0, y, z, c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + 1, *const ptrsmax = ptrs0 + (_width - 2); T* ptrd = resx.data(0, y, z, c); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forX(resx, x) { const double t = *(pfoff++), w0 = _cimg_lanczos(t + 2), w1 = _cimg_lanczos(t + 1), w2 = _cimg_lanczos(t), w3 = _cimg_lanczos(t - 1), w4 = _cimg_lanczos(t - 2), val2 = (double)*ptrs, val1 = ptrs >= ptrsmin ? (double)*(ptrs - 1) : val2, val0 = ptrs > ptrsmin ? (double)*(ptrs - 2) : val1, val3 = ptrs <= ptrsmax ? (double)*(ptrs + 1) : val2, val4 = ptrs < ptrsmax ? (double)*(ptrs + 2) : val3, val = (val0 * w0 + val1 * w1 + val2 * w2 + val3 * w3 + val4 * w4) / (w1 + w2 + w3 + w4); *(ptrd++) = (T)(val < vmin ? vmin : val > vmax ? vmax : val); ptrs += *(poff++); } } } } } else resx.assign(*this, true); if (sy != _height) { if (_height == 1) resx.get_resize(sx, sy, _depth, _spectrum, 1) .move_to(resy); else { if (_height > sy) resx.get_resize(sx, sy, _depth, _spectrum, 2) .move_to(resy); else { const double fy = (!boundary_conditions && sy > _height) ? (sy > 1 ? (_height - 1.) / (sy - 1) : 0) : (double)_height / sy; resy.assign(sx, sy, _depth, _spectrum); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forY(resy, y) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(height() - 1., curr + fy); *(poff++) = sx * ((unsigned int)curr - (unsigned int)old); } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resy.size(),65536)) cimg_forXZC(resy,x,z,c) { const T *const ptrs0 = resx.data(x, 0, z, c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sx, *const ptrsmax = ptrs0 + (_height - 2) * sx; T* ptrd = resy.data(x, 0, z, c); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forY(resy, y) { const double t = *(pfoff++), w0 = _cimg_lanczos(t + 2), w1 = _cimg_lanczos(t + 1), w2 = _cimg_lanczos(t), w3 = _cimg_lanczos(t - 1), w4 = _cimg_lanczos(t - 2), val2 = (double)*ptrs, val1 = ptrs >= ptrsmin ? (double)*(ptrs - sx) : val2, val0 = ptrs > ptrsmin ? (double)*(ptrs - 2 * sx) : val1, val3 = ptrs <= ptrsmax ? (double)*(ptrs + sx) : val2, val4 = ptrs < ptrsmax ? (double)*(ptrs + 2 * sx) : val3, val = (val0 * w0 + val1 * w1 + val2 * w2 + val3 * w3 + val4 * w4) / (w1 + w2 + w3 + w4); *ptrd = (T)(val < vmin ? vmin : val > vmax ? vmax : val); ptrd += sx; ptrs += *(poff++); } } } } resx.assign(); } else resy.assign(resx, true); if (sz != _depth) { if (_depth == 1) resy.get_resize(sx, sy, sz, _spectrum, 1).move_to(resz); else { if (_depth > sz) resy.get_resize(sx, sy, sz, _spectrum, 2) .move_to(resz); else { const double fz = (!boundary_conditions && sz > _depth) ? (sz > 1 ? (_depth - 1.) / (sz - 1) : 0) : (double)_depth / sz; const unsigned int sxy = sx * sy; resz.assign(sx, sy, sz, _spectrum); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forZ(resz, z) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(depth() - 1., curr + fz); *(poff++) = sxy * ((unsigned int)curr - (unsigned int)old); } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resz.size(),65536)) cimg_forXYC(resz,x,y,c) { const T *const ptrs0 = resy.data(x, y, 0, c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sxy, *const ptrsmax = ptrs0 + (_depth - 2) * sxy; T* ptrd = resz.data(x, y, 0, c); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forZ(resz, z) { const double t = *(pfoff++), w0 = _cimg_lanczos(t + 2), w1 = _cimg_lanczos(t + 1), w2 = _cimg_lanczos(t), w3 = _cimg_lanczos(t - 1), w4 = _cimg_lanczos(t - 2), val2 = (double)*ptrs, val1 = ptrs >= ptrsmin ? (double)*(ptrs - sxy) : val2, val0 = ptrs > ptrsmin ? (double)*(ptrs - 2 * sxy) : val1, val3 = ptrs <= ptrsmax ? (double)*(ptrs + sxy) : val2, val4 = ptrs < ptrsmax ? (double)*(ptrs + 2 * sxy) : val3, val = (val0 * w0 + val1 * w1 + val2 * w2 + val3 * w3 + val4 * w4) / (w1 + w2 + w3 + w4); *ptrd = (T)(val < vmin ? vmin : val > vmax ? vmax : val); ptrd += sxy; ptrs += *(poff++); } } } } resy.assign(); } else resz.assign(resy, true); if (sc != _spectrum) { if (_spectrum == 1) resz.get_resize(sx, sy, sz, sc, 1).move_to(resc); else { if (_spectrum > sc) resz.get_resize(sx, sy, sz, sc, 2).move_to(resc); else { const double fc = (!boundary_conditions && sc > _spectrum) ? (sc > 1 ? (_spectrum - 1.) / (sc - 1) : 0) : (double)_spectrum / sc; const unsigned int sxyz = sx * sy * sz; resc.assign(sx, sy, sz, sc); curr = old = 0; { unsigned int* poff = off._data; double* pfoff = foff._data; cimg_forC(resc, c) { *(pfoff++) = curr - (unsigned int)curr; old = curr; curr = std::min(spectrum() - 1., curr + fc); *(poff++) = sxyz * ((unsigned int)curr - (unsigned int)old); } } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(resc.size(),65536)) cimg_forXYZ(resc,x,y,z) { const T *const ptrs0 = resz.data(x, y, z, 0), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sxyz, *const ptrsmax = ptrs + (_spectrum - 2) * sxyz; T* ptrd = resc.data(x, y, z, 0); const unsigned int* poff = off._data; const double* pfoff = foff._data; cimg_forC(resc, c) { const double t = *(pfoff++), w0 = _cimg_lanczos(t + 2), w1 = _cimg_lanczos(t + 1), w2 = _cimg_lanczos(t), w3 = _cimg_lanczos(t - 1), w4 = _cimg_lanczos(t - 2), val2 = (double)*ptrs, val1 = ptrs >= ptrsmin ? (double)*(ptrs - sxyz) : val2, val0 = ptrs > ptrsmin ? (double)*(ptrs - 2 * sxyz) : val1, val3 = ptrs <= ptrsmax ? (double)*(ptrs + sxyz) : val2, val4 = ptrs < ptrsmax ? (double)*(ptrs + 2 * sxyz) : val3, val = (val0 * w0 + val1 * w1 + val2 * w2 + val3 * w3 + val4 * w4) / (w1 + w2 + w3 + w4); *ptrd = (T)(val < vmin ? vmin : val > vmax ? vmax : val); ptrd += sxyz; ptrs += *(poff++); } } } } resz.assign(); } else resc.assign(resz, true); return resc._is_shared ? (resz._is_shared ? (resy._is_shared ? (resx._is_shared ? (+(*this)) : resx) : resy) : resz) : resc; } break; // Unknow interpolation. // default: throw CImgArgumentException( _cimg_instance "resize(): Invalid specified interpolation %d " "(should be { -1=raw | 0=none | 1=nearest | 2=average | " "3=linear | 4=grid | " "5=cubic | 6=lanczos }).", cimg_instance, interpolation_type); } return res; } //! Resize image to dimensions of another image. /** \param src Reference image used for dimensions. \param interpolation_type Interpolation method. \param boundary_conditions Boundary conditions. \param centering_x Set centering type (only if \p interpolation_type=0). \param centering_y Set centering type (only if \p interpolation_type=0). \param centering_z Set centering type (only if \p interpolation_type=0). \param centering_c Set centering type (only if \p interpolation_type=0). **/ template CImg& resize(const CImg& src, const int interpolation_type = 1, const unsigned int boundary_conditions = 0, const float centering_x = 0, const float centering_y = 0, const float centering_z = 0, const float centering_c = 0) { return resize(src._width, src._height, src._depth, src._spectrum, interpolation_type, boundary_conditions, centering_x, centering_y, centering_z, centering_c); } //! Resize image to dimensions of another image \newinstance. template CImg get_resize(const CImg& src, const int interpolation_type = 1, const unsigned int boundary_conditions = 0, const float centering_x = 0, const float centering_y = 0, const float centering_z = 0, const float centering_c = 0) const { return get_resize(src._width, src._height, src._depth, src._spectrum, interpolation_type, boundary_conditions, centering_x, centering_y, centering_z, centering_c); } //! Resize image to dimensions of a display window. /** \param disp Reference display window used for dimensions. \param interpolation_type Interpolation method. \param boundary_conditions Boundary conditions. \param centering_x Set centering type (only if \p interpolation_type=0). \param centering_y Set centering type (only if \p interpolation_type=0). \param centering_z Set centering type (only if \p interpolation_type=0). \param centering_c Set centering type (only if \p interpolation_type=0). **/ CImg& resize(const CImgDisplay& disp, const int interpolation_type = 1, const unsigned int boundary_conditions = 0, const float centering_x = 0, const float centering_y = 0, const float centering_z = 0, const float centering_c = 0) { return resize(disp.width(), disp.height(), _depth, _spectrum, interpolation_type, boundary_conditions, centering_x, centering_y, centering_z, centering_c); } //! Resize image to dimensions of a display window \newinstance. CImg get_resize(const CImgDisplay& disp, const int interpolation_type = 1, const unsigned int boundary_conditions = 0, const float centering_x = 0, const float centering_y = 0, const float centering_z = 0, const float centering_c = 0) const { return get_resize(disp.width(), disp.height(), _depth, _spectrum, interpolation_type, boundary_conditions, centering_x, centering_y, centering_z, centering_c); } //! Resize image to half-size along XY axes, using an optimized filter. CImg& resize_halfXY() { return get_resize_halfXY().move_to(*this); } //! Resize image to half-size along XY axes, using an optimized filter //! \newinstance. CImg get_resize_halfXY() const { if (is_empty()) return *this; static const Tfloat kernel[9] = { 0.07842776544f, 0.1231940459f, 0.07842776544f, 0.1231940459f, 0.1935127547f, 0.1231940459f, 0.07842776544f, 0.1231940459f, 0.07842776544f}; CImg I(9), res(_width / 2, _height / 2, _depth, _spectrum); T* ptrd = res._data; cimg_forZC(*this, z, c) cimg_for3x3(*this, x, y, z, c, I, T) if (x % 2 && y % 2) * (ptrd++) = (T)(I[0] * kernel[0] + I[1] * kernel[1] + I[2] * kernel[2] + I[3] * kernel[3] + I[4] * kernel[4] + I[5] * kernel[5] + I[6] * kernel[6] + I[7] * kernel[7] + I[8] * kernel[8]); return res; } //! Resize image to double-size, using the Scale2X algorithm. /** \note Use anisotropic upscaling algorithm described here. **/ CImg& resize_doubleXY() { return get_resize_doubleXY().move_to(*this); } //! Resize image to double-size, using the Scale2X algorithm \newinstance. CImg get_resize_doubleXY() const { #define _cimg_gs2x_for3(bound, i) \ for (int i = 0, _p1##i = 0, _n1##i = 1 >= (bound) ? (int)(bound)-1 : 1; \ _n1##i < (int)(bound) || i == --_n1##i; \ _p1##i = i++, ++_n1##i, ptrd1 += (res)._width, ptrd2 += (res)._width) #define _cimg_gs2x_for3x3(img, x, y, z, c, I, T) \ _cimg_gs2x_for3( \ (img)._height, \ y) for (int x = 0, _p1##x = 0, \ _n1##x = (int)((I[1] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[3] = I[4] = (T)(img)(0, y, z, c)), \ (I[7] = (T)(img)(0, _n1##y, z, c)), \ 1 >= (img)._width ? (img).width() - 1 : 1); \ (_n1##x < (img).width() && \ ((I[2] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[5] = (T)(img)(_n1##x, y, z, c)), \ (I[8] = (T)(img)(_n1##x, _n1##y, z, c)), 1)) || \ x == --_n1##x; \ I[1] = I[2], I[3] = I[4], I[4] = I[5], I[7] = I[8], \ _p1##x = x++, ++_n1##x) if (is_empty()) return *this; CImg res(_width << 1, _height << 1, _depth, _spectrum); CImg_3x3(I, T); cimg_forZC(*this, z, c) { T *ptrd1 = res.data(0, 0, z, c), *ptrd2 = ptrd1 + res._width; _cimg_gs2x_for3x3(*this, x, y, z, c, I, T) { if (Icp != Icn && Ipc != Inc) { *(ptrd1++) = Ipc == Icp ? Ipc : Icc; *(ptrd1++) = Icp == Inc ? Inc : Icc; *(ptrd2++) = Ipc == Icn ? Ipc : Icc; *(ptrd2++) = Icn == Inc ? Inc : Icc; } else { *(ptrd1++) = Icc; *(ptrd1++) = Icc; *(ptrd2++) = Icc; *(ptrd2++) = Icc; } } } return res; } //! Resize image to triple-size, using the Scale3X algorithm. /** \note Use anisotropic upscaling algorithm described here. **/ CImg& resize_tripleXY() { return get_resize_tripleXY().move_to(*this); } //! Resize image to triple-size, using the Scale3X algorithm \newinstance. CImg get_resize_tripleXY() const { #define _cimg_gs3x_for3(bound, i) \ for (int i = 0, _p1##i = 0, _n1##i = 1 >= (bound) ? (int)(bound)-1 : 1; \ _n1##i < (int)(bound) || i == --_n1##i; \ _p1##i = i++, ++_n1##i, ptrd1 += 2 * (res)._width, \ ptrd2 += 2 * (res)._width, ptrd3 += 2 * (res)._width) #define _cimg_gs3x_for3x3(img, x, y, z, c, I, T) \ _cimg_gs3x_for3( \ (img)._height, \ y) for (int x = 0, _p1##x = 0, \ _n1##x = (int)((I[0] = I[1] = (T)(img)(_p1##x, _p1##y, z, c)), \ (I[3] = I[4] = (T)(img)(0, y, z, c)), \ (I[6] = I[7] = (T)(img)(0, _n1##y, z, c)), \ 1 >= (img)._width ? (img).width() - 1 : 1); \ (_n1##x < (img).width() && \ ((I[2] = (T)(img)(_n1##x, _p1##y, z, c)), \ (I[5] = (T)(img)(_n1##x, y, z, c)), \ (I[8] = (T)(img)(_n1##x, _n1##y, z, c)), 1)) || \ x == --_n1##x; \ I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], \ I[6] = I[7], I[7] = I[8], _p1##x = x++, ++_n1##x) if (is_empty()) return *this; CImg res(3 * _width, 3 * _height, _depth, _spectrum); CImg_3x3(I, T); cimg_forZC(*this, z, c) { T *ptrd1 = res.data(0, 0, z, c), *ptrd2 = ptrd1 + res._width, *ptrd3 = ptrd2 + res._width; _cimg_gs3x_for3x3(*this, x, y, z, c, I, T) { if (Icp != Icn && Ipc != Inc) { *(ptrd1++) = Ipc == Icp ? Ipc : Icc; *(ptrd1++) = (Ipc == Icp && Icc != Inp) || (Icp == Inc && Icc != Ipp) ? Icp : Icc; *(ptrd1++) = Icp == Inc ? Inc : Icc; *(ptrd2++) = (Ipc == Icp && Icc != Ipn) || (Ipc == Icn && Icc != Ipp) ? Ipc : Icc; *(ptrd2++) = Icc; *(ptrd2++) = (Icp == Inc && Icc != Inn) || (Icn == Inc && Icc != Inp) ? Inc : Icc; *(ptrd3++) = Ipc == Icn ? Ipc : Icc; *(ptrd3++) = (Ipc == Icn && Icc != Inn) || (Icn == Inc && Icc != Ipn) ? Icn : Icc; *(ptrd3++) = Icn == Inc ? Inc : Icc; } else { *(ptrd1++) = Icc; *(ptrd1++) = Icc; *(ptrd1++) = Icc; *(ptrd2++) = Icc; *(ptrd2++) = Icc; *(ptrd2++) = Icc; *(ptrd3++) = Icc; *(ptrd3++) = Icc; *(ptrd3++) = Icc; } } } return res; } //! Mirror image content along specified axis. /** \param axis Mirror axis **/ CImg& mirror(const char axis) { if (is_empty()) return *this; T *pf, *pb, *buf = 0; switch (cimg::lowercase(axis)) { case 'x': { pf = _data; pb = data(_width - 1); const unsigned int width2 = _width / 2; for (unsigned int yzv = 0; yzv < _height * _depth * _spectrum; ++yzv) { for (unsigned int x = 0; x < width2; ++x) { const T val = *pf; *(pf++) = *pb; *(pb--) = val; } pf += _width - width2; pb += _width + width2; } } break; case 'y': { buf = new T[_width]; pf = _data; pb = data(0, _height - 1); const unsigned int height2 = _height / 2; for (unsigned int zv = 0; zv < _depth * _spectrum; ++zv) { for (unsigned int y = 0; y < height2; ++y) { std::memcpy(buf, pf, _width * sizeof(T)); std::memcpy(pf, pb, _width * sizeof(T)); std::memcpy(pb, buf, _width * sizeof(T)); pf += _width; pb -= _width; } pf += (ulongT)_width * (_height - height2); pb += (ulongT)_width * (_height + height2); } } break; case 'z': { buf = new T[(ulongT)_width * _height]; pf = _data; pb = data(0, 0, _depth - 1); const unsigned int depth2 = _depth / 2; cimg_forC(*this, c) { for (unsigned int z = 0; z < depth2; ++z) { std::memcpy(buf, pf, _width * _height * sizeof(T)); std::memcpy(pf, pb, _width * _height * sizeof(T)); std::memcpy(pb, buf, _width * _height * sizeof(T)); pf += (ulongT)_width * _height; pb -= (ulongT)_width * _height; } pf += (ulongT)_width * _height * (_depth - depth2); pb += (ulongT)_width * _height * (_depth + depth2); } } break; case 'c': { buf = new T[(ulongT)_width * _height * _depth]; pf = _data; pb = data(0, 0, 0, _spectrum - 1); const unsigned int _spectrum2 = _spectrum / 2; for (unsigned int v = 0; v < _spectrum2; ++v) { std::memcpy(buf, pf, _width * _height * _depth * sizeof(T)); std::memcpy(pf, pb, _width * _height * _depth * sizeof(T)); std::memcpy(pb, buf, _width * _height * _depth * sizeof(T)); pf += (ulongT)_width * _height * _depth; pb -= (ulongT)_width * _height * _depth; } } break; default: throw CImgArgumentException( _cimg_instance "mirror(): Invalid specified axis '%c'.", cimg_instance, axis); } delete[] buf; return *this; } //! Mirror image content along specified axis \newinstance. CImg get_mirror(const char axis) const { return (+*this).mirror(axis); } //! Mirror image content along specified axes. /** \param axes Mirror axes, as a C-string. \note \c axes may contains multiple characters, e.g. \c "xyz" **/ CImg& mirror(const char* const axes) { for (const char* s = axes; *s; ++s) mirror(*s); return *this; } //! Mirror image content along specified axes \newinstance. CImg get_mirror(const char* const axes) const { return (+*this).mirror(axes); } //! Shift image content. /** \param delta_x Amount of displacement along the X-axis. \param delta_y Amount of displacement along the Y-axis. \param delta_z Amount of displacement along the Z-axis. \param delta_c Amount of displacement along the C-axis. \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. **/ CImg& shift(const int delta_x, const int delta_y = 0, const int delta_z = 0, const int delta_c = 0, const unsigned int boundary_conditions = 0) { if (is_empty()) return *this; if (boundary_conditions == 3) return get_crop(-delta_x, -delta_y, -delta_z, -delta_c, width() - delta_x - 1, height() - delta_y - 1, depth() - delta_z - 1, spectrum() - delta_c - 1, 3) .move_to(*this); if (delta_x) // Shift along X-axis switch (boundary_conditions) { case 2: { // Periodic const int ml = cimg::mod(-delta_x, width()), ndelta_x = (ml <= width() / 2) ? ml : (ml - width()); if (!ndelta_x) return *this; CImg buf(cimg::abs(ndelta_x)); if (ndelta_x > 0) cimg_forYZC(*this, y, z, c) { std::memcpy(buf, data(0, y, z, c), ndelta_x * sizeof(T)); std::memmove(data(0, y, z, c), data(ndelta_x, y, z, c), (_width - ndelta_x) * sizeof(T)); std::memcpy(data(_width - ndelta_x, y, z, c), buf, ndelta_x * sizeof(T)); } else cimg_forYZC(*this, y, z, c) { std::memcpy(buf, data(_width + ndelta_x, y, z, c), -ndelta_x * sizeof(T)); std::memmove(data(-ndelta_x, y, z, c), data(0, y, z, c), (_width + ndelta_x) * sizeof(T)); std::memcpy(data(0, y, z, c), buf, -ndelta_x * sizeof(T)); } } break; case 1: // Neumann if (delta_x < 0) { const int ndelta_x = (-delta_x >= width()) ? width() - 1 : -delta_x; if (!ndelta_x) return *this; cimg_forYZC(*this, y, z, c) { std::memmove(data(0, y, z, c), data(ndelta_x, y, z, c), (_width - ndelta_x) * sizeof(T)); T* ptrd = data(_width - 1, y, z, c); const T val = *ptrd; for (int l = 0; l < ndelta_x - 1; ++l) *(--ptrd) = val; } } else { const int ndelta_x = (delta_x >= width()) ? width() - 1 : delta_x; if (!ndelta_x) return *this; cimg_forYZC(*this, y, z, c) { std::memmove(data(ndelta_x, y, z, c), data(0, y, z, c), (_width - ndelta_x) * sizeof(T)); T* ptrd = data(0, y, z, c); const T val = *ptrd; for (int l = 0; l < ndelta_x - 1; ++l) *(++ptrd) = val; } } break; default: // Dirichlet if (delta_x <= -width() || delta_x >= width()) return fill((T)0); if (delta_x < 0) cimg_forYZC(*this, y, z, c) { std::memmove(data(0, y, z, c), data(-delta_x, y, z, c), (_width + delta_x) * sizeof(T)); std::memset(data(_width + delta_x, y, z, c), 0, -delta_x * sizeof(T)); } else cimg_forYZC(*this, y, z, c) { std::memmove(data(delta_x, y, z, c), data(0, y, z, c), (_width - delta_x) * sizeof(T)); std::memset(data(0, y, z, c), 0, delta_x * sizeof(T)); } } if (delta_y) // Shift along Y-axis switch (boundary_conditions) { case 2: { // Periodic const int ml = cimg::mod(-delta_y, height()), ndelta_y = (ml <= height() / 2) ? ml : (ml - height()); if (!ndelta_y) return *this; CImg buf(width(), cimg::abs(ndelta_y)); if (ndelta_y > 0) cimg_forZC(*this, z, c) { std::memcpy(buf, data(0, 0, z, c), _width * ndelta_y * sizeof(T)); std::memmove( data(0, 0, z, c), data(0, ndelta_y, z, c), _width * (_height - ndelta_y) * sizeof(T)); std::memcpy(data(0, _height - ndelta_y, z, c), buf, _width * ndelta_y * sizeof(T)); } else cimg_forZC(*this, z, c) { std::memcpy(buf, data(0, _height + ndelta_y, z, c), -ndelta_y * _width * sizeof(T)); std::memmove( data(0, -ndelta_y, z, c), data(0, 0, z, c), _width * (_height + ndelta_y) * sizeof(T)); std::memcpy(data(0, 0, z, c), buf, -ndelta_y * _width * sizeof(T)); } } break; case 1: // Neumann if (delta_y < 0) { const int ndelta_y = (-delta_y >= height()) ? height() - 1 : -delta_y; if (!ndelta_y) return *this; cimg_forZC(*this, z, c) { std::memmove( data(0, 0, z, c), data(0, ndelta_y, z, c), _width * (_height - ndelta_y) * sizeof(T)); T *ptrd = data(0, _height - ndelta_y, z, c), *ptrs = data(0, _height - 1, z, c); for (int l = 0; l < ndelta_y - 1; ++l) { std::memcpy(ptrd, ptrs, _width * sizeof(T)); ptrd += _width; } } } else { const int ndelta_y = (delta_y >= height()) ? height() - 1 : delta_y; if (!ndelta_y) return *this; cimg_forZC(*this, z, c) { std::memmove( data(0, ndelta_y, z, c), data(0, 0, z, c), _width * (_height - ndelta_y) * sizeof(T)); T *ptrd = data(0, 1, z, c), *ptrs = data(0, 0, z, c); for (int l = 0; l < ndelta_y - 1; ++l) { std::memcpy(ptrd, ptrs, _width * sizeof(T)); ptrd += _width; } } } break; default: // Dirichlet if (delta_y <= -height() || delta_y >= height()) return fill((T)0); if (delta_y < 0) cimg_forZC(*this, z, c) { std::memmove( data(0, 0, z, c), data(0, -delta_y, z, c), _width * (_height + delta_y) * sizeof(T)); std::memset(data(0, _height + delta_y, z, c), 0, -delta_y * _width * sizeof(T)); } else cimg_forZC(*this, z, c) { std::memmove( data(0, delta_y, z, c), data(0, 0, z, c), _width * (_height - delta_y) * sizeof(T)); std::memset(data(0, 0, z, c), 0, delta_y * _width * sizeof(T)); } } if (delta_z) // Shift along Z-axis switch (boundary_conditions) { case 2: { // Periodic const int ml = cimg::mod(-delta_z, depth()), ndelta_z = (ml <= depth() / 2) ? ml : (ml - depth()); if (!ndelta_z) return *this; CImg buf(width(), height(), cimg::abs(ndelta_z)); if (ndelta_z > 0) cimg_forC(*this, c) { std::memcpy( buf, data(0, 0, 0, c), _width * _height * ndelta_z * sizeof(T)); std::memmove(data(0, 0, 0, c), data(0, 0, ndelta_z, c), _width * _height * (_depth - ndelta_z) * sizeof(T)); std::memcpy( data(0, 0, _depth - ndelta_z, c), buf, _width * _height * ndelta_z * sizeof(T)); } else cimg_forC(*this, c) { std::memcpy( buf, data(0, 0, _depth + ndelta_z, c), -ndelta_z * _width * _height * sizeof(T)); std::memmove(data(0, 0, -ndelta_z, c), data(0, 0, 0, c), _width * _height * (_depth + ndelta_z) * sizeof(T)); std::memcpy( data(0, 0, 0, c), buf, -ndelta_z * _width * _height * sizeof(T)); } } break; case 1: // Neumann if (delta_z < 0) { const int ndelta_z = (-delta_z >= depth()) ? depth() - 1 : -delta_z; if (!ndelta_z) return *this; cimg_forC(*this, c) { std::memmove(data(0, 0, 0, c), data(0, 0, ndelta_z, c), _width * _height * (_depth - ndelta_z) * sizeof(T)); T *ptrd = data(0, 0, _depth - ndelta_z, c), *ptrs = data(0, 0, _depth - 1, c); for (int l = 0; l < ndelta_z - 1; ++l) { std::memcpy(ptrd, ptrs, _width * _height * sizeof(T)); ptrd += (ulongT)_width * _height; } } } else { const int ndelta_z = (delta_z >= depth()) ? depth() - 1 : delta_z; if (!ndelta_z) return *this; cimg_forC(*this, c) { std::memmove(data(0, 0, ndelta_z, c), data(0, 0, 0, c), _width * _height * (_depth - ndelta_z) * sizeof(T)); T *ptrd = data(0, 0, 1, c), *ptrs = data(0, 0, 0, c); for (int l = 0; l < ndelta_z - 1; ++l) { std::memcpy(ptrd, ptrs, _width * _height * sizeof(T)); ptrd += (ulongT)_width * _height; } } } break; default: // Dirichlet if (delta_z <= -depth() || delta_z >= depth()) return fill((T)0); if (delta_z < 0) cimg_forC(*this, c) { std::memmove(data(0, 0, 0, c), data(0, 0, -delta_z, c), _width * _height * (_depth + delta_z) * sizeof(T)); std::memset( data(0, 0, _depth + delta_z, c), 0, _width * _height * (-delta_z) * sizeof(T)); } else cimg_forC(*this, c) { std::memmove(data(0, 0, delta_z, c), data(0, 0, 0, c), _width * _height * (_depth - delta_z) * sizeof(T)); std::memset(data(0, 0, 0, c), 0, delta_z * _width * _height * sizeof(T)); } } if (delta_c) // Shift along C-axis switch (boundary_conditions) { case 2: { // Periodic const int ml = cimg::mod(-delta_c, spectrum()), ndelta_c = (ml <= spectrum() / 2) ? ml : (ml - spectrum()); if (!ndelta_c) return *this; CImg buf(width(), height(), depth(), cimg::abs(ndelta_c)); if (ndelta_c > 0) { std::memcpy( buf, _data, _width * _height * _depth * ndelta_c * sizeof(T)); std::memmove(_data, data(0, 0, 0, ndelta_c), _width * _height * _depth * (_spectrum - ndelta_c) * sizeof(T)); std::memcpy( data(0, 0, 0, _spectrum - ndelta_c), buf, _width * _height * _depth * ndelta_c * sizeof(T)); } else { std::memcpy( buf, data(0, 0, 0, _spectrum + ndelta_c), -ndelta_c * _width * _height * _depth * sizeof(T)); std::memmove(data(0, 0, 0, -ndelta_c), _data, _width * _height * _depth * (_spectrum + ndelta_c) * sizeof(T)); std::memcpy( _data, buf, -ndelta_c * _width * _height * _depth * sizeof(T)); } } break; case 1: // Neumann if (delta_c < 0) { const int ndelta_c = (-delta_c >= spectrum()) ? spectrum() - 1 : -delta_c; if (!ndelta_c) return *this; std::memmove(_data, data(0, 0, 0, ndelta_c), _width * _height * _depth * (_spectrum - ndelta_c) * sizeof(T)); T *ptrd = data(0, 0, 0, _spectrum - ndelta_c), *ptrs = data(0, 0, 0, _spectrum - 1); for (int l = 0; l < ndelta_c - 1; ++l) { std::memcpy(ptrd, ptrs, _width * _height * _depth * sizeof(T)); ptrd += (ulongT)_width * _height * _depth; } } else { const int ndelta_c = (delta_c >= spectrum()) ? spectrum() - 1 : delta_c; if (!ndelta_c) return *this; std::memmove(data(0, 0, 0, ndelta_c), _data, _width * _height * _depth * (_spectrum - ndelta_c) * sizeof(T)); T* ptrd = data(0, 0, 0, 1); for (int l = 0; l < ndelta_c - 1; ++l) { std::memcpy(ptrd, _data, _width * _height * _depth * sizeof(T)); ptrd += (ulongT)_width * _height * _depth; } } break; default: // Dirichlet if (delta_c <= -spectrum() || delta_c >= spectrum()) return fill((T)0); if (delta_c < 0) { std::memmove(_data, data(0, 0, 0, -delta_c), _width * _height * _depth * (_spectrum + delta_c) * sizeof(T)); std::memset( data(0, 0, 0, _spectrum + delta_c), 0, _width * _height * _depth * (-delta_c) * sizeof(T)); } else { std::memmove(data(0, 0, 0, delta_c), _data, _width * _height * _depth * (_spectrum - delta_c) * sizeof(T)); std::memset( _data, 0, delta_c * _width * _height * _depth * sizeof(T)); } } return *this; } //! Shift image content \newinstance. CImg get_shift(const int delta_x, const int delta_y = 0, const int delta_z = 0, const int delta_c = 0, const unsigned int boundary_conditions = 0) const { return (+*this).shift(delta_x, delta_y, delta_z, delta_c, boundary_conditions); } //! Permute axes order. /** \param axes_order Axes permutations, as a C-string of 4 characters. This function permutes image content regarding the specified axes permutation. **/ CImg& permute_axes(const char* const axes_order) { return get_permute_axes(axes_order).move_to(*this); } //! Permute axes order \newinstance. CImg get_permute_axes(const char* const axes_order) const { const T foo = (T)0; return _permute_axes(axes_order, foo); } template CImg _permute_axes(const char* const axes_order, const t&) const { if (is_empty() || !axes_order) return CImg(*this, false); CImg res; const T* ptrs = _data; unsigned char s_code[4] = {0, 1, 2, 3}, n_code[4] = {0}; for (unsigned int l = 0; axes_order[l]; ++l) { int c = cimg::lowercase(axes_order[l]); if (l >= 4 || (c != 'x' && c != 'y' && c != 'z' && c != 'c')) { *s_code = 4; break; } else { ++n_code[c %= 4]; s_code[l] = c; } } if (*axes_order && *s_code < 4 && *n_code <= 1 && n_code[1] <= 1 && n_code[2] <= 1 && n_code[3] <= 1) { const unsigned int code = (s_code[0] << 12) | (s_code[1] << 8) | (s_code[2] << 4) | (s_code[3]); ulongT wh, whd; switch (code) { case 0x0123: // xyzc return +*this; case 0x0132: // xycz res.assign(_width, _height, _spectrum, _depth); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(x, y, c, z, wh, whd) = (t) * (ptrs++); break; case 0x0213: // xzyc res.assign(_width, _depth, _height, _spectrum); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(x, z, y, c, wh, whd) = (t) * (ptrs++); break; case 0x0231: // xzcy res.assign(_width, _depth, _spectrum, _height); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(x, z, c, y, wh, whd) = (t) * (ptrs++); break; case 0x0312: // xcyz res.assign(_width, _spectrum, _height, _depth); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(x, c, y, z, wh, whd) = (t) * (ptrs++); break; case 0x0321: // xczy res.assign(_width, _spectrum, _depth, _height); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(x, c, z, y, wh, whd) = (t) * (ptrs++); break; case 0x1023: // yxzc res.assign(_height, _width, _depth, _spectrum); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(y, x, z, c, wh, whd) = (t) * (ptrs++); break; case 0x1032: // yxcz res.assign(_height, _width, _spectrum, _depth); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(y, x, c, z, wh, whd) = (t) * (ptrs++); break; case 0x1203: // yzxc res.assign(_height, _depth, _width, _spectrum); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(y, z, x, c, wh, whd) = (t) * (ptrs++); break; case 0x1230: // yzcx res.assign(_height, _depth, _spectrum, _width); switch (_width) { case 1: { t* ptr_r = res.data(0, 0, 0, 0); for (unsigned int siz = _height * _depth * _spectrum; siz; --siz) { *(ptr_r++) = (t) * (ptrs++); } } break; case 2: { t *ptr_r = res.data(0, 0, 0, 0), *ptr_g = res.data(0, 0, 0, 1); for (unsigned int siz = _height * _depth * _spectrum; siz; --siz) { *(ptr_r++) = (t)ptrs[0]; *(ptr_g++) = (t)ptrs[1]; ptrs += 2; } } break; case 3: { // Optimization for the classical conversion // from interleaved RGB to planar RGB t *ptr_r = res.data(0, 0, 0, 0), *ptr_g = res.data(0, 0, 0, 1), *ptr_b = res.data(0, 0, 0, 2); for (unsigned int siz = _height * _depth * _spectrum; siz; --siz) { *(ptr_r++) = (t)ptrs[0]; *(ptr_g++) = (t)ptrs[1]; *(ptr_b++) = (t)ptrs[2]; ptrs += 3; } } break; case 4: { // Optimization for the classical conversion // from interleaved RGBA to planar RGBA t *ptr_r = res.data(0, 0, 0, 0), *ptr_g = res.data(0, 0, 0, 1), *ptr_b = res.data(0, 0, 0, 2), *ptr_a = res.data(0, 0, 0, 3); for (unsigned int siz = _height * _depth * _spectrum; siz; --siz) { *(ptr_r++) = (t)ptrs[0]; *(ptr_g++) = (t)ptrs[1]; *(ptr_b++) = (t)ptrs[2]; *(ptr_a++) = (t)ptrs[3]; ptrs += 4; } } break; default: { wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(y, z, c, x, wh, whd) = *(ptrs++); return res; } } break; case 0x1302: // ycxz res.assign(_height, _spectrum, _width, _depth); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(y, c, x, z, wh, whd) = (t) * (ptrs++); break; case 0x1320: // yczx res.assign(_height, _spectrum, _depth, _width); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(y, c, z, x, wh, whd) = (t) * (ptrs++); break; case 0x2013: // zxyc res.assign(_depth, _width, _height, _spectrum); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(z, x, y, c, wh, whd) = (t) * (ptrs++); break; case 0x2031: // zxcy res.assign(_depth, _width, _spectrum, _height); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(z, x, c, y, wh, whd) = (t) * (ptrs++); break; case 0x2103: // zyxc res.assign(_depth, _height, _width, _spectrum); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(z, y, x, c, wh, whd) = (t) * (ptrs++); break; case 0x2130: // zycx res.assign(_depth, _height, _spectrum, _width); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(z, y, c, x, wh, whd) = (t) * (ptrs++); break; case 0x2301: // zcxy res.assign(_depth, _spectrum, _width, _height); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(z, c, x, y, wh, whd) = (t) * (ptrs++); break; case 0x2310: // zcyx res.assign(_depth, _spectrum, _height, _width); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(z, c, y, x, wh, whd) = (t) * (ptrs++); break; case 0x3012: // cxyz res.assign(_spectrum, _width, _height, _depth); switch (_spectrum) { case 1: { const T* ptr_r = data(0, 0, 0, 0); t* ptrd = res._data; for (ulongT siz = (ulongT)_width * _height * _depth; siz; --siz) *(ptrd++) = (t) * (ptr_r++); } break; case 2: { const T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1); t* ptrd = res._data; for (ulongT siz = (ulongT)_width * _height * _depth; siz; --siz) { ptrd[0] = (t) * (ptr_r++); ptrd[1] = (t) * (ptr_g++); ptrd += 2; } } break; case 3: { // Optimization for the classical conversion // from planar RGB to interleaved RGB const T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2); t* ptrd = res._data; for (ulongT siz = (ulongT)_width * _height * _depth; siz; --siz) { ptrd[0] = (t) * (ptr_r++); ptrd[1] = (t) * (ptr_g++); ptrd[2] = (t) * (ptr_b++); ptrd += 3; } } break; case 4: { // Optimization for the classical conversion // from planar RGBA to interleaved RGBA const T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2), *ptr_a = data(0, 0, 0, 3); t* ptrd = res._data; for (ulongT siz = (ulongT)_width * _height * _depth; siz; --siz) { ptrd[0] = (t) * (ptr_r++); ptrd[1] = (t) * (ptr_g++); ptrd[2] = (t) * (ptr_b++); ptrd[3] = (t) * (ptr_a++); ptrd += 4; } } break; default: { wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(c, x, y, z, wh, whd) = (t) * (ptrs++); } } break; case 0x3021: // cxzy res.assign(_spectrum, _width, _depth, _height); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(c, x, z, y, wh, whd) = (t) * (ptrs++); break; case 0x3102: // cyxz res.assign(_spectrum, _height, _width, _depth); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(c, y, x, z, wh, whd) = (t) * (ptrs++); break; case 0x3120: // cyzx res.assign(_spectrum, _height, _depth, _width); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(c, y, z, x, wh, whd) = (t) * (ptrs++); break; case 0x3201: // czxy res.assign(_spectrum, _depth, _width, _height); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(c, z, x, y, wh, whd) = (t) * (ptrs++); break; case 0x3210: // czyx res.assign(_spectrum, _depth, _height, _width); wh = (ulongT)res._width * res._height; whd = wh * res._depth; cimg_forXYZC(*this, x, y, z, c) res(c, z, y, x, wh, whd) = (t) * (ptrs++); break; } } if (!res) throw CImgArgumentException( _cimg_instance "permute_axes(): Invalid specified axes order '%s'.", cimg_instance, axes_order); return res; } //! Unroll pixel values along specified axis. /** \param axis Unroll axis (can be \c 'x', \c 'y', \c 'z' or c 'c'). **/ CImg& unroll(const char axis) { const unsigned int siz = (unsigned int)size(); if (siz) switch (cimg::lowercase(axis)) { case 'x': _width = siz; _height = _depth = _spectrum = 1; break; case 'y': _height = siz; _width = _depth = _spectrum = 1; break; case 'z': _depth = siz; _width = _height = _spectrum = 1; break; default: _spectrum = siz; _width = _height = _depth = 1; } return *this; } //! Unroll pixel values along specified axis \newinstance. CImg get_unroll(const char axis) const { return (+*this).unroll(axis); } //! Rotate image with arbitrary angle. /** \param angle Rotation angle, in degrees. \param interpolation Type of interpolation. Can be { 0=nearest | 1=linear | 2=cubic }. \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. \note The size of the image is modified. **/ CImg& rotate(const float angle, const unsigned int interpolation = 1, const unsigned int boundary_conditions = 0) { const float nangle = cimg::mod(angle, 360.f); if (nangle == 0.f) return *this; return get_rotate(nangle, interpolation, boundary_conditions) .move_to(*this); } //! Rotate image with arbitrary angle \newinstance. CImg get_rotate(const float angle, const unsigned int interpolation = 1, const unsigned int boundary_conditions = 0) const { if (is_empty()) return *this; CImg res; const float nangle = cimg::mod(angle, 360.f); if (boundary_conditions != 1 && cimg::mod(nangle, 90.f) == 0) { // Optimized version for orthogonal angles const int wm1 = width() - 1, hm1 = height() - 1; const int iangle = (int)nangle / 90; switch (iangle) { case 1: { // 90 deg res.assign(_height, _width, _depth, _spectrum); T* ptrd = res._data; cimg_forXYZC(res, x, y, z, c) * (ptrd++) = (*this)(y, hm1 - x, z, c); } break; case 2: { // 180 deg res.assign(_width, _height, _depth, _spectrum); T* ptrd = res._data; cimg_forXYZC(res, x, y, z, c) * (ptrd++) = (*this)(wm1 - x, hm1 - y, z, c); } break; case 3: { // 270 deg res.assign(_height, _width, _depth, _spectrum); T* ptrd = res._data; cimg_forXYZC(res, x, y, z, c) * (ptrd++) = (*this)(wm1 - y, x, z, c); } break; default: // 0 deg return *this; } } else { // Generic angle const float rad = (float)(nangle * cimg::PI / 180.), ca = (float)std::cos(rad), sa = (float)std::sin(rad), ux = cimg::abs((_width - 1) * ca), uy = cimg::abs((_width - 1) * sa), vx = cimg::abs((_height - 1) * sa), vy = cimg::abs((_height - 1) * ca), w2 = 0.5f * (_width - 1), h2 = 0.5f * (_height - 1); res.assign((int)cimg::round(1 + ux + vx), (int)cimg::round(1 + uy + vy), _depth, _spectrum); const float rw2 = 0.5f * (res._width - 1), rh2 = 0.5f * (res._height - 1); _rotate(res, nangle, interpolation, boundary_conditions, w2, h2, rw2, rh2); } return res; } //! Rotate image with arbitrary angle, around a center point. /** \param angle Rotation angle, in degrees. \param cx X-coordinate of the rotation center. \param cy Y-coordinate of the rotation center. \param interpolation Type of interpolation, { 0=nearest | 1=linear | 2=cubic | 3=mirror }. \param boundary_conditions Boundary conditions, { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. **/ CImg& rotate(const float angle, const float cx, const float cy, const unsigned int interpolation, const unsigned int boundary_conditions = 0) { return get_rotate(angle, cx, cy, interpolation, boundary_conditions) .move_to(*this); } //! Rotate image with arbitrary angle, around a center point \newinstance. CImg get_rotate(const float angle, const float cx, const float cy, const unsigned int interpolation, const unsigned int boundary_conditions = 0) const { if (is_empty()) return *this; CImg res(_width, _height, _depth, _spectrum); _rotate(res, angle, interpolation, boundary_conditions, cx, cy, cx, cy); return res; } // [internal] Perform 2D rotation with arbitrary angle. void _rotate(CImg& res, const float angle, const unsigned int interpolation, const unsigned int boundary_conditions, const float w2, const float h2, const float rw2, const float rh2) const { const float rad = (float)(angle * cimg::PI / 180.), ca = (float)std::cos(rad), sa = (float)std::sin(rad); switch (boundary_conditions) { case 3: { // Mirror switch (interpolation) { case 2: { // Cubic interpolation const float ww = 2.f * width(), hh = 2.f * height(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2, mx = cimg::mod(w2 + xc * ca + yc * sa, ww), my = cimg::mod(h2 - xc * sa + yc * ca, hh); res(x, y, z, c) = _cubic_atXY_c(mx < width() ? mx : ww - mx - 1, my < height() ? my : hh - my - 1, z, c); } } break; case 1: { // Linear interpolation const float ww = 2.f * width(), hh = 2.f * height(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2, mx = cimg::mod(w2 + xc * ca + yc * sa, ww), my = cimg::mod(h2 - xc * sa + yc * ca, hh); res(x, y, z, c) = (T)_linear_atXY(mx < width() ? mx : ww - mx - 1, my < height() ? my : hh - my - 1, z, c); } } break; default: { // Nearest-neighbor interpolation const int ww = 2 * width(), hh = 2 * height(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2, mx = cimg::mod( (int)cimg::round(w2 + xc * ca + yc * sa), ww), my = cimg::mod( (int)cimg::round(h2 - xc * sa + yc * ca), hh); res(x, y, z, c) = (*this)(mx < width() ? mx : ww - mx - 1, my < height() ? my : hh - my - 1, z, c); } } } } break; case 2: // Periodic switch (interpolation) { case 2: { // Cubic interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2; res(x, y, z, c) = _cubic_atXY_pc(w2 + xc * ca + yc * sa, h2 - xc * sa + yc * ca, z, c); } } break; case 1: { // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2; res(x, y, z, c) = (T)_linear_atXY_p(w2 + xc * ca + yc * sa, h2 - xc * sa + yc * ca, z, c); } } break; default: { // Nearest-neighbor interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2; res(x, y, z, c) = (*this)(cimg::mod((int)cimg::round(w2 + xc * ca + yc * sa), (float)width()), cimg::mod((int)cimg::round(h2 - xc * sa + yc * ca), (float)height()), z, c); } } } break; case 1: // Neumann switch (interpolation) { case 2: { // Cubic interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2; res(x, y, z, c) = _cubic_atXY_c(w2 + xc * ca + yc * sa, h2 - xc * sa + yc * ca, z, c); } } break; case 1: { // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2; res(x, y, z, c) = (T)_linear_atXY(w2 + xc * ca + yc * sa, h2 - xc * sa + yc * ca, z, c); } } break; default: { // Nearest-neighbor interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2; res(x, y, z, c) = _atXY((int)cimg::round(w2 + xc * ca + yc * sa), (int)cimg::round(h2 - xc * sa + yc * ca), z, c); } } } break; default: // Dirichlet switch (interpolation) { case 2: { // Cubic interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2; res(x, y, z, c) = cubic_atXY_c( w2 + xc * ca + yc * sa, h2 - xc * sa + yc * ca, z, c, (T)0); } } break; case 1: { // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2; res(x, y, z, c) = (T)linear_atXY( w2 + xc * ca + yc * sa, h2 - xc * sa + yc * ca, z, c, (T)0); } } break; default: { // Nearest-neighbor interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZC(res,x,y,z,c) { const float xc = x - rw2, yc = y - rh2; res(x, y, z, c) = atXY((int)cimg::round(w2 + xc * ca + yc * sa), (int)cimg::round(h2 - xc * sa + yc * ca), z, c, (T)0); } } } } } //! Rotate volumetric image with arbitrary angle and axis. /** \param u X-coordinate of the 3D rotation axis. \param v Y-coordinate of the 3D rotation axis. \param w Z-coordinate of the 3D rotation axis. \param angle Rotation angle, in degrees. \param interpolation Type of interpolation. Can be { 0=nearest | 1=linear | 2=cubic }. \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. \note Most of the time, size of the image is modified. **/ CImg rotate(const float u, const float v, const float w, const float angle, const unsigned int interpolation, const unsigned int boundary_conditions) { const float nangle = cimg::mod(angle, 360.f); if (nangle == 0.f) return *this; return get_rotate(u, v, w, nangle, interpolation, boundary_conditions) .move_to(*this); } //! Rotate volumetric image with arbitrary angle and axis \newinstance. CImg get_rotate(const float u, const float v, const float w, const float angle, const unsigned int interpolation, const unsigned int boundary_conditions) const { if (is_empty()) return *this; CImg res; const float w1 = _width - 1, h1 = _height - 1, d1 = _depth - 1, w2 = 0.5f * w1, h2 = 0.5f * h1, d2 = 0.5f * d1; CImg R = CImg::rotation_matrix(u, v, w, angle); const CImg X = R * CImg(8, 3, 1, 1, 0.f, w1, w1, 0.f, 0.f, w1, w1, 0.f, 0.f, 0.f, h1, h1, 0.f, 0.f, h1, h1, 0.f, 0.f, 0.f, 0.f, d1, d1, d1, d1); float xm, xM = X.get_shared_row(0).max_min(xm), ym, yM = X.get_shared_row(1).max_min(ym), zm, zM = X.get_shared_row(2).max_min(zm); const int dx = (int)cimg::round(xM - xm), dy = (int)cimg::round(yM - ym), dz = (int)cimg::round(zM - zm); R.transpose(); res.assign(1 + dx, 1 + dy, 1 + dz, _spectrum); const float rw2 = 0.5f * dx, rh2 = 0.5f * dy, rd2 = 0.5f * dz; _rotate(res, R, interpolation, boundary_conditions, w2, h2, d2, rw2, rh2, rd2); return res; } //! Rotate volumetric image with arbitrary angle and axis, around a center //! point. /** \param u X-coordinate of the 3D rotation axis. \param v Y-coordinate of the 3D rotation axis. \param w Z-coordinate of the 3D rotation axis. \param angle Rotation angle, in degrees. \param cx X-coordinate of the rotation center. \param cy Y-coordinate of the rotation center. \param cz Z-coordinate of the rotation center. \param interpolation Type of interpolation. Can be { 0=nearest | 1=linear | 2=cubic | 3=mirror }. \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann | 2=periodic }. \note Most of the time, size of the image is modified. **/ CImg rotate(const float u, const float v, const float w, const float angle, const float cx, const float cy, const float cz, const unsigned int interpolation = 1, const unsigned int boundary_conditions = 0) { const float nangle = cimg::mod(angle, 360.f); if (nangle == 0.f) return *this; return get_rotate(u, v, w, nangle, cx, cy, cz, interpolation, boundary_conditions) .move_to(*this); } //! Rotate volumetric image with arbitrary angle and axis, around a center //! point \newinstance. CImg get_rotate(const float u, const float v, const float w, const float angle, const float cx, const float cy, const float cz, const unsigned int interpolation = 1, const unsigned int boundary_conditions = 0) const { if (is_empty()) return *this; CImg res(_width, _height, _depth, _spectrum); CImg R = CImg::rotation_matrix(u, v, w, -angle); _rotate(res, R, interpolation, boundary_conditions, cx, cy, cz, cx, cy, cz); return res; } // [internal] Perform 3D rotation with arbitrary axis and angle. void _rotate(CImg& res, const CImg& R, const unsigned int interpolation, const unsigned int boundary_conditions, const float w2, const float h2, const float d2, const float rw2, const float rh2, const float rd2) const { switch (boundary_conditions) { case 3: // Mirror switch (interpolation) { case 2: { // Cubic interpolation const float ww = 2.f * width(), hh = 2.f * height(), dd = 2.f * depth(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2, X = cimg::mod((float)(w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc), ww), Y = cimg::mod((float)(h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc), hh), Z = cimg::mod((float)(d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc), dd); cimg_forC(res, c) res(x, y, z, c) = _cubic_atXYZ_c( X < width() ? X : ww - X - 1, Y < height() ? Y : hh - Y - 1, Z < depth() ? Z : dd - Z - z, c); } } break; case 1: { // Linear interpolation const float ww = 2.f * width(), hh = 2.f * height(), dd = 2.f * depth(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2, X = cimg::mod((float)(w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc), ww), Y = cimg::mod((float)(h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc), hh), Z = cimg::mod((float)(d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc), dd); cimg_forC(res, c) res(x, y, z, c) = (T)_linear_atXYZ( X < width() ? X : ww - X - 1, Y < height() ? Y : hh - Y - 1, Z < depth() ? Z : dd - Z - 1, c); } } break; default: { // Nearest-neighbor interpolation const int ww = 2 * width(), hh = 2 * height(), dd = 2 * depth(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2; const int X = cimg::mod( (int)cimg::round(w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc), ww), Y = cimg::mod( (int)cimg::round(h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc), hh), Z = cimg::mod( (int)cimg::round(d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc), dd); cimg_forC(res, c) res(x, y, z, c) = (*this)( X < width() ? X : ww - X - 1, Y < height() ? Y : hh - Y - 1, Z < depth() ? Z : dd - Z - 1, c); } } } break; case 2: // Periodic switch (interpolation) { case 2: { // Cubic interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2, X = w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc, Y = h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc, Z = d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc; cimg_forC(res, c) res(x, y, z, c) = _cubic_atXYZ_pc(X, Y, Z, c); } } break; case 1: { // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2, X = w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc, Y = h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc, Z = d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc; cimg_forC(res, c) res(x, y, z, c) = (T)_linear_atXYZ_p(X, Y, Z, c); } } break; default: { // Nearest-neighbor interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2; const int X = cimg::mod( (int)cimg::round(w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc), width()), Y = cimg::mod( (int)cimg::round(h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc), height()), Z = cimg::mod( (int)cimg::round(d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc), depth()); cimg_forC(res, c) res(x, y, z, c) = (*this)(X, Y, Z, c); } } } break; case 1: // Neumann switch (interpolation) { case 2: { // Cubic interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2, X = w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc, Y = h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc, Z = d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc; cimg_forC(res, c) res(x, y, z, c) = _cubic_atXYZ_c(X, Y, Z, c); } } break; case 1: { // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2, X = w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc, Y = h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc, Z = d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc; cimg_forC(res, c) res(x, y, z, c) = _linear_atXYZ(X, Y, Z, c); } } break; default: { // Nearest-neighbor interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2; const int X = (int)cimg::round(w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc), Y = (int)cimg::round(h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc), Z = (int)cimg::round(d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc); cimg_forC(res, c) res(x, y, z, c) = _atXYZ(X, Y, Z, c); } } } break; default: // Dirichlet switch (interpolation) { case 2: { // Cubic interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2, X = w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc, Y = h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc, Z = d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc; cimg_forC(res, c) res(x, y, z, c) = cubic_atXYZ_c(X, Y, Z, c, (T)0); } } break; case 1: { // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2, X = w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc, Y = h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc, Z = d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc; cimg_forC(res, c) res(x, y, z, c) = linear_atXYZ(X, Y, Z, c, (T)0); } } break; default: { // Nearest-neighbor interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) cimg_forXYZ(res,x,y,z) { const float xc = x - rw2, yc = y - rh2, zc = z - rd2; const int X = (int)cimg::round(w2 + R(0, 0) * xc + R(1, 0) * yc + R(2, 0) * zc), Y = (int)cimg::round(h2 + R(0, 1) * xc + R(1, 1) * yc + R(2, 1) * zc), Z = (int)cimg::round(d2 + R(0, 2) * xc + R(1, 2) * yc + R(2, 2) * zc); cimg_forC(res, c) res(x, y, z, c) = atXYZ(X, Y, Z, c, (T)0); } } } break; } } //! Warp image content by a warping field. /** \param warp Warping field. \param mode Can be { 0=backward-absolute | 1=backward-relative | 2=forward-absolute | 3=foward-relative } \param interpolation Can be { 0=nearest | 1=linear | 2=cubic }. \param boundary_conditions Boundary conditions { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. **/ template CImg& warp(const CImg& p_warp, const unsigned int mode = 0, const unsigned int interpolation = 1, const unsigned int boundary_conditions = 0) { return get_warp(p_warp, mode, interpolation, boundary_conditions) .move_to(*this); } //! Warp image content by a warping field \newinstance template CImg get_warp(const CImg& p_warp, const unsigned int mode = 0, const unsigned int interpolation = 1, const unsigned int boundary_conditions = 0) const { if (is_empty() || !p_warp) return *this; if (mode && !is_sameXYZ(p_warp)) throw CImgArgumentException( _cimg_instance "warp(): Instance and specified relative warping field " "(%u,%u,%u,%u,%p) " "have different XYZ dimensions.", cimg_instance, p_warp._width, p_warp._height, p_warp._depth, p_warp._spectrum, p_warp._data); CImg res(p_warp._width, p_warp._height, p_warp._depth, _spectrum); if (p_warp._spectrum == 1) { // 1D warping if (mode >= 3) { // Forward-relative warp res.fill((T)0); if (interpolation >= 1) // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) res.set_linear_atX( *(ptrs++), x + (float)*(ptrs0++), y, z, c); } else // Nearest-neighbor interpolation cimg_forYZC(res, y, z, c) { const t* ptrs0 = p_warp.data(0, y, z); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) { const int X = x + (int)cimg::round(*(ptrs0++)); if (X >= 0 && X < width()) res(X, y, z, c) = *(ptrs++); } } } else if (mode == 2) { // Forward-absolute warp res.fill((T)0); if (interpolation >= 1) // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) res.set_linear_atX(*(ptrs++), (float)*(ptrs0++), y, z, c); } else // Nearest-neighbor interpolation cimg_forYZC(res, y, z, c) { const t* ptrs0 = p_warp.data(0, y, z); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) { const int X = (int)cimg::round(*(ptrs0++)); if (X >= 0 && X < width()) res(X, y, z, c) = *(ptrs++); } } } else if (mode == 1) { // Backward-relative warp if (interpolation == 2) // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod(x - (float)*(ptrs0++), w2); *(ptrd++) = _cubic_atX_c(mx < width() ? mx : w2 - mx - 1, y, z, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atX_pc(x - (float)*(ptrs0++), y, z, c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atX_c(x - (float)*(ptrs0++), y, z, c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = cubic_atX_c(x - (float)*(ptrs0++), y, z, c, (T)0); } } else if (interpolation == 1) // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod(x - (float)*(ptrs0++), w2); *(ptrd++) = (T)_linear_atX( mx < width() ? mx : w2 - mx - 1, y, z, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atX_p(x - (float)*(ptrs0++), y, z, c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atX(x - (float)*(ptrs0++), y, z, c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)linear_atX(x - (float)*(ptrs0++), y, z, c, (T)0); } } else // Nearest-neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * width(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const int mx = cimg::mod(x - (int)cimg::round(*(ptrs0++)), w2); *(ptrd++) = (*this)(mx < width() ? mx : w2 - mx - 1, y, z, c); } } } break; case 2: // Periodic cimg_forYZC(res, y, z, c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (*this)( cimg::mod(x - (int)cimg::round(*(ptrs0++)), width()), y, z, c); } break; case 1: // Neumann cimg_forYZC(res, y, z, c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _atX( x - (int)cimg::round(*(ptrs0++)), y, z, c); } break; default: // Dirichlet cimg_forYZC(res, y, z, c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = atX(x - (int)cimg::round(*(ptrs0++)), y, z, c, (T)0); } } } else { // Backward-absolute warp if (interpolation == 2) // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod((float)*(ptrs0++), w2); *(ptrd++) = _cubic_atX_c(mx < width() ? mx : w2 - mx - 1, 0, 0, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atX_pc((float)*(ptrs0++), 0, 0, c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atX_c((float)*(ptrs0++), 0, 0, c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = cubic_atX_c((float)*(ptrs0++), 0, 0, c, (T)0); } } else if (interpolation == 1) // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod((float)*(ptrs0++), w2); *(ptrd++) = (T)_linear_atX( mx < width() ? mx : w2 - mx - 1, 0, 0, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atX_p((float)*(ptrs0++), 0, 0, c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atX((float)*(ptrs0++), 0, 0, c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)linear_atX((float)*(ptrs0++), 0, 0, c, (T)0); } } else // Nearest-neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * width(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const int mx = cimg::mod((int)cimg::round(*(ptrs0++)), w2); *(ptrd++) = (*this)(mx < width() ? mx : w2 - mx - 1, 0, 0, c); } } } break; case 2: // Periodic cimg_forYZC(res, y, z, c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (*this)( cimg::mod((int)cimg::round(*(ptrs0++)), width()), 0, 0, c); } break; case 1: // Neumann cimg_forYZC(res, y, z, c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _atX((int)cimg::round(*(ptrs0++)), 0, 0, c); } break; default: // Dirichlet cimg_forYZC(res, y, z, c) { const t* ptrs0 = p_warp.data(0, y, z); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = atX((int)cimg::round(*(ptrs0++)), 0, 0, c, (T)0); } } } } else if (p_warp._spectrum == 2) { // 2D warping if (mode >= 3) { // Forward-relative warp res.fill((T)0); if (interpolation >= 1) // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) res.set_linear_atXY(*(ptrs++), x + (float)*(ptrs0++), y + (float)*(ptrs1++), z, c); } else // Nearest-neighbor interpolation cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) { const int X = x + (int)cimg::round(*(ptrs0++)), Y = y + (int)cimg::round(*(ptrs1++)); if (X >= 0 && X < width() && Y >= 0 && Y < height()) res(X, Y, z, c) = *(ptrs++); } } } else if (mode == 2) { // Forward-absolute warp res.fill((T)0); if (interpolation >= 1) // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) res.set_linear_atXY( *(ptrs++), (float)*(ptrs0++), (float)*(ptrs1++), z, c); } else // Nearest-neighbor interpolation cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) { const int X = (int)cimg::round(*(ptrs0++)), Y = (int)cimg::round(*(ptrs1++)); if (X >= 0 && X < width() && Y >= 0 && Y < height()) res(X, Y, z, c) = *(ptrs++); } } } else if (mode == 1) { // Backward-relative warp if (interpolation == 2) // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(), h2 = 2.f * height(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod(x - (float)*(ptrs0++), w2), my = cimg::mod(y - (float)*(ptrs1++), h2); *(ptrd++) = _cubic_atXY_c(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, z, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atXY_pc( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z, c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atXY_c( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z, c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = cubic_atXY_c( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z, c, (T)0); } } else if (interpolation == 1) // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(), h2 = 2.f * height(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod(x - (float)*(ptrs0++), w2), my = cimg::mod(y - (float)*(ptrs1++), h2); *(ptrd++) = (T)_linear_atXY( mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, z, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atXY_p( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z, c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atXY( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z, c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)linear_atXY( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z, c, (T)0); } } else // Nearest-neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * width(), h2 = 2 * height(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const int mx = cimg::mod(x - (int)cimg::round(*(ptrs0++)), w2), my = cimg::mod(y - (int)cimg::round(*(ptrs1++)), h2); *(ptrd++) = (*this)(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, z, c); } } } break; case 2: // Periodic cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (*this)( cimg::mod(x - (int)cimg::round(*(ptrs0++)), width()), cimg::mod(y - (int)cimg::round(*(ptrs1++)), height()), z, c); } break; case 1: // Neumann cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _atXY( x - (int)cimg::round(*(ptrs0++)), y - (int)cimg::round(*(ptrs1++)), z, c); } break; default: // Dirichlet cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = atXY(x - (int)cimg::round(*(ptrs0++)), y - (int)cimg::round(*(ptrs1++)), z, c, (T)0); } } } else { // Backward-absolute warp if (interpolation == 2) // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(), h2 = 2.f * height(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod((float)*(ptrs0++), w2), my = cimg::mod((float)*(ptrs1++), h2); *(ptrd++) = _cubic_atXY_c(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, 0, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atXY_pc( (float)*(ptrs0++), (float)*(ptrs1++), 0, c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atXY_c((float)*(ptrs0++), (float)*(ptrs1++), 0, c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = cubic_atXY_c( (float)*(ptrs0++), (float)*(ptrs1++), 0, c, (T)0); } } else if (interpolation == 1) // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(), h2 = 2.f * height(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod((float)*(ptrs0++), w2), my = cimg::mod((float)*(ptrs1++), h2); *(ptrd++) = (T)_linear_atXY( mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, 0, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atXY_p( (float)*(ptrs0++), (float)*(ptrs1++), 0, c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atXY( (float)*(ptrs0++), (float)*(ptrs1++), 0, c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)linear_atXY( (float)*(ptrs0++), (float)*(ptrs1++), 0, c, (T)0); } } else // Nearest-neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * width(), h2 = 2 * height(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const int mx = cimg::mod((int)cimg::round(*(ptrs0++)), w2), my = cimg::mod((int)cimg::round(*(ptrs1++)), h2); *(ptrd++) = (*this)(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, 0, c); } } } break; case 2: // Periodic cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (*this)( cimg::mod((int)cimg::round(*(ptrs0++)), width()), cimg::mod((int)cimg::round(*(ptrs1++)), height()), 0, c); } break; case 1: // Neumann cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _atXY((int)cimg::round(*(ptrs0++)), (int)cimg::round(*(ptrs1++)), 0, c); } break; default: // Dirichlet cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = atXY( (int)cimg::round(*(ptrs0++)), (int)cimg::round(*(ptrs1++)), 0, c, (T)0); } } } } else { // 3D warping if (mode >= 3) { // Forward-relative warp res.fill((T)0); if (interpolation >= 1) // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) res.set_linear_atXYZ( *(ptrs++), x + (float)*(ptrs0++), y + (float)*(ptrs1++), z + (float)*(ptrs2++), c); } else // Nearest-neighbor interpolation cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) { const int X = x + (int)cimg::round(*(ptrs0++)), Y = y + (int)cimg::round(*(ptrs1++)), Z = z + (int)cimg::round(*(ptrs2++)); if (X >= 0 && X < width() && Y >= 0 && Y < height() && Z >= 0 && Z < depth()) res(X, Y, Z, c) = *(ptrs++); } } } else if (mode == 2) { // Forward-absolute warp res.fill((T)0); if (interpolation >= 1) // Linear interpolation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) res.set_linear_atXYZ( *(ptrs++), (float)*(ptrs0++), (float)*(ptrs1++), (float)*(ptrs2++), c); } else // Nearest-neighbor interpolation cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); const T* ptrs = data(0, y, z, c); cimg_forX(res, x) { const int X = (int)cimg::round(*(ptrs0++)), Y = (int)cimg::round(*(ptrs1++)), Z = (int)cimg::round(*(ptrs2++)); if (X >= 0 && X < width() && Y >= 0 && Y < height() && Z >= 0 && Z < depth()) res(X, Y, Z, c) = *(ptrs++); } } } else if (mode == 1) { // Backward-relative warp if (interpolation == 2) // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(), h2 = 2.f * height(), d2 = 2.f * depth(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod(x - (float)*(ptrs0++), w2), my = cimg::mod(y - (float)*(ptrs1++), h2), mz = cimg::mod(z - (float)*(ptrs2++), d2); *(ptrd++) = _cubic_atXYZ_c(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, mz < depth() ? mz : d2 - mz - 1, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atXYZ_pc( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z - (float)*(ptrs2++), c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atXYZ_c( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z - (float)*(ptrs2++), c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = cubic_atXYZ_c( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z - (float)*(ptrs2++), c, (T)0); } } else if (interpolation == 1) // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(), h2 = 2.f * height(), d2 = 2.f * depth(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod(x - (float)*(ptrs0++), w2), my = cimg::mod(y - (float)*(ptrs1++), h2), mz = cimg::mod(z - (float)*(ptrs2++), d2); *(ptrd++) = (T)_linear_atXYZ(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, mz < depth() ? mz : d2 - mz - 1, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atXYZ_p( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z - (float)*(ptrs2++), c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atXYZ( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z - (float)*(ptrs2++), c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)linear_atXYZ( x - (float)*(ptrs0++), y - (float)*(ptrs1++), z - (float)*(ptrs2++), c, (T)0); } } else // Nearest neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * width(), h2 = 2 * height(), d2 = 2 * depth(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const int mx = cimg::mod(x - (int)cimg::round(*(ptrs0++)), w2), my = cimg::mod(y - (int)cimg::round(*(ptrs1++)), h2), mz = cimg::mod(z - (int)cimg::round(*(ptrs2++)), d2); *(ptrd++) = (*this)(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, mz < depth() ? mz : d2 - mz - 1, c); } } } break; case 2: // Periodic cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (*this)( cimg::mod(x - (int)cimg::round(*(ptrs0++)), width()), cimg::mod(y - (int)cimg::round(*(ptrs1++)), height()), cimg::mod(z - (int)cimg::round(*(ptrs2++)), depth()), c); } break; case 1: // Neumann cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _atXYZ(x - (int)cimg::round(*(ptrs0++)), y - (int)cimg::round(*(ptrs1++)), z - (int)cimg::round(*(ptrs2++)), c); } break; default: // Dirichlet cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = atXYZ( x - (int)cimg::round(*(ptrs0++)), y - (int)cimg::round(*(ptrs1++)), z - (int)cimg::round(*(ptrs2++)), c, (T)0); } } } else { // Backward-absolute warp if (interpolation == 2) // Cubic interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(), h2 = 2.f * height(), d2 = 2.f * depth(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod((float)*(ptrs0++), w2), my = cimg::mod((float)*(ptrs1++), h2), mz = cimg::mod((float)*(ptrs2++), d2); *(ptrd++) = _cubic_atXYZ_c(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, mz < depth() ? mz : d2 - mz - 1, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atXYZ_pc((float)*(ptrs0++), (float)*(ptrs1++), (float)*(ptrs2++), c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _cubic_atXYZ_c((float)*(ptrs0++), (float)*(ptrs1++), (float)*(ptrs2++), c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = cubic_atXYZ_c((float)*(ptrs0++), (float)*(ptrs1++), (float)*(ptrs2++), c, (T)0); } } else if (interpolation == 1) // Linear interpolation switch (boundary_conditions) { case 3: { // Mirror const float w2 = 2.f * width(), h2 = 2.f * height(), d2 = 2.f * depth(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const float mx = cimg::mod((float)*(ptrs0++), w2), my = cimg::mod((float)*(ptrs1++), h2), mz = cimg::mod((float)*(ptrs2++), d2); *(ptrd++) = (T)_linear_atXYZ(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, mz < depth() ? mz : d2 - mz - 1, c); } } } break; case 2: // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atXYZ_p((float)*(ptrs0++), (float)*(ptrs1++), (float)*(ptrs2++), c); } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)_linear_atXYZ((float)*(ptrs0++), (float)*(ptrs1++), (float)*(ptrs2++), c); } break; default: // Dirichlet cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (T)linear_atXYZ((float)*(ptrs0++), (float)*(ptrs1++), (float)*(ptrs2++), c, (T)0); } } else // Nearest-neighbor interpolation switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * width(), h2 = 2 * height(), d2 = 2 * depth(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) cimg_forYZC(res,y,z,c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) { const int mx = cimg::mod((int)cimg::round(*(ptrs0++)), w2), my = cimg::mod((int)cimg::round(*(ptrs1++)), h2), mz = cimg::mod((int)cimg::round(*(ptrs2++)), d2); *(ptrd++) = (*this)(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, mz < depth() ? mz : d2 - mz - 1, c); } } } break; case 2: // Periodic cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = (*this)( cimg::mod((int)cimg::round(*(ptrs0++)), width()), cimg::mod((int)cimg::round(*(ptrs1++)), height()), cimg::mod((int)cimg::round(*(ptrs2++)), depth()), c); } break; case 1: // Neumann cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = _atXYZ((int)cimg::round(*(ptrs0++)), (int)cimg::round(*(ptrs1++)), (int)cimg::round(*(ptrs2++)), c); } break; default: // Dirichlet cimg_forYZC(res, y, z, c) { const t *ptrs0 = p_warp.data(0, y, z, 0), *ptrs1 = p_warp.data(0, y, z, 1), *ptrs2 = p_warp.data(0, y, z, 2); T* ptrd = res.data(0, y, z, c); cimg_forX(res, x) * (ptrd++) = atXYZ( (int)cimg::round(*(ptrs0++)), (int)cimg::round(*(ptrs1++)), (int)cimg::round(*(ptrs2++)), c, (T)0); } } } } return res; } //! Generate a 2D representation of a 3D image, with XY,XZ and YZ views. /** \param x0 X-coordinate of the projection point. \param y0 Y-coordinate of the projection point. \param z0 Z-coordinate of the projection point. **/ CImg get_projections2d(const unsigned int x0, const unsigned int y0, const unsigned int z0) const { if (is_empty() || _depth < 2) return +*this; const unsigned int _x0 = (x0 >= _width) ? _width - 1 : x0, _y0 = (y0 >= _height) ? _height - 1 : y0, _z0 = (z0 >= _depth) ? _depth - 1 : z0; const CImg img_xy = get_crop(0, 0, _z0, 0, _width - 1, _height - 1, _z0, _spectrum - 1), img_zy = get_crop(_x0, 0, 0, 0, _x0, _height - 1, _depth - 1, _spectrum - 1) .permute_axes("xzyc") .resize(_depth, _height, 1, -100, -1), img_xz = get_crop(0, _y0, 0, 0, _width - 1, _y0, _depth - 1, _spectrum - 1) .resize(_width, _depth, 1, -100, -1); return CImg(_width + _depth, _height + _depth, 1, _spectrum, cimg::min(img_xy.min(), img_zy.min(), img_xz.min())) .draw_image(0, 0, img_xy) .draw_image(img_xy._width, 0, img_zy) .draw_image(0, img_xy._height, img_xz); } //! Construct a 2D representation of a 3D image, with XY,XZ and YZ views //! \inplace. CImg& projections2d(const unsigned int x0, const unsigned int y0, const unsigned int z0) { if (_depth < 2) return *this; return get_projections2d(x0, y0, z0).move_to(*this); } //! Crop image region. /** \param x0 = X-coordinate of the upper-left crop rectangle corner. \param y0 = Y-coordinate of the upper-left crop rectangle corner. \param z0 = Z-coordinate of the upper-left crop rectangle corner. \param c0 = C-coordinate of the upper-left crop rectangle corner. \param x1 = X-coordinate of the lower-right crop rectangle corner. \param y1 = Y-coordinate of the lower-right crop rectangle corner. \param z1 = Z-coordinate of the lower-right crop rectangle corner. \param c1 = C-coordinate of the lower-right crop rectangle corner. \param boundary_conditions = Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. **/ CImg& crop(const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const unsigned int boundary_conditions = 0) { return get_crop(x0, y0, z0, c0, x1, y1, z1, c1, boundary_conditions) .move_to(*this); } //! Crop image region \newinstance. CImg get_crop(const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const unsigned int boundary_conditions = 0) const { if (is_empty()) throw CImgInstanceException( _cimg_instance "crop(): Empty instance.", cimg_instance); const int nx0 = x0 < x1 ? x0 : x1, nx1 = x0 ^ x1 ^ nx0, ny0 = y0 < y1 ? y0 : y1, ny1 = y0 ^ y1 ^ ny0, nz0 = z0 < z1 ? z0 : z1, nz1 = z0 ^ z1 ^ nz0, nc0 = c0 < c1 ? c0 : c1, nc1 = c0 ^ c1 ^ nc0; CImg res(1U + nx1 - nx0, 1U + ny1 - ny0, 1U + nz1 - nz0, 1U + nc1 - nc0); if (nx0 < 0 || nx1 >= width() || ny0 < 0 || ny1 >= height() || nz0 < 0 || nz1 >= depth() || nc0 < 0 || nc1 >= spectrum()) switch (boundary_conditions) { case 3: { // Mirror const int w2 = 2 * width(), h2 = 2 * height(), d2 = 2 * depth(), s2 = 2 * spectrum(); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && _height*_depth*_spectrum>=4)) cimg_forXYZC(res,x,y,z,c) { const int mx = cimg::mod(nx0 + x, w2), my = cimg::mod(ny0 + y, h2), mz = cimg::mod(nz0 + z, d2), mc = cimg::mod(nc0 + c, s2); res(x, y, z, c) = (*this)(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, mz < depth() ? mz : d2 - mz - 1, mc < spectrum() ? mc : s2 - mc - 1); } } break; case 2: { // Periodic cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && _height*_depth*_spectrum>=4)) cimg_forXYZC(res,x,y,z,c) { res(x, y, z, c) = (*this)( cimg::mod(nx0 + x, width()), cimg::mod(ny0 + y, height()), cimg::mod(nz0 + z, depth()), cimg::mod(nc0 + c, spectrum())); } } break; case 1: // Neumann cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && _height*_depth*_spectrum>=4)) cimg_forXYZC(res,x,y,z,c) res(x,y,z,c) = _atXYZC(nx0 + x,ny0 + y,nz0 + z,nc0 + c); break; default: // Dirichlet res.fill((T)0).draw_image(-nx0, -ny0, -nz0, -nc0, *this); } else res.draw_image(-nx0, -ny0, -nz0, -nc0, *this); return res; } //! Crop image region \overloading. CImg& crop(const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const unsigned int boundary_conditions = 0) { return crop(x0, y0, z0, 0, x1, y1, z1, _spectrum - 1, boundary_conditions); } //! Crop image region \newinstance. CImg get_crop(const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const unsigned int boundary_conditions = 0) const { return get_crop(x0, y0, z0, 0, x1, y1, z1, _spectrum - 1, boundary_conditions); } //! Crop image region \overloading. CImg& crop(const int x0, const int y0, const int x1, const int y1, const unsigned int boundary_conditions = 0) { return crop(x0, y0, 0, 0, x1, y1, _depth - 1, _spectrum - 1, boundary_conditions); } //! Crop image region \newinstance. CImg get_crop(const int x0, const int y0, const int x1, const int y1, const unsigned int boundary_conditions = 0) const { return get_crop(x0, y0, 0, 0, x1, y1, _depth - 1, _spectrum - 1, boundary_conditions); } //! Crop image region \overloading. CImg& crop(const int x0, const int x1, const unsigned int boundary_conditions = 0) { return crop(x0, 0, 0, 0, x1, _height - 1, _depth - 1, _spectrum - 1, boundary_conditions); } //! Crop image region \newinstance. CImg get_crop(const int x0, const int x1, const unsigned int boundary_conditions = 0) const { return get_crop(x0, 0, 0, 0, x1, _height - 1, _depth - 1, _spectrum - 1, boundary_conditions); } //! Autocrop image region, regarding the specified background value. CImg& autocrop(const T& value, const char* const axes = "czyx") { if (is_empty()) return *this; for (const char* s = axes; *s; ++s) { const char axis = cimg::lowercase(*s); const CImg coords = _autocrop(value, axis); if (coords[0] == -1 && coords[1] == -1) return assign(); // Image has only 'value' pixels else switch (axis) { case 'x': { const int x0 = coords[0], x1 = coords[1]; if (x0 >= 0 && x1 >= 0) crop(x0, x1); } break; case 'y': { const int y0 = coords[0], y1 = coords[1]; if (y0 >= 0 && y1 >= 0) crop(0, y0, _width - 1, y1); } break; case 'z': { const int z0 = coords[0], z1 = coords[1]; if (z0 >= 0 && z1 >= 0) crop(0, 0, z0, _width - 1, _height - 1, z1); } break; default: { const int c0 = coords[0], c1 = coords[1]; if (c0 >= 0 && c1 >= 0) crop(0, 0, 0, c0, _width - 1, _height - 1, _depth - 1, c1); } } } return *this; } //! Autocrop image region, regarding the specified background value //! \newinstance. CImg get_autocrop(const T& value, const char* const axes = "czyx") const { return (+*this).autocrop(value, axes); } //! Autocrop image region, regarding the specified background color. /** \param color Color used for the crop. If \c 0, color is guessed. \param axes Axes used for the crop. **/ CImg& autocrop(const T* const color = 0, const char* const axes = "zyx") { if (is_empty()) return *this; if (!color) { // Guess color const CImg col1 = get_vector_at(0, 0, 0); const unsigned int w = _width, h = _height, d = _depth, s = _spectrum; autocrop(col1, axes); if (_width == w && _height == h && _depth == d && _spectrum == s) { const CImg col2 = get_vector_at(w - 1, h - 1, d - 1); autocrop(col2, axes); } return *this; } for (const char* s = axes; *s; ++s) { const char axis = cimg::lowercase(*s); switch (axis) { case 'x': { int x0 = width(), x1 = -1; cimg_forC(*this, c) { const CImg coords = get_shared_channel(c)._autocrop(color[c], 'x'); const int nx0 = coords[0], nx1 = coords[1]; if (nx0 >= 0 && nx1 >= 0) { x0 = std::min(x0, nx0); x1 = std::max(x1, nx1); } } if (x0 == width() && x1 == -1) return assign(); else crop(x0, x1); } break; case 'y': { int y0 = height(), y1 = -1; cimg_forC(*this, c) { const CImg coords = get_shared_channel(c)._autocrop(color[c], 'y'); const int ny0 = coords[0], ny1 = coords[1]; if (ny0 >= 0 && ny1 >= 0) { y0 = std::min(y0, ny0); y1 = std::max(y1, ny1); } } if (y0 == height() && y1 == -1) return assign(); else crop(0, y0, _width - 1, y1); } break; default: { int z0 = depth(), z1 = -1; cimg_forC(*this, c) { const CImg coords = get_shared_channel(c)._autocrop(color[c], 'z'); const int nz0 = coords[0], nz1 = coords[1]; if (nz0 >= 0 && nz1 >= 0) { z0 = std::min(z0, nz0); z1 = std::max(z1, nz1); } } if (z0 == depth() && z1 == -1) return assign(); else crop(0, 0, z0, _width - 1, _height - 1, z1); } } } return *this; } //! Autocrop image region, regarding the specified background color //! \newinstance. CImg get_autocrop(const T* const color = 0, const char* const axes = "zyx") const { return (+*this).autocrop(color, axes); } CImg _autocrop(const T& value, const char axis) const { CImg res; switch (cimg::lowercase(axis)) { case 'x': { int x0 = -1, x1 = -1; cimg_forX(*this, x) cimg_forYZC( *this, y, z, c) if ((*this)(x, y, z, c) != value) { x0 = x; x = width(); y = height(); z = depth(); c = spectrum(); } if (x0 >= 0) { for (int x = width() - 1; x >= 0; --x) cimg_forYZC(*this, y, z, c) if ((*this)(x, y, z, c) != value) { x1 = x; x = 0; y = height(); z = depth(); c = spectrum(); } } res = CImg::vector(x0, x1); } break; case 'y': { int y0 = -1, y1 = -1; cimg_forY(*this, y) cimg_forXZC( *this, x, z, c) if ((*this)(x, y, z, c) != value) { y0 = y; x = width(); y = height(); z = depth(); c = spectrum(); } if (y0 >= 0) { for (int y = height() - 1; y >= 0; --y) cimg_forXZC(*this, x, z, c) if ((*this)(x, y, z, c) != value) { y1 = y; x = width(); y = 0; z = depth(); c = spectrum(); } } res = CImg::vector(y0, y1); } break; case 'z': { int z0 = -1, z1 = -1; cimg_forZ(*this, z) cimg_forXYC( *this, x, y, c) if ((*this)(x, y, z, c) != value) { z0 = z; x = width(); y = height(); z = depth(); c = spectrum(); } if (z0 >= 0) { for (int z = depth() - 1; z >= 0; --z) cimg_forXYC(*this, x, y, c) if ((*this)(x, y, z, c) != value) { z1 = z; x = width(); y = height(); z = 0; c = spectrum(); } } res = CImg::vector(z0, z1); } break; default: { int c0 = -1, c1 = -1; cimg_forC(*this, c) cimg_forXYZ( *this, x, y, z) if ((*this)(x, y, z, c) != value) { c0 = c; x = width(); y = height(); z = depth(); c = spectrum(); } if (c0 >= 0) { for (int c = spectrum() - 1; c >= 0; --c) cimg_forXYZ(*this, x, y, z) if ((*this)(x, y, z, c) != value) { c1 = c; x = width(); y = height(); z = depth(); c = 0; } } res = CImg::vector(c0, c1); } } return res; } //! Return specified image column. /** \param x0 Image column. **/ CImg get_column(const int x0) const { return get_columns(x0, x0); } //! Return specified image column \inplace. CImg& column(const int x0) { return columns(x0, x0); } //! Return specified range of image columns. /** \param x0 Starting image column. \param x1 Ending image column. **/ CImg& columns(const int x0, const int x1) { return get_columns(x0, x1).move_to(*this); } //! Return specified range of image columns \inplace. CImg get_columns(const int x0, const int x1) const { return get_crop(x0, 0, 0, 0, x1, height() - 1, depth() - 1, spectrum() - 1); } //! Return specified image row. CImg get_row(const int y0) const { return get_rows(y0, y0); } //! Return specified image row \inplace. /** \param y0 Image row. **/ CImg& row(const int y0) { return rows(y0, y0); } //! Return specified range of image rows. /** \param y0 Starting image row. \param y1 Ending image row. **/ CImg get_rows(const int y0, const int y1) const { return get_crop(0, y0, 0, 0, width() - 1, y1, depth() - 1, spectrum() - 1); } //! Return specified range of image rows \inplace. CImg& rows(const int y0, const int y1) { return get_rows(y0, y1).move_to(*this); } //! Return specified image slice. /** \param z0 Image slice. **/ CImg get_slice(const int z0) const { return get_slices(z0, z0); } //! Return specified image slice \inplace. CImg& slice(const int z0) { return slices(z0, z0); } //! Return specified range of image slices. /** \param z0 Starting image slice. \param z1 Ending image slice. **/ CImg get_slices(const int z0, const int z1) const { return get_crop(0, 0, z0, 0, width() - 1, height() - 1, z1, spectrum() - 1); } //! Return specified range of image slices \inplace. CImg& slices(const int z0, const int z1) { return get_slices(z0, z1).move_to(*this); } //! Return specified image channel. /** \param c0 Image channel. **/ CImg get_channel(const int c0) const { return get_channels(c0, c0); } //! Return specified image channel \inplace. CImg& channel(const int c0) { return channels(c0, c0); } //! Return specified range of image channels. /** \param c0 Starting image channel. \param c1 Ending image channel. **/ CImg get_channels(const int c0, const int c1) const { return get_crop(0, 0, 0, c0, width() - 1, height() - 1, depth() - 1, c1); } //! Return specified range of image channels \inplace. CImg& channels(const int c0, const int c1) { return get_channels(c0, c1).move_to(*this); } //! Return stream line of a 2D or 3D vector field. CImg get_streamline(const float x, const float y, const float z, const float L = 256, const float dl = 0.1f, const unsigned int interpolation_type = 2, const bool is_backward_tracking = false, const bool is_oriented_only = false) const { if (_spectrum != 2 && _spectrum != 3) throw CImgInstanceException( _cimg_instance "streamline(): Instance is not a 2D or 3D vector field.", cimg_instance); if (_spectrum == 2) { if (is_oriented_only) { typename CImg::_functor4d_streamline2d_oriented func(*this); return streamline(func, x, y, z, L, dl, interpolation_type, is_backward_tracking, true, 0, 0, 0, _width - 1.f, _height - 1.f, 0.f); } else { typename CImg::_functor4d_streamline2d_directed func(*this); return streamline(func, x, y, z, L, dl, interpolation_type, is_backward_tracking, false, 0, 0, 0, _width - 1.f, _height - 1.f, 0.f); } } if (is_oriented_only) { typename CImg::_functor4d_streamline3d_oriented func(*this); return streamline(func, x, y, z, L, dl, interpolation_type, is_backward_tracking, true, 0, 0, 0, _width - 1.f, _height - 1.f, _depth - 1.f); } typename CImg::_functor4d_streamline3d_directed func(*this); return streamline(func, x, y, z, L, dl, interpolation_type, is_backward_tracking, false, 0, 0, 0, _width - 1.f, _height - 1.f, _depth - 1.f); } //! Return stream line of a 3D vector field. /** \param func Vector field function. \param x X-coordinate of the starting point of the streamline. \param y Y-coordinate of the starting point of the streamline. \param z Z-coordinate of the starting point of the streamline. \param L Streamline length. \param dl Streamline length increment. \param interpolation_type Type of interpolation. Can be { 0=nearest int | 1=linear | 2=2nd-order RK | 3=4th-order RK. }. \param is_backward_tracking Tells if the streamline is estimated forward or backward. \param is_oriented_only Tells if the direction of the vectors must be ignored. \param x0 X-coordinate of the first bounding-box vertex. \param y0 Y-coordinate of the first bounding-box vertex. \param z0 Z-coordinate of the first bounding-box vertex. \param x1 X-coordinate of the second bounding-box vertex. \param y1 Y-coordinate of the second bounding-box vertex. \param z1 Z-coordinate of the second bounding-box vertex. **/ template static CImg streamline(const tfunc& func, const float x, const float y, const float z, const float L = 256, const float dl = 0.1f, const unsigned int interpolation_type = 2, const bool is_backward_tracking = false, const bool is_oriented_only = false, const float x0 = 0, const float y0 = 0, const float z0 = 0, const float x1 = 0, const float y1 = 0, const float z1 = 0) { if (dl <= 0) throw CImgArgumentException( "CImg<%s>::streamline(): Invalid specified integration length " "%g " "(should be >0).", pixel_type(), dl); const bool is_bounded = (x0 != x1 || y0 != y1 || z0 != z1); if (L <= 0 || (is_bounded && (x < x0 || x > x1 || y < y0 || y > y1 || z < z0 || z > z1))) return CImg(); const unsigned int size_L = (unsigned int)cimg::round(L / dl + 1); CImg coordinates(size_L, 3); const float dl2 = dl / 2; float *ptr_x = coordinates.data(0, 0), *ptr_y = coordinates.data(0, 1), *ptr_z = coordinates.data(0, 2), pu = (float)(dl * func(x, y, z, 0)), pv = (float)(dl * func(x, y, z, 1)), pw = (float)(dl * func(x, y, z, 2)), X = x, Y = y, Z = z; switch (interpolation_type) { case 0: { // Nearest integer interpolation cimg_forX(coordinates, l) { *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; const int xi = (int)(X > 0 ? X + 0.5f : X - 0.5f), yi = (int)(Y > 0 ? Y + 0.5f : Y - 0.5f), zi = (int)(Z > 0 ? Z + 0.5f : Z - 0.5f); float u = (float)(dl * func((float)xi, (float)yi, (float)zi, 0)), v = (float)(dl * func((float)xi, (float)yi, (float)zi, 1)), w = (float)(dl * func((float)xi, (float)yi, (float)zi, 2)); if (is_oriented_only && u * pu + v * pv + w * pw < 0) { u = -u; v = -v; w = -w; } if (is_backward_tracking) { X -= (pu = u); Y -= (pv = v); Z -= (pw = w); } else { X += (pu = u); Y += (pv = v); Z += (pw = w); } if (is_bounded && (X < x0 || X > x1 || Y < y0 || Y > y1 || Z < z0 || Z > z1)) break; } } break; case 1: { // First-order interpolation cimg_forX(coordinates, l) { *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; float u = (float)(dl * func(X, Y, Z, 0)), v = (float)(dl * func(X, Y, Z, 1)), w = (float)(dl * func(X, Y, Z, 2)); if (is_oriented_only && u * pu + v * pv + w * pw < 0) { u = -u; v = -v; w = -w; } if (is_backward_tracking) { X -= (pu = u); Y -= (pv = v); Z -= (pw = w); } else { X += (pu = u); Y += (pv = v); Z += (pw = w); } if (is_bounded && (X < x0 || X > x1 || Y < y0 || Y > y1 || Z < z0 || Z > z1)) break; } } break; case 2: { // Second order interpolation cimg_forX(coordinates, l) { *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; float u0 = (float)(dl2 * func(X, Y, Z, 0)), v0 = (float)(dl2 * func(X, Y, Z, 1)), w0 = (float)(dl2 * func(X, Y, Z, 2)); if (is_oriented_only && u0 * pu + v0 * pv + w0 * pw < 0) { u0 = -u0; v0 = -v0; w0 = -w0; } float u = (float)(dl * func(X + u0, Y + v0, Z + w0, 0)), v = (float)(dl * func(X + u0, Y + v0, Z + w0, 1)), w = (float)(dl * func(X + u0, Y + v0, Z + w0, 2)); if (is_oriented_only && u * pu + v * pv + w * pw < 0) { u = -u; v = -v; w = -w; } if (is_backward_tracking) { X -= (pu = u); Y -= (pv = v); Z -= (pw = w); } else { X += (pu = u); Y += (pv = v); Z += (pw = w); } if (is_bounded && (X < x0 || X > x1 || Y < y0 || Y > y1 || Z < z0 || Z > z1)) break; } } break; default: { // Fourth order interpolation cimg_forX(coordinates, k) { *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; float u0 = (float)(dl2 * func(X, Y, Z, 0)), v0 = (float)(dl2 * func(X, Y, Z, 1)), w0 = (float)(dl2 * func(X, Y, Z, 2)); if (is_oriented_only && u0 * pu + v0 * pv + w0 * pw < 0) { u0 = -u0; v0 = -v0; w0 = -w0; } float u1 = (float)(dl2 * func(X + u0, Y + v0, Z + w0, 0)), v1 = (float)(dl2 * func(X + u0, Y + v0, Z + w0, 1)), w1 = (float)(dl2 * func(X + u0, Y + v0, Z + w0, 2)); if (is_oriented_only && u1 * pu + v1 * pv + w1 * pw < 0) { u1 = -u1; v1 = -v1; w1 = -w1; } float u2 = (float)(dl2 * func(X + u1, Y + v1, Z + w1, 0)), v2 = (float)(dl2 * func(X + u1, Y + v1, Z + w1, 1)), w2 = (float)(dl2 * func(X + u1, Y + v1, Z + w1, 2)); if (is_oriented_only && u2 * pu + v2 * pv + w2 * pw < 0) { u2 = -u2; v2 = -v2; w2 = -w2; } float u3 = (float)(dl2 * func(X + u2, Y + v2, Z + w2, 0)), v3 = (float)(dl2 * func(X + u2, Y + v2, Z + w2, 1)), w3 = (float)(dl2 * func(X + u2, Y + v2, Z + w2, 2)); if (is_oriented_only && u2 * pu + v2 * pv + w2 * pw < 0) { u3 = -u3; v3 = -v3; w3 = -w3; } const float u = (u0 + u3) / 3 + (u1 + u2) / 1.5f, v = (v0 + v3) / 3 + (v1 + v2) / 1.5f, w = (w0 + w3) / 3 + (w1 + w2) / 1.5f; if (is_backward_tracking) { X -= (pu = u); Y -= (pv = v); Z -= (pw = w); } else { X += (pu = u); Y += (pv = v); Z += (pw = w); } if (is_bounded && (X < x0 || X > x1 || Y < y0 || Y > y1 || Z < z0 || Z > z1)) break; } } } if (ptr_x != coordinates.data(0, 1)) coordinates.resize((int)(ptr_x - coordinates.data()), 3, 1, 1, 0); return coordinates; } //! Return stream line of a 3D vector field \overloading. static CImg streamline(const char* const expression, const float x, const float y, const float z, const float L = 256, const float dl = 0.1f, const unsigned int interpolation_type = 2, const bool is_backward_tracking = true, const bool is_oriented_only = false, const float x0 = 0, const float y0 = 0, const float z0 = 0, const float x1 = 0, const float y1 = 0, const float z1 = 0) { _functor4d_streamline_expr func(expression); return streamline(func, x, y, z, L, dl, interpolation_type, is_backward_tracking, is_oriented_only, x0, y0, z0, x1, y1, z1); } struct _functor4d_streamline2d_directed { const CImg& ref; _functor4d_streamline2d_directed(const CImg& pref) : ref(pref) {} float operator()(const float x, const float y, const float z, const unsigned int c) const { return c < 2 ? (float)ref._linear_atXY(x, y, (int)z, c) : 0; } }; struct _functor4d_streamline3d_directed { const CImg& ref; _functor4d_streamline3d_directed(const CImg& pref) : ref(pref) {} float operator()(const float x, const float y, const float z, const unsigned int c) const { return (float)ref._linear_atXYZ(x, y, z, c); } }; struct _functor4d_streamline2d_oriented { const CImg& ref; CImg* pI; _functor4d_streamline2d_oriented(const CImg& pref) : ref(pref), pI(0) { pI = new CImg(2, 2, 1, 2); } ~_functor4d_streamline2d_oriented() { delete pI; } float operator()(const float x, const float y, const float z, const unsigned int c) const { #define _cimg_vecalign2d(i, j) \ if (I(i, j, 0) * I(0, 0, 0) + I(i, j, 1) * I(0, 0, 1) < 0) { \ I(i, j, 0) = -I(i, j, 0); \ I(i, j, 1) = -I(i, j, 1); \ } int xi = (int)x - (x >= 0 ? 0 : 1), nxi = xi + 1, yi = (int)y - (y >= 0 ? 0 : 1), nyi = yi + 1, zi = (int)z; const float dx = x - xi, dy = y - yi; if (c == 0) { CImg& I = *pI; if (xi < 0) xi = 0; if (nxi < 0) nxi = 0; if (xi >= ref.width()) xi = ref.width() - 1; if (nxi >= ref.width()) nxi = ref.width() - 1; if (yi < 0) yi = 0; if (nyi < 0) nyi = 0; if (yi >= ref.height()) yi = ref.height() - 1; if (nyi >= ref.height()) nyi = ref.height() - 1; I(0, 0, 0) = (float)ref(xi, yi, zi, 0); I(0, 0, 1) = (float)ref(xi, yi, zi, 1); I(1, 0, 0) = (float)ref(nxi, yi, zi, 0); I(1, 0, 1) = (float)ref(nxi, yi, zi, 1); I(1, 1, 0) = (float)ref(nxi, nyi, zi, 0); I(1, 1, 1) = (float)ref(nxi, nyi, zi, 1); I(0, 1, 0) = (float)ref(xi, nyi, zi, 0); I(0, 1, 1) = (float)ref(xi, nyi, zi, 1); _cimg_vecalign2d(1, 0); _cimg_vecalign2d(1, 1); _cimg_vecalign2d(0, 1); } return c < 2 ? (float)pI->_linear_atXY(dx, dy, 0, c) : 0; } }; struct _functor4d_streamline3d_oriented { const CImg& ref; CImg* pI; _functor4d_streamline3d_oriented(const CImg& pref) : ref(pref), pI(0) { pI = new CImg(2, 2, 2, 3); } ~_functor4d_streamline3d_oriented() { delete pI; } float operator()(const float x, const float y, const float z, const unsigned int c) const { #define _cimg_vecalign3d(i, j, k) \ if (I(i, j, k, 0) * I(0, 0, 0, 0) + I(i, j, k, 1) * I(0, 0, 0, 1) + \ I(i, j, k, 2) * I(0, 0, 0, 2) < \ 0) { \ I(i, j, k, 0) = -I(i, j, k, 0); \ I(i, j, k, 1) = -I(i, j, k, 1); \ I(i, j, k, 2) = -I(i, j, k, 2); \ } int xi = (int)x - (x >= 0 ? 0 : 1), nxi = xi + 1, yi = (int)y - (y >= 0 ? 0 : 1), nyi = yi + 1, zi = (int)z - (z >= 0 ? 0 : 1), nzi = zi + 1; const float dx = x - xi, dy = y - yi, dz = z - zi; if (c == 0) { CImg& I = *pI; if (xi < 0) xi = 0; if (nxi < 0) nxi = 0; if (xi >= ref.width()) xi = ref.width() - 1; if (nxi >= ref.width()) nxi = ref.width() - 1; if (yi < 0) yi = 0; if (nyi < 0) nyi = 0; if (yi >= ref.height()) yi = ref.height() - 1; if (nyi >= ref.height()) nyi = ref.height() - 1; if (zi < 0) zi = 0; if (nzi < 0) nzi = 0; if (zi >= ref.depth()) zi = ref.depth() - 1; if (nzi >= ref.depth()) nzi = ref.depth() - 1; I(0, 0, 0, 0) = (float)ref(xi, yi, zi, 0); I(0, 0, 0, 1) = (float)ref(xi, yi, zi, 1); I(0, 0, 0, 2) = (float)ref(xi, yi, zi, 2); I(1, 0, 0, 0) = (float)ref(nxi, yi, zi, 0); I(1, 0, 0, 1) = (float)ref(nxi, yi, zi, 1); I(1, 0, 0, 2) = (float)ref(nxi, yi, zi, 2); I(1, 1, 0, 0) = (float)ref(nxi, nyi, zi, 0); I(1, 1, 0, 1) = (float)ref(nxi, nyi, zi, 1); I(1, 1, 0, 2) = (float)ref(nxi, nyi, zi, 2); I(0, 1, 0, 0) = (float)ref(xi, nyi, zi, 0); I(0, 1, 0, 1) = (float)ref(xi, nyi, zi, 1); I(0, 1, 0, 2) = (float)ref(xi, nyi, zi, 2); I(0, 0, 1, 0) = (float)ref(xi, yi, nzi, 0); I(0, 0, 1, 1) = (float)ref(xi, yi, nzi, 1); I(0, 0, 1, 2) = (float)ref(xi, yi, nzi, 2); I(1, 0, 1, 0) = (float)ref(nxi, yi, nzi, 0); I(1, 0, 1, 1) = (float)ref(nxi, yi, nzi, 1); I(1, 0, 1, 2) = (float)ref(nxi, yi, nzi, 2); I(1, 1, 1, 0) = (float)ref(nxi, nyi, nzi, 0); I(1, 1, 1, 1) = (float)ref(nxi, nyi, nzi, 1); I(1, 1, 1, 2) = (float)ref(nxi, nyi, nzi, 2); I(0, 1, 1, 0) = (float)ref(xi, nyi, nzi, 0); I(0, 1, 1, 1) = (float)ref(xi, nyi, nzi, 1); I(0, 1, 1, 2) = (float)ref(xi, nyi, nzi, 2); _cimg_vecalign3d(1, 0, 0); _cimg_vecalign3d(1, 1, 0); _cimg_vecalign3d(0, 1, 0); _cimg_vecalign3d(0, 0, 1); _cimg_vecalign3d(1, 0, 1); _cimg_vecalign3d(1, 1, 1); _cimg_vecalign3d(0, 1, 1); } return (float)pI->_linear_atXYZ(dx, dy, dz, c); } }; struct _functor4d_streamline_expr { _cimg_math_parser* mp; ~_functor4d_streamline_expr() { mp->end(); delete mp; } _functor4d_streamline_expr(const char* const expr) : mp(0) { mp = new _cimg_math_parser(expr, "streamline", CImg::const_empty(), 0); } float operator()(const float x, const float y, const float z, const unsigned int c) const { return (float)(*mp)(x, y, z, c); } }; //! Return a shared-memory image referencing a range of pixels of the image //! instance. /** \param x0 X-coordinate of the starting pixel. \param x1 X-coordinate of the ending pixel. \param y0 Y-coordinate. \param z0 Z-coordinate. \param c0 C-coordinate. **/ CImg get_shared_points(const unsigned int x0, const unsigned int x1, const unsigned int y0 = 0, const unsigned int z0 = 0, const unsigned int c0 = 0) { const unsigned int beg = (unsigned int)offset(x0, y0, z0, c0), end = (unsigned int)offset(x1, y0, z0, c0); if (beg > end || beg >= size() || end >= size()) throw CImgArgumentException( _cimg_instance "get_shared_points(): Invalid request of a shared-memory " "subset (%u->%u,%u,%u,%u).", cimg_instance, x0, x1, y0, z0, c0); return CImg(_data + beg, x1 - x0 + 1, 1, 1, 1, true); } //! Return a shared-memory image referencing a range of pixels of the image //! instance \const. const CImg get_shared_points(const unsigned int x0, const unsigned int x1, const unsigned int y0 = 0, const unsigned int z0 = 0, const unsigned int c0 = 0) const { const unsigned int beg = (unsigned int)offset(x0, y0, z0, c0), end = (unsigned int)offset(x1, y0, z0, c0); if (beg > end || beg >= size() || end >= size()) throw CImgArgumentException( _cimg_instance "get_shared_points(): Invalid request of a shared-memory " "subset (%u->%u,%u,%u,%u).", cimg_instance, x0, x1, y0, z0, c0); return CImg(_data + beg, x1 - x0 + 1, 1, 1, 1, true); } //! Return a shared-memory image referencing a range of rows of the image //! instance. /** \param y0 Y-coordinate of the starting row. \param y1 Y-coordinate of the ending row. \param z0 Z-coordinate. \param c0 C-coordinate. **/ CImg get_shared_rows(const unsigned int y0, const unsigned int y1, const unsigned int z0 = 0, const unsigned int c0 = 0) { const unsigned int beg = (unsigned int)offset(0, y0, z0, c0), end = (unsigned int)offset(0, y1, z0, c0); if (beg > end || beg >= size() || end >= size()) throw CImgArgumentException( _cimg_instance "get_shared_rows(): Invalid request of a shared-memory subset " "(0->%u,%u->%u,%u,%u).", cimg_instance, _width - 1, y0, y1, z0, c0); return CImg(_data + beg, _width, y1 - y0 + 1, 1, 1, true); } //! Return a shared-memory image referencing a range of rows of the image //! instance \const. const CImg get_shared_rows(const unsigned int y0, const unsigned int y1, const unsigned int z0 = 0, const unsigned int c0 = 0) const { const unsigned int beg = (unsigned int)offset(0, y0, z0, c0), end = (unsigned int)offset(0, y1, z0, c0); if (beg > end || beg >= size() || end >= size()) throw CImgArgumentException( _cimg_instance "get_shared_rows(): Invalid request of a shared-memory subset " "(0->%u,%u->%u,%u,%u).", cimg_instance, _width - 1, y0, y1, z0, c0); return CImg(_data + beg, _width, y1 - y0 + 1, 1, 1, true); } //! Return a shared-memory image referencing one row of the image instance. /** \param y0 Y-coordinate. \param z0 Z-coordinate. \param c0 C-coordinate. **/ CImg get_shared_row(const unsigned int y0, const unsigned int z0 = 0, const unsigned int c0 = 0) { return get_shared_rows(y0, y0, z0, c0); } //! Return a shared-memory image referencing one row of the image instance //! \const. const CImg get_shared_row(const unsigned int y0, const unsigned int z0 = 0, const unsigned int c0 = 0) const { return get_shared_rows(y0, y0, z0, c0); } //! Return a shared memory image referencing a range of slices of the image //! instance. /** \param z0 Z-coordinate of the starting slice. \param z1 Z-coordinate of the ending slice. \param c0 C-coordinate. **/ CImg get_shared_slices(const unsigned int z0, const unsigned int z1, const unsigned int c0 = 0) { const unsigned int beg = (unsigned int)offset(0, 0, z0, c0), end = (unsigned int)offset(0, 0, z1, c0); if (beg > end || beg >= size() || end >= size()) throw CImgArgumentException(_cimg_instance "get_shared_slices(): Invalid request " "of a shared-memory subset " "(0->%u,0->%u,%u->%u,%u).", cimg_instance, _width - 1, _height - 1, z0, z1, c0); return CImg(_data + beg, _width, _height, z1 - z0 + 1, 1, true); } //! Return a shared memory image referencing a range of slices of the image //! instance \const. const CImg get_shared_slices(const unsigned int z0, const unsigned int z1, const unsigned int c0 = 0) const { const unsigned int beg = (unsigned int)offset(0, 0, z0, c0), end = (unsigned int)offset(0, 0, z1, c0); if (beg > end || beg >= size() || end >= size()) throw CImgArgumentException(_cimg_instance "get_shared_slices(): Invalid request " "of a shared-memory subset " "(0->%u,0->%u,%u->%u,%u).", cimg_instance, _width - 1, _height - 1, z0, z1, c0); return CImg(_data + beg, _width, _height, z1 - z0 + 1, 1, true); } //! Return a shared-memory image referencing one slice of the image //! instance. /** \param z0 Z-coordinate. \param c0 C-coordinate. **/ CImg get_shared_slice(const unsigned int z0, const unsigned int c0 = 0) { return get_shared_slices(z0, z0, c0); } //! Return a shared-memory image referencing one slice of the image instance //! \const. const CImg get_shared_slice(const unsigned int z0, const unsigned int c0 = 0) const { return get_shared_slices(z0, z0, c0); } //! Return a shared-memory image referencing a range of channels of the //! image instance. /** \param c0 C-coordinate of the starting channel. \param c1 C-coordinate of the ending channel. **/ CImg get_shared_channels(const unsigned int c0, const unsigned int c1) { const unsigned int beg = (unsigned int)offset(0, 0, 0, c0), end = (unsigned int)offset(0, 0, 0, c1); if (beg > end || beg >= size() || end >= size()) throw CImgArgumentException(_cimg_instance "get_shared_channels(): Invalid " "request of a shared-memory subset " "(0->%u,0->%u,0->%u,%u->%u).", cimg_instance, _width - 1, _height - 1, _depth - 1, c0, c1); return CImg(_data + beg, _width, _height, _depth, c1 - c0 + 1, true); } //! Return a shared-memory image referencing a range of channels of the //! image instance \const. const CImg get_shared_channels(const unsigned int c0, const unsigned int c1) const { const unsigned int beg = (unsigned int)offset(0, 0, 0, c0), end = (unsigned int)offset(0, 0, 0, c1); if (beg > end || beg >= size() || end >= size()) throw CImgArgumentException(_cimg_instance "get_shared_channels(): Invalid " "request of a shared-memory subset " "(0->%u,0->%u,0->%u,%u->%u).", cimg_instance, _width - 1, _height - 1, _depth - 1, c0, c1); return CImg(_data + beg, _width, _height, _depth, c1 - c0 + 1, true); } //! Return a shared-memory image referencing one channel of the image //! instance. /** \param c0 C-coordinate. **/ CImg get_shared_channel(const unsigned int c0) { return get_shared_channels(c0, c0); } //! Return a shared-memory image referencing one channel of the image //! instance \const. const CImg get_shared_channel(const unsigned int c0) const { return get_shared_channels(c0, c0); } //! Return a shared-memory version of the image instance. CImg get_shared() { return CImg(_data, _width, _height, _depth, _spectrum, true); } //! Return a shared-memory version of the image instance \const. const CImg get_shared() const { return CImg(_data, _width, _height, _depth, _spectrum, true); } //! Split image into a list along specified axis. /** \param axis Splitting axis. Can be { 'x' | 'y' | 'z' | 'c' }. \param nb Number of splitted parts. \note - If \c nb==0, instance image is splitted into blocs of egal values along the specified axis. - If \c nb<=0, instance image is splitted into blocs of -\c nb pixel wide. - If \c nb>0, instance image is splitted into \c nb blocs. **/ CImgList get_split(const char axis, const int nb = -1) const { CImgList res; if (is_empty()) return res; const char _axis = cimg::lowercase(axis); if (nb < 0) { // Split by bloc size const unsigned int dp = (unsigned int)(nb ? -nb : 1); switch (_axis) { case 'x': { if (_width > dp) { res.assign(_width / dp + (_width % dp ? 1 : 0), 1, 1); const unsigned int pe = _width - dp; cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 && _height*_depth*_spectrum>=128)) for (int p = 0; p<(int)pe; p+=dp) get_crop(p,0,0,0,p + dp - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res[p/dp]); get_crop((res._width - 1) * dp, 0, 0, 0, _width - 1, _height - 1, _depth - 1, _spectrum - 1) .move_to(res.back()); } else res.assign(*this); } break; case 'y': { if (_height > dp) { res.assign(_height / dp + (_height % dp ? 1 : 0), 1, 1); const unsigned int pe = _height - dp; cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 && _width*_depth*_spectrum>=128)) for (int p = 0; p<(int)pe; p+=dp) get_crop(0,p,0,0,_width - 1,p + dp - 1,_depth - 1,_spectrum - 1).move_to(res[p/dp]); get_crop(0, (res._width - 1) * dp, 0, 0, _width - 1, _height - 1, _depth - 1, _spectrum - 1) .move_to(res.back()); } else res.assign(*this); } break; case 'z': { if (_depth > dp) { res.assign(_depth / dp + (_depth % dp ? 1 : 0), 1, 1); const unsigned int pe = _depth - dp; cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 && _width*_height*_spectrum>=128)) for (int p = 0; p<(int)pe; p+=dp) get_crop(0,0,p,0,_width - 1,_height - 1,p + dp - 1,_spectrum - 1).move_to(res[p/dp]); get_crop(0, 0, (res._width - 1) * dp, 0, _width - 1, _height - 1, _depth - 1, _spectrum - 1) .move_to(res.back()); } else res.assign(*this); } break; case 'c': { if (_spectrum > dp) { res.assign(_spectrum / dp + (_spectrum % dp ? 1 : 0), 1, 1); const unsigned int pe = _spectrum - dp; cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 && _width*_height*_depth>=128)) for (int p = 0; p<(int)pe; p+=dp) get_crop(0,0,0,p,_width - 1,_height - 1,_depth - 1,p + dp - 1).move_to(res[p/dp]); get_crop(0, 0, 0, (res._width - 1) * dp, _width - 1, _height - 1, _depth - 1, _spectrum - 1) .move_to(res.back()); } else res.assign(*this); } } } else if (nb > 0) { // Split by number of (non-homogeneous) blocs const unsigned int siz = _axis == 'x' ? _width : _axis == 'y' ? _height : _axis == 'z' ? _depth : _axis == 'c' ? _spectrum : 0; if ((unsigned int)nb > siz) throw CImgArgumentException( _cimg_instance "get_split(): Instance cannot be split along %c-axis into " "%u blocs.", cimg_instance, axis, nb); if (nb == 1) res.assign(*this); else { int err = (int)siz; unsigned int _p = 0; switch (_axis) { case 'x': { cimg_forX(*this, p) if ((err -= nb) <= 0) { get_crop(_p, 0, 0, 0, p, _height - 1, _depth - 1, _spectrum - 1) .move_to(res); err += (int)siz; _p = p + 1U; } } break; case 'y': { cimg_forY(*this, p) if ((err -= nb) <= 0) { get_crop(0, _p, 0, 0, _width - 1, p, _depth - 1, _spectrum - 1) .move_to(res); err += (int)siz; _p = p + 1U; } } break; case 'z': { cimg_forZ(*this, p) if ((err -= nb) <= 0) { get_crop(0, 0, _p, 0, _width - 1, _height - 1, p, _spectrum - 1) .move_to(res); err += (int)siz; _p = p + 1U; } } break; case 'c': { cimg_forC(*this, p) if ((err -= nb) <= 0) { get_crop(0, 0, 0, _p, _width - 1, _height - 1, _depth - 1, p) .move_to(res); err += (int)siz; _p = p + 1U; } } } } } else { // Split by egal values according to specified axis T current = *_data; switch (_axis) { case 'x': { int i0 = 0; cimg_forX(*this, i) if ((*this)(i) != current) { get_columns(i0, i - 1).move_to(res); i0 = i; current = (*this)(i); } get_columns(i0, width() - 1).move_to(res); } break; case 'y': { int i0 = 0; cimg_forY(*this, i) if ((*this)(0, i) != current) { get_rows(i0, i - 1).move_to(res); i0 = i; current = (*this)(0, i); } get_rows(i0, height() - 1).move_to(res); } break; case 'z': { int i0 = 0; cimg_forZ(*this, i) if ((*this)(0, 0, i) != current) { get_slices(i0, i - 1).move_to(res); i0 = i; current = (*this)(0, 0, i); } get_slices(i0, depth() - 1).move_to(res); } break; case 'c': { int i0 = 0; cimg_forC(*this, i) if ((*this)(0, 0, 0, i) != current) { get_channels(i0, i - 1).move_to(res); i0 = i; current = (*this)(0, 0, 0, i); } get_channels(i0, spectrum() - 1).move_to(res); } break; default: { longT i0 = 0; cimg_foroff(*this, i) if ((*this)[i] != current) { CImg(_data + i0, 1, (unsigned int)(i - i0)) .move_to(res); i0 = (longT)i; current = (*this)[i]; } CImg(_data + i0, 1, (unsigned int)(size() - i0)) .move_to(res); } } } return res; } //! Split image into a list of sub-images, according to a specified //! splitting value sequence and optionally axis. /** \param values Splitting value sequence. \param axis Axis along which the splitting is performed. Can be '0' to ignore axis. \param keep_values Tells if the splitting sequence must be kept in the splitted blocs. **/ template CImgList get_split(const CImg& values, const char axis = 0, const bool keep_values = true) const { typedef _cimg_Tt Tt; CImgList res; if (is_empty()) return res; const ulongT vsiz = values.size(); const char _axis = cimg::lowercase(axis); if (!vsiz) return CImgList(*this); if (vsiz == 1) { // Split according to a single value const T value = (T)*values; switch (_axis) { case 'x': { unsigned int i0 = 0, i = 0; do { while (i < _width && (*this)(i) == value) ++i; if (i > i0) { if (keep_values) get_columns(i0, i - 1).move_to(res); i0 = i; } while (i < _width && (*this)(i) != value) ++i; if (i > i0) { get_columns(i0, i - 1).move_to(res); i0 = i; } } while (i < _width); } break; case 'y': { unsigned int i0 = 0, i = 0; do { while (i < _height && (*this)(0, i) == value) ++i; if (i > i0) { if (keep_values) get_rows(i0, i - 1).move_to(res); i0 = i; } while (i < _height && (*this)(0, i) != value) ++i; if (i > i0) { get_rows(i0, i - 1).move_to(res); i0 = i; } } while (i < _height); } break; case 'z': { unsigned int i0 = 0, i = 0; do { while (i < _depth && (*this)(0, 0, i) == value) ++i; if (i > i0) { if (keep_values) get_slices(i0, i - 1).move_to(res); i0 = i; } while (i < _depth && (*this)(0, 0, i) != value) ++i; if (i > i0) { get_slices(i0, i - 1).move_to(res); i0 = i; } } while (i < _depth); } break; case 'c': { unsigned int i0 = 0, i = 0; do { while (i < _spectrum && (*this)(0, 0, 0, i) == value) ++i; if (i > i0) { if (keep_values) get_channels(i0, i - 1).move_to(res); i0 = i; } while (i < _spectrum && (*this)(0, 0, 0, i) != value) ++i; if (i > i0) { get_channels(i0, i - 1).move_to(res); i0 = i; } } while (i < _spectrum); } break; default: { const ulongT siz = size(); ulongT i0 = 0, i = 0; do { while (i < siz && (*this)[i] == value) ++i; if (i > i0) { if (keep_values) CImg(_data + i0, 1, (unsigned int)(i - i0)) .move_to(res); i0 = i; } while (i < siz && (*this)[i] != value) ++i; if (i > i0) { CImg(_data + i0, 1, (unsigned int)(i - i0)) .move_to(res); i0 = i; } } while (i < siz); } } } else { // Split according to multiple values ulongT j = 0; switch (_axis) { case 'x': { unsigned int i0 = 0, i1 = 0, i = 0; do { if ((Tt)(*this)(i) == (Tt)*values) { i1 = i; j = 0; while (i < _width && (Tt)(*this)(i) == (Tt)values[j]) { ++i; if (++j >= vsiz) j = 0; } i -= j; if (i > i1) { if (i1 > i0) get_columns(i0, i1 - 1).move_to(res); if (keep_values) get_columns(i1, i - 1).move_to(res); i0 = i; } else ++i; } else ++i; } while (i < _width); if (i0 < _width) get_columns(i0, width() - 1).move_to(res); } break; case 'y': { unsigned int i0 = 0, i1 = 0, i = 0; do { if ((Tt)(*this)(0, i) == (Tt)*values) { i1 = i; j = 0; while (i < _height && (Tt)(*this)(0, i) == (Tt)values[j]) { ++i; if (++j >= vsiz) j = 0; } i -= j; if (i > i1) { if (i1 > i0) get_rows(i0, i1 - 1).move_to(res); if (keep_values) get_rows(i1, i - 1).move_to(res); i0 = i; } else ++i; } else ++i; } while (i < _height); if (i0 < _height) get_rows(i0, height() - 1).move_to(res); } break; case 'z': { unsigned int i0 = 0, i1 = 0, i = 0; do { if ((Tt)(*this)(0, 0, i) == (Tt)*values) { i1 = i; j = 0; while (i < _depth && (Tt)(*this)(0, 0, i) == (Tt)values[j]) { ++i; if (++j >= vsiz) j = 0; } i -= j; if (i > i1) { if (i1 > i0) get_slices(i0, i1 - 1).move_to(res); if (keep_values) get_slices(i1, i - 1).move_to(res); i0 = i; } else ++i; } else ++i; } while (i < _depth); if (i0 < _depth) get_slices(i0, depth() - 1).move_to(res); } break; case 'c': { unsigned int i0 = 0, i1 = 0, i = 0; do { if ((Tt)(*this)(0, 0, 0, i) == (Tt)*values) { i1 = i; j = 0; while (i < _spectrum && (Tt)(*this)(0, 0, 0, i) == (Tt)values[j]) { ++i; if (++j >= vsiz) j = 0; } i -= j; if (i > i1) { if (i1 > i0) get_channels(i0, i1 - 1).move_to(res); if (keep_values) get_channels(i1, i - 1).move_to(res); i0 = i; } else ++i; } else ++i; } while (i < _spectrum); if (i0 < _spectrum) get_channels(i0, spectrum() - 1).move_to(res); } break; default: { ulongT i0 = 0, i1 = 0, i = 0; const ulongT siz = size(); do { if ((Tt)(*this)[i] == (Tt)*values) { i1 = i; j = 0; while (i < siz && (Tt)(*this)[i] == (Tt)values[j]) { ++i; if (++j >= vsiz) j = 0; } i -= j; if (i > i1) { if (i1 > i0) CImg(_data + i0, 1, (unsigned int)(i1 - i0)) .move_to(res); if (keep_values) CImg(_data + i1, 1, (unsigned int)(i - i1)) .move_to(res); i0 = i; } else ++i; } else ++i; } while (i < siz); if (i0 < siz) CImg(_data + i0, 1, (unsigned int)(siz - i0)) .move_to(res); } break; } } return res; } //! Append two images along specified axis. /** \param img Image to append with instance image. \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. \param align Append alignment in \c [0,1]. **/ template CImg& append(const CImg& img, const char axis = 'x', const float align = 0) { if (is_empty()) return assign(img, false); if (!img) return *this; return CImgList(*this, true) .insert(img) .get_append(axis, align) .move_to(*this); } //! Append two images along specified axis \specialization. CImg& append(const CImg& img, const char axis = 'x', const float align = 0) { if (is_empty()) return assign(img, false); if (!img) return *this; return CImgList(*this, img, true) .get_append(axis, align) .move_to(*this); } //! Append two images along specified axis \const. template CImg<_cimg_Tt> get_append(const CImg& img, const char axis = 'x', const float align = 0) const { if (is_empty()) return +img; if (!img) return +*this; return CImgList<_cimg_Tt>(*this, true) .insert(img) .get_append(axis, align); } //! Append two images along specified axis \specialization. CImg get_append(const CImg& img, const char axis = 'x', const float align = 0) const { if (is_empty()) return +img; if (!img) return +*this; return CImgList(*this, img, true).get_append(axis, align); } //@} //--------------------------------------- // //! \name Filtering / Transforms //@{ //--------------------------------------- //! Correlate image by a kernel. /** \param kernel = the correlation kernel. \param boundary_conditions Boundary condition. Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. \param is_normalized = enable local normalization. \param channel mode Channel processing mode. Can be { 0=sum inputs | 1=one-for-one | 2=expand } \param xcenter X-coordinate of the kernel center (~0U means 'centered'). \param xstart Starting X-coordinate of the instance image. \param xend Ending X-coordinate of the instance image. \param xstride Stride along the X-axis. \param xdilation Dilation along the X-axis. \param ycenter Y-coordinate of the kernel center (~0U means 'centered'). \param ystart Starting Y-coordinate of the instance image. \param yend Ending Y-coordinate of the instance image. \param ystride Stride along the Y-axis. \param ydilation Dilation along the Y-axis. \param zcenter Z-coordinate of the kernel center (~0U means 'centered'). \param zstart Starting Z-coordinate of the instance image. \param zend Ending Z-coordinate of the instance image. \param zstride Stride along the Z-axis. \param zdilation Dilation along the Z-axis. \note - The correlation of the image instance \p *this by the kernel \p kernel is defined to be: res(x,y,z) = sum_{i,j,k} (*this)(\alpha_x\;x + \beta_x\;(i - c_x),\alpha_y\;y + \beta_y\;(j - c_y),\alpha_z\;z + \beta_z\;(k - c_z))*kernel(i,j,k). **/ template CImg& correlate( const CImg& kernel, const unsigned int boundary_conditions = 1, const bool is_normalized = false, const unsigned int channel_mode = 1, const unsigned int xcenter = ~0U, const unsigned int ycenter = ~0U, const unsigned int zcenter = ~0U, const unsigned int xstart = 0, const unsigned int ystart = 0, const unsigned zstart = 0, const unsigned int xend = ~0U, const unsigned int yend = ~0U, const unsigned int zend = ~0U, const float xstride = 1, const float ystride = 1, const float zstride = 1, const float xdilation = 1, const float ydilation = 1, const float zdilation = 1) { if (is_empty() || !kernel) return *this; return get_correlate(kernel, boundary_conditions, is_normalized, channel_mode, xcenter, ycenter, zcenter, xstart, ystart, zstart, xend, yend, zend, xstride, ystride, zstride, xdilation, ydilation, zdilation) .move_to(*this); } template CImg<_cimg_Ttfloat> get_correlate( const CImg& kernel, const unsigned int boundary_conditions = 1, const bool is_normalized = false, const unsigned int channel_mode = 1, const unsigned int xcenter = ~0U, const unsigned int ycenter = ~0U, const unsigned int zcenter = ~0U, const unsigned int xstart = 0, const unsigned int ystart = 0, const unsigned zstart = 0, const unsigned int xend = ~0U, const unsigned int yend = ~0U, const unsigned int zend = ~0U, const float xstride = 1, const float ystride = 1, const float zstride = 1, const float xdilation = 1, const float ydilation = 1, const float zdilation = 1) const { return _correlate(kernel, boundary_conditions, is_normalized, channel_mode, xcenter, ycenter, zcenter, xstart, ystart, zstart, xend, yend, zend, xstride, ystride, zstride, xdilation, ydilation, zdilation, false); } //! Correlate image by a kernel \newinstance. template CImg<_cimg_Ttfloat> _correlate( const CImg& kernel, const unsigned int boundary_conditions, const bool is_normalized, const unsigned int channel_mode, const unsigned int xcenter, const unsigned int ycenter, const unsigned int zcenter, const unsigned int xstart, const unsigned int ystart, const unsigned zstart, const unsigned int xend, const unsigned int yend, const unsigned int zend, const float xstride, const float ystride, const float zstride, const float xdilation, const float ydilation, const float zdilation, const bool is_convolve) const { if (is_empty() || !kernel) return *this; typedef _cimg_Ttfloat Ttfloat; CImg res; _cimg_abort_init_openmp; cimg_abort_init; if (xstart > xend || ystart > yend || zstart > zend) throw CImgArgumentException( _cimg_instance "%s(): Invalid xyz-start/end arguments (start = (%u,%u,%u), " "end = (%u,%u,%u)).", cimg_instance, is_convolve ? "convolve" : "correlate", xstart, ystart, zstart, xend, yend, zend); if (xstride <= 0 || ystride <= 0 || zstride <= 0) throw CImgArgumentException( _cimg_instance "%s(): Invalid stride arguments (%g,%g,%g).", cimg_instance, is_convolve ? "convolve" : "correlate", xstride, ystride, zstride); const int _xstart = (int)std::min(xstart, _width - 1), _ystart = (int)std::min(ystart, _height - 1), _zstart = (int)std::min(zstart, _depth - 1), _xend = (int)std::min(xend, _width - 1), _yend = (int)std::min(yend, _height - 1), _zend = (int)std::min(zend, _depth - 1), nwidth = 1 + (int)std::floor((_xend - _xstart) / xstride), nheight = 1 + (int)std::floor((_yend - _ystart) / ystride), ndepth = 1 + (int)std::floor((_zend + _zstart) / zstride), _xstride = (int)cimg::round(xstride), _ystride = (int)cimg::round(ystride), _zstride = (int)cimg::round(zstride); const ulongT res_whd = (ulongT)nwidth * nheight * ndepth, res_size = res_whd * res._spectrum; const bool is_inner_parallel = res_whd >= (cimg_openmp_sizefactor)*32768, is_outer_parallel = res_size >= (cimg_openmp_sizefactor)*32768; cimg::unused(is_inner_parallel, is_outer_parallel); int _xcenter = xcenter == ~0U ? kernel.width() / 2 - 1 + (kernel.width() % 2) : (int)std::min(xcenter, kernel._width - 1), _ycenter = ycenter == ~0U ? kernel.height() / 2 - 1 + (kernel.height() % 2) : (int)std::min(ycenter, kernel._height - 1), _zcenter = zcenter == ~0U ? kernel.depth() / 2 - 1 + (kernel.depth() % 2) : (int)std::min(zcenter, kernel._depth - 1), _xdilation = (int)cimg::round(xdilation), _ydilation = (int)cimg::round(ydilation), _zdilation = (int)cimg::round(zdilation); const bool is_int_stride_dilation = xstride == _xstride && ystride == _ystride && zstride == _zstride && xdilation == _xdilation && ydilation == _ydilation && zdilation == _zdilation; CImg _kernel; if (is_convolve) { // If convolution, go back to correlation _kernel = CImg(kernel._data, kernel.size() / kernel._spectrum, 1, 1, kernel._spectrum, true) .get_mirror('x') .resize(kernel, -1); _xcenter = kernel.width() - 1 - _xcenter; _ycenter = kernel.height() - 1 - _ycenter; _zcenter = kernel.depth() - 1 - _zcenter; } else _kernel = kernel.get_shared(); if (_kernel._width == _kernel._height && _kernel._width > 1 && _kernel._height > 1 && ((_kernel._depth == 1 && _kernel._width <= 5) || (_kernel._depth == _kernel._width && _kernel._width <= 3)) && boundary_conditions <= 1 && channel_mode && _xcenter == _kernel.width() / 2 - 1 + (_kernel.width() % 2) && _ycenter == _kernel.height() / 2 - 1 + (_kernel.height() % 2) && _zcenter == _kernel.depth() / 2 - 1 + (_kernel.depth() % 2) && is_int_stride_dilation && _xdilation >= 0 && _ydilation >= 0 && _zdilation >= 0) { // Optimized versions for centered 2x2, 3x3, 4x4, 5x5, 2x2x2 and // 3x3x3 kernels. const int dw = 1 - (_kernel.width() % 2), dh = 1 - (_kernel.height() % 2), dd = 1 - (_kernel.depth() % 2); if (dw || dh || dd) // Force kernel size to be odd _kernel .get_resize(_kernel.width() + dw, _kernel.height() + dh, _kernel.depth() + dd, _kernel.spectrum(), 0, 0, 1, 1, 1) .move_to(_kernel.assign()); if (!boundary_conditions) { // Dirichlet -> Add a 1px zero border, // then use _correlate() with Neumann const int dx = _kernel._width == 1 ? 0 : 1, dy = _kernel._height == 1 ? 0 : 1, dz = _kernel._depth == 1 ? 0 : 1; return get_crop(-dx, -dy, -dz, width() - 1 + dx, height() - 1 + dy, depth() - 1 + dz) ._correlate(_kernel, true, is_normalized, channel_mode, _xcenter, _ycenter, _zcenter, _xstart + dx, _ystart + dy, _zstart + dz, _xend + dx, _yend + dy, _zend + dz, xstride, ystride, zstride, xdilation, ydilation, zdilation, false); } else { // Neumann boundaries res.assign(nwidth, nheight, ndepth, std::max(_spectrum, _kernel._spectrum)); switch (_kernel._depth) { case 3: { // 3x3x3 centered kernel cimg_forC(res, c) { cimg_abort_test; const CImg I = get_shared_channel(c % _spectrum); const CImg K = _kernel.get_shared_channel( c % kernel._spectrum); const int w1 = I.width() - 1, h1 = I.height() - 1, d1 = I.depth() - 1; CImg _res = res.get_shared_channel(c); if (is_normalized) { const Ttfloat M = (Ttfloat)K.magnitude(2), M2 = M * M; cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(_res.size(),16384)) cimg_forXYZ(res,X,Y,Z) { const int x = _xstart + _xstride * X, y = _ystart + _ystride * Y, z = _zstart + _zstride * Z, px = x - _xdilation > 0 ? x - _xdilation : 0, nx = x + _xdilation < w1 ? x + _xdilation : w1, py = y - _ydilation > 0 ? y - _ydilation : 0, ny = y + _ydilation < h1 ? y + _ydilation : h1, pz = z - _zdilation > 0 ? z - _zdilation : 0, nz = z + _zdilation < d1 ? z + _zdilation : d1; const Ttfloat N = M2 * (cimg::sqr(I(px, py, pz)) + cimg::sqr(I(x, py, pz)) + cimg::sqr(I(nx, py, pz)) + cimg::sqr(I(px, y, pz)) + cimg::sqr(I(x, y, pz)) + cimg::sqr(I(nx, y, pz)) + cimg::sqr(I(px, ny, pz)) + cimg::sqr(I(x, ny, pz)) + cimg::sqr(I(nx, ny, pz)) + cimg::sqr(I(px, py, z)) + cimg::sqr(I(x, py, z)) + cimg::sqr(I(nx, py, z)) + cimg::sqr(I(px, y, z)) + cimg::sqr(I(x, y, z)) + cimg::sqr(I(nx, y, z)) + cimg::sqr(I(px, ny, z)) + cimg::sqr(I(x, ny, z)) + cimg::sqr(I(nx, ny, z)) + cimg::sqr(I(px, py, nz)) + cimg::sqr(I(x, py, nz)) + cimg::sqr(I(nx, py, nz)) + cimg::sqr(I(px, y, nz)) + cimg::sqr(I(x, y, nz)) + cimg::sqr(I(nx, y, nz)) + cimg::sqr(I(px, ny, nz)) + cimg::sqr(I(x, ny, nz)) + cimg::sqr(I(nx, ny, nz))); _res(X, Y, Z) = (Ttfloat)( N ? (K[0] * I(px, py, pz) + K[1] * I(x, py, pz) + K[2] * I(nx, py, pz) + K[3] * I(px, y, pz) + K[4] * I(x, y, pz) + K[5] * I(nx, y, pz) + K[6] * I(px, ny, pz) + K[7] * I(x, ny, pz) + K[8] * I(nx, ny, pz) + K[9] * I(px, py, z) + K[10] * I(x, py, z) + K[11] * I(nx, py, z) + K[12] * I(px, y, z) + K[13] * I(x, y, z) + K[14] * I(nx, y, z) + K[15] * I(px, ny, z) + K[16] * I(x, ny, z) + K[17] * I(nx, ny, z) + K[18] * I(px, py, nz) + K[19] * I(x, py, nz) + K[20] * I(nx, py, nz) + K[21] * I(px, y, nz) + K[22] * I(x, y, nz) + K[23] * I(nx, y, nz) + K[24] * I(px, ny, nz) + K[25] * I(x, ny, nz) + K[26] * I(nx, ny, nz)) / std::sqrt(N) : 0); } } else { cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(_res.size(),16384)) cimg_forXYZ(res,X,Y,Z) { const int x = _xstart + _xstride * X, y = _ystart + _ystride * Y, z = _zstart + _zstride * Z, px = x - _xdilation > 0 ? x - _xdilation : 0, nx = x + _xdilation < w1 ? x + _xdilation : w1, py = y - _ydilation > 0 ? y - _ydilation : 0, ny = y + _ydilation < h1 ? y + _ydilation : h1, pz = z - _zdilation > 0 ? z - _zdilation : 0, nz = z + _zdilation < d1 ? z + _zdilation : d1; _res(X, Y, Z) = (Ttfloat)(K[0] * I(px, py, pz) + K[1] * I(x, py, pz) + K[2] * I(nx, py, pz) + K[3] * I(px, y, pz) + K[4] * I(x, y, pz) + K[5] * I(nx, y, pz) + K[6] * I(px, ny, pz) + K[7] * I(x, ny, pz) + K[8] * I(nx, ny, pz) + K[9] * I(px, py, z) + K[10] * I(x, py, z) + K[11] * I(nx, py, z) + K[12] * I(px, y, z) + K[13] * I(x, y, z) + K[14] * I(nx, y, z) + K[15] * I(px, ny, z) + K[16] * I(x, ny, z) + K[17] * I(nx, ny, z) + K[18] * I(px, py, nz) + K[19] * I(x, py, nz) + K[20] * I(nx, py, nz) + K[21] * I(px, y, nz) + K[22] * I(x, y, nz) + K[23] * I(nx, y, nz) + K[24] * I(px, ny, nz) + K[25] * I(x, ny, nz) + K[26] * I(nx, ny, nz)); } } } } break; default: case 1: switch (_kernel._width) { case 5: { // 5x5 centered kernel cimg_forC(res, c) { cimg_abort_test; const CImg I = get_shared_channel(c % _spectrum); const CImg K = _kernel.get_shared_channel( c % kernel._spectrum); const int w1 = I.width() - 1, h1 = I.height() - 1; CImg _res = res.get_shared_channel(c); if (is_normalized) { const Ttfloat M = (Ttfloat)K.magnitude( 2), M2 = M * M; cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(_res.size(),16384)) cimg_forXYZ(res,X,Y,z) { const int x = _xstart + _xstride * X, y = _ystart + _ystride * Y, px = x - _xdilation > 0 ? x - _xdilation : 0, bx = px - _xdilation > 0 ? px - _xdilation : 0, nx = x + _xdilation < w1 ? x + _xdilation : w1, ax = nx + _xdilation < w1 ? nx + _xdilation : w1, py = y - _ydilation > 0 ? y - _ydilation : 0, by = py - _ydilation > 0 ? py - _ydilation : 0, ny = y + _ydilation < h1 ? y + _ydilation : h1, ay = ny + _ydilation < h1 ? ny + _ydilation : h1; const Ttfloat N = M2 * (cimg::sqr(I(bx, by, z)) + cimg::sqr(I(px, by, z)) + cimg::sqr(I(x, by, z)) + cimg::sqr(I(nx, by, z)) + cimg::sqr(I(ax, by, z)) + cimg::sqr(I(bx, py, z)) + cimg::sqr(I(px, py, z)) + cimg::sqr(I(x, py, z)) + cimg::sqr(I(nx, py, z)) + cimg::sqr(I(ax, py, z)) + cimg::sqr(I(bx, y, z)) + cimg::sqr(I(px, y, z)) + cimg::sqr(I(x, y, z)) + cimg::sqr(I(nx, y, z)) + cimg::sqr(I(ax, y, z)) + cimg::sqr(I(bx, ny, z)) + cimg::sqr(I(px, ny, z)) + cimg::sqr(I(x, ny, z)) + cimg::sqr(I(nx, ny, z)) + cimg::sqr(I(ax, ny, z)) + cimg::sqr(I(bx, ay, z)) + cimg::sqr(I(px, ay, z)) + cimg::sqr(I(x, ay, z)) + cimg::sqr(I(nx, ay, z)) + cimg::sqr(I(ax, ay, z))); _res(X, Y, z) = (Ttfloat)( N ? (K[0] * I(bx, by, z) + K[1] * I(px, by, z) + K[2] * I(x, by, z) + K[3] * I(nx, by, z) + K[4] * I(ax, by, z) + K[5] * I(bx, py, z) + K[6] * I(px, py, z) + K[7] * I(x, py, z) + K[8] * I(nx, py, z) + K[9] * I(ax, py, z) + K[10] * I(bx, y, z) + K[11] * I(px, y, z) + K[12] * I(x, y, z) + K[13] * I(nx, y, z) + K[14] * I(ax, y, z) + K[15] * I(bx, ny, z) + K[16] * I(px, ny, z) + K[17] * I(x, ny, z) + K[18] * I(nx, ny, z) + K[19] * I(ax, ny, z) + K[20] * I(bx, ay, z) + K[21] * I(px, ay, z) + K[22] * I(x, ay, z) + K[23] * I(nx, ay, z) + K[24] * I(ax, ay, z)) / std::sqrt(N) : 0); } } else { cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(_res.size(),16384)) cimg_forXYZ(res,X,Y,z) { const int x = _xstart + _xstride * X, y = _ystart + _ystride * Y, px = x - _xdilation > 0 ? x - _xdilation : 0, bx = px - _xdilation > 0 ? px - _xdilation : 0, nx = x + _xdilation < w1 ? x + _xdilation : w1, ax = nx + _xdilation < w1 ? nx + _xdilation : w1, py = y - _ydilation > 0 ? y - _ydilation : 0, by = py - _ydilation > 0 ? py - _ydilation : 0, ny = y + _ydilation < h1 ? y + _ydilation : h1, ay = ny + _ydilation < h1 ? ny + _ydilation : h1; _res(X, Y, z) = (Ttfloat)( K[0] * I(bx, by, z) + K[1] * I(px, by, z) + K[2] * I(x, by, z) + K[3] * I(nx, by, z) + K[4] * I(ax, by, z) + K[5] * I(bx, py, z) + K[6] * I(px, py, z) + K[7] * I(x, py, z) + K[8] * I(nx, py, z) + K[9] * I(ax, py, z) + K[10] * I(bx, y, z) + K[11] * I(px, y, z) + K[12] * I(x, y, z) + K[13] * I(nx, y, z) + K[14] * I(ax, y, z) + K[15] * I(bx, ny, z) + K[16] * I(px, ny, z) + K[17] * I(x, ny, z) + K[18] * I(nx, ny, z) + K[19] * I(ax, ny, z) + K[20] * I(bx, ay, z) + K[21] * I(px, ay, z) + K[22] * I(x, ay, z) + K[23] * I(nx, ay, z) + K[24] * I(ax, ay, z)); } } } } break; case 3: { // 3x3 centered kernel cimg_forC(res, c) { cimg_abort_test; const CImg I = get_shared_channel(c % _spectrum); const CImg K = _kernel.get_shared_channel( c % kernel._spectrum); CImg _res = res.get_shared_channel(c); const int w1 = I.width() - 1, h1 = I.height() - 1; if (is_normalized) { const Ttfloat M = (Ttfloat)K.magnitude( 2), M2 = M * M; cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(_res.size(),16384)) cimg_forXYZ(res,X,Y,z) { const int x = _xstart + _xstride * X, y = _ystart + _ystride * Y, px = x - _xdilation > 0 ? x - _xdilation : 0, nx = x + _xdilation < w1 ? x + _xdilation : w1, py = y - _ydilation > 0 ? y - _ydilation : 0, ny = y + _ydilation < h1 ? y + _ydilation : h1; const Ttfloat N = M2 * (cimg::sqr(I(px, py, z)) + cimg::sqr(I(x, py, z)) + cimg::sqr(I(nx, py, z)) + cimg::sqr(I(px, y, z)) + cimg::sqr(I(x, y, z)) + cimg::sqr(I(nx, y, z)) + cimg::sqr(I(px, ny, z)) + cimg::sqr(I(x, ny, z)) + cimg::sqr(I(nx, ny, z))); _res(X, Y, z) = (Ttfloat)( N ? (K[0] * I(px, py, z) + K[1] * I(x, py, z) + K[2] * I(nx, py, z) + K[3] * I(px, y, z) + K[4] * I(x, y, z) + K[5] * I(nx, y, z) + K[6] * I(px, ny, z) + K[7] * I(x, ny, z) + K[8] * I(nx, ny, z)) / std::sqrt(N) : 0); } } else { cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(_res.size(),16384)) cimg_forXYZ(res,X,Y,z) { const int x = _xstart + _xstride * X, y = _ystart + _ystride * Y, px = x - _xdilation > 0 ? x - _xdilation : 0, nx = x + _xdilation < w1 ? x + _xdilation : w1, py = y - _ydilation > 0 ? y - _ydilation : 0, ny = y + _ydilation < h1 ? y + _ydilation : h1; _res(X, Y, z) = (Ttfloat)(K[0] * I(px, py, z) + K[1] * I(x, py, z) + K[2] * I(nx, py, z) + K[3] * I(px, y, z) + K[4] * I(x, y, z) + K[5] * I(nx, y, z) + K[6] * I(px, ny, z) + K[7] * I(x, ny, z) + K[8] * I(nx, ny, z)); } } } } break; } } } } else if (_kernel._width == 1 && _kernel._height == 1 && _kernel._depth == 1 && xstride == 1 && ystride == 1 && ystride == 1) { // Special optimization for 1x1 kernel. res = get_crop(_xstart, _ystart, _zstart, _xend, _yend, _zend); switch (channel_mode) { case 0: { // Sum input channels CImg res0 = res.get_shared_channel(0); for (int c = 1; c < res.spectrum(); ++c) res0 += res.get_shared_channel(c); res.channel(0).resize(-100, -100, -100, _kernel._spectrum, 0, 2); cimg_forC(res, c) res.get_shared_channel(c) *= _kernel[c]; } break; case 1: { // One-for-one res.resize(-100, -100, -100, std::max(res._spectrum, _kernel._spectrum), 0, 2); cimg_pragma_openmp(parallel for cimg_openmp_if(is_outer_parallel)) cimg_forC(res,c) res.get_shared_channel(c)*=_kernel[c%_kernel._spectrum]; } break; default: { // Expand res.resize(-100, -100, -100, res._spectrum * _kernel._spectrum, 0, 2); cimg_pragma_openmp(parallel for cimg_openmp_if(is_outer_parallel)) cimg_forC(res,c) res.get_shared_channel(c)*=_kernel[c/res._spectrum]; } } } else { // Generic version for other kernels and boundary conditions. res.assign(nwidth, nheight, ndepth, channel_mode == 0 ? _kernel._spectrum : channel_mode == 1 ? std::max(_spectrum, _kernel._spectrum) : _spectrum * _kernel._spectrum); if (!channel_mode) { // Channel mode: Sum inputs cimg_pragma_openmp(parallel for cimg_openmp_if(!is_inner_parallel && is_outer_parallel)) cimg_forC(_kernel,kc) _cimg_abort_try_openmp { cimg_abort_test; const CImg K = _kernel.get_shared_channel(kc % _kernel._spectrum); int w2 = 0, h2 = 0, d2 = 0; Ttfloat M = 0, M2 = 0; if (is_normalized) { M = (Ttfloat)K.magnitude(2); M2 = M * M; } if (boundary_conditions >= 3) { w2 = 2 * width(); h2 = 2 * height(); d2 = 2 * depth(); } res.fill(0); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) cimg_forXYZC(res,x,y,z,c) { Ttfloat _val, val = 0, N = 0; if (is_int_stride_dilation) cimg_forXYZ(_kernel, p, q, r) { const int ix = (int)xstart + _xstride * x + _xdilation * (p - _xcenter), iy = (int)ystart + _ystride * y + _ydilation * (q - _ycenter), iz = (int)zstart + _zstride * z + _zdilation * (r - _zcenter); switch (boundary_conditions) { case 0: _val = atXYZ(ix, iy, iz, c, 0); break; // Dirichlet case 1: _val = _atXYZ(ix, iy, iz, c); break; // Neumann case 2: _val = (*this)( cimg::mod(ix, width()), cimg::mod(iy, height()), // Periodic cimg::mod(iz, depth()), c); break; default: { // Mirror const int mx = cimg::mod(ix, w2), my = cimg::mod(iy, h2), mz = cimg::mod(iz, d2); _val = (*this)(mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, mz < depth() ? mz : d2 - mz - 1); } } val += _val * K(p, q, r); if (is_normalized) N += _val * _val; } else cimg_forXYZ(_kernel, p, q, r) { const float ix = xstart + xstride * x + xdilation * (p - _xcenter), iy = ystart + ystride * y + ydilation * (q - _ycenter), iz = zstart + zstride * z + zdilation * (r - _zcenter); switch (boundary_conditions) { case 0: _val = linear_atXYZ(ix, iy, iz, c, 0); break; // Dirichlet case 1: _val = _linear_atXYZ(ix, iy, iz, c); break; // Neumann case 2: _val = _linear_atXYZ_p(ix, iy, iz, c); break; // Periodic default: { // Mirror const int mx = cimg::mod(ix, w2), my = cimg::mod(iy, h2), mz = cimg::mod(iz, d2); _val = linear_atXYZ( mx < width() ? mx : w2 - mx - 1, my < height() ? my : h2 - my - 1, mz < depth() ? mz : d2 - mz - 1, c); } } val += _val * K(p, q, r); if (is_normalized) N += _val * _val; } N *= M2; res(x, y, z, c) += is_normalized ? (Ttfloat)(N ? val / std::sqrt(N) : 0) : val; } } _cimg_abort_catch_openmp cimg_abort_test; } else { // Channel mode: one-for-one & expand cimg_pragma_openmp(parallel for cimg_openmp_if(!is_inner_parallel && is_outer_parallel)) cimg_forC(res,c) _cimg_abort_try_openmp { cimg_abort_test; const CImg I = get_shared_channel(c % _spectrum); const CImg K = _kernel.get_shared_channel( channel_mode == 1 ? c % _kernel._spectrum : c / _spectrum); int w2 = 0, h2 = 0, d2 = 0; Ttfloat M = 0, M2 = 0; if (is_normalized) { M = (Ttfloat)K.magnitude(2); M2 = M * M; } if (boundary_conditions >= 3) { w2 = 2 * I.width(); h2 = 2 * I.height(); d2 = 2 * I.depth(); } cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) cimg_forXYZ(res,x,y,z) { Ttfloat _val, val = 0, N = 0; if (is_int_stride_dilation) cimg_forXYZ(_kernel, p, q, r) { const int ix = (int)xstart + _xstride * x + _xdilation * (p - _xcenter), iy = (int)ystart + _ystride * y + _ydilation * (q - _ycenter), iz = (int)zstart + _zstride * z + _zdilation * (r - _zcenter); switch (boundary_conditions) { case 0: _val = I.atXYZ(ix, iy, iz, 0, 0); break; // Dirichlet case 1: _val = I._atXYZ(ix, iy, iz); break; // Neumann case 2: _val = I(cimg::mod(ix, I.width()), cimg::mod(iy, I.height()), // Periodic cimg::mod(iz, I.depth())); break; default: { // Mirror const int mx = cimg::mod(ix, w2), my = cimg::mod(iy, h2), mz = cimg::mod(iz, d2); _val = I(mx < I.width() ? mx : w2 - mx - 1, my < I.height() ? my : h2 - my - 1, mz < I.depth() ? mz : d2 - mz - 1); } } val += _val * K(p, q, r); if (is_normalized) N += _val * _val; } else cimg_forXYZ(_kernel, p, q, r) { const float ix = xstart + xstride * x + xdilation * (p - _xcenter), iy = ystart + ystride * y + ydilation * (q - _ycenter), iz = zstart + zstride * z + zdilation * (r - _zcenter); switch (boundary_conditions) { case 0: _val = I.linear_atXYZ(ix, iy, iz, 0, 0); break; // Dirichlet case 1: _val = I._linear_atXYZ(ix, iy, iz); break; // Neumann case 2: _val = I._linear_atXYZ_p(ix, iy, iz); break; // Periodic default: { // Mirror const int mx = cimg::mod(ix, w2), my = cimg::mod(iy, h2), mz = cimg::mod(iz, d2); _val = I.linear_atXYZ( mx < I.width() ? mx : w2 - mx - 1, my < I.height() ? my : h2 - my - 1, mz < I.depth() ? mz : d2 - mz - 1); } } val += _val * K(p, q, r); if (is_normalized) N += _val * _val; } N *= M2; res(x, y, z, c) = is_normalized ? (Ttfloat)(N ? val / std::sqrt(N) : 0) : val; } } _cimg_abort_catch_openmp cimg_abort_test; } } return res; } //! Convolve image by a kernel. /** \param kernel = the correlation kernel. \param boundary_conditions Boundary condition. Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. \param is_normalized = enable local normalization. \param channel mode Channel processing mode. Can be { 0=sum inputs | 1=one-for-one | 2=expand } \param xcenter X-coordinate of the kernel center (~0U means 'centered'). \param xstart Starting X-coordinate of the instance image. \param xend Ending X-coordinate of the instance image. \param xstride Stride along the X-axis. \param xdilation Dilation along the X-axis. \param ycenter Y-coordinate of the kernel center (~0U means 'centered'). \param ystart Starting Y-coordinate of the instance image. \param yend Ending Y-coordinate of the instance image. \param ystride Stride along the Y-axis. \param ydilation Dilation along the Y-axis. \param zcenter Z-coordinate of the kernel center (~0U means 'centered'). \param zstart Starting Z-coordinate of the instance image. \param zend Ending Z-coordinate of the instance image. \param zstride Stride along the Z-axis. \param zdilation Dilation along the Z-axis. \note - The convolution of the image instance \p *this by the kernel \p kernel is defined to be: res(x,y,z) = sum_{i,j,k} (*this)(\alpha_x\;x - \beta_x\;(i - c_x),\alpha_y\;y - \beta_y\;(j - c_y),\alpha_z\;z - \beta_z\;(k - c_z))*kernel(i,j,k). **/ template CImg& convolve( const CImg& kernel, const unsigned int boundary_conditions = 1, const bool is_normalized = false, const unsigned int channel_mode = 1, const unsigned int xcenter = ~0U, const unsigned int ycenter = ~0U, const unsigned int zcenter = ~0U, const unsigned int xstart = 0, const unsigned int ystart = 0, const unsigned zstart = 0, const unsigned int xend = ~0U, const unsigned int yend = ~0U, const unsigned int zend = ~0U, const float xstride = 1, const float ystride = 1, const float zstride = 1, const float xdilation = 1, const float ydilation = 1, const float zdilation = 1) { if (is_empty() || !kernel) return *this; return get_convolve(kernel, boundary_conditions, is_normalized, channel_mode, xcenter, ycenter, zcenter, xstart, ystart, zstart, xend, yend, zend, xstride, ystride, zstride, xdilation, ydilation, zdilation) .move_to(*this); } //! Convolve image by a kernel \newinstance. template CImg<_cimg_Ttfloat> get_convolve( const CImg& kernel, const unsigned int boundary_conditions = 1, const bool is_normalized = false, const unsigned int channel_mode = 1, const unsigned int xcenter = ~0U, const unsigned int ycenter = ~0U, const unsigned int zcenter = ~0U, const unsigned int xstart = 0, const unsigned int ystart = 0, const unsigned zstart = 0, const unsigned int xend = ~0U, const unsigned int yend = ~0U, const unsigned int zend = ~0U, const float xstride = 1, const float ystride = 1, const float zstride = 1, const float xdilation = 1, const float ydilation = 1, const float zdilation = 1) const { return _correlate(kernel, boundary_conditions, is_normalized, channel_mode, xcenter, ycenter, zcenter, xstart, ystart, zstart, xend, yend, zend, xstride, ystride, zstride, xdilation, ydilation, zdilation, true); } //! Cumulate image values, optionally along specified axis. /** \param axis Cumulation axis. Set it to 0 to cumulate all values globally without taking axes into account. **/ CImg& cumulate(const char axis = 0) { switch (cimg::lowercase(axis)) { case 'x': cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && _height*_depth*_spectrum>=16)) cimg_forYZC(*this,y,z,c) { T* ptrd = data(0, y, z, c); Tlong cumul = (Tlong)0; cimg_forX(*this, x) { cumul += (Tlong)*ptrd; *(ptrd++) = (T)cumul; } } break; case 'y': { const ulongT w = (ulongT)_width; cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*512 && _width*_depth*_spectrum>=16)) cimg_forXZC(*this,x,z,c) { T* ptrd = data(x, 0, z, c); Tlong cumul = (Tlong)0; cimg_forY(*this, y) { cumul += (Tlong)*ptrd; *ptrd = (T)cumul; ptrd += w; } } } break; case 'z': { const ulongT wh = (ulongT)_width * _height; cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_depth>=(cimg_openmp_sizefactor)*512 && _width*_depth*_spectrum>=16)) cimg_forXYC(*this,x,y,c) { T* ptrd = data(x, y, 0, c); Tlong cumul = (Tlong)0; cimg_forZ(*this, z) { cumul += (Tlong)*ptrd; *ptrd = (T)cumul; ptrd += wh; } } } break; case 'c': { const ulongT whd = (ulongT)_width * _height * _depth; cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_spectrum>=(cimg_openmp_sizefactor)*512 && _width*_height*_depth>=16)) cimg_forXYZ(*this,x,y,z) { T* ptrd = data(x, y, z, 0); Tlong cumul = (Tlong)0; cimg_forC(*this, c) { cumul += (Tlong)*ptrd; *ptrd = (T)cumul; ptrd += whd; } } } break; default: { // Global cumulation Tlong cumul = (Tlong)0; cimg_for(*this, ptrd, T) { cumul += (Tlong)*ptrd; *ptrd = (T)cumul; } } } return *this; } //! Cumulate image values, optionally along specified axis \newinstance. CImg get_cumulate(const char axis = 0) const { return CImg(*this, false).cumulate(axis); } //! Cumulate image values, along specified axes. /** \param axes Cumulation axes, as a C-string. \note \c axes may contains multiple characters, e.g. \c "xyz" **/ CImg& cumulate(const char* const axes) { for (const char* s = axes; *s; ++s) cumulate(*s); return *this; } //! Cumulate image values, along specified axes \newinstance. CImg get_cumulate(const char* const axes) const { return CImg(*this, false).cumulate(axes); } //! Erode image by a structuring element. /** \param kernel Structuring element. \param boundary_conditions Boundary conditions. \param is_real Do the erosion in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false). **/ template CImg& erode(const CImg& kernel, const bool boundary_conditions = true, const bool is_real = false) { if (is_empty() || !kernel) return *this; return get_erode(kernel, boundary_conditions, is_real).move_to(*this); } //! Erode image by a structuring element \newinstance. template CImg<_cimg_Tt> get_erode(const CImg& kernel, const bool boundary_conditions = true, const bool is_real = false) const { if (is_empty() || !kernel) return *this; if (!is_real && kernel == 0) return CImg(width(), height(), depth(), spectrum(), 0); typedef _cimg_Tt Tt; CImg res(_width, _height, _depth, std::max(_spectrum, kernel._spectrum)); const int mx2 = kernel.width() / 2, my2 = kernel.height() / 2, mz2 = kernel.depth() / 2, mx1 = kernel.width() - mx2 - 1, my1 = kernel.height() - my2 - 1, mz1 = kernel.depth() - mz2 - 1, mxe = width() - mx2, mye = height() - my2, mze = depth() - mz2; const bool is_inner_parallel = _width * _height * _depth >= (cimg_openmp_sizefactor)*32768, is_outer_parallel = res.size() >= (cimg_openmp_sizefactor)*32768; cimg::unused(is_inner_parallel, is_outer_parallel); _cimg_abort_init_openmp; cimg_abort_init; cimg_pragma_openmp(parallel for cimg_openmp_if(!is_inner_parallel && is_outer_parallel)) cimg_forC(res,c) _cimg_abort_try_openmp { cimg_abort_test; const CImg img = get_shared_channel(c % _spectrum); const CImg K = kernel.get_shared_channel(c % kernel._spectrum); if (is_real) { // Real erosion cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) for (int z = mz1; z::max(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) { const t mval = K(mx1 + xm, my1 + ym, mz1 + zm); const Tt cval = (Tt)(img(x + xm, y + ym, z + zm) - mval); if (cval < min_val) min_val = cval; } res(x, y, z, c) = min_val; } _cimg_abort_catch_openmp2 if (boundary_conditions) cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel)) cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 { cimg_abort_test2; for (int x = 0; x < width(); (y < my1 || y >= mye || z < mz1 || z >= mze) ? ++x : ((x < mx1 - 1 || x >= mxe) ? ++x : (x = mxe))) { Tt min_val = cimg::type::max(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) { const t mval = K(mx1 + xm, my1 + ym, mz1 + zm); const Tt cval = (Tt)( img._atXYZ(x + xm, y + ym, z + zm) - mval); if (cval < min_val) min_val = cval; } res(x, y, z, c) = min_val; } } _cimg_abort_catch_openmp2 else cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel)) cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 { cimg_abort_test2; for (int x = 0; x < width(); (y < my1 || y >= mye || z < mz1 || z >= mze) ? ++x : ((x < mx1 - 1 || x >= mxe) ? ++x : (x = mxe))) { Tt min_val = cimg::type::max(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) { const t mval = K(mx1 + xm, my1 + ym, mz1 + zm); const Tt cval = (Tt)( img.atXYZ(x + xm, y + ym, z + zm, 0, (T)0) - mval); if (cval < min_val) min_val = cval; } res(x, y, z, c) = min_val; } } _cimg_abort_catch_openmp2 } else { // Binary erosion cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) for (int z = mz1; z::max(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) if (K(mx1 + xm, my1 + ym, mz1 + zm)) { const Tt cval = (Tt)img(x + xm, y + ym, z + zm); if (cval < min_val) min_val = cval; } res(x, y, z, c) = min_val; } _cimg_abort_catch_openmp2 if (boundary_conditions) cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel)) cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 { cimg_abort_test2; for (int x = 0; x < width(); (y < my1 || y >= mye || z < mz1 || z >= mze) ? ++x : ((x < mx1 - 1 || x >= mxe) ? ++x : (x = mxe))) { Tt min_val = cimg::type::max(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) if (K(mx1 + xm, my1 + ym, mz1 + zm)) { const Tt cval = (Tt)img._atXYZ(x + xm, y + ym, z + zm); if (cval < min_val) min_val = cval; } res(x, y, z, c) = min_val; } } _cimg_abort_catch_openmp2 else cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel)) cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 { cimg_abort_test2; for (int x = 0; x < width(); (y < my1 || y >= mye || z < mz1 || z >= mze) ? ++x : ((x < mx1 - 1 || x >= mxe) ? ++x : (x = mxe))) { Tt min_val = cimg::type::max(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) if (K(mx1 + xm, my1 + ym, mz1 + zm)) { const Tt cval = (Tt)img.atXYZ( x + xm, y + ym, z + zm, 0, (T)0); if (cval < min_val) min_val = cval; } res(x, y, z, c) = min_val; } } _cimg_abort_catch_openmp2 } } _cimg_abort_catch_openmp cimg_abort_test; return res; } //! Erode image by a rectangular structuring element of specified size. /** \param sx Width of the structuring element. \param sy Height of the structuring element. \param sz Depth of the structuring element. **/ CImg& erode(const unsigned int sx, const unsigned int sy, const unsigned int sz = 1) { if (is_empty() || (sx == 1 && sy == 1 && sz == 1)) return *this; if (sx > 1 && _width > 1) { // Along X-axis const int L = width(), off = 1, s = (int)sx, _s2 = s / 2 + 1, _s1 = s - _s2, s1 = _s1 > L ? L : _s1, s2 = _s2 > L ? L : _s2; CImg buf(L); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) cimg_forYZC(*this,y,z,c) { T *const ptrdb = buf._data, *ptrd = buf._data, *const ptrde = buf._data + L - 1; const T *const ptrsb = data(0, y, z, c), *ptrs = ptrsb, *const ptrse = ptrs + L * off - off; T cur = *ptrs; ptrs += off; bool is_first = true; for (int p = s2 - 1; p > 0 && ptrs <= ptrse; --p) { const T val = *ptrs; ptrs += off; if (val <= cur) { cur = val; is_first = false; } } *(ptrd++) = cur; if (ptrs >= ptrse) { T* pd = data(0, y, z, c); cur = std::min(cur, *ptrse); cimg_forX(buf, k) { *pd = cur; pd += off; } } else { for (int p = s1; p > 0 && ptrd <= ptrde; --p) { const T val = *ptrs; if (ptrs < ptrse) ptrs += off; if (val <= cur) { cur = val; is_first = false; } *(ptrd++) = cur; } for (int p = L - s - 1; p > 0; --p) { const T val = *ptrs; ptrs += off; if (is_first) { const T* nptrs = ptrs - off; cur = val; for (int q = s - 2; q > 0; --q) { nptrs -= off; const T nval = *nptrs; if (nval < cur) cur = nval; } nptrs -= off; const T nval = *nptrs; if (nval < cur) { cur = nval; is_first = true; } else is_first = false; } else { if (val <= cur) cur = val; else if (cur == *(ptrs - s * off)) is_first = true; } *(ptrd++) = cur; } ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs -= off; for (int p = s1; p > 0 && ptrs >= ptrsb; --p) { const T val = *ptrs; ptrs -= off; if (val < cur) cur = val; } *(ptrd--) = cur; for (int p = s2 - 1; p > 0 && ptrd >= ptrdb; --p) { const T val = *ptrs; if (ptrs > ptrsb) ptrs -= off; if (val < cur) cur = val; *(ptrd--) = cur; } T* pd = data(0, y, z, c); cimg_for(buf, ps, T) { *pd = *ps; pd += off; } } } } if (sy > 1 && _height > 1) { // Along Y-axis const int L = height(), off = width(), s = (int)sy, _s2 = s / 2 + 1, _s1 = s - _s2, s1 = _s1 > L ? L : _s1, s2 = _s2 > L ? L : _s2; CImg buf(L); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) cimg_forXZC(*this,x,z,c) { T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; const T *const ptrsb = data(x, 0, z, c), *ptrs = ptrsb, *const ptrse = ptrs + L * off - off; T cur = *ptrs; ptrs += off; bool is_first = true; for (int p = s2 - 1; p > 0 && ptrs <= ptrse; --p) { const T val = *ptrs; ptrs += off; if (val <= cur) { cur = val; is_first = false; } } *(ptrd++) = cur; if (ptrs >= ptrse) { T* pd = data(x, 0, z, c); cur = std::min(cur, *ptrse); cimg_forX(buf, k) { *pd = cur; pd += off; } } else { for (int p = s1; p > 0 && ptrd <= ptrde; --p) { const T val = *ptrs; if (ptrs < ptrse) ptrs += off; if (val <= cur) { cur = val; is_first = false; } *(ptrd++) = cur; } for (int p = L - s - 1; p > 0; --p) { const T val = *ptrs; ptrs += off; if (is_first) { const T* nptrs = ptrs - off; cur = val; for (int q = s - 2; q > 0; --q) { nptrs -= off; const T nval = *nptrs; if (nval < cur) cur = nval; } nptrs -= off; const T nval = *nptrs; if (nval < cur) { cur = nval; is_first = true; } else is_first = false; } else { if (val <= cur) cur = val; else if (cur == *(ptrs - s * off)) is_first = true; } *(ptrd++) = cur; } ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs -= off; for (int p = s1; p > 0 && ptrs >= ptrsb; --p) { const T val = *ptrs; ptrs -= off; if (val < cur) cur = val; } *(ptrd--) = cur; for (int p = s2 - 1; p > 0 && ptrd >= ptrdb; --p) { const T val = *ptrs; if (ptrs > ptrsb) ptrs -= off; if (val < cur) cur = val; *(ptrd--) = cur; } T* pd = data(x, 0, z, c); cimg_for(buf, ps, T) { *pd = *ps; pd += off; } } } } if (sz > 1 && _depth > 1) { // Along Z-axis const int L = depth(), off = width() * height(), s = (int)sz, _s2 = s / 2 + 1, _s1 = s - _s2, s1 = _s1 > L ? L : _s1, s2 = _s2 > L ? L : _s2; CImg buf(L); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) cimg_forXYC(*this,x,y,c) { T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; const T *const ptrsb = data(x, y, 0, c), *ptrs = ptrsb, *const ptrse = ptrs + L * off - off; T cur = *ptrs; ptrs += off; bool is_first = true; for (int p = s2 - 1; p > 0 && ptrs <= ptrse; --p) { const T val = *ptrs; ptrs += off; if (val <= cur) { cur = val; is_first = false; } } *(ptrd++) = cur; if (ptrs >= ptrse) { T* pd = data(x, y, 0, c); cur = std::min(cur, *ptrse); cimg_forX(buf, k) { *pd = cur; pd += off; } } else { for (int p = s1; p > 0 && ptrd <= ptrde; --p) { const T val = *ptrs; if (ptrs < ptrse) ptrs += off; if (val <= cur) { cur = val; is_first = false; } *(ptrd++) = cur; } for (int p = L - s - 1; p > 0; --p) { const T val = *ptrs; ptrs += off; if (is_first) { const T* nptrs = ptrs - off; cur = val; for (int q = s - 2; q > 0; --q) { nptrs -= off; const T nval = *nptrs; if (nval < cur) cur = nval; } nptrs -= off; const T nval = *nptrs; if (nval < cur) { cur = nval; is_first = true; } else is_first = false; } else { if (val <= cur) cur = val; else if (cur == *(ptrs - s * off)) is_first = true; } *(ptrd++) = cur; } ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs -= off; for (int p = s1; p > 0 && ptrs >= ptrsb; --p) { const T val = *ptrs; ptrs -= off; if (val < cur) cur = val; } *(ptrd--) = cur; for (int p = s2 - 1; p > 0 && ptrd >= ptrdb; --p) { const T val = *ptrs; if (ptrs > ptrsb) ptrs -= off; if (val < cur) cur = val; *(ptrd--) = cur; } T* pd = data(x, y, 0, c); cimg_for(buf, ps, T) { *pd = *ps; pd += off; } } } } return *this; } //! Erode image by a rectangular structuring element of specified size //! \newinstance. CImg get_erode(const unsigned int sx, const unsigned int sy, const unsigned int sz = 1) const { return (+*this).erode(sx, sy, sz); } //! Erode the image by a square structuring element of specified size. /** \param s Size of the structuring element. **/ CImg& erode(const unsigned int s) { return erode(s, s, s); } //! Erode the image by a square structuring element of specified size //! \newinstance. CImg get_erode(const unsigned int s) const { return (+*this).erode(s); } //! Dilate image by a structuring element. /** \param kernel Structuring element. \param boundary_conditions Boundary conditions. \param is_real Do the dilation in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false). **/ template CImg& dilate(const CImg& kernel, const bool boundary_conditions = true, const bool is_real = false) { if (is_empty() || !kernel) return *this; return get_dilate(kernel, boundary_conditions, is_real).move_to(*this); } //! Dilate image by a structuring element \newinstance. template CImg<_cimg_Tt> get_dilate(const CImg& kernel, const bool boundary_conditions = true, const bool is_real = false) const { if (is_empty() || !kernel || (!is_real && kernel == 0)) return *this; typedef _cimg_Tt Tt; CImg res(_width, _height, _depth, std::max(_spectrum, kernel._spectrum)); const int mx1 = kernel.width() / 2, my1 = kernel.height() / 2, mz1 = kernel.depth() / 2, mx2 = kernel.width() - mx1 - 1, my2 = kernel.height() - my1 - 1, mz2 = kernel.depth() - mz1 - 1, mxe = width() - mx2, mye = height() - my2, mze = depth() - mz2; const bool is_inner_parallel = _width * _height * _depth >= (cimg_openmp_sizefactor)*32768, is_outer_parallel = res.size() >= (cimg_openmp_sizefactor)*32768; cimg::unused(is_inner_parallel, is_outer_parallel); _cimg_abort_init_openmp; cimg_abort_init; cimg_pragma_openmp(parallel for cimg_openmp_if(!is_inner_parallel && is_outer_parallel)) cimg_forC(res,c) _cimg_abort_try_openmp { cimg_abort_test; const CImg img = get_shared_channel(c % _spectrum); const CImg K = kernel.get_shared_channel(c % kernel._spectrum); if (is_real) { // Real dilation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) for (int z = mz1; z::min(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) { const t mval = K(mx2 - xm, my2 - ym, mz2 - zm); const Tt cval = (Tt)(img(x + xm, y + ym, z + zm) + mval); if (cval > max_val) max_val = cval; } res(x, y, z, c) = max_val; } _cimg_abort_catch_openmp2 if (boundary_conditions) cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel)) cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 { cimg_abort_test2; for (int x = 0; x < width(); (y < my1 || y >= mye || z < mz1 || z >= mze) ? ++x : ((x < mx1 - 1 || x >= mxe) ? ++x : (x = mxe))) { Tt max_val = cimg::type::min(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) { const t mval = K(mx2 - xm, my2 - ym, mz2 - zm); const Tt cval = (Tt)( img._atXYZ(x + xm, y + ym, z + zm) + mval); if (cval > max_val) max_val = cval; } res(x, y, z, c) = max_val; } } _cimg_abort_catch_openmp2 else cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel)) cimg_forYZ(*this,y,z) _cimg_abort_try_openmp2 { cimg_abort_test2; for (int x = 0; x < width(); (y < my1 || y >= mye || z < mz1 || z >= mze) ? ++x : ((x < mx1 - 1 || x >= mxe) ? ++x : (x = mxe))) { Tt max_val = cimg::type::min(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) { const t mval = K(mx2 - xm, my2 - ym, mz2 - zm); const Tt cval = (Tt)( img.atXYZ(x + xm, y + ym, z + zm, 0, (T)0) + mval); if (cval > max_val) max_val = cval; } res(x, y, z, c) = max_val; } } _cimg_abort_catch_openmp2 } else { // Binary dilation cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) for (int z = mz1; z::min(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) if (K(mx2 - xm, my2 - ym, mz2 - zm)) { const Tt cval = (Tt)img(x + xm, y + ym, z + zm); if (cval > max_val) max_val = cval; } res(x, y, z, c) = max_val; } _cimg_abort_catch_openmp2 if (boundary_conditions) cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel)) cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 { cimg_abort_test2; for (int x = 0; x < width(); (y < my1 || y >= mye || z < mz1 || z >= mze) ? ++x : ((x < mx1 - 1 || x >= mxe) ? ++x : (x = mxe))) { Tt max_val = cimg::type::min(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) if (K(mx2 - xm, my2 - ym, mz2 - zm)) { const Tt cval = (Tt)img._atXYZ(x + xm, y + ym, z + zm); if (cval > max_val) max_val = cval; } res(x, y, z, c) = max_val; } } _cimg_abort_catch_openmp2 else cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel)) cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 { cimg_abort_test2; for (int x = 0; x < width(); (y < my1 || y >= mye || z < mz1 || z >= mze) ? ++x : ((x < mx1 - 1 || x >= mxe) ? ++x : (x = mxe))) { Tt max_val = cimg::type::min(); for (int zm = -mz1; zm <= mz2; ++zm) for (int ym = -my1; ym <= my2; ++ym) for (int xm = -mx1; xm <= mx2; ++xm) if (K(mx2 - xm, my2 - ym, mz2 - zm)) { const Tt cval = (Tt)img.atXYZ( x + xm, y + ym, z + zm, 0, (T)0); if (cval > max_val) max_val = cval; } res(x, y, z, c) = max_val; } } _cimg_abort_catch_openmp2 } } _cimg_abort_catch_openmp cimg_abort_test; return res; } //! Dilate image by a rectangular structuring element of specified size. /** \param sx Width of the structuring element. \param sy Height of the structuring element. \param sz Depth of the structuring element. **/ CImg& dilate(const unsigned int sx, const unsigned int sy, const unsigned int sz = 1) { if (is_empty() || (sx == 1 && sy == 1 && sz == 1)) return *this; if (sx > 1 && _width > 1) { // Along X-axis const int L = width(), off = 1, s = (int)sx, _s1 = s / 2, _s2 = s - _s1, s1 = _s1 > L ? L : _s1, s2 = _s2 > L ? L : _s2; CImg buf(L); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) cimg_forYZC(*this,y,z,c) { T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; const T *const ptrsb = data(0, y, z, c), *ptrs = ptrsb, *const ptrse = ptrs + L * off - off; T cur = *ptrs; ptrs += off; bool is_first = true; for (int p = s2 - 1; p > 0 && ptrs <= ptrse; --p) { const T val = *ptrs; ptrs += off; if (val >= cur) { cur = val; is_first = false; } } *(ptrd++) = cur; if (ptrs >= ptrse) { T* pd = data(0, y, z, c); cur = std::max(cur, *ptrse); cimg_forX(buf, k) { *pd = cur; pd += off; } } else { for (int p = s1; p > 0 && ptrd <= ptrde; --p) { const T val = *ptrs; if (ptrs < ptrse) ptrs += off; if (val >= cur) { cur = val; is_first = false; } *(ptrd++) = cur; } for (int p = L - s - 1; p > 0; --p) { const T val = *ptrs; ptrs += off; if (is_first) { const T* nptrs = ptrs - off; cur = val; for (int q = s - 2; q > 0; --q) { nptrs -= off; const T nval = *nptrs; if (nval > cur) cur = nval; } nptrs -= off; const T nval = *nptrs; if (nval > cur) { cur = nval; is_first = true; } else is_first = false; } else { if (val >= cur) cur = val; else if (cur == *(ptrs - s * off)) is_first = true; } *(ptrd++) = cur; } ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs -= off; for (int p = s1; p > 0 && ptrs >= ptrsb; --p) { const T val = *ptrs; ptrs -= off; if (val > cur) cur = val; } *(ptrd--) = cur; for (int p = s2 - 1; p > 0 && ptrd >= ptrdb; --p) { const T val = *ptrs; if (ptrs > ptrsb) ptrs -= off; if (val > cur) cur = val; *(ptrd--) = cur; } T* pd = data(0, y, z, c); cimg_for(buf, ps, T) { *pd = *ps; pd += off; } } } } if (sy > 1 && _height > 1) { // Along Y-axis const int L = height(), off = width(), s = (int)sy, _s1 = s / 2, _s2 = s - _s1, s1 = _s1 > L ? L : _s1, s2 = _s2 > L ? L : _s2; CImg buf(L); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) cimg_forXZC(*this,x,z,c) { T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; const T *const ptrsb = data(x, 0, z, c), *ptrs = ptrsb, *const ptrse = ptrs + L * off - off; T cur = *ptrs; ptrs += off; bool is_first = true; for (int p = s2 - 1; p > 0 && ptrs <= ptrse; --p) { const T val = *ptrs; ptrs += off; if (val >= cur) { cur = val; is_first = false; } } *(ptrd++) = cur; if (ptrs >= ptrse) { T* pd = data(x, 0, z, c); cur = std::max(cur, *ptrse); cimg_forX(buf, k) { *pd = cur; pd += off; } } else { for (int p = s1; p > 0 && ptrd <= ptrde; --p) { const T val = *ptrs; if (ptrs < ptrse) ptrs += off; if (val >= cur) { cur = val; is_first = false; } *(ptrd++) = cur; } for (int p = L - s - 1; p > 0; --p) { const T val = *ptrs; ptrs += off; if (is_first) { const T* nptrs = ptrs - off; cur = val; for (int q = s - 2; q > 0; --q) { nptrs -= off; const T nval = *nptrs; if (nval > cur) cur = nval; } nptrs -= off; const T nval = *nptrs; if (nval > cur) { cur = nval; is_first = true; } else is_first = false; } else { if (val >= cur) cur = val; else if (cur == *(ptrs - s * off)) is_first = true; } *(ptrd++) = cur; } ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs -= off; for (int p = s1; p > 0 && ptrs >= ptrsb; --p) { const T val = *ptrs; ptrs -= off; if (val > cur) cur = val; } *(ptrd--) = cur; for (int p = s2 - 1; p > 0 && ptrd >= ptrdb; --p) { const T val = *ptrs; if (ptrs > ptrsb) ptrs -= off; if (val > cur) cur = val; *(ptrd--) = cur; } T* pd = data(x, 0, z, c); cimg_for(buf, ps, T) { *pd = *ps; pd += off; } } } } if (sz > 1 && _depth > 1) { // Along Z-axis const int L = depth(), off = width() * height(), s = (int)sz, _s1 = s / 2, _s2 = s - _s1, s1 = _s1 > L ? L : _s1, s2 = _s2 > L ? L : _s2; CImg buf(L); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) cimg_forXYC(*this,x,y,c) { T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; const T *const ptrsb = data(x, y, 0, c), *ptrs = ptrsb, *const ptrse = ptrs + L * off - off; T cur = *ptrs; ptrs += off; bool is_first = true; for (int p = s2 - 1; p > 0 && ptrs <= ptrse; --p) { const T val = *ptrs; ptrs += off; if (val >= cur) { cur = val; is_first = false; } } *(ptrd++) = cur; if (ptrs >= ptrse) { T* pd = data(x, y, 0, c); cur = std::max(cur, *ptrse); cimg_forX(buf, k) { *pd = cur; pd += off; } } else { for (int p = s1; p > 0 && ptrd <= ptrde; --p) { const T val = *ptrs; if (ptrs < ptrse) ptrs += off; if (val >= cur) { cur = val; is_first = false; } *(ptrd++) = cur; } for (int p = L - s - 1; p > 0; --p) { const T val = *ptrs; ptrs += off; if (is_first) { const T* nptrs = ptrs - off; cur = val; for (int q = s - 2; q > 0; --q) { nptrs -= off; const T nval = *nptrs; if (nval > cur) cur = nval; } nptrs -= off; const T nval = *nptrs; if (nval > cur) { cur = nval; is_first = true; } else is_first = false; } else { if (val >= cur) cur = val; else if (cur == *(ptrs - s * off)) is_first = true; } *(ptrd++) = cur; } ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs -= off; for (int p = s1; p > 0 && ptrs >= ptrsb; --p) { const T val = *ptrs; ptrs -= off; if (val > cur) cur = val; } *(ptrd--) = cur; for (int p = s2 - 1; p > 0 && ptrd >= ptrdb; --p) { const T val = *ptrs; if (ptrs > ptrsb) ptrs -= off; if (val > cur) cur = val; *(ptrd--) = cur; } T* pd = data(x, y, 0, c); cimg_for(buf, ps, T) { *pd = *ps; pd += off; } } } } return *this; } //! Dilate image by a rectangular structuring element of specified size //! \newinstance. CImg get_dilate(const unsigned int sx, const unsigned int sy, const unsigned int sz = 1) const { return (+*this).dilate(sx, sy, sz); } //! Dilate image by a square structuring element of specified size. /** \param s Size of the structuring element. **/ CImg& dilate(const unsigned int s) { return dilate(s, s, s); } //! Dilate image by a square structuring element of specified size //! \newinstance. CImg get_dilate(const unsigned int s) const { return (+*this).dilate(s); } //! Compute watershed transform. /** \param priority Priority map. \param is_high_connectivity Boolean that choose between 4(false)- or 8(true)-connectivity in 2D case, and between 6(false)- or 26(true)-connectivity in 3D case. \note Non-zero values of the instance instance are propagated to zero-valued ones according to specified the priority map. **/ template CImg& watershed(const CImg& priority, const bool is_high_connectivity = false) { #define _cimg_watershed_init(cond, X, Y, Z) \ if (cond && !(*this)(X, Y, Z)) \ Q._priority_queue_insert(labels, sizeQ, priority(X, Y, Z), X, Y, Z, \ nb_seeds) #define _cimg_watershed_propagate(cond, X, Y, Z) \ if (cond) { \ if ((*this)(X, Y, Z)) { \ ns = labels(X, Y, Z) - 1; \ xs = seeds(ns, 0); \ ys = seeds(ns, 1); \ zs = seeds(ns, 2); \ d = cimg::sqr((float)x - xs) + cimg::sqr((float)y - ys) + \ cimg::sqr((float)z - zs); \ if (d < dmin) { \ dmin = d; \ nmin = ns; \ nlabel = (*this)(xs, ys, zs); \ } \ } else \ Q._priority_queue_insert(labels, sizeQ, priority(X, Y, Z), X, Y, \ Z, n); \ } if (is_empty()) return *this; if (!is_sameXYZ(priority)) throw CImgArgumentException(_cimg_instance "watershed(): image instance and " "specified priority (%u,%u,%u,%u,%p) " "have different dimensions.", cimg_instance, priority._width, priority._height, priority._depth, priority._spectrum, priority._data); if (_spectrum != 1) { cimg_forC(*this, c) get_shared_channel(c).watershed( priority.get_shared_channel(c % priority._spectrum)); return *this; } CImg labels(_width, _height, _depth, 1, 0), seeds(64, 3); CImg::type> Q; unsigned int sizeQ = 0; int px, nx, py, ny, pz, nz; bool is_px, is_nx, is_py, is_ny, is_pz, is_nz; const bool is_3d = _depth > 1; // Find seed points and insert them in priority queue. unsigned int nb_seeds = 0; const T* ptrs = _data; cimg_forXYZ(*this, x, y, z) if (*(ptrs++)) { // 3D version if (nb_seeds >= seeds._width) seeds.resize(2 * seeds._width, 3, 1, 1, 0); seeds(nb_seeds, 0) = x; seeds(nb_seeds, 1) = y; seeds(nb_seeds++, 2) = z; px = x - 1; nx = x + 1; py = y - 1; ny = y + 1; pz = z - 1; nz = z + 1; is_px = px >= 0; is_nx = nx < width(); is_py = py >= 0; is_ny = ny < height(); is_pz = pz >= 0; is_nz = nz < depth(); _cimg_watershed_init(is_px, px, y, z); _cimg_watershed_init(is_nx, nx, y, z); _cimg_watershed_init(is_py, x, py, z); _cimg_watershed_init(is_ny, x, ny, z); if (is_3d) { _cimg_watershed_init(is_pz, x, y, pz); _cimg_watershed_init(is_nz, x, y, nz); } if (is_high_connectivity) { _cimg_watershed_init(is_px && is_py, px, py, z); _cimg_watershed_init(is_nx && is_py, nx, py, z); _cimg_watershed_init(is_px && is_ny, px, ny, z); _cimg_watershed_init(is_nx && is_ny, nx, ny, z); if (is_3d) { _cimg_watershed_init(is_px && is_pz, px, y, pz); _cimg_watershed_init(is_nx && is_pz, nx, y, pz); _cimg_watershed_init(is_px && is_nz, px, y, nz); _cimg_watershed_init(is_nx && is_nz, nx, y, nz); _cimg_watershed_init(is_py && is_pz, x, py, pz); _cimg_watershed_init(is_ny && is_pz, x, ny, pz); _cimg_watershed_init(is_py && is_nz, x, py, nz); _cimg_watershed_init(is_ny && is_nz, x, ny, nz); _cimg_watershed_init(is_px && is_py && is_pz, px, py, pz); _cimg_watershed_init(is_nx && is_py && is_pz, nx, py, pz); _cimg_watershed_init(is_px && is_ny && is_pz, px, ny, pz); _cimg_watershed_init(is_nx && is_ny && is_pz, nx, ny, pz); _cimg_watershed_init(is_px && is_py && is_nz, px, py, nz); _cimg_watershed_init(is_nx && is_py && is_nz, nx, py, nz); _cimg_watershed_init(is_px && is_ny && is_nz, px, ny, nz); _cimg_watershed_init(is_nx && is_ny && is_nz, nx, ny, nz); } } labels(x, y, z) = nb_seeds; } // Start watershed computation. while (sizeQ) { // Get and remove point with maximal priority from the queue. const int x = (int)Q(0, 1), y = (int)Q(0, 2), z = (int)Q(0, 3); const unsigned int n = labels(x, y, z); px = x - 1; nx = x + 1; py = y - 1; ny = y + 1; pz = z - 1; nz = z + 1; is_px = px >= 0; is_nx = nx < width(); is_py = py >= 0; is_ny = ny < height(); is_pz = pz >= 0; is_nz = nz < depth(); // Check labels of the neighbors. Q._priority_queue_remove(sizeQ); unsigned int xs, ys, zs, ns, nmin = 0; float d, dmin = cimg::type::inf(); T nlabel = (T)0; _cimg_watershed_propagate(is_px, px, y, z); _cimg_watershed_propagate(is_nx, nx, y, z); _cimg_watershed_propagate(is_py, x, py, z); _cimg_watershed_propagate(is_ny, x, ny, z); if (is_3d) { _cimg_watershed_propagate(is_pz, x, y, pz); _cimg_watershed_propagate(is_nz, x, y, nz); } if (is_high_connectivity) { _cimg_watershed_propagate(is_px && is_py, px, py, z); _cimg_watershed_propagate(is_nx && is_py, nx, py, z); _cimg_watershed_propagate(is_px && is_ny, px, ny, z); _cimg_watershed_propagate(is_nx && is_ny, nx, ny, z); if (is_3d) { _cimg_watershed_propagate(is_px && is_pz, px, y, pz); _cimg_watershed_propagate(is_nx && is_pz, nx, y, pz); _cimg_watershed_propagate(is_px && is_nz, px, y, nz); _cimg_watershed_propagate(is_nx && is_nz, nx, y, nz); _cimg_watershed_propagate(is_py && is_pz, x, py, pz); _cimg_watershed_propagate(is_ny && is_pz, x, ny, pz); _cimg_watershed_propagate(is_py && is_nz, x, py, nz); _cimg_watershed_propagate(is_ny && is_nz, x, ny, nz); _cimg_watershed_propagate(is_px && is_py && is_pz, px, py, pz); _cimg_watershed_propagate(is_nx && is_py && is_pz, nx, py, pz); _cimg_watershed_propagate(is_px && is_ny && is_pz, px, ny, pz); _cimg_watershed_propagate(is_nx && is_ny && is_pz, nx, ny, pz); _cimg_watershed_propagate(is_px && is_py && is_nz, px, py, nz); _cimg_watershed_propagate(is_nx && is_py && is_nz, nx, py, nz); _cimg_watershed_propagate(is_px && is_ny && is_nz, px, ny, nz); _cimg_watershed_propagate(is_nx && is_ny && is_nz, nx, ny, nz); } } (*this)(x, y, z) = nlabel; labels(x, y, z) = ++nmin; } return *this; } //! Compute watershed transform \newinstance. template CImg get_watershed(const CImg& priority, const bool is_high_connectivity = false) const { return (+*this).watershed(priority, is_high_connectivity); } // [internal] Insert/Remove items in priority queue, for watershed/distance // transforms. template bool _priority_queue_insert(CImg& is_queued, unsigned int& siz, const tv value, const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int n = 1) { if (is_queued(x, y, z)) return false; is_queued(x, y, z) = (tq)n; if (++siz >= _width) { if (!is_empty()) resize(_width * 2, 4, 1, 1, 0); else assign(64, 4); } (*this)(siz - 1, 0) = (T)value; (*this)(siz - 1, 1) = (T)x; (*this)(siz - 1, 2) = (T)y; (*this)(siz - 1, 3) = (T)z; for (unsigned int pos = siz - 1, par = 0; pos && value > (tv)(*this)(par = (pos + 1) / 2 - 1, 0); pos = par) { cimg::swap((*this)(pos, 0), (*this)(par, 0)); cimg::swap((*this)(pos, 1), (*this)(par, 1)); cimg::swap((*this)(pos, 2), (*this)(par, 2)); cimg::swap((*this)(pos, 3), (*this)(par, 3)); } return true; } CImg& _priority_queue_remove(unsigned int& siz) { (*this)(0, 0) = (*this)(--siz, 0); (*this)(0, 1) = (*this)(siz, 1); (*this)(0, 2) = (*this)(siz, 2); (*this)(0, 3) = (*this)(siz, 3); const float value = (*this)(0, 0); unsigned int pos = 0, swap = 0; do { const unsigned int left = 2 * pos + 1, right = left + 1; if (right < siz && value < (*this)(right, 0)) swap = (*this)(left, 0) > (*this)(right, 0) ? left : right; else if (left < siz && value < (*this)(left, 0)) swap = left; else break; cimg::swap((*this)(pos, 0), (*this)(swap, 0)); cimg::swap((*this)(pos, 1), (*this)(swap, 1)); cimg::swap((*this)(pos, 2), (*this)(swap, 2)); cimg::swap((*this)(pos, 3), (*this)(swap, 3)); pos = swap; } while (true); return *this; } //! Apply recursive Deriche filter. /** \param sigma Standard deviation of the filter. \param order Order of the filter. Can be { 0=smooth-filter | 1=1st-derivative | 2=2nd-derivative }. \param axis Axis along which the filter is computed. Can be { 'x' | 'y' | 'z' | 'c' }. \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }. **/ CImg& deriche(const float sigma, const unsigned int order = 0, const char axis = 'x', const bool boundary_conditions = true) { #define _cimg_deriche_apply \ CImg Y(N); \ Tfloat *ptrY = Y._data, yb = 0, yp = 0; \ T xp = (T)0; \ if (boundary_conditions) { \ xp = *ptrX; \ yb = yp = (Tfloat)(coefp * xp); \ } \ for (int m = 0; m < N; ++m) { \ const T xc = *ptrX; \ ptrX += off; \ const Tfloat yc = *(ptrY++) = \ (Tfloat)(a0 * xc + a1 * xp - b1 * yp - b2 * yb); \ xp = xc; \ yb = yp; \ yp = yc; \ } \ T xn = (T)0, xa = (T)0; \ Tfloat yn = 0, ya = 0; \ if (boundary_conditions) { \ xn = xa = *(ptrX - off); \ yn = ya = (Tfloat)coefn * xn; \ } \ for (int n = N - 1; n >= 0; --n) { \ const T xc = *(ptrX -= off); \ const Tfloat yc = (Tfloat)(a2 * xn + a3 * xa - b1 * yn - b2 * ya); \ xa = xn; \ xn = xc; \ ya = yn; \ yn = yc; \ *ptrX = (T)(*(--ptrY) + yc); \ } const char naxis = cimg::lowercase(axis); const float nsigma = sigma >= 0 ? sigma : -sigma * (naxis == 'x' ? _width : naxis == 'y' ? _height : naxis == 'z' ? _depth : _spectrum) / 100; if (is_empty() || (nsigma < 0.1f && !order)) return *this; const float nnsigma = nsigma < 0.1f ? 0.1f : nsigma, alpha = 1.695f / nnsigma, ema = (float)std::exp(-alpha), ema2 = (float)std::exp(-2 * alpha), b1 = -2 * ema, b2 = ema2; float a0 = 0, a1 = 0, a2 = 0, a3 = 0, coefp = 0, coefn = 0; switch (order) { case 0: { const float k = (1 - ema) * (1 - ema) / (1 + 2 * alpha * ema - ema2); a0 = k; a1 = k * (alpha - 1) * ema; a2 = k * (alpha + 1) * ema; a3 = -k * ema2; } break; case 1: { const float k = -(1 - ema) * (1 - ema) * (1 - ema) / (2 * (ema + 1) * ema); a0 = a3 = 0; a1 = k * ema; a2 = -a1; } break; case 2: { const float ea = (float)std::exp(-alpha), k = -(ema2 - 1) / (2 * alpha * ema), kn = (-2 * (-1 + 3 * ea - 3 * ea * ea + ea * ea * ea) / (3 * ea + 1 + 3 * ea * ea + ea * ea * ea)); a0 = kn; a1 = -kn * (1 + k * alpha) * ema; a2 = kn * (1 - k * alpha) * ema; a3 = -kn * ema2; } break; default: throw CImgArgumentException( _cimg_instance "deriche(): Invalid specified filter order %u " "(should be { 0=smoothing | 1=1st-derivative | " "2=2nd-derivative }).", cimg_instance, order); } coefp = (a0 + a1) / (1 + b1 + b2); coefn = (a2 + a3) / (1 + b1 + b2); switch (naxis) { case 'x': { const int N = width(); const ulongT off = 1U; cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forYZC(*this,y,z,c) { T* ptrX = data(0, y, z, c); _cimg_deriche_apply; } } break; case 'y': { const int N = height(); const ulongT off = (ulongT)_width; cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forXZC(*this,x,z,c) { T* ptrX = data(x, 0, z, c); _cimg_deriche_apply; } } break; case 'z': { const int N = depth(); const ulongT off = (ulongT)_width * _height; cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forXYC(*this,x,y,c) { T* ptrX = data(x, y, 0, c); _cimg_deriche_apply; } } break; default: { const int N = spectrum(); const ulongT off = (ulongT)_width * _height * _depth; cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forXYZ(*this,x,y,z) { T* ptrX = data(x, y, z, 0); _cimg_deriche_apply; } } } return *this; } //! Apply recursive Deriche filter \newinstance. CImg get_deriche(const float sigma, const unsigned int order = 0, const char axis = 'x', const bool boundary_conditions = true) const { return CImg(*this, false) .deriche(sigma, order, axis, boundary_conditions); } // [internal] Apply a recursive filter (used by CImg::vanvliet()). /* \param ptr the pointer of the data \param filter the coefficient of the filter in the following order [n,n - 1,n - 2,n - 3]. \param N size of the data \param off the offset between two data point \param order the order of the filter 0 (smoothing), 1st derivtive, 2nd derivative, 3rd derivative \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }. \note Boundary condition using B. Triggs method (IEEE trans on Sig Proc 2005). */ static void _cimg_recursive_apply(T* data, const double filter[], const int N, const ulongT off, const unsigned int order, const bool boundary_conditions) { double val[4] = { 0}; // res[n,n - 1,n - 2,n - 3,..] or res[n,n + 1,n + 2,n + 3,..] const double sumsq = filter[0], sum = sumsq * sumsq, a1 = filter[1], a2 = filter[2], a3 = filter[3], scaleM = 1. / ((1. + a1 - a2 + a3) * (1. - a1 - a2 - a3) * (1. + a2 + (a1 - a3) * a3)); double M[9]; // Triggs matrix M[0] = scaleM * (-a3 * a1 + 1. - a3 * a3 - a2); M[1] = scaleM * (a3 + a1) * (a2 + a3 * a1); M[2] = scaleM * a3 * (a1 + a3 * a2); M[3] = scaleM * (a1 + a3 * a2); M[4] = -scaleM * (a2 - 1.) * (a2 + a3 * a1); M[5] = -scaleM * a3 * (a3 * a1 + a3 * a3 + a2 - 1.); M[6] = scaleM * (a3 * a1 + a2 + a1 * a1 - a2 * a2); M[7] = scaleM * (a1 * a2 + a3 * a2 * a2 - a1 * a3 * a3 - a3 * a3 * a3 - a3 * a2 + a3); M[8] = scaleM * a3 * (a1 + a3 * a2); switch (order) { case 0: { const double iplus = (boundary_conditions ? data[(N - 1) * off] : (T)0); for (int pass = 0; pass < 2; ++pass) { if (!pass) { for (int k = 1; k < 4; ++k) val[k] = (boundary_conditions ? *data / sumsq : 0); } else { // apply Triggs boundary conditions const double uplus = iplus / (1. - a1 - a2 - a3), vplus = uplus / (1. - a1 - a2 - a3), unp = val[1] - uplus, unp1 = val[2] - uplus, unp2 = val[3] - uplus; val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2 + vplus) * sum; val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2 + vplus) * sum; val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2 + vplus) * sum; *data = (T)val[0]; data -= off; for (int k = 3; k > 0; --k) val[k] = val[k - 1]; } for (int n = pass; n < N; ++n) { val[0] = (*data); if (pass) val[0] *= sum; for (int k = 1; k < 4; ++k) val[0] += val[k] * filter[k]; *data = (T)val[0]; if (!pass) data += off; else data -= off; for (int k = 3; k > 0; --k) val[k] = val[k - 1]; } if (!pass) data -= off; } } break; case 1: { double x[3]; // [front,center,back] for (int pass = 0; pass < 2; ++pass) { if (!pass) { for (int k = 0; k < 3; ++k) x[k] = (boundary_conditions ? *data : (T)0); for (int k = 0; k < 4; ++k) val[k] = 0; } else { // apply Triggs boundary conditions const double unp = val[1], unp1 = val[2], unp2 = val[3]; val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum; val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum; val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum; *data = (T)val[0]; data -= off; for (int k = 3; k > 0; --k) val[k] = val[k - 1]; } for (int n = pass; n < N - 1; ++n) { if (!pass) { x[0] = *(data + off); val[0] = 0.5f * (x[0] - x[2]); } else val[0] = (*data) * sum; for (int k = 1; k < 4; ++k) val[0] += val[k] * filter[k]; *data = (T)val[0]; if (!pass) { data += off; for (int k = 2; k > 0; --k) x[k] = x[k - 1]; } else { data -= off; } for (int k = 3; k > 0; --k) val[k] = val[k - 1]; } *data = (T)0; } } break; case 2: { double x[3]; // [front,center,back] for (int pass = 0; pass < 2; ++pass) { if (!pass) { for (int k = 0; k < 3; ++k) x[k] = (boundary_conditions ? *data : (T)0); for (int k = 0; k < 4; ++k) val[k] = 0; } else { // apply Triggs boundary conditions const double unp = val[1], unp1 = val[2], unp2 = val[3]; val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum; val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum; val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum; *data = (T)val[0]; data -= off; for (int k = 3; k > 0; --k) val[k] = val[k - 1]; } for (int n = pass; n < N - 1; ++n) { if (!pass) { x[0] = *(data + off); val[0] = (x[1] - x[2]); } else { x[0] = *(data - off); val[0] = (x[2] - x[1]) * sum; } for (int k = 1; k < 4; ++k) val[0] += val[k] * filter[k]; *data = (T)val[0]; if (!pass) data += off; else data -= off; for (int k = 2; k > 0; --k) x[k] = x[k - 1]; for (int k = 3; k > 0; --k) val[k] = val[k - 1]; } *data = (T)0; } } break; case 3: { double x[3]; // [front,center,back] for (int pass = 0; pass < 2; ++pass) { if (!pass) { for (int k = 0; k < 3; ++k) x[k] = (boundary_conditions ? *data : (T)0); for (int k = 0; k < 4; ++k) val[k] = 0; } else { // apply Triggs boundary conditions const double unp = val[1], unp1 = val[2], unp2 = val[3]; val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum; val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum; val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum; *data = (T)val[0]; data -= off; for (int k = 3; k > 0; --k) val[k] = val[k - 1]; } for (int n = pass; n < N - 1; ++n) { if (!pass) { x[0] = *(data + off); val[0] = (x[0] - 2 * x[1] + x[2]); } else { x[0] = *(data - off); val[0] = 0.5f * (x[2] - x[0]) * sum; } for (int k = 1; k < 4; ++k) val[0] += val[k] * filter[k]; *data = (T)val[0]; if (!pass) data += off; else data -= off; for (int k = 2; k > 0; --k) x[k] = x[k - 1]; for (int k = 3; k > 0; --k) val[k] = val[k - 1]; } *data = (T)0; } } break; } } //! Van Vliet recursive Gaussian filter. /** \param sigma standard deviation of the Gaussian filter \param order the order of the filter 0,1,2,3 \param axis Axis along which the filter is computed. Can be { 'x' | 'y' | 'z' | 'c' }. \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }. \note dirichlet boundary condition has a strange behavior I.T. Young, L.J. van Vliet, M. van Ginkel, Recursive Gabor filtering. IEEE Trans. Sig. Proc., vol. 50, pp. 2799-2805, 2002. (this is an improvement over Young-Van Vliet, Sig. Proc. 44, 1995) Boundary conditions (only for order 0) using Triggs matrix, from B. Triggs and M. Sdika. Boundary conditions for Young-van Vliet recursive filtering. IEEE Trans. Signal Processing, vol. 54, pp. 2365-2367, 2006. **/ CImg& vanvliet(const float sigma, const unsigned int order, const char axis = 'x', const bool boundary_conditions = true) { if (is_empty()) return *this; if (!cimg::type::is_float()) return CImg(*this, false) .vanvliet(sigma, order, axis, boundary_conditions) .move_to(*this); const char naxis = cimg::lowercase(axis); const float nsigma = sigma >= 0 ? sigma : -sigma * (naxis == 'x' ? _width : naxis == 'y' ? _height : naxis == 'z' ? _depth : _spectrum) / 100; if (is_empty() || (nsigma < 0.5f && !order)) return *this; const double nnsigma = nsigma < 0.5f ? 0.5f : nsigma, m0 = 1.16680, m1 = 1.10783, m2 = 1.40586, m1sq = m1 * m1, m2sq = m2 * m2, q = (nnsigma < 3.556 ? -0.2568 + 0.5784 * nnsigma + 0.0561 * nnsigma * nnsigma : 2.5091 + 0.9804 * (nnsigma - 3.556)), qsq = q * q, scale = (m0 + q) * (m1sq + m2sq + 2 * m1 * q + qsq), b1 = -q * (2 * m0 * m1 + m1sq + m2sq + (2 * m0 + 4 * m1) * q + 3 * qsq) / scale, b2 = qsq * (m0 + 2 * m1 + 3 * q) / scale, b3 = -qsq * q / scale, B = (m0 * (m1sq + m2sq)) / scale; double filter[4]; filter[0] = B; filter[1] = -b1; filter[2] = -b2; filter[3] = -b3; switch (naxis) { case 'x': { cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forYZC(*this,y,z,c) _cimg_recursive_apply(data(0,y,z,c),filter,_width,1U,order,boundary_conditions); } break; case 'y': { cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forXZC(*this,x,z,c) _cimg_recursive_apply(data(x,0,z,c),filter,_height,(ulongT)_width,order,boundary_conditions); } break; case 'z': { cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forXYC(*this,x,y,c) _cimg_recursive_apply(data(x,y,0,c),filter,_depth,(ulongT)_width*_height, order,boundary_conditions); } break; default: { cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forXYZ(*this,x,y,z) _cimg_recursive_apply(data(x,y,z,0),filter,_spectrum,(ulongT)_width*_height*_depth, order,boundary_conditions); } } return *this; } //! Blur image using Van Vliet recursive Gaussian filter. \newinstance. CImg get_vanvliet(const float sigma, const unsigned int order, const char axis = 'x', const bool boundary_conditions = true) const { return CImg(*this, false) .vanvliet(sigma, order, axis, boundary_conditions); } //! Blur image. /** \param sigma_x Standard deviation of the blur, along the X-axis. \param sigma_y Standard deviation of the blur, along the Y-axis. \param sigma_z Standard deviation of the blur, along the Z-axis. \param boundary_conditions Boundary conditions. Can be { false=dirichlet | true=neumann }. \param is_gaussian Tells if the blur uses a gaussian (\c true) or quasi-gaussian (\c false) kernel. \note - The blur is computed as a 0-order Deriche filter. This is not a gaussian blur. - This is a recursive algorithm, not depending on the values of the standard deviations. \see deriche(), vanvliet(). **/ CImg& blur(const float sigma_x, const float sigma_y, const float sigma_z, const bool boundary_conditions = true, const bool is_gaussian = false) { if (is_empty()) return *this; if (is_gaussian) { if (_width > 1) vanvliet(sigma_x, 0, 'x', boundary_conditions); if (_height > 1) vanvliet(sigma_y, 0, 'y', boundary_conditions); if (_depth > 1) vanvliet(sigma_z, 0, 'z', boundary_conditions); } else { if (_width > 1) deriche(sigma_x, 0, 'x', boundary_conditions); if (_height > 1) deriche(sigma_y, 0, 'y', boundary_conditions); if (_depth > 1) deriche(sigma_z, 0, 'z', boundary_conditions); } return *this; } //! Blur image \newinstance. CImg get_blur(const float sigma_x, const float sigma_y, const float sigma_z, const bool boundary_conditions = true, const bool is_gaussian = false) const { return CImg(*this, false) .blur(sigma_x, sigma_y, sigma_z, boundary_conditions, is_gaussian); } //! Blur image isotropically. /** \param sigma Standard deviation of the blur. \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }.a \param is_gaussian Use a gaussian kernel (VanVliet) is set, a pseudo-gaussian (Deriche) otherwise. \see deriche(), vanvliet(). **/ CImg& blur(const float sigma, const bool boundary_conditions = true, const bool is_gaussian = false) { const float nsigma = sigma >= 0 ? sigma : -sigma * cimg::max(_width, _height, _depth) / 100; return blur(nsigma, nsigma, nsigma, boundary_conditions, is_gaussian); } //! Blur image isotropically \newinstance. CImg get_blur(const float sigma, const bool boundary_conditions = true, const bool is_gaussian = false) const { return CImg(*this, false) .blur(sigma, boundary_conditions, is_gaussian); } //! Blur image anisotropically, directed by a field of diffusion tensors. /** \param G Field of square roots of diffusion tensors/vectors used to drive the smoothing. \param amplitude Amplitude of the smoothing. \param dl Spatial discretization. \param da Angular discretization. \param gauss_prec Precision of the diffusion process. \param interpolation_type Interpolation scheme. Can be { 0=nearest-neighbor | 1=linear | 2=Runge-Kutta }. \param is_fast_approx Tells if a fast approximation of the gaussian function is used or not. **/ template CImg& blur_anisotropic(const CImg& G, const float amplitude = 60, const float dl = 0.8f, const float da = 30, const float gauss_prec = 2, const unsigned int interpolation_type = 0, const bool is_fast_approx = 1) { // Check arguments and init variables if (!is_sameXYZ(G) || (G._spectrum != 3 && G._spectrum != 6)) throw CImgArgumentException( _cimg_instance "blur_anisotropic(): Invalid specified diffusion tensor field " "(%u,%u,%u,%u,%p).", cimg_instance, G._width, G._height, G._depth, G._spectrum, G._data); if (is_empty() || dl < 0) return *this; const float namplitude = amplitude >= 0 ? amplitude : -amplitude * cimg::max(_width, _height, _depth) / 100; unsigned int iamplitude = cimg::round(namplitude); const bool is_3d = (G._spectrum == 6); T val_min, val_max = max_min(val_min); _cimg_abort_init_openmp; cimg_abort_init; if (da <= 0) { // Iterated oriented Laplacians CImg velocity(_width, _height, _depth, _spectrum); for (unsigned int iteration = 0; iteration < iamplitude; ++iteration) { Tfloat *ptrd = velocity._data, veloc_max = 0; if (is_3d) // 3D version cimg_forC(*this, c) { cimg_abort_test; CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) { const Tfloat ixx = Incc + Ipcc - 2 * Iccc, ixy = (Innc + Ippc - Inpc - Ipnc) / 4, ixz = (Incn + Ipcp - Incp - Ipcn) / 4, iyy = Icnc + Icpc - 2 * Iccc, iyz = (Icnn + Icpp - Icnp - Icpn) / 4, izz = Iccn + Iccp - 2 * Iccc, veloc = (Tfloat)(G(x, y, z, 0) * ixx + 2 * G(x, y, z, 1) * ixy + 2 * G(x, y, z, 2) * ixz + G(x, y, z, 3) * iyy + 2 * G(x, y, z, 4) * iyz + G(x, y, z, 5) * izz); *(ptrd++) = veloc; if (veloc > veloc_max) veloc_max = veloc; else if (-veloc > veloc_max) veloc_max = -veloc; } } else // 2D version cimg_forZC(*this, z, c) { cimg_abort_test; CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, z, c, I, Tfloat) { const Tfloat ixx = Inc + Ipc - 2 * Icc, ixy = (Inn + Ipp - Inp - Ipn) / 4, iyy = Icn + Icp - 2 * Icc, veloc = (Tfloat)(G(x, y, 0, 0) * ixx + 2 * G(x, y, 0, 1) * ixy + G(x, y, 0, 2) * iyy); *(ptrd++) = veloc; if (veloc > veloc_max) veloc_max = veloc; else if (-veloc > veloc_max) veloc_max = -veloc; } } if (veloc_max > 0) *this += (velocity *= dl / veloc_max); } } else { // LIC-based smoothing const ulongT whd = (ulongT)_width * _height * _depth; const float sqrt2amplitude = (float)std::sqrt(2 * namplitude); const int dx1 = width() - 1, dy1 = height() - 1, dz1 = depth() - 1; CImg res(_width, _height, _depth, _spectrum, 0), W(_width, _height, _depth, is_3d ? 4 : 3), val(_spectrum, 1, 1, 1, 0); int N = 0; if (is_3d) { // 3D version for (float phi = cimg::mod(180.f, da) / 2.f; phi <= 180; phi += da) { const float phir = (float)(phi * cimg::PI / 180), datmp = (float)(da / std::cos(phir)), da2 = datmp < 1 ? 360.f : datmp; for (float theta = 0; theta < 360; (theta += da2), ++N) { const float thetar = (float)(theta * cimg::PI / 180), vx = (float)(std::cos(thetar) * std::cos(phir)), vy = (float)(std::sin(thetar) * std::cos(phir)), vz = (float)std::sin(phir); const t *pa = G.data(0, 0, 0, 0), *pb = G.data(0, 0, 0, 1), *pc = G.data(0, 0, 0, 2), *pd = G.data(0, 0, 0, 3), *pe = G.data(0, 0, 0, 4), *pf = G.data(0, 0, 0, 5); Tfloat *pd0 = W.data(0, 0, 0, 0), *pd1 = W.data(0, 0, 0, 1), *pd2 = W.data(0, 0, 0, 2), *pd3 = W.data(0, 0, 0, 3); cimg_forXYZ(G, xg, yg, zg) { const t a = *(pa++), b = *(pb++), c = *(pc++), d = *(pd++), e = *(pe++), f = *(pf++); const float u = (float)(a * vx + b * vy + c * vz), v = (float)(b * vx + d * vy + e * vz), w = (float)(c * vx + e * vy + f * vz), n = 1e-5f + cimg::hypot(u, v, w), dln = dl / n; *(pd0++) = (Tfloat)(u * dln); *(pd1++) = (Tfloat)(v * dln); *(pd2++) = (Tfloat)(w * dln); *(pd3++) = (Tfloat)n; } cimg_abort_test; cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth>=2) firstprivate(val)) cimg_forYZ(*this,y,z) _cimg_abort_try_openmp2 { cimg_abort_test2; cimg_forX(*this, x) { val.fill(0); const float n = (float)W(x, y, z, 3), fsigma = (float)(n * sqrt2amplitude), fsigma2 = 2 * fsigma * fsigma, length = gauss_prec * fsigma; float S = 0, X = (float)x, Y = (float)y, Z = (float)z; switch (interpolation_type) { case 0: { // Nearest neighbor for (float l = 0; l < length && X >= 0 && X <= dx1 && Y >= 0 && Y <= dy1 && Z >= 0 && Z <= dz1; l += dl) { const int cx = (int)(X + 0.5f), cy = (int)(Y + 0.5f), cz = (int)(Z + 0.5f); const float u = (float)W(cx, cy, cz, 0), v = (float)W(cx, cy, cz, 1), w = (float)W(cx, cy, cz, 2); if (is_fast_approx) { cimg_forC(*this, c) val[c] += (Tfloat)(*this)(cx, cy, cz, c); ++S; } else { const float coef = (float)std::exp(-l * l / fsigma2); cimg_forC(*this, c) val[c] += (Tfloat)( coef * (*this)(cx, cy, cz, c)); S += coef; } X += u; Y += v; Z += w; } } break; case 1: { // Linear interpolation for (float l = 0; l < length && X >= 0 && X <= dx1 && Y >= 0 && Y <= dy1 && Z >= 0 && Z <= dz1; l += dl) { const float u = (float)(W._linear_atXYZ( X, Y, Z, 0)), v = (float)(W._linear_atXYZ( X, Y, Z, 1)), w = (float)(W._linear_atXYZ( X, Y, Z, 2)); if (is_fast_approx) { cimg_forC(*this, c) val[c] += (Tfloat)_linear_atXYZ(X, Y, Z, c); ++S; } else { const float coef = (float)std::exp(-l * l / fsigma2); cimg_forC(*this, c) val[c] += (Tfloat)( coef * _linear_atXYZ(X, Y, Z, c)); S += coef; } X += u; Y += v; Z += w; } } break; default: { // 2nd order Runge Kutta for (float l = 0; l < length && X >= 0 && X <= dx1 && Y >= 0 && Y <= dy1 && Z >= 0 && Z <= dz1; l += dl) { const float u0 = (float)(0.5f * W._linear_atXYZ( X, Y, Z, 0)), v0 = (float)(0.5f * W._linear_atXYZ( X, Y, Z, 1)), w0 = (float)(0.5f * W._linear_atXYZ( X, Y, Z, 2)), u = (float)(W._linear_atXYZ( X + u0, Y + v0, Z + w0, 0)), v = (float)(W._linear_atXYZ( X + u0, Y + v0, Z + w0, 1)), w = (float)(W._linear_atXYZ( X + u0, Y + v0, Z + w0, 2)); if (is_fast_approx) { cimg_forC(*this, c) val[c] += (Tfloat)_linear_atXYZ(X, Y, Z, c); ++S; } else { const float coef = (float)std::exp(-l * l / fsigma2); cimg_forC(*this, c) val[c] += (Tfloat)( coef * _linear_atXYZ(X, Y, Z, c)); S += coef; } X += u; Y += v; Z += w; } } break; } Tfloat* ptrd = res.data(x, y, z); if (S > 0) cimg_forC(res, c) { *ptrd += val[c] / S; ptrd += whd; } else cimg_forC(res, c) { *ptrd += (Tfloat)((*this)(x, y, z, c)); ptrd += whd; } } } _cimg_abort_catch_openmp2 } } } else { // 2D LIC algorithm for (float theta = cimg::mod(360.f, da) / 2.f; theta < 360; (theta += da), ++N) { const float thetar = (float)(theta * cimg::PI / 180), vx = (float)(std::cos(thetar)), vy = (float)(std::sin(thetar)); const t *pa = G.data(0, 0, 0, 0), *pb = G.data(0, 0, 0, 1), *pc = G.data(0, 0, 0, 2); Tfloat *pd0 = W.data(0, 0, 0, 0), *pd1 = W.data(0, 0, 0, 1), *pd2 = W.data(0, 0, 0, 2); cimg_forXY(G, xg, yg) { const t a = *(pa++), b = *(pb++), c = *(pc++); const float u = (float)(a * vx + b * vy), v = (float)(b * vx + c * vy), n = std::max(1e-5f, cimg::hypot(u, v)), dln = dl / n; *(pd0++) = (Tfloat)(u * dln); *(pd1++) = (Tfloat)(v * dln); *(pd2++) = (Tfloat)n; } cimg_abort_test; cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height>=2) firstprivate(val)) cimg_forY(*this,y) _cimg_abort_try_openmp2 { cimg_abort_test2; cimg_forX(*this, x) { val.fill(0); const float n = (float)W(x, y, 0, 2), fsigma = (float)(n * sqrt2amplitude), fsigma2 = 2 * fsigma * fsigma, length = gauss_prec * fsigma; float S = 0, X = (float)x, Y = (float)y; switch (interpolation_type) { case 0: { // Nearest-neighbor for (float l = 0; l < length && X >= 0 && X <= dx1 && Y >= 0 && Y <= dy1; l += dl) { const int cx = (int)(X + 0.5f), cy = (int)(Y + 0.5f); const float u = (float)W(cx, cy, 0, 0), v = (float)W(cx, cy, 0, 1); if (is_fast_approx) { cimg_forC(*this, c) val[c] += (Tfloat)(*this)(cx, cy, 0, c); ++S; } else { const float coef = (float)std::exp(-l * l / fsigma2); cimg_forC(*this, c) val[c] += (Tfloat)(coef * (*this)(cx, cy, 0, c)); S += coef; } X += u; Y += v; } } break; case 1: { // Linear interpolation for (float l = 0; l < length && X >= 0 && X <= dx1 && Y >= 0 && Y <= dy1; l += dl) { const float u = (float)(W._linear_atXY(X, Y, 0, 0)), v = (float)(W._linear_atXY(X, Y, 0, 1)); if (is_fast_approx) { cimg_forC(*this, c) val[c] += (Tfloat)_linear_atXY(X, Y, 0, c); ++S; } else { const float coef = (float)std::exp(-l * l / fsigma2); cimg_forC(*this, c) val[c] += (Tfloat)( coef * _linear_atXY(X, Y, 0, c)); S += coef; } X += u; Y += v; } } break; default: { // 2nd-order Runge-kutta interpolation for (float l = 0; l < length && X >= 0 && X <= dx1 && Y >= 0 && Y <= dy1; l += dl) { const float u0 = (float)(0.5f * W._linear_atXY( X, Y, 0, 0)), v0 = (float)(0.5f * W._linear_atXY( X, Y, 0, 1)), u = (float)(W._linear_atXY( X + u0, Y + v0, 0, 0)), v = (float)(W._linear_atXY( X + u0, Y + v0, 0, 1)); if (is_fast_approx) { cimg_forC(*this, c) val[c] += (Tfloat)_linear_atXY(X, Y, 0, c); ++S; } else { const float coef = (float)std::exp(-l * l / fsigma2); cimg_forC(*this, c) val[c] += (Tfloat)( coef * _linear_atXY(X, Y, 0, c)); S += coef; } X += u; Y += v; } } } Tfloat* ptrd = res.data(x, y); if (S > 0) cimg_forC(res, c) { *ptrd += val[c] / S; ptrd += whd; } else cimg_forC(res, c) { *ptrd += (Tfloat)((*this)(x, y, 0, c)); ptrd += whd; } } } _cimg_abort_catch_openmp2 } } const Tfloat* ptrs = res._data; cimg_for(*this, ptrd, T) { const Tfloat _val = *(ptrs++) / N; *ptrd = _val < val_min ? val_min : (_val > val_max ? val_max : (T)_val); } } cimg_abort_test; return *this; } //! Blur image anisotropically, directed by a field of diffusion tensors //! \newinstance. template CImg get_blur_anisotropic(const CImg& G, const float amplitude = 60, const float dl = 0.8f, const float da = 30, const float gauss_prec = 2, const unsigned int interpolation_type = 0, const bool is_fast_approx = true) const { return CImg(*this, false) .blur_anisotropic(G, amplitude, dl, da, gauss_prec, interpolation_type, is_fast_approx); } //! Blur image anisotropically, in an edge-preserving way. /** \param amplitude Amplitude of the smoothing. \param sharpness Sharpness. \param anisotropy Anisotropy. \param alpha Standard deviation of the gradient blur. \param sigma Standard deviation of the structure tensor blur. \param dl Spatial discretization. \param da Angular discretization. \param gauss_prec Precision of the diffusion process. \param interpolation_type Interpolation scheme. Can be { 0=nearest-neighbor | 1=linear | 2=Runge-Kutta }. \param is_fast_approx Tells if a fast approximation of the gaussian function is used or not. **/ CImg& blur_anisotropic(const float amplitude, const float sharpness = 0.7f, const float anisotropy = 0.6f, const float alpha = 0.6f, const float sigma = 1.1f, const float dl = 0.8f, const float da = 30, const float gauss_prec = 2, const unsigned int interpolation_type = 0, const bool is_fast_approx = true) { const float nalpha = alpha >= 0 ? alpha : -alpha * cimg::max(_width, _height, _depth) / 100; const float nsigma = sigma >= 0 ? sigma : -sigma * cimg::max(_width, _height, _depth) / 100; return blur_anisotropic( get_diffusion_tensors(sharpness, anisotropy, nalpha, nsigma, interpolation_type != 3), amplitude, dl, da, gauss_prec, interpolation_type, is_fast_approx); } //! Blur image anisotropically, in an edge-preserving way \newinstance. CImg get_blur_anisotropic( const float amplitude, const float sharpness = 0.7f, const float anisotropy = 0.6f, const float alpha = 0.6f, const float sigma = 1.1f, const float dl = 0.8f, const float da = 30, const float gauss_prec = 2, const unsigned int interpolation_type = 0, const bool is_fast_approx = true) const { return CImg(*this, false) .blur_anisotropic(amplitude, sharpness, anisotropy, alpha, sigma, dl, da, gauss_prec, interpolation_type, is_fast_approx); } //! Blur image, with the joint bilateral filter. /** \param guide Image used to model the smoothing weights. \param sigma_x Amount of blur along the X-axis. \param sigma_y Amount of blur along the Y-axis. \param sigma_z Amount of blur along the Z-axis. \param sigma_r Amount of blur along the value axis. \param sampling_x Amount of downsampling along the X-axis used for the approximation. Defaults (0) to sigma_x. \param sampling_y Amount of downsampling along the Y-axis used for the approximation. Defaults (0) to sigma_y. \param sampling_z Amount of downsampling along the Z-axis used for the approximation. Defaults (0) to sigma_z. \param sampling_r Amount of downsampling along the value axis used for the approximation. Defaults (0) to sigma_r. \note This algorithm uses the optimisation technique proposed by S. Paris and F. Durand, in ECCV'2006 (extended for 3D volumetric images). It is based on the reference implementation http://people.csail.mit.edu/jiawen/software/bilateralFilter.m **/ template CImg& blur_bilateral(const CImg& guide, const float sigma_x, const float sigma_y, const float sigma_z, const float sigma_r, const float sampling_x, const float sampling_y, const float sampling_z, const float sampling_r) { if (!is_sameXYZ(guide)) throw CImgArgumentException( _cimg_instance "blur_bilateral(): Invalid size for specified guide image " "(%u,%u,%u,%u,%p).", cimg_instance, guide._width, guide._height, guide._depth, guide._spectrum, guide._data); if (is_empty() || (!sigma_x && !sigma_y && !sigma_z)) return *this; T edge_min, edge_max = guide.max_min(edge_min); if (edge_min == edge_max) return blur(sigma_x, sigma_y, sigma_z); const float edge_delta = (float)(edge_max - edge_min), _sigma_x = sigma_x >= 0 ? sigma_x : -sigma_x * _width / 100, _sigma_y = sigma_y >= 0 ? sigma_y : -sigma_y * _height / 100, _sigma_z = sigma_z >= 0 ? sigma_z : -sigma_z * _depth / 100, _sigma_r = sigma_r >= 0 ? sigma_r : -sigma_r * edge_delta / 100, _sampling_x = sampling_x ? sampling_x : std::max(_sigma_x, 1.f), _sampling_y = sampling_y ? sampling_y : std::max(_sigma_y, 1.f), _sampling_z = sampling_z ? sampling_z : std::max(_sigma_z, 1.f), _sampling_r = sampling_r ? sampling_r : std::max(_sigma_r, edge_delta / 256), derived_sigma_x = _sigma_x / _sampling_x, derived_sigma_y = _sigma_y / _sampling_y, derived_sigma_z = _sigma_z / _sampling_z, derived_sigma_r = _sigma_r / _sampling_r; const int padding_x = (int)(2 * derived_sigma_x) + 1, padding_y = (int)(2 * derived_sigma_y) + 1, padding_z = (int)(2 * derived_sigma_z) + 1, padding_r = (int)(2 * derived_sigma_r) + 1; const unsigned int bx = (unsigned int)((_width - 1) / _sampling_x + 1 + 2 * padding_x), by = (unsigned int)((_height - 1) / _sampling_y + 1 + 2 * padding_y), bz = (unsigned int)((_depth - 1) / _sampling_z + 1 + 2 * padding_z), br = (unsigned int)(edge_delta / _sampling_r + 1 + 2 * padding_r); if (bx > 0 || by > 0 || bz > 0 || br > 0) { const bool is_3d = (_depth > 1); if (is_3d) { // 3D version of the algorithm CImg bgrid(bx, by, bz, br), bgridw(bx, by, bz, br); cimg_forC(*this, c) { const CImg _guide = guide.get_shared_channel(c % guide._spectrum); bgrid.fill(0); bgridw.fill(0); cimg_forXYZ(*this, x, y, z) { const T val = (*this)(x, y, z, c); const float edge = (float)_guide(x, y, z); const int X = (int)cimg::round(x / _sampling_x) + padding_x, Y = (int)cimg::round(y / _sampling_y) + padding_y, Z = (int)cimg::round(z / _sampling_z) + padding_z, R = (int)cimg::round((edge - edge_min) / _sampling_r) + padding_r; bgrid(X, Y, Z, R) += (float)val; bgridw(X, Y, Z, R) += 1; } bgrid .blur(derived_sigma_x, derived_sigma_y, derived_sigma_z, true) .deriche(derived_sigma_r, 0, 'c', false); bgridw .blur(derived_sigma_x, derived_sigma_y, derived_sigma_z, true) .deriche(derived_sigma_r, 0, 'c', false); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(size(),4096)) cimg_forXYZ(*this,x,y,z) { const float edge = (float)_guide(x, y, z); const float X = x / _sampling_x + padding_x, Y = y / _sampling_y + padding_y, Z = z / _sampling_z + padding_z, R = (edge - edge_min) / _sampling_r + padding_r; const float bval0 = bgrid._linear_atXYZC(X, Y, Z, R), bval1 = bgridw._linear_atXYZC(X, Y, Z, R); (*this)(x, y, z, c) = (T)(bval0 / bval1); } } } else { // 2D version of the algorithm CImg bgrid(bx, by, br, 2); cimg_forC(*this, c) { const CImg _guide = guide.get_shared_channel(c % guide._spectrum); bgrid.fill(0); cimg_forXY(*this, x, y) { const T val = (*this)(x, y, c); const float edge = (float)_guide(x, y); const int X = (int)cimg::round(x / _sampling_x) + padding_x, Y = (int)cimg::round(y / _sampling_y) + padding_y, R = (int)cimg::round((edge - edge_min) / _sampling_r) + padding_r; bgrid(X, Y, R, 0) += (float)val; bgrid(X, Y, R, 1) += 1; } bgrid.blur(derived_sigma_x, derived_sigma_y, 0, true) .blur(0, 0, derived_sigma_r, false); cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(size(),4096)) cimg_forXY(*this,x,y) { const float edge = (float)_guide(x, y); const float X = x / _sampling_x + padding_x, Y = y / _sampling_y + padding_y, R = (edge - edge_min) / _sampling_r + padding_r; const float bval0 = bgrid._linear_atXYZ(X, Y, R, 0), bval1 = bgrid._linear_atXYZ(X, Y, R, 1); (*this)(x, y, c) = (T)(bval0 / bval1); } } } } return *this; } //! Blur image, with the joint bilateral filter \newinstance. template CImg get_blur_bilateral(const CImg& guide, const float sigma_x, const float sigma_y, const float sigma_z, const float sigma_r, const float sampling_x, const float sampling_y, const float sampling_z, const float sampling_r) const { return CImg(*this, false) .blur_bilateral(guide, sigma_x, sigma_y, sigma_z, sigma_r, sampling_x, sampling_y, sampling_z, sampling_r); } //! Blur image using the joint bilateral filter. /** \param guide Image used to model the smoothing weights. \param sigma_s Amount of blur along the XYZ-axes. \param sigma_r Amount of blur along the value axis. \param sampling_s Amount of downsampling along the XYZ-axes used for the approximation. Defaults to sigma_s. \param sampling_r Amount of downsampling along the value axis used for the approximation. Defaults to sigma_r. **/ template CImg& blur_bilateral(const CImg& guide, const float sigma_s, const float sigma_r, const float sampling_s = 0, const float sampling_r = 0) { const float _sigma_s = sigma_s >= 0 ? sigma_s : -sigma_s * cimg::max(_width, _height, _depth) / 100; return blur_bilateral(guide, _sigma_s, _sigma_s, _sigma_s, sigma_r, sampling_s, sampling_s, sampling_s, sampling_r); } //! Blur image using the bilateral filter \newinstance. template CImg get_blur_bilateral(const CImg& guide, const float sigma_s, const float sigma_r, const float sampling_s = 0, const float sampling_r = 0) const { return CImg(*this, false) .blur_bilateral(guide, sigma_s, sigma_r, sampling_s, sampling_r); } // [internal] Apply a box filter (used by CImg::boxfilter() and // CImg::blur_box()). /* \param ptr the pointer of the data \param N size of the data \param boxsize Size of the box filter (can be subpixel). \param off the offset between two data point \param order the order of the filter 0 (smoothing), 1st derivtive and 2nd derivative. \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }. */ static void _cimg_blur_box_apply(T* ptr, const float boxsize, const int N, const ulongT off, const int order, const bool boundary_conditions, const unsigned int nb_iter) { // Smooth. if (boxsize > 1 && nb_iter) { const int w2 = (int)(boxsize - 1) / 2; const unsigned int winsize = 2 * w2 + 1U; const double frac = (boxsize - winsize) / 2.; CImg win(winsize); for (unsigned int iter = 0; iter < nb_iter; ++iter) { Tdouble sum = 0; // window sum for (int x = -w2; x <= w2; ++x) { win[x + w2] = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, x); sum += win[x + w2]; } int ifirst = 0, ilast = 2 * w2; T prev = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, -w2 - 1), next = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, w2 + 1); for (int x = 0; x < N - 1; ++x) { const double sum2 = sum + frac * (prev + next); ptr[x * off] = (T)(sum2 / boxsize); prev = win[ifirst]; sum -= prev; ifirst = (int)((ifirst + 1) % winsize); ilast = (int)((ilast + 1) % winsize); win[ilast] = next; sum += next; next = __cimg_blur_box_apply( ptr, N, off, boundary_conditions, x + w2 + 2); } const double sum2 = sum + frac * (prev + next); ptr[(N - 1) * off] = (T)(sum2 / boxsize); } } // Derive. switch (order) { case 0: break; case 1: { Tfloat p = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, -1), c = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, 0), n = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, 1); for (int x = 0; x < N - 1; ++x) { ptr[x * off] = (T)((n - p) / 2.); p = c; c = n; n = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, x + 2); } ptr[(N - 1) * off] = (T)((n - p) / 2.); } break; case 2: { Tfloat p = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, -1), c = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, 0), n = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, 1); for (int x = 0; x < N - 1; ++x) { ptr[x * off] = (T)(n - 2 * c + p); p = c; c = n; n = __cimg_blur_box_apply(ptr, N, off, boundary_conditions, x + 2); } ptr[(N - 1) * off] = (T)(n - 2 * c + p); } break; } } static T __cimg_blur_box_apply(T* ptr, const int N, const ulongT off, const bool boundary_conditions, const int x) { if (x < 0) return boundary_conditions ? ptr[0] : T(); if (x >= N) return boundary_conditions ? ptr[(N - 1) * off] : T(); return ptr[x * off]; } // Apply box filter of order 0,1,2. /** \param boxsize Size of the box window (can be subpixel) \param order the order of the filter 0,1 or 2. \param axis Axis along which the filter is computed. Can be { 'x' | 'y' | 'z' | 'c' }. \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }. \param nb_iter Number of filter iterations. **/ CImg& boxfilter(const float boxsize, const int order, const char axis = 'x', const bool boundary_conditions = true, const unsigned int nb_iter = 1) { if (is_empty() || !boxsize || (boxsize <= 1 && !order)) return *this; const char naxis = cimg::lowercase(axis); const float nboxsize = boxsize >= 0 ? boxsize : -boxsize * (naxis == 'x' ? _width : naxis == 'y' ? _height : naxis == 'z' ? _depth : _spectrum) / 100; switch (naxis) { case 'x': { cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forYZC(*this,y,z,c) _cimg_blur_box_apply(data(0,y,z,c),nboxsize,_width,1U,order,boundary_conditions,nb_iter); } break; case 'y': { cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forXZC(*this,x,z,c) _cimg_blur_box_apply(data(x,0,z,c),nboxsize,_height,(ulongT)_width,order,boundary_conditions,nb_iter); } break; case 'z': { cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forXYC(*this,x,y,c) _cimg_blur_box_apply(data(x,y,0,c),nboxsize,_depth,(ulongT)_width*_height,order,boundary_conditions,nb_iter); } break; default: { cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth*_spectrum>=16)) cimg_forXYZ(*this,x,y,z) _cimg_blur_box_apply(data(x,y,z,0),nboxsize,_spectrum,(ulongT)_width*_height*_depth, order,boundary_conditions,nb_iter); } } return *this; } // Apply box filter of order 0,1 or 2 \newinstance. CImg get_boxfilter(const float boxsize, const int order, const char axis = 'x', const bool boundary_conditions = true, const unsigned int nb_iter = 1) const { return CImg(*this, false) .boxfilter(boxsize, order, axis, boundary_conditions, nb_iter); } //! Blur image with a box filter. /** \param boxsize_x Size of the box window, along the X-axis (can be subpixel). \param boxsize_y Size of the box window, along the Y-axis (can be subpixel). \param boxsize_z Size of the box window, along the Z-axis (can be subpixel). \param boundary_conditions Boundary conditions. Can be { false=dirichlet | true=neumann }. \param nb_iter Number of filter iterations. \note - This is a recursive algorithm, not depending on the values of the box kernel size. \see blur(). **/ CImg& blur_box(const float boxsize_x, const float boxsize_y, const float boxsize_z, const bool boundary_conditions = true, const unsigned int nb_iter = 1) { if (is_empty()) return *this; if (_width > 1) boxfilter(boxsize_x, 0, 'x', boundary_conditions, nb_iter); if (_height > 1) boxfilter(boxsize_y, 0, 'y', boundary_conditions, nb_iter); if (_depth > 1) boxfilter(boxsize_z, 0, 'z', boundary_conditions, nb_iter); return *this; } //! Blur image with a box filter \newinstance. CImg get_blur_box(const float boxsize_x, const float boxsize_y, const float boxsize_z, const bool boundary_conditions = true) const { return CImg(*this, false) .blur_box(boxsize_x, boxsize_y, boxsize_z, boundary_conditions); } //! Blur image with a box filter. /** \param boxsize Size of the box window (can be subpixel). \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }.a \see deriche(), vanvliet(). **/ CImg& blur_box(const float boxsize, const bool boundary_conditions = true) { const float nboxsize = boxsize >= 0 ? boxsize : -boxsize * cimg::max(_width, _height, _depth) / 100; return blur_box(nboxsize, nboxsize, nboxsize, boundary_conditions); } //! Blur image with a box filter \newinstance. CImg get_blur_box(const float boxsize, const bool boundary_conditions = true) const { return CImg(*this, false) .blur_box(boxsize, boundary_conditions); } //! Blur image, with the image guided filter. /** \param guide Image used to guide the smoothing process. \param radius Spatial radius. If negative, it is expressed as a percentage of the largest image size. \param regularization Regularization parameter. If negative, it is expressed as a percentage of the guide value range. \note This method implements the filtering algorithm described in: He, Kaiming; Sun, Jian; Tang, Xiaoou, "Guided Image Filtering," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.35, no.6, pp.1397,1409, June 2013 **/ template CImg& blur_guided(const CImg& guide, const float radius, const float regularization) { return get_blur_guided(guide, radius, regularization).move_to(*this); } //! Blur image, with the image guided filter \newinstance. template CImg get_blur_guided(const CImg& guide, const float radius, const float regularization) const { if (!is_sameXYZ(guide)) throw CImgArgumentException( _cimg_instance "blur_guided(): Invalid size for specified guide image " "(%u,%u,%u,%u,%p).", cimg_instance, guide._width, guide._height, guide._depth, guide._spectrum, guide._data); if (is_empty() || !radius) return *this; const int _radius = radius >= 0 ? (int)radius : (int)(-radius * cimg::max(_width, _height, _depth) / 100); float _regularization = regularization; if (regularization < 0) { T edge_min, edge_max = guide.max_min(edge_min); if (edge_min == edge_max) return *this; _regularization = -regularization * (edge_max - edge_min) / 100; } _regularization = std::max(_regularization, 0.01f); const unsigned int psize = (unsigned int)(1 + 2 * _radius); CImg mean_p = get_blur_box(psize, true), mean_I = guide.get_blur_box(psize, true).resize(mean_p), cov_Ip = get_mul(guide).blur_box(psize, true) -= mean_p.get_mul(mean_I), var_I = guide.get_sqr().blur_box(psize, true) -= mean_I.get_sqr(), &a = cov_Ip.div(var_I += _regularization), &b = mean_p -= a.get_mul(mean_I); a.blur_box(psize, true); b.blur_box(psize, true); return a.mul(guide) += b; } //! Blur image using patch-based space. /** \param guide Image used to model the smoothing weights. \param sigma_s Amount of blur along the XYZ-axes. \param sigma_r Amount of blur along the value axis. \param patch_size Size of the patches. \param lookup_size Size of the window to search similar patches. \param smoothness Smoothness for the patch comparison. \param is_fast_approx Tells if a fast approximation of the gaussian function is used or not. **/ template CImg& blur_patch(const CImg& guide, const float sigma_s, const float sigma_r, const unsigned int patch_size = 3, const unsigned int lookup_size = 4, const float smoothness = 0, const bool is_fast_approx = true) { if (is_empty() || !patch_size || !lookup_size) return *this; return get_blur_patch(guide, sigma_s, sigma_r, patch_size, lookup_size, smoothness, is_fast_approx) .move_to(*this); } //! Blur image using patch-based space \newinstance. template CImg get_blur_patch(const CImg& guide, const float sigma_s, const float sigma_r, const unsigned int patch_size = 3, const unsigned int lookup_size = 4, const float smoothness = 0, const bool is_fast_approx = true) const { #define _cimg_blur_patch3d_fast(N) \ { \ cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) \ cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4) \ firstprivate(P,Q)) \ cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp { \ cimg_abort_test; \ cimg_def##N##x##N##x##N(res, x, y, z); \ tfloat* pP = P._data; \ cimg_forC(_guide, c) { \ cimg_get##N##x##N##x##N(_guide, x, y, z, c, pP, tfloat); \ pP += N3; \ } \ const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, \ x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; \ tfloat sum_weights = 0; \ cimg_for_in##N##XYZ( \ res, x0, y0, z0, x1, y1, z1, p, q, \ r) if (cimg::abs(_guide(x, y, z, 0) - _guide(p, q, r, 0)) < \ sigma_r3) { \ tfloat* pQ = Q._data; \ cimg_forC(_guide, c) { \ cimg_get##N##x##N##x##N(_guide, p, q, r, c, pQ, tfloat); \ pQ += N3; \ } \ tfloat distance2 = 0; \ pQ = Q._data; \ cimg_for(P, _pP, tfloat) { \ const tfloat dI = *_pP - *(pQ++); \ distance2 += dI * dI; \ } \ distance2 /= Pnorm; \ const tfloat dx = (tfloat)p - x, dy = (tfloat)q - y, \ dz = (tfloat)r - z, \ alldist = \ distance2 + \ (dx * dx + dy * dy + dz * dz) / sigma_s2, \ weight = alldist > 3 ? 0 : 1; \ sum_weights += weight; \ cimg_forC(res, c) res(x, y, z, c) += \ (Tfloat)weight * (*this)(p, q, r, c); \ } \ if (sum_weights > 1e-10) \ cimg_forC(res, c) res(x, y, z, c) /= (Tfloat)sum_weights; \ else \ cimg_forC(res, c) res(x, y, z, c) = \ (Tfloat)((*this)(x, y, z, c)); \ } \ _cimg_abort_catch_openmp \ } #define _cimg_blur_patch3d(N) \ { \ cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) \ cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4) \ firstprivate(P,Q)) \ cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp { \ cimg_abort_test; \ cimg_def##N##x##N##x##N(res, x, y, z); \ tfloat* pP = P._data; \ cimg_forC(_guide, c) { \ cimg_get##N##x##N##x##N(_guide, x, y, z, c, pP, tfloat); \ pP += N3; \ } \ const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, \ x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; \ tfloat sum_weights = 0, weight_max = 0; \ cimg_for_in##N##XYZ(res, x0, y0, z0, x1, y1, z1, p, q, \ r) if (p != x || q != y || r != z) { \ tfloat* pQ = Q._data; \ cimg_forC(_guide, c) { \ cimg_get##N##x##N##x##N(_guide, p, q, r, c, pQ, tfloat); \ pQ += N3; \ } \ tfloat distance2 = 0; \ pQ = Q._data; \ cimg_for(P, _pP, tfloat) { \ const tfloat dI = *_pP - *(pQ++); \ distance2 += dI * dI; \ } \ distance2 /= Pnorm; \ const tfloat dx = (tfloat)p - x, dy = (tfloat)q - y, \ dz = (tfloat)r - z, \ alldist = \ distance2 + \ (dx * dx + dy * dy + dz * dz) / sigma_s2, \ weight = std::exp(-alldist); \ if (weight > weight_max) weight_max = weight; \ sum_weights += weight; \ cimg_forC(res, c) res(x, y, z, c) += \ (Tfloat)weight * (*this)(p, q, r, c); \ } \ sum_weights += weight_max; \ cimg_forC(res, c) res(x, y, z, c) += \ (Tfloat)weight_max * (*this)(x, y, z, c); \ if (sum_weights > 1e-10) \ cimg_forC(res, c) res(x, y, z, c) /= (Tfloat)sum_weights; \ else \ cimg_forC(res, c) res(x, y, z, c) = \ (Tfloat)((*this)(x, y, z, c)); \ } \ _cimg_abort_catch_openmp \ } #define _cimg_blur_patch2d_fast(N) \ { \ cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4) \ firstprivate(P,Q)) \ cimg_forXY(res,x,y) _cimg_abort_try_openmp { \ cimg_abort_test; \ cimg_def##N##x##N(res, x, y); \ tfloat* pP = P._data; \ cimg_forC(_guide, c) { \ cimg_get##N##x##N(_guide, x, y, 0, c, pP, tfloat); \ pP += N2; \ } \ const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, \ y1 = y + rsize2; \ tfloat sum_weights = 0; \ cimg_for_in##N##XY( \ res, x0, y0, x1, y1, p, \ q) if (cimg::abs(_guide(x, y, 0, 0) - _guide(p, q, 0, 0)) < \ sigma_r3) { \ tfloat* pQ = Q._data; \ cimg_forC(_guide, c) { \ cimg_get##N##x##N(_guide, p, q, 0, c, pQ, tfloat); \ pQ += N2; \ } \ tfloat distance2 = 0; \ pQ = Q._data; \ cimg_for(P, _pP, tfloat) { \ const tfloat dI = *_pP - *(pQ++); \ distance2 += dI * dI; \ } \ distance2 /= Pnorm; \ const tfloat dx = (tfloat)p - x, dy = (tfloat)q - y, \ alldist = \ distance2 + (dx * dx + dy * dy) / sigma_s2, \ weight = alldist > 3 ? 0 : 1; \ sum_weights += weight; \ cimg_forC(res, c) res(x, y, c) += \ (Tfloat)weight * (*this)(p, q, c); \ } \ if (sum_weights > 1e-10) \ cimg_forC(res, c) res(x, y, c) /= (Tfloat)sum_weights; \ else \ cimg_forC(res, c) res(x, y, c) = (Tfloat)((*this)(x, y, c)); \ } \ _cimg_abort_catch_openmp \ } #define _cimg_blur_patch2d(N) \ { \ cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4) \ firstprivate(P,Q)) \ cimg_forXY(res,x,y) _cimg_abort_try_openmp { \ cimg_abort_test; \ cimg_def##N##x##N(res, x, y); \ tfloat* pP = P._data; \ cimg_forC(_guide, c) { \ cimg_get##N##x##N(_guide, x, y, 0, c, pP, tfloat); \ pP += N2; \ } \ const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, \ y1 = y + rsize2; \ tfloat sum_weights = 0, weight_max = 0; \ cimg_for_in##N##XY(res, x0, y0, x1, y1, p, \ q) if (p != x || q != y) { \ tfloat* pQ = Q._data; \ cimg_forC(_guide, c) { \ cimg_get##N##x##N(_guide, p, q, 0, c, pQ, tfloat); \ pQ += N2; \ } \ tfloat distance2 = 0; \ pQ = Q._data; \ cimg_for(P, _pP, T) { \ const tfloat dI = *_pP - *(pQ++); \ distance2 += dI * dI; \ } \ distance2 /= Pnorm; \ const tfloat dx = (tfloat)p - x, dy = (tfloat)q - y, \ alldist = \ distance2 + (dx * dx + dy * dy) / sigma_s2, \ weight = std::exp(-alldist); \ if (weight > weight_max) weight_max = weight; \ sum_weights += weight; \ cimg_forC(res, c) res(x, y, c) += \ (Tfloat)weight * (*this)(p, q, c); \ } \ sum_weights += weight_max; \ cimg_forC(res, c) res(x, y, c) += \ (Tfloat)weight_max * (*this)(x, y, c); \ if (sum_weights > 1e-10) \ cimg_forC(res, c) res(x, y, c) /= (Tfloat)sum_weights; \ else \ cimg_forC(res, c) res(x, y, c) = (Tfloat)((*this)(x, y, c)); \ } \ _cimg_abort_catch_openmp \ } typedef _cimg_tfloat tfloat; if (!is_sameXYZ(guide)) throw CImgArgumentException( _cimg_instance "blur_patch(): Invalid size for specified guide image " "(%u,%u,%u,%u,%p).", cimg_instance, guide._width, guide._height, guide._depth, guide._spectrum, guide._data); if (is_empty() || !patch_size || !lookup_size) return +*this; Tfloat val_min, val_max = (Tfloat)max_min(val_min); _cimg_abort_init_openmp; cimg_abort_init; CImg res(_width, _height, _depth, _spectrum, 0); const CImg __guide = guide ? CImg(guide, cimg::type::string() == cimg::type::string()) : CImg(*this, cimg::type::string() == cimg::type::string()), _guide = smoothness > 0 ? __guide.get_blur(smoothness) : __guide.get_shared(); CImg P(_guide._spectrum * patch_size * patch_size * (_depth > 1 ? patch_size : 1)), Q(P); t guide_min = (t)0, guide_max = (t)0; if (sigma_r < 0) guide_max = guide.max_min(guide_min); const float guide_delta = (float)(guide_max - guide_min), _sigma_s = sigma_s >= 0 ? sigma_s : -sigma_s * cimg::max(_width, _height, _depth) / 100, _sigma_r = sigma_r >= 0 ? sigma_r : -sigma_r * guide_delta / 100, sigma_s2 = _sigma_s * _sigma_s, sigma_r2 = _sigma_r * _sigma_r, sigma_r3 = 3 * _sigma_r, Pnorm = P.size() * sigma_r2; const int rsize2 = (int)lookup_size / 2, rsize1 = (int)lookup_size - rsize2 - 1; const unsigned int N2 = patch_size * patch_size, N3 = N2 * patch_size; cimg::unused(N2, N3); if (_depth > 1) switch (patch_size) { // 3D case 2: if (is_fast_approx) _cimg_blur_patch3d_fast(2) else _cimg_blur_patch3d( 2) break; case 3: if (is_fast_approx) _cimg_blur_patch3d_fast(3) else _cimg_blur_patch3d( 3) break; default: { const int psize2 = (int)patch_size / 2, psize1 = (int)patch_size - psize2 - 1; if (is_fast_approx) { cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4) firstprivate(P,Q)) cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp { // Fast cimg_abort_test; P = _guide.get_crop(x - psize1, y - psize1, z - psize1, x + psize2, y + psize2, z + psize2, true); const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; tfloat sum_weights = 0; cimg_for_inXYZ( res, x0, y0, z0, x1, y1, z1, p, q, r) if (cimg::abs(_guide(x, y, z, 0) - _guide(p, q, r, 0)) < sigma_r3) { (Q = _guide.get_crop(p - psize1, q - psize1, r - psize1, p + psize2, q + psize2, r + psize2, true)) -= P; const tfloat dx = (tfloat)x - p, dy = (tfloat)y - q, dz = (tfloat)z - r, distance2 = (tfloat)( Q.pow(2).sum() / Pnorm + (dx * dx + dy * dy + dz * dz) / sigma_s2), weight = distance2 > 3 ? 0 : 1; sum_weights += weight; cimg_forC(res, c) res(x, y, z, c) += (Tfloat)weight * (*this)(p, q, r, c); } if (sum_weights > 1e-10) cimg_forC(res, c) res(x, y, z, c) /= (Tfloat)sum_weights; else cimg_forC(res, c) res(x, y, z, c) = (Tfloat)((*this)(x, y, z, c)); } _cimg_abort_catch_openmp } else { cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4) firstprivate(P,Q)) cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp { // Exact cimg_abort_test; P = _guide.get_crop(x - psize1, y - psize1, z - psize1, x + psize2, y + psize2, z + psize2, true); const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; tfloat sum_weights = 0, weight_max = 0; cimg_for_inXYZ(res, x0, y0, z0, x1, y1, z1, p, q, r) if (p != x || q != y || r != z) { (Q = _guide.get_crop(p - psize1, q - psize1, r - psize1, p + psize2, q + psize2, r + psize2, true)) -= P; const tfloat dx = (tfloat)x - p, dy = (tfloat)y - q, dz = (tfloat)z - r, distance2 = (tfloat)( Q.pow(2).sum() / Pnorm + (dx * dx + dy * dy + dz * dz) / sigma_s2), weight = std::exp(-distance2); if (weight > weight_max) weight_max = weight; sum_weights += weight; cimg_forC(res, c) res(x, y, z, c) += (Tfloat)weight * (*this)(p, q, r, c); } sum_weights += weight_max; cimg_forC(res, c) res(x, y, z, c) += (Tfloat)weight_max * (*this)(x, y, z, c); if (sum_weights > 1e-10) cimg_forC(res, c) res(x, y, z, c) /= (Tfloat)sum_weights; else cimg_forC(res, c) res(x, y, z, c) = (Tfloat)((*this)(x, y, z, c)); } _cimg_abort_catch_openmp } } } else switch (patch_size) { // 2D case 2: if (is_fast_approx) _cimg_blur_patch2d_fast(2) else _cimg_blur_patch2d( 2) break; case 3: if (is_fast_approx) _cimg_blur_patch2d_fast(3) else _cimg_blur_patch2d( 3) break; case 4: if (is_fast_approx) _cimg_blur_patch2d_fast(4) else _cimg_blur_patch2d( 4) break; case 5: if (is_fast_approx) _cimg_blur_patch2d_fast(5) else _cimg_blur_patch2d( 5) break; case 6: if (is_fast_approx) _cimg_blur_patch2d_fast(6) else _cimg_blur_patch2d( 6) break; case 7: if (is_fast_approx) _cimg_blur_patch2d_fast(7) else _cimg_blur_patch2d( 7) break; case 8: if (is_fast_approx) _cimg_blur_patch2d_fast(8) else _cimg_blur_patch2d( 8) break; case 9: if (is_fast_approx) _cimg_blur_patch2d_fast(9) else _cimg_blur_patch2d( 9) break; default: { // Fast const int psize2 = (int)patch_size / 2, psize1 = (int)patch_size - psize2 - 1; if (is_fast_approx) { cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4) firstprivate(P,Q)) cimg_forXY(res,x,y) _cimg_abort_try_openmp { // Fast cimg_abort_test; P = _guide.get_crop(x - psize1, y - psize1, x + psize2, y + psize2, true); const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; tfloat sum_weights = 0; cimg_for_inXY(res, x0, y0, x1, y1, p, q) if (cimg::abs(_guide(x, y, 0) - _guide(p, q, 0)) < sigma_r3) { (Q = _guide.get_crop(p - psize1, q - psize1, p + psize2, q + psize2, true)) -= P; const tfloat dx = (tfloat)x - p, dy = (tfloat)y - q, distance2 = (tfloat)(Q.pow(2).sum() / Pnorm + (dx * dx + dy * dy) / sigma_s2), weight = distance2 > 3 ? 0 : 1; sum_weights += weight; cimg_forC(res, c) res(x, y, c) += (Tfloat)weight * (*this)(p, q, c); } if (sum_weights > 1e-10) cimg_forC(res, c) res(x, y, c) /= (Tfloat)sum_weights; else cimg_forC(res, c) res(x, y, c) = (Tfloat)((*this)(x, y, c)); } _cimg_abort_catch_openmp } else { cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4) firstprivate(P,Q)) cimg_forXY(res,x,y) _cimg_abort_try_openmp { // Exact cimg_abort_test; P = _guide.get_crop(x - psize1, y - psize1, x + psize2, y + psize2, true); const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; tfloat sum_weights = 0, weight_max = 0; cimg_for_inXY(res, x0, y0, x1, y1, p, q) if (p != x || q != y) { (Q = _guide.get_crop(p - psize1, q - psize1, p + psize2, q + psize2, true)) -= P; const tfloat dx = (tfloat)x - p, dy = (tfloat)y - q, distance2 = (tfloat)(Q.pow(2).sum() / Pnorm + (dx * dx + dy * dy) / sigma_s2), weight = std::exp(-distance2); if (weight > weight_max) weight_max = weight; sum_weights += weight; cimg_forC(res, c) res(x, y, c) += (Tfloat)weight * (*this)(p, q, c); } sum_weights += weight_max; cimg_forC(res, c) res(x, y, c) += (Tfloat)weight_max * (*this)(x, y, c); if (sum_weights > 1e-10) cimg_forC(res, c) res(x, y, c) /= (Tfloat)sum_weights; else cimg_forC(res, c) res(x, y, c) = (Tfloat)((*this)(x, y, c)); } _cimg_abort_catch_openmp } } } return res.cut(val_min, val_max); } //! Blur image using patch-based space \simplification. CImg& blur_patch(const float sigma_s, const float sigma_r, const unsigned int patch_size = 3, const unsigned int lookup_size = 4, const float smoothness = 0, const bool is_fast_approx = true) { return blur_patch(*this, sigma_s, sigma_r, patch_size, lookup_size, smoothness, is_fast_approx); } //! Blur image using patch-based space \simplification \newinstance. CImg get_blur_patch(const float sigma_s, const float sigma_r, const unsigned int patch_size = 3, const unsigned int lookup_size = 4, const float smoothness = 0, const bool is_fast_approx = true) const { return get_blur_patch(*this, sigma_s, sigma_r, patch_size, lookup_size, smoothness, is_fast_approx); } //! Blur image with the median filter. /** \param n Size of the median filter. \param threshold Threshold used to discard pixels too far from the current pixel value in the median computation. **/ CImg& blur_median(const unsigned int n, const float threshold = 0) { if (!n) return *this; return get_blur_median(n, threshold).move_to(*this); } //! Blur image with the median filter \newinstance. CImg get_blur_median(const unsigned int n, const float threshold = 0) const { if (is_empty() || n <= 1) return +*this; CImg res(_width, _height, _depth, _spectrum); T* ptrd = res._data; cimg::unused(ptrd); const int hr = (int)n / 2, hl = n - hr - 1; if (res._depth != 1) { // 3D if (threshold > 0) cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && _height*_depth*_spectrum>=4)) cimg_forXYZC(*this,x,y,z,c) { // With threshold const int x0 = x - hl, y0 = y - hl, z0 = z - hl, x1 = x + hr, y1 = y + hr, z1 = z + hr, nx0 = x0 < 0 ? 0 : x0, ny0 = y0 < 0 ? 0 : y0, nz0 = z0 < 0 ? 0 : z0, nx1 = x1 >= width() ? width() - 1 : x1, ny1 = y1 >= height() ? height() - 1 : y1, nz1 = z1 >= depth() ? depth() - 1 : z1; const Tfloat val0 = (Tfloat)(*this)(x, y, z, c); CImg values(n * n * n); unsigned int nb_values = 0; T* _ptrd = values.data(); cimg_for_inXYZ( *this, nx0, ny0, nz0, nx1, ny1, nz1, p, q, r) if (cimg::abs((*this)(p, q, r, c) - val0) <= threshold) { *(_ptrd++) = (*this)(p, q, r, c); ++nb_values; } res(x, y, z, c) = nb_values ? values.get_shared_points(0, nb_values - 1).median() : (*this)(x, y, z, c); } else cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && _height*_depth*_spectrum>=4)) cimg_forXYZC(*this,x,y,z,c) { // Without threshold const int x0 = x - hl, y0 = y - hl, z0 = z - hl, x1 = x + hr, y1 = y + hr, z1 = z + hr, nx0 = x0 < 0 ? 0 : x0, ny0 = y0 < 0 ? 0 : y0, nz0 = z0 < 0 ? 0 : z0, nx1 = x1 >= width() ? width() - 1 : x1, ny1 = y1 >= height() ? height() - 1 : y1, nz1 = z1 >= depth() ? depth() - 1 : z1; res(x, y, z, c) = get_crop(nx0, ny0, nz0, c, nx1, ny1, nz1, c).median(); } } else { if (threshold > 0) cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && _height*_spectrum>=4)) cimg_forXYC(*this,x,y,c) { // With threshold const int x0 = x - hl, y0 = y - hl, x1 = x + hr, y1 = y + hr, nx0 = x0 < 0 ? 0 : x0, ny0 = y0 < 0 ? 0 : y0, nx1 = x1 >= width() ? width() - 1 : x1, ny1 = y1 >= height() ? height() - 1 : y1; const Tfloat val0 = (Tfloat)(*this)(x, y, c); CImg values(n * n); unsigned int nb_values = 0; T* _ptrd = values.data(); cimg_for_inXY( *this, nx0, ny0, nx1, ny1, p, q) if (cimg::abs((*this)(p, q, c) - val0) <= threshold) { *(_ptrd++) = (*this)(p, q, c); ++nb_values; } res(x, y, c) = nb_values ? values.get_shared_points(0, nb_values - 1).median() : (*this)(x, y, c); } else { const int w1 = width() - 1, h1 = height() - 1, w2 = width() - 2, h2 = height() - 2, w3 = width() - 3, h3 = height() - 3, w4 = width() - 4, h4 = height() - 4; switch (n) { // Without threshold case 3: { cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) cimg_forC(*this,c) { CImg I(9); cimg_for_in3x3(*this, 1, 1, w2, h2, x, y, 0, c, I, T) res(x, y, c) = cimg::median(I[0], I[1], I[2], I[3], I[4], I[5], I[6], I[7], I[8]); cimg_for_borderXY(*this, x, y, 1) res(x, y, c) = get_crop(std::max(0, x - 1), std::max(0, y - 1), 0, c, std::min(w1, x + 1), std::min(h1, y + 1), 0, c) .median(); } } break; case 5: { cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) cimg_forC(*this,c) { CImg I(25); cimg_for_in5x5(*this, 2, 2, w3, h3, x, y, 0, c, I, T) res(x, y, c) = cimg::median( I[0], I[1], I[2], I[3], I[4], I[5], I[6], I[7], I[8], I[9], I[10], I[11], I[12], I[13], I[14], I[15], I[16], I[17], I[18], I[19], I[20], I[21], I[22], I[23], I[24]); cimg_for_borderXY(*this, x, y, 2) res(x, y, c) = get_crop(std::max(0, x - 2), std::max(0, y - 2), 0, c, std::min(w1, x + 2), std::min(h1, y + 2), 0, c) .median(); } } break; case 7: { cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) cimg_forC(*this,c) { CImg I(49); cimg_for_in7x7(*this, 3, 3, w4, h4, x, y, 0, c, I, T) res(x, y, c) = cimg::median( I[0], I[1], I[2], I[3], I[4], I[5], I[6], I[7], I[8], I[9], I[10], I[11], I[12], I[13], I[14], I[15], I[16], I[17], I[18], I[19], I[20], I[21], I[22], I[23], I[24], I[25], I[26], I[27], I[28], I[29], I[30], I[31], I[32], I[33], I[34], I[35], I[36], I[37], I[38], I[39], I[40], I[41], I[42], I[43], I[44], I[45], I[46], I[47], I[48]); cimg_for_borderXY(*this, x, y, 3) res(x, y, c) = get_crop(std::max(0, x - 3), std::max(0, y - 3), 0, c, std::min(w1, x + 3), std::min(h1, y + 3), 0, c) .median(); } } break; default: { cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && _height*_spectrum>=4)) cimg_forXYC(*this,x,y,c) { const int x0 = x - hl, y0 = y - hl, x1 = x + hr, y1 = y + hr, nx0 = x0 < 0 ? 0 : x0, ny0 = y0 < 0 ? 0 : y0, nx1 = x1 >= width() ? width() - 1 : x1, ny1 = y1 >= height() ? height() - 1 : y1; res(x, y, c) = get_crop(nx0, ny0, 0, c, nx1, ny1, 0, c).median(); } } } } } return res; } //! Sharpen image. /** \param amplitude Sharpening amplitude \param sharpen_type Select sharpening method. Can be { false=inverse diffusion | true=shock filters }. \param edge Edge threshold (shock filters only). \param alpha Gradient smoothness (shock filters only). \param sigma Tensor smoothness (shock filters only). **/ CImg& sharpen(const float amplitude, const bool sharpen_type = false, const float edge = 1, const float alpha = 0, const float sigma = 0) { if (is_empty()) return *this; T val_min, val_max = max_min(val_min); const float nedge = edge / 2; CImg velocity(_width, _height, _depth, _spectrum), _veloc_max(_spectrum); if (_depth > 1) { // 3D if (sharpen_type) { // Shock filters CImg G = (alpha > 0 ? get_blur(alpha).get_structure_tensors() : get_structure_tensors()); if (sigma > 0) G.blur(sigma); cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*32 && _height*_depth>=16)) cimg_forYZ(G,y,z) { Tfloat *ptrG0 = G.data(0, y, z, 0), *ptrG1 = G.data(0, y, z, 1), *ptrG2 = G.data(0, y, z, 2), *ptrG3 = G.data(0, y, z, 3); CImg val, vec; cimg_forX(G, x) { G.get_tensor_at(x, y, z).symmetric_eigen(val, vec); if (val[0] < 0) val[0] = 0; if (val[1] < 0) val[1] = 0; if (val[2] < 0) val[2] = 0; *(ptrG0++) = vec(0, 0); *(ptrG1++) = vec(0, 1); *(ptrG2++) = vec(0, 2); *(ptrG3++) = 1 - (Tfloat)std::pow(1 + val[0] + val[1] + val[2], -(Tfloat)nedge); } } cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*512 && _spectrum>=2)) cimg_forC(*this,c) { Tfloat *ptrd = velocity.data(0, 0, 0, c), veloc_max = 0; CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) { const Tfloat u = G(x, y, z, 0), v = G(x, y, z, 1), w = G(x, y, z, 2), amp = G(x, y, z, 3), ixx = Incc + Ipcc - 2 * Iccc, ixy = (Innc + Ippc - Inpc - Ipnc) / 4, ixz = (Incn + Ipcp - Incp - Ipcn) / 4, iyy = Icnc + Icpc - 2 * Iccc, iyz = (Icnn + Icpp - Icnp - Icpn) / 4, izz = Iccn + Iccp - 2 * Iccc, ixf = Incc - Iccc, ixb = Iccc - Ipcc, iyf = Icnc - Iccc, iyb = Iccc - Icpc, izf = Iccn - Iccc, izb = Iccc - Iccp, itt = u * u * ixx + v * v * iyy + w * w * izz + 2 * u * v * ixy + 2 * u * w * ixz + 2 * v * w * iyz, it = u * cimg::minmod(ixf, ixb) + v * cimg::minmod(iyf, iyb) + w * cimg::minmod(izf, izb), veloc = -amp * cimg::sign(itt) * cimg::abs(it); *(ptrd++) = veloc; if (veloc > veloc_max) veloc_max = veloc; else if (-veloc > veloc_max) veloc_max = -veloc; } _veloc_max[c] = veloc_max; } } else // Inverse diffusion cimg_forC(*this, c) { Tfloat *ptrd = velocity.data(0, 0, 0, c), veloc_max = 0; CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) { const Tfloat veloc = -Ipcc - Incc - Icpc - Icnc - Iccp - Iccn + 6 * Iccc; *(ptrd++) = veloc; if (veloc > veloc_max) veloc_max = veloc; else if (-veloc > veloc_max) veloc_max = -veloc; } _veloc_max[c] = veloc_max; } } else { // 2D if (sharpen_type) { // Shock filters CImg G = (alpha > 0 ? get_blur(alpha).get_structure_tensors() : get_structure_tensors()); if (sigma > 0) G.blur(sigma); cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*32 && _height>=(cimg_openmp_sizefactor)*16)) cimg_forY(G,y) { CImg val, vec; Tfloat *ptrG0 = G.data(0, y, 0, 0), *ptrG1 = G.data(0, y, 0, 1), *ptrG2 = G.data(0, y, 0, 2); cimg_forX(G, x) { G.get_tensor_at(x, y).symmetric_eigen(val, vec); if (val[0] < 0) val[0] = 0; if (val[1] < 0) val[1] = 0; *(ptrG0++) = vec(0, 0); *(ptrG1++) = vec(0, 1); *(ptrG2++) = 1 - (Tfloat)std::pow(1 + val[0] + val[1], -(Tfloat)nedge); } } cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*512 && _spectrum>=2)) cimg_forC(*this,c) { Tfloat *ptrd = velocity.data(0, 0, 0, c), veloc_max = 0; CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, 0, c, I, Tfloat) { const Tfloat u = G(x, y, 0), v = G(x, y, 1), amp = G(x, y, 2), ixx = Inc + Ipc - 2 * Icc, ixy = (Inn + Ipp - Inp - Ipn) / 4, iyy = Icn + Icp - 2 * Icc, ixf = Inc - Icc, ixb = Icc - Ipc, iyf = Icn - Icc, iyb = Icc - Icp, itt = u * u * ixx + v * v * iyy + 2 * u * v * ixy, it = u * cimg::minmod(ixf, ixb) + v * cimg::minmod(iyf, iyb), veloc = -amp * cimg::sign(itt) * cimg::abs(it); *(ptrd++) = veloc; if (veloc > veloc_max) veloc_max = veloc; else if (-veloc > veloc_max) veloc_max = -veloc; } _veloc_max[c] = veloc_max; } } else // Inverse diffusion cimg_forC(*this, c) { Tfloat *ptrd = velocity.data(0, 0, 0, c), veloc_max = 0; CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, 0, c, I, Tfloat) { const Tfloat veloc = -Ipc - Inc - Icp - Icn + 4 * Icc; *(ptrd++) = veloc; if (veloc > veloc_max) veloc_max = veloc; else if (-veloc > veloc_max) veloc_max = -veloc; } _veloc_max[c] = veloc_max; } } const Tfloat veloc_max = _veloc_max.max(); if (veloc_max <= 0) return *this; return ((velocity *= amplitude / veloc_max) += *this) .cut(val_min, val_max) .move_to(*this); } //! Sharpen image \newinstance. CImg get_sharpen(const float amplitude, const bool sharpen_type = false, const float edge = 1, const float alpha = 0, const float sigma = 0) const { return (+*this).sharpen(amplitude, sharpen_type, edge, alpha, sigma); } //! Return image gradient. /** \param axes Axes considered for the gradient computation, as a C-string (e.g "xy"). \param scheme = Numerical scheme used for the gradient computation: - -1 = Backward finite differences - 0 = Centered finite differences - 1 = Forward finite differences - 2 = Using Sobel kernels - 3 = Using rotation invariant kernels - 4 = Using Deriche recusrsive filter. - 5 = Using Van Vliet recusrsive filter. **/ CImgList get_gradient(const char* const axes = 0, const int scheme = 3) const { CImgList grad(2, _width, _height, _depth, _spectrum); bool is_3d = false; if (axes) { for (unsigned int a = 0; axes[a]; ++a) { const char axis = cimg::lowercase(axes[a]); switch (axis) { case 'x': case 'y': break; case 'z': is_3d = true; break; default: throw CImgArgumentException( _cimg_instance "get_gradient(): Invalid specified axis '%c'.", cimg_instance, axis); } } } else is_3d = (_depth > 1); if (is_3d) { CImg(_width, _height, _depth, _spectrum).move_to(grad); switch (scheme) { // 3D case -1: { // Backward finite differences cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && _spectrum>=2)) cimg_forC(*this,c) { const ulongT off = (ulongT)c * _width * _height * _depth; Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off, *ptrd2 = grad[2]._data + off; CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) { *(ptrd0++) = Iccc - Ipcc; *(ptrd1++) = Iccc - Icpc; *(ptrd2++) = Iccc - Iccp; } } } break; case 1: { // Forward finite differences cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && _spectrum>=2)) cimg_forC(*this,c) { const ulongT off = (ulongT)c * _width * _height * _depth; Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off, *ptrd2 = grad[2]._data + off; CImg_2x2x2(I, Tfloat); cimg_for2x2x2(*this, x, y, z, c, I, Tfloat) { *(ptrd0++) = Incc - Iccc; *(ptrd1++) = Icnc - Iccc; *(ptrd2++) = Iccn - Iccc; } } } break; case 4: { // Deriche filter with low standard variation grad[0] = get_deriche(0, 1, 'x'); grad[1] = get_deriche(0, 1, 'y'); grad[2] = get_deriche(0, 1, 'z'); } break; case 5: { // Van Vliet filter with low standard variation grad[0] = get_vanvliet(0, 1, 'x'); grad[1] = get_vanvliet(0, 1, 'y'); grad[2] = get_vanvliet(0, 1, 'z'); } break; default: { // Central finite differences cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && _spectrum>=2)) cimg_forC(*this,c) { const ulongT off = (ulongT)c * _width * _height * _depth; Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off, *ptrd2 = grad[2]._data + off; CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) { *(ptrd0++) = (Incc - Ipcc) / 2; *(ptrd1++) = (Icnc - Icpc) / 2; *(ptrd2++) = (Iccn - Iccp) / 2; } } } } } else switch (scheme) { // 2D case -1: { // Backward finite differences cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forZC(*this,z,c) { const ulongT off = (ulongT)c * _width * _height * _depth + z * _width * _height; Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off; CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, z, c, I, Tfloat) { *(ptrd0++) = Icc - Ipc; *(ptrd1++) = Icc - Icp; } } } break; case 1: { // Forward finite differences cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forZC(*this,z,c) { const ulongT off = (ulongT)c * _width * _height * _depth + z * _width * _height; Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off; CImg_2x2(I, Tfloat); cimg_for2x2(*this, x, y, z, c, I, Tfloat) { *(ptrd0++) = Inc - Icc; *(ptrd1++) = Icn - Icc; } } } break; case 2: { // Sobel scheme cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forZC(*this,z,c) { const ulongT off = (ulongT)c * _width * _height * _depth + z * _width * _height; Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off; CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, z, c, I, Tfloat) { *(ptrd0++) = -Ipp - 2 * Ipc - Ipn + Inp + 2 * Inc + Inn; *(ptrd1++) = -Ipp - 2 * Icp - Inp + Ipn + 2 * Icn + Inn; } } } break; case 3: { // Rotation invariant kernel cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forZC(*this,z,c) { const ulongT off = (ulongT)c * _width * _height * _depth + z * _width * _height; Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off; CImg_3x3(I, Tfloat); const Tfloat a = (Tfloat)(0.25f * (2 - std::sqrt(2.f))), b = (Tfloat)(0.5f * (std::sqrt(2.f) - 1)); cimg_for3x3(*this, x, y, z, c, I, Tfloat) { *(ptrd0++) = -a * Ipp - b * Ipc - a * Ipn + a * Inp + b * Inc + a * Inn; *(ptrd1++) = -a * Ipp - b * Icp - a * Inp + a * Ipn + b * Icn + a * Inn; } } } break; case 4: { // Van Vliet filter with low standard variation grad[0] = get_deriche(0, 1, 'x'); grad[1] = get_deriche(0, 1, 'y'); } break; case 5: { // Deriche filter with low standard variation grad[0] = get_vanvliet(0, 1, 'x'); grad[1] = get_vanvliet(0, 1, 'y'); } break; default: { // Central finite differences cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forZC(*this,z,c) { const ulongT off = (ulongT)c * _width * _height * _depth + z * _width * _height; Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off; CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, z, c, I, Tfloat) { *(ptrd0++) = (Inc - Ipc) / 2; *(ptrd1++) = (Icn - Icp) / 2; } } } } if (!axes) return grad; CImgList res; for (unsigned int l = 0; axes[l]; ++l) { const char axis = cimg::lowercase(axes[l]); switch (axis) { case 'x': res.insert(grad[0]); break; case 'y': res.insert(grad[1]); break; case 'z': res.insert(grad[2]); break; } } grad.assign(); return res; } //! Return image hessian. /** \param axes Axes considered for the hessian computation, as a C-string (e.g "xy"). **/ CImgList get_hessian(const char* const axes = 0) const { CImgList res; const char *naxes = axes, *const def_axes2d = "xxxyyy", *const def_axes3d = "xxxyxzyyyzzz"; if (!axes) naxes = _depth > 1 ? def_axes3d : def_axes2d; const unsigned int lmax = (unsigned int)std::strlen(naxes); if (lmax % 2) throw CImgArgumentException( _cimg_instance "get_hessian(): Invalid specified axes '%s'.", cimg_instance, naxes); res.assign(lmax / 2, _width, _height, _depth, _spectrum); if (!cimg::strcasecmp(naxes, def_axes3d)) { // 3D cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && _spectrum>=2)) cimg_forC(*this,c) { const ulongT off = (ulongT)c * _width * _height * _depth; Tfloat *ptrd0 = res[0]._data + off, *ptrd1 = res[1]._data + off, *ptrd2 = res[2]._data + off, *ptrd3 = res[3]._data + off, *ptrd4 = res[4]._data + off, *ptrd5 = res[5]._data + off; CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) { *(ptrd0++) = Ipcc + Incc - 2 * Iccc; // Ixx *(ptrd1++) = (Ippc + Innc - Ipnc - Inpc) / 4; // Ixy *(ptrd2++) = (Ipcp + Incn - Ipcn - Incp) / 4; // Ixz *(ptrd3++) = Icpc + Icnc - 2 * Iccc; // Iyy *(ptrd4++) = (Icpp + Icnn - Icpn - Icnp) / 4; // Iyz *(ptrd5++) = Iccn + Iccp - 2 * Iccc; // Izz } } } else if (!cimg::strcasecmp(naxes, def_axes2d)) { // 2D cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forZC(*this,z,c) { const ulongT off = (ulongT)c * _width * _height * _depth + z * _width * _height; Tfloat *ptrd0 = res[0]._data + off, *ptrd1 = res[1]._data + off, *ptrd2 = res[2]._data + off; CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, z, c, I, Tfloat) { *(ptrd0++) = Ipc + Inc - 2 * Icc; // Ixx *(ptrd1++) = (Ipp + Inn - Ipn - Inp) / 4; // Ixy *(ptrd2++) = Icp + Icn - 2 * Icc; // Iyy } } } else for (unsigned int l = 0; l < lmax;) { // Version with custom axes const unsigned int l2 = l / 2; char axis1 = naxes[l++], axis2 = naxes[l++]; if (axis1 > axis2) cimg::swap(axis1, axis2); bool valid_axis = false; if (axis1 == 'x' && axis2 == 'x') { // Ixx valid_axis = true; cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forZC(*this,z,c) { Tfloat* ptrd = res[l2].data(0, 0, z, c); CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, z, c, I, Tfloat) * (ptrd++) = Ipc + Inc - 2 * Icc; } } else if (axis1 == 'x' && axis2 == 'y') { // Ixy valid_axis = true; cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forZC(*this,z,c) { Tfloat* ptrd = res[l2].data(0, 0, z, c); CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, z, c, I, Tfloat) * (ptrd++) = (Ipp + Inn - Ipn - Inp) / 4; } } else if (axis1 == 'x' && axis2 == 'z') { // Ixz valid_axis = true; cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && _spectrum>=2)) cimg_forC(*this,c) { Tfloat* ptrd = res[l2].data(0, 0, 0, c); CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) * (ptrd++) = (Ipcp + Incn - Ipcn - Incp) / 4; } } else if (axis1 == 'y' && axis2 == 'y') { // Iyy valid_axis = true; cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forZC(*this,z,c) { Tfloat* ptrd = res[l2].data(0, 0, z, c); CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, z, c, I, Tfloat) * (ptrd++) = Icp + Icn - 2 * Icc; } } else if (axis1 == 'y' && axis2 == 'z') { // Iyz valid_axis = true; cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && _spectrum>=2)) cimg_forC(*this,c) { Tfloat* ptrd = res[l2].data(0, 0, 0, c); CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) * (ptrd++) = (Icpp + Icnn - Icpn - Icnp) / 4; } } else if (axis1 == 'z' && axis2 == 'z') { // Izz valid_axis = true; cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && _spectrum>=2)) cimg_forC(*this,c) { Tfloat* ptrd = res[l2].data(0, 0, 0, c); CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) * (ptrd++) = Iccn + Iccp - 2 * Iccc; } } else if (!valid_axis) throw CImgArgumentException( _cimg_instance "get_hessian(): Invalid specified axes '%s'.", cimg_instance, naxes); } return res; } //! Compute image Laplacian. CImg& laplacian() { return get_laplacian().move_to(*this); } //! Compute image Laplacian \newinstance. CImg get_laplacian() const { if (is_empty()) return CImg(); CImg res(_width, _height, _depth, _spectrum); if (_depth > 1) { // 3D cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && _spectrum>=2)) cimg_forC(*this,c) { Tfloat* ptrd = res.data(0, 0, 0, c); CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) * (ptrd++) = Incc + Ipcc + Icnc + Icpc + Iccn + Iccp - 6 * Iccc; } } else if (_height > 1) { // 2D cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forC(*this,c) { Tfloat* ptrd = res.data(0, 0, 0, c); CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, 0, c, I, Tfloat) * (ptrd++) = Inc + Ipc + Icn + Icp - 4 * Icc; } } else { // 1D cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*1048576 && _height*_depth*_spectrum>=2)) cimg_forC(*this,c) { Tfloat* ptrd = res.data(0, 0, 0, c); CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, 0, c, I, Tfloat) * (ptrd++) = Inc + Ipc - 2 * Icc; } } return res; } //! Compute the structure tensor field of an image. /** \param is_fwbw_scheme scheme. Can be { false=centered | true=forward-backward } **/ CImg& structure_tensors(const bool is_fwbw_scheme = false) { return get_structure_tensors(is_fwbw_scheme).move_to(*this); } //! Compute the structure tensor field of an image \newinstance. CImg get_structure_tensors( const bool is_fwbw_scheme = false) const { if (is_empty()) return *this; CImg res; if (_depth > 1) { // 3D res.assign(_width, _height, _depth, 6, 0); if (!is_fwbw_scheme) { // Classical central finite differences cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && _spectrum>=2)) cimg_forC(*this,c) { Tfloat *ptrd0 = res.data(0, 0, 0, 0), *ptrd1 = res.data(0, 0, 0, 1), *ptrd2 = res.data(0, 0, 0, 2), *ptrd3 = res.data(0, 0, 0, 3), *ptrd4 = res.data(0, 0, 0, 4), *ptrd5 = res.data(0, 0, 0, 5); CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) { const Tfloat ix = (Incc - Ipcc) / 2, iy = (Icnc - Icpc) / 2, iz = (Iccn - Iccp) / 2; *(ptrd0++) += ix * ix; *(ptrd1++) += ix * iy; *(ptrd2++) += ix * iz; *(ptrd3++) += iy * iy; *(ptrd4++) += iy * iz; *(ptrd5++) += iz * iz; } } } else { // Forward/backward finite differences cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && _spectrum>=2)) cimg_forC(*this,c) { Tfloat *ptrd0 = res.data(0, 0, 0, 0), *ptrd1 = res.data(0, 0, 0, 1), *ptrd2 = res.data(0, 0, 0, 2), *ptrd3 = res.data(0, 0, 0, 3), *ptrd4 = res.data(0, 0, 0, 4), *ptrd5 = res.data(0, 0, 0, 5); CImg_3x3x3(I, Tfloat); cimg_for3x3x3(*this, x, y, z, c, I, Tfloat) { const Tfloat ixf = Incc - Iccc, ixb = Iccc - Ipcc, iyf = Icnc - Iccc, iyb = Iccc - Icpc, izf = Iccn - Iccc, izb = Iccc - Iccp; *(ptrd0++) += (ixf * ixf + ixb * ixb) / 2; *(ptrd1++) += (ixf * iyf + ixf * iyb + ixb * iyf + ixb * iyb) / 4; *(ptrd2++) += (ixf * izf + ixf * izb + ixb * izf + ixb * izb) / 4; *(ptrd3++) += (iyf * iyf + iyb * iyb) / 2; *(ptrd4++) += (iyf * izf + iyf * izb + iyb * izf + iyb * izb) / 4; *(ptrd5++) += (izf * izf + izb * izb) / 2; } } } } else { // 2D res.assign(_width, _height, _depth, 3, 0); if (!is_fwbw_scheme) { // Classical central finite differences cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forC(*this,c) { Tfloat *ptrd0 = res.data(0, 0, 0, 0), *ptrd1 = res.data(0, 0, 0, 1), *ptrd2 = res.data(0, 0, 0, 2); CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, 0, c, I, Tfloat) { const Tfloat ix = (Inc - Ipc) / 2, iy = (Icn - Icp) / 2; *(ptrd0++) += ix * ix; *(ptrd1++) += ix * iy; *(ptrd2++) += iy * iy; } } } else { // Forward/backward finite differences (version 2) cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && _depth*_spectrum>=2)) cimg_forC(*this,c) { Tfloat *ptrd0 = res.data(0, 0, 0, 0), *ptrd1 = res.data(0, 0, 0, 1), *ptrd2 = res.data(0, 0, 0, 2); CImg_3x3(I, Tfloat); cimg_for3x3(*this, x, y, 0, c, I, Tfloat) { const Tfloat ixf = Inc - Icc, ixb = Icc - Ipc, iyf = Icn - Icc, iyb = Icc - Icp; *(ptrd0++) += (ixf * ixf + ixb * ixb) / 2; *(ptrd1++) += (ixf * iyf + ixf * iyb + ixb * iyf + ixb * iyb) / 4; *(ptrd2++) += (iyf * iyf + iyb * iyb) / 2; } } } } return res; } //! Compute field of diffusion tensors for edge-preserving smoothing. /** \param sharpness Sharpness \param anisotropy Anisotropy \param alpha Standard deviation of the gradient blur. \param sigma Standard deviation of the structure tensor blur. \param is_sqrt Tells if the square root of the tensor field is computed instead. **/ CImg& diffusion_tensors(const float sharpness = 0.7f, const float anisotropy = 0.6f, const float alpha = 0.6f, const float sigma = 1.1f, const bool is_sqrt = false) { CImg res; const float nsharpness = std::max(sharpness, 1e-5f), power1 = (is_sqrt ? 0.5f : 1) * nsharpness, power2 = power1 / (1e-7f + 1 - anisotropy); blur(alpha).normalize(0, (T)255); if (_depth > 1) { // 3D get_structure_tensors().move_to(res).blur(sigma); cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth>=(cimg_openmp_sizefactor)*256)) cimg_forYZ(*this,y,z) { Tfloat *ptrd0 = res.data(0, y, z, 0), *ptrd1 = res.data(0, y, z, 1), *ptrd2 = res.data(0, y, z, 2), *ptrd3 = res.data(0, y, z, 3), *ptrd4 = res.data(0, y, z, 4), *ptrd5 = res.data(0, y, z, 5); CImg val(3), vec(3, 3); cimg_forX(*this, x) { res.get_tensor_at(x, y, z).symmetric_eigen(val, vec); const float _l1 = val[2], _l2 = val[1], _l3 = val[0], l1 = _l1 > 0 ? _l1 : 0, l2 = _l2 > 0 ? _l2 : 0, l3 = _l3 > 0 ? _l3 : 0, ux = vec(0, 0), uy = vec(0, 1), uz = vec(0, 2), vx = vec(1, 0), vy = vec(1, 1), vz = vec(1, 2), wx = vec(2, 0), wy = vec(2, 1), wz = vec(2, 2), n1 = (float)std::pow(1 + l1 + l2 + l3, -power1), n2 = (float)std::pow(1 + l1 + l2 + l3, -power2); *(ptrd0++) = n1 * (ux * ux + vx * vx) + n2 * wx * wx; *(ptrd1++) = n1 * (ux * uy + vx * vy) + n2 * wx * wy; *(ptrd2++) = n1 * (ux * uz + vx * vz) + n2 * wx * wz; *(ptrd3++) = n1 * (uy * uy + vy * vy) + n2 * wy * wy; *(ptrd4++) = n1 * (uy * uz + vy * vz) + n2 * wy * wz; *(ptrd5++) = n1 * (uz * uz + vz * vz) + n2 * wz * wz; } } } else { // for 2D images get_structure_tensors().move_to(res).blur(sigma); cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height>=(cimg_openmp_sizefactor)*256)) cimg_forY(*this,y) { Tfloat *ptrd0 = res.data(0, y, 0, 0), *ptrd1 = res.data(0, y, 0, 1), *ptrd2 = res.data(0, y, 0, 2); CImg val(2), vec(2, 2); cimg_forX(*this, x) { res.get_tensor_at(x, y).symmetric_eigen(val, vec); const float _l1 = val[1], _l2 = val[0], l1 = _l1 > 0 ? _l1 : 0, l2 = _l2 > 0 ? _l2 : 0, ux = vec(1, 0), uy = vec(1, 1), vx = vec(0, 0), vy = vec(0, 1), n1 = (float)std::pow(1 + l1 + l2, -power1), n2 = (float)std::pow(1 + l1 + l2, -power2); *(ptrd0++) = n1 * ux * ux + n2 * vx * vx; *(ptrd1++) = n1 * ux * uy + n2 * vx * vy; *(ptrd2++) = n1 * uy * uy + n2 * vy * vy; } } } return res.move_to(*this); } //! Compute field of diffusion tensors for edge-preserving smoothing //! \newinstance. CImg get_diffusion_tensors(const float sharpness = 0.7f, const float anisotropy = 0.6f, const float alpha = 0.6f, const float sigma = 1.1f, const bool is_sqrt = false) const { return CImg(*this, false) .diffusion_tensors(sharpness, anisotropy, alpha, sigma, is_sqrt); } //! Estimate displacement field between two images. /** \param source Reference image. \param smoothness Smoothness of estimated displacement field. \param precision Precision required for algorithm convergence. \param nb_scales Number of scales used to estimate the displacement field. \param iteration_max Maximum number of iterations allowed for one scale. \param is_backward If false, match I2(X + U(X)) = I1(X), else match I2(X) = I1(X - U(X)). \param guide Image used as the initial correspondence estimate for the algorithm. 'guide' may have a last channel with boolean values (0=false | other=true) that tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask). **/ CImg& displacement( const CImg& source, const float smoothness = 0.1f, const float precision = 5.f, const unsigned int nb_scales = 0, const unsigned int iteration_max = 10000, const bool is_backward = false, const CImg& guide = CImg::const_empty()) { return get_displacement(source, smoothness, precision, nb_scales, iteration_max, is_backward, guide) .move_to(*this); } //! Estimate displacement field between two images \newinstance. CImg get_displacement( const CImg& source, const float smoothness = 0.1f, const float precision = 5.f, const unsigned int nb_scales = 0, const unsigned int iteration_max = 10000, const bool is_backward = false, const CImg& guide = CImg::const_empty()) const { if (is_empty() || !source) return +*this; if (!is_sameXYZC(source)) throw CImgArgumentException(_cimg_instance "displacement(): Instance and source " "image (%u,%u,%u,%u,%p) have " "different dimensions.", cimg_instance, source._width, source._height, source._depth, source._spectrum, source._data); if (precision < 0) throw CImgArgumentException( _cimg_instance "displacement(): Invalid specified precision %g " "(should be >=0)", cimg_instance, precision); const bool is_3d = source._depth > 1; const unsigned int constraint = is_3d ? 3 : 2; if (guide && (guide._width != _width || guide._height != _height || guide._depth != _depth || guide._spectrum < constraint)) throw CImgArgumentException( _cimg_instance "displacement(): Specified guide (%u,%u,%u,%u,%p) " "has invalid dimensions.", cimg_instance, guide._width, guide._height, guide._depth, guide._spectrum, guide._data); const unsigned int mins = is_3d ? cimg::min(_width, _height, _depth) : std::min(_width, _height), _nb_scales = nb_scales > 0 ? nb_scales : (unsigned int)cimg::round( std::log(mins / 8.) / std::log(1.5), 1, 1); const float _precision = (float)std::pow(10., -(double)precision); float sm, sM = source.max_min(sm), tm, tM = max_min(tm); const float sdelta = sm == sM ? 1 : (sM - sm), tdelta = tm == tM ? 1 : (tM - tm); CImg U, V; floatT bound = 0; for (int scale = (int)_nb_scales - 1; scale >= 0; --scale) { const float factor = (float)std::pow(1.5, (double)scale); const unsigned int _sw = (unsigned int)(_width / factor), sw = _sw ? _sw : 1, _sh = (unsigned int)(_height / factor), sh = _sh ? _sh : 1, _sd = (unsigned int)(_depth / factor), sd = _sd ? _sd : 1; if (sw < 5 && sh < 5 && (!is_3d || sd < 5)) continue; // Skip too small scales const CImg I1 = (source.get_resize(sw, sh, sd, -100, 2) -= sm) /= sdelta, I2 = (get_resize(I1, 2) -= tm) /= tdelta; if (guide._spectrum > constraint) guide.get_resize(I2._width, I2._height, I2._depth, -100, 1) .move_to(V); if (U) (U *= 1.5f).resize(I2._width, I2._height, I2._depth, -100, 3); else { if (guide) guide.get_shared_channels(0, is_3d ? 2 : 1) .get_resize(I2._width, I2._height, I2._depth, -100, 2) .move_to(U); else U.assign(I2._width, I2._height, I2._depth, is_3d ? 3 : 2, 0); } float dt = 2, energy = cimg::type::max(); const CImgList dI = is_backward ? I1.get_gradient() : I2.get_gradient(); cimg_abort_init; for (unsigned int iteration = 0; iteration < iteration_max; ++iteration) { cimg_abort_test; float _energy = 0; if (is_3d) { // 3D version if (smoothness >= 0) // Isotropic regularization cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_height*_depth>=(cimg_openmp_sizefactor)*8 && _width>=(cimg_openmp_sizefactor)*16) reduction(+:_energy)) cimg_forYZ(U,y,z) { const int _p1y = y ? y - 1 : 0, _n1y = y < U.height() - 1 ? y + 1 : y, _p1z = z ? z - 1 : 0, _n1z = z < U.depth() - 1 ? z + 1 : z; cimg_for3X(U, x) { const float X = is_backward ? x - U(x, y, z, 0) : x + U(x, y, z, 0), Y = is_backward ? y - U(x, y, z, 1) : y + U(x, y, z, 1), Z = is_backward ? z - U(x, y, z, 2) : z + U(x, y, z, 2); float delta_I = 0, _energy_regul = 0; if (is_backward) cimg_forC(I2, c) delta_I += (float)(I1._linear_atXYZ(X, Y, Z, c) - I2(x, y, z, c)); else cimg_forC(I2, c) delta_I += (float)(I1(x, y, z, c) - I2._linear_atXYZ(X, Y, Z, c)); cimg_forC(U, c) { const float Ux = 0.5f * (U(_n1x, y, z, c) - U(_p1x, y, z, c)), Uy = 0.5f * (U(x, _n1y, z, c) - U(x, _p1y, z, c)), Uz = 0.5f * (U(x, y, _n1z, c) - U(x, y, _p1z, c)), Uxx = U(_n1x, y, z, c) + U(_p1x, y, z, c), Uyy = U(x, _n1y, z, c) + U(x, _p1y, z, c), Uzz = U(x, y, _n1z, c) + U(x, y, _p1z, c); U(x, y, z, c) = (float)(U(x, y, z, c) + dt * (delta_I * dI[c]._linear_atXYZ(X, Y, Z) + smoothness * (Uxx + Uyy + Uzz))) / (1 + 6 * smoothness * dt); _energy_regul += Ux * Ux + Uy * Uy + Uz * Uz; } if (is_backward) { // Constraint displacement vectors to // stay in image if (U(x, y, z, 0) > x) U(x, y, z, 0) = (float)x; if (U(x, y, z, 1) > y) U(x, y, z, 1) = (float)y; if (U(x, y, z, 2) > z) U(x, y, z, 2) = (float)z; bound = (float)x - _width; if (U(x, y, z, 0) <= bound) U(x, y, z, 0) = bound; bound = (float)y - _height; if (U(x, y, z, 1) <= bound) U(x, y, z, 1) = bound; bound = (float)z - _depth; if (U(x, y, z, 2) <= bound) U(x, y, z, 2) = bound; } else { if (U(x, y, z, 0) < -x) U(x, y, z, 0) = -(float)x; if (U(x, y, z, 1) < -y) U(x, y, z, 1) = -(float)y; if (U(x, y, z, 2) < -z) U(x, y, z, 2) = -(float)z; bound = (float)_width - x; if (U(x, y, z, 0) >= bound) U(x, y, z, 0) = bound; bound = (float)_height - y; if (U(x, y, z, 1) >= bound) U(x, y, z, 1) = bound; bound = (float)_depth - z; if (U(x, y, z, 2) >= bound) U(x, y, z, 2) = bound; } _energy += delta_I * delta_I + smoothness * _energy_regul; } if (V) cimg_forXYZ( V, _x, _y, _z) if (V(_x, _y, _z, 3)) { // Apply constraints U(_x, _y, _z, 0) = V(_x, _y, _z, 0) / factor; U(_x, _y, _z, 1) = V(_x, _y, _z, 1) / factor; U(_x, _y, _z, 2) = V(_x, _y, _z, 2) / factor; } } else { // Anisotropic regularization const float nsmoothness = -smoothness; cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_height*_depth>=(cimg_openmp_sizefactor)*8 && _width>=(cimg_openmp_sizefactor)*16) reduction(+:_energy)) cimg_forYZ(U,y,z) { const int _p1y = y ? y - 1 : 0, _n1y = y < U.height() - 1 ? y + 1 : y, _p1z = z ? z - 1 : 0, _n1z = z < U.depth() - 1 ? z + 1 : z; cimg_for3X(U, x) { const float X = is_backward ? x - U(x, y, z, 0) : x + U(x, y, z, 0), Y = is_backward ? y - U(x, y, z, 1) : y + U(x, y, z, 1), Z = is_backward ? z - U(x, y, z, 2) : z + U(x, y, z, 2); float delta_I = 0, _energy_regul = 0; if (is_backward) cimg_forC(I2, c) delta_I += (float)(I1._linear_atXYZ(X, Y, Z, c) - I2(x, y, z, c)); else cimg_forC(I2, c) delta_I += (float)(I1(x, y, z, c) - I2._linear_atXYZ(X, Y, Z, c)); cimg_forC(U, c) { const float Ux = 0.5f * (U(_n1x, y, z, c) - U(_p1x, y, z, c)), Uy = 0.5f * (U(x, _n1y, z, c) - U(x, _p1y, z, c)), Uz = 0.5f * (U(x, y, _n1z, c) - U(x, y, _p1z, c)), N2 = Ux * Ux + Uy * Uy + Uz * Uz, N = std::sqrt(N2), N3 = 1e-5f + N2 * N, coef_a = (1 - Ux * Ux / N2) / N, coef_b = -2 * Ux * Uy / N3, coef_c = -2 * Ux * Uz / N3, coef_d = (1 - Uy * Uy / N2) / N, coef_e = -2 * Uy * Uz / N3, coef_f = (1 - Uz * Uz / N2) / N, Uxx = U(_n1x, y, z, c) + U(_p1x, y, z, c), Uyy = U(x, _n1y, z, c) + U(x, _p1y, z, c), Uzz = U(x, y, _n1z, c) + U(x, y, _p1z, c), Uxy = 0.25f * (U(_n1x, _n1y, z, c) + U(_p1x, _p1y, z, c) - U(_n1x, _p1y, z, c) - U(_n1x, _p1y, z, c)), Uxz = 0.25f * (U(_n1x, y, _n1z, c) + U(_p1x, y, _p1z, c) - U(_n1x, y, _p1z, c) - U(_n1x, y, _p1z, c)), Uyz = 0.25f * (U(x, _n1y, _n1z, c) + U(x, _p1y, _p1z, c) - U(x, _n1y, _p1z, c) - U(x, _n1y, _p1z, c)); U(x, y, z, c) = (float)(U(x, y, z, c) + dt * (delta_I * dI[c]._linear_atXYZ(X, Y, Z) + nsmoothness * (coef_a * Uxx + coef_b * Uxy + coef_c * Uxz + coef_d * Uyy + coef_e * Uyz + coef_f * Uzz))) / (1 + 2 * (coef_a + coef_d + coef_f) * nsmoothness * dt); _energy_regul += N; } if (is_backward) { // Constraint displacement vectors to // stay in image if (U(x, y, z, 0) > x) U(x, y, z, 0) = (float)x; if (U(x, y, z, 1) > y) U(x, y, z, 1) = (float)y; if (U(x, y, z, 2) > z) U(x, y, z, 2) = (float)z; bound = (float)x - _width; if (U(x, y, z, 0) <= bound) U(x, y, z, 0) = bound; bound = (float)y - _height; if (U(x, y, z, 1) <= bound) U(x, y, z, 1) = bound; bound = (float)z - _depth; if (U(x, y, z, 2) <= bound) U(x, y, z, 2) = bound; } else { if (U(x, y, z, 0) < -x) U(x, y, z, 0) = -(float)x; if (U(x, y, z, 1) < -y) U(x, y, z, 1) = -(float)y; if (U(x, y, z, 2) < -z) U(x, y, z, 2) = -(float)z; bound = (float)_width - x; if (U(x, y, z, 0) >= bound) U(x, y, z, 0) = bound; bound = (float)_height - y; if (U(x, y, z, 1) >= bound) U(x, y, z, 1) = bound; bound = (float)_depth - z; if (U(x, y, z, 2) >= bound) U(x, y, z, 2) = bound; } _energy += delta_I * delta_I + nsmoothness * _energy_regul; } if (V) cimg_forXYZ( V, _x, _y, _z) if (V(_x, _y, _z, 3)) { // Apply constraints U(_x, _y, _z, 0) = V(_x, _y, _z, 0) / factor; U(_x, _y, _z, 1) = V(_x, _y, _z, 1) / factor; U(_x, _y, _z, 2) = V(_x, _y, _z, 2) / factor; } } } } else { // 2D version if (smoothness >= 0) // Isotropic regularization cimg_pragma_openmp(parallel for cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*8 && _width>=(cimg_openmp_sizefactor)*16) reduction(+:_energy)) cimg_forY(U,y) { const int _p1y = y ? y - 1 : 0, _n1y = y < U.height() - 1 ? y + 1 : y; cimg_for3X(U, x) { const float X = is_backward ? x - U(x, y, 0) : x + U(x, y, 0), Y = is_backward ? y - U(x, y, 1) : y + U(x, y, 1); float delta_I = 0, _energy_regul = 0; if (is_backward) cimg_forC(I2, c) delta_I += (float)(I1._linear_atXY(X, Y, c) - I2(x, y, c)); else cimg_forC(I2, c) delta_I += (float)(I1(x, y, c) - I2._linear_atXY(X, Y, c)); cimg_forC(U, c) { const float Ux = 0.5f * (U(_n1x, y, c) - U(_p1x, y, c)), Uy = 0.5f * (U(x, _n1y, c) - U(x, _p1y, c)), Uxx = U(_n1x, y, c) + U(_p1x, y, c), Uyy = U(x, _n1y, c) + U(x, _p1y, c); U(x, y, c) = (float)(U(x, y, c) + dt * (delta_I * dI[c]._linear_atXY(X, Y) + smoothness * (Uxx + Uyy))) / (1 + 4 * smoothness * dt); _energy_regul += Ux * Ux + Uy * Uy; } if (is_backward) { // Constraint displacement vectors to // stay in image if (U(x, y, 0) > x) U(x, y, 0) = (float)x; if (U(x, y, 1) > y) U(x, y, 1) = (float)y; bound = (float)x - _width; if (U(x, y, 0) <= bound) U(x, y, 0) = bound; bound = (float)y - _height; if (U(x, y, 1) <= bound) U(x, y, 1) = bound; } else { if (U(x, y, 0) < -x) U(x, y, 0) = -(float)x; if (U(x, y, 1) < -y) U(x, y, 1) = -(float)y; bound = (float)_width - x; if (U(x, y, 0) >= bound) U(x, y, 0) = bound; bound = (float)_height - y; if (U(x, y, 1) >= bound) U(x, y, 1) = bound; } _energy += delta_I * delta_I + smoothness * _energy_regul; } if (V) cimg_forXY(V, _x, _y) if (V(_x, _y, 2)) { // Apply constraints U(_x, _y, 0) = V(_x, _y, 0) / factor; U(_x, _y, 1) = V(_x, _y, 1) / factor; } } else { // Anisotropic regularization const float nsmoothness = -smoothness; cimg_pragma_openmp(parallel for cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*8 && _width>=(cimg_openmp_sizefactor)*16) reduction(+:_energy)) cimg_forY(U,y) { const int _p1y = y ? y - 1 : 0, _n1y = y < U.height() - 1 ? y + 1 : y; cimg_for3X(U, x) { const float X = is_backward ? x - U(x, y, 0) : x + U(x, y, 0), Y = is_backward ? y - U(x, y, 1) : y + U(x, y, 1); float delta_I = 0, _energy_regul = 0; if (is_backward) cimg_forC(I2, c) delta_I += (float)(I1._linear_atXY(X, Y, c) - I2(x, y, c)); else cimg_forC(I2, c) delta_I += (float)(I1(x, y, c) - I2._linear_atXY(X, Y, c)); cimg_forC(U, c) { const float Ux = 0.5f * (U(_n1x, y, c) - U(_p1x, y, c)), Uy = 0.5f * (U(x, _n1y, c) - U(x, _p1y, c)), N2 = Ux * Ux + Uy * Uy, N = std::sqrt(N2), N3 = 1e-5f + N2 * N, coef_a = Uy * Uy / N3, coef_b = -2 * Ux * Uy / N3, coef_c = Ux * Ux / N3, Uxx = U(_n1x, y, c) + U(_p1x, y, c), Uyy = U(x, _n1y, c) + U(x, _p1y, c), Uxy = 0.25f * (U(_n1x, _n1y, c) + U(_p1x, _p1y, c) - U(_n1x, _p1y, c) - U(_n1x, _p1y, c)); U(x, y, c) = (float)(U(x, y, c) + dt * (delta_I * dI[c]._linear_atXY(X, Y) + nsmoothness * (coef_a * Uxx + coef_b * Uxy + coef_c * Uyy))) / (1 + 2 * (coef_a + coef_c) * nsmoothness * dt); _energy_regul += N; } if (is_backward) { // Constraint displacement vectors to // stay in image if (U(x, y, 0) > x) U(x, y, 0) = (float)x; if (U(x, y, 1) > y) U(x, y, 1) = (float)y; bound = (float)x - _width; if (U(x, y, 0) <= bound) U(x, y, 0) = bound; bound = (float)y - _height; if (U(x, y, 1) <= bound) U(x, y, 1) = bound; } else { if (U(x, y, 0) < -x) U(x, y, 0) = -(float)x; if (U(x, y, 1) < -y) U(x, y, 1) = -(float)y; bound = (float)_width - x; if (U(x, y, 0) >= bound) U(x, y, 0) = bound; bound = (float)_height - y; if (U(x, y, 1) >= bound) U(x, y, 1) = bound; } _energy += delta_I * delta_I + nsmoothness * _energy_regul; } if (V) cimg_forXY(V, _x, _y) if (V(_x, _y, 2)) { // Apply constraints U(_x, _y, 0) = V(_x, _y, 0) / factor; U(_x, _y, 1) = V(_x, _y, 1) / factor; } } } } const float d_energy = (_energy - energy) / (sw * sh * sd); if (d_energy <= 0 && -d_energy < _precision) break; if (d_energy > 0) dt *= 0.5f; energy = _energy; } } return U; } //! Compute correspondence map between two images, using a patch-matching //! algorithm. /** \param patch_image The image containing the reference patches to match with the instance image. \param patch_width Width of the patch used for matching. \param patch_height Height of the patch used for matching. \param patch_depth Depth of the patch used for matching. \param nb_iterations Number of patch-match iterations. \param nb_randoms Number of randomization attempts (per pixel). \param occ_penalization Penalization factor in score related patch occurrences. \param guide Image used as the initial correspondence estimate for the algorithm. 'guide' may have a last channel with boolean values (0=false | other=true) that tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask). \param[out] matching_score Returned as the image of matching scores. **/ template CImg& matchpatch(const CImg& patch_image, const unsigned int patch_width, const unsigned int patch_height, const unsigned int patch_depth, const unsigned int nb_iterations, const unsigned int nb_randoms, const float occ_penalization, const CImg& guide, CImg& matching_score) { return get_matchpatch(patch_image, patch_width, patch_height, patch_depth, nb_iterations, nb_randoms, occ_penalization, guide, matching_score) .move_to(*this); } //! Compute correspondence map between two images, using the patch-match //! algorithm \newinstance. template CImg get_matchpatch( const CImg& patch_image, const unsigned int patch_width, const unsigned int patch_height, const unsigned int patch_depth, const unsigned int nb_iterations, const unsigned int nb_randoms, const float occ_penalization, const CImg& guide, CImg& matching_score) const { return _matchpatch(patch_image, patch_width, patch_height, patch_depth, nb_iterations, nb_randoms, occ_penalization, guide, true, matching_score); } //! Compute correspondence map between two images, using the patch-match //! algorithm \overloading. template CImg& matchpatch(const CImg& patch_image, const unsigned int patch_width, const unsigned int patch_height, const unsigned int patch_depth, const unsigned int nb_iterations = 5, const unsigned int nb_randoms = 5, const float occ_penalization = 0, const CImg& guide = CImg::const_empty()) { return get_matchpatch(patch_image, patch_width, patch_height, patch_depth, nb_iterations, nb_randoms, occ_penalization, guide) .move_to(*this); } //! Compute correspondence map between two images, using the patch-match //! algorithm \overloading. template CImg get_matchpatch( const CImg& patch_image, const unsigned int patch_width, const unsigned int patch_height, const unsigned int patch_depth, const unsigned int nb_iterations = 5, const unsigned int nb_randoms = 5, const float occ_penalization = 0, const CImg& guide = CImg::const_empty()) const { CImg matching_score; return _matchpatch(patch_image, patch_width, patch_height, patch_depth, nb_iterations, nb_randoms, occ_penalization, guide, false, matching_score); } template CImg _matchpatch( const CImg& patch_image, const unsigned int patch_width, const unsigned int patch_height, const unsigned int patch_depth, const unsigned int nb_iterations, const unsigned int nb_randoms, const float occ_penalization, const CImg& guide, const bool is_matching_score, CImg& matching_score) const { if (is_empty()) return CImg::const_empty(); if (patch_image._spectrum != _spectrum) throw CImgArgumentException( _cimg_instance "matchpatch(): Instance image and specified patch image " "(%u,%u,%u,%u,%p) " "have different spectrums.", cimg_instance, patch_image._width, patch_image._height, patch_image._depth, patch_image._spectrum, patch_image._data); if (patch_width > _width || patch_height > _height || patch_depth > _depth) throw CImgArgumentException( _cimg_instance "matchpatch(): Specified patch size %ux%ux%u is bigger than " "the dimensions " "of the instance image.", cimg_instance, patch_width, patch_height, patch_depth); if (patch_width > patch_image._width || patch_height > patch_image._height || patch_depth > patch_image._depth) throw CImgArgumentException( _cimg_instance "matchpatch(): Specified patch size %ux%ux%u is bigger than " "the dimensions " "of the patch image image (%u,%u,%u,%u,%p).", cimg_instance, patch_width, patch_height, patch_depth, patch_image._width, patch_image._height, patch_image._depth, patch_image._spectrum, patch_image._data); const unsigned int _constraint = patch_image._depth > 1 ? 3 : 2, constraint = guide._spectrum > _constraint ? _constraint : 0; if (guide && (guide._width != _width || guide._height != _height || guide._depth != _depth || guide._spectrum < _constraint)) throw CImgArgumentException( _cimg_instance "matchpatch(): Specified guide (%u,%u,%u,%u,%p) has invalid " "dimensions " "considering instance and patch image (%u,%u,%u,%u,%p).", cimg_instance, guide._width, guide._height, guide._depth, guide._spectrum, guide._data, patch_image._width, patch_image._height, patch_image._depth, patch_image._spectrum, patch_image._data); CImg a_map(_width, _height, _depth, patch_image._depth > 1 ? 3 : 2); CImg is_updated(_width, _height, _depth, 1, 3); CImg score(_width, _height, _depth); CImg occ, loop_order; if (occ_penalization != 0) { occ.assign(patch_image._width, patch_image._height, patch_image._depth, 1, 0); loop_order.assign(_width, _height, _depth, _depth > 1 ? 3 : 2); cimg_forXYZ(loop_order, x, y, z) { loop_order(x, y, z, 0) = x; loop_order(x, y, z, 1) = y; if (loop_order._spectrum > 2) loop_order(x, y, z, 2) = z; } ulongT rng = (cimg::_rand(), cimg::rng()); cimg_forXYZ(loop_order, x, y, z) { // Randomize loop order in case of constraints on // patch occurrence const unsigned int X = (unsigned int)cimg::round(cimg::rand( loop_order._width - 1., &rng)), Y = (unsigned int)cimg::round(cimg::rand( loop_order._height - 1., &rng)), Z = loop_order._depth > 1 ? (unsigned int)cimg::round( cimg::rand( loop_order._depth - 1., &rng)) : 0U; cimg::swap(loop_order(x, y, z, 0), loop_order(X, Y, Z, 0)); cimg::swap(loop_order(x, y, z, 1), loop_order(X, Y, Z, 1)); if (loop_order._spectrum > 2) cimg::swap(loop_order(x, y, z, 2), loop_order(X, Y, Z, 2)); } cimg::srand(rng); } const int psizew = (int)patch_width, psizew1 = psizew / 2, psizew2 = psizew - psizew1 - 1, psizeh = (int)patch_height, psizeh1 = psizeh / 2, psizeh2 = psizeh - psizeh1 - 1, psized = (int)patch_depth, psized1 = psized / 2, psized2 = psized - psized1 - 1; // Interleave image buffers to speed up patch comparison // (cache-friendly). CImg in_this = get_permute_axes("cxyz"); in_this._width = _width * _spectrum; in_this._height = _height; in_this._depth = _depth; in_this._spectrum = 1; CImg in_patch = patch_image.get_permute_axes("cxyz"); in_patch._width = patch_image._width * patch_image._spectrum; in_patch._height = patch_image._height; in_patch._depth = patch_image._depth; in_patch._spectrum = 1; if (_depth > 1 || patch_image._depth > 1) { // 3D version // Initialize correspondence map. if (guide) cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(_width,64)) cimg_forXYZ(*this,x,y,z) { // User-defined initialization const int cx1 = x <= psizew1 ? x : (x < width() - psizew2 ? psizew1 : psizew + x - width()), cx2 = psizew - cx1 - 1, cy1 = y <= psizeh1 ? y : (y < height() - psizeh2 ? psizeh1 : psizeh + y - height()), cy2 = psizeh - cy1 - 1, cz1 = z <= psized1 ? z : (z < depth() - psized2 ? psized1 : psized + z - depth()), cz2 = psized - cz1 - 1, u = cimg::cut((int)guide(x, y, z, 0), cx1, patch_image.width() - 1 - cx2), v = cimg::cut((int)guide(x, y, z, 1), cy1, patch_image.height() - 1 - cy2), w = cimg::cut((int)guide(x, y, z, 2), cz1, patch_image.depth() - 1 - cz2); a_map(x, y, z, 0) = u; a_map(x, y, z, 1) = v; a_map(x, y, z, 2) = w; score(x, y, z) = _matchpatch( in_this, in_patch, occ, patch_width, patch_height, patch_depth, _spectrum, x - cx1, y - cy1, z - cz1, u - cx1, v - cy1, w - cz1, u, v, w, 0, cimg::type::inf()); } else cimg_pragma_openmp(parallel cimg_openmp_if_size(_width, 64)) { ulongT rng = (cimg::_rand(), cimg::rng()); #if cimg_use_openmp != 0 rng += omp_get_thread_num(); #endif cimg_pragma_openmp(for cimg_openmp_collapse(2)) cimg_forXYZ(*this,x,y,z) { // Random initialization const int cx1 = x <= psizew1 ? x : (x < width() - psizew2 ? psizew1 : psizew + x - width()), cx2 = psizew - cx1 - 1, cy1 = y <= psizeh1 ? y : (y < height() - psizeh2 ? psizeh1 : psizeh + y - height()), cy2 = psizeh - cy1 - 1, cz1 = z <= psized1 ? z : (z < depth() - psized2 ? psized1 : psized + z - depth()), cz2 = psized - cz1 - 1, u = (int)cimg::round(cimg::rand( cx1, patch_image.width() - 1 - cx2, &rng)), v = (int)cimg::round(cimg::rand( cy1, patch_image.height() - 1 - cy2, &rng)), w = (int)cimg::round(cimg::rand( cz1, patch_image.depth() - 1 - cz2, &rng)); a_map(x, y, z, 0) = u; a_map(x, y, z, 1) = v; a_map(x, y, z, 2) = w; score(x, y, z) = _matchpatch( in_this, in_patch, occ, patch_width, patch_height, patch_depth, _spectrum, x - cx1, y - cy1, z - cz1, u - cx1, v - cy1, w - cz1, u, v, w, 0, cimg::type::inf()); } cimg::srand(rng); } // Start iteration loop. cimg_abort_init; const unsigned int _nb_iterations = nb_iterations * (occ_penalization != 0 ? 2 : 1); for (unsigned int iter = 0; iter < _nb_iterations; ++iter) { cimg_abort_test; const bool is_backward = occ_penalization != 0 ? (iter & 2) : (iter & 1), is_randomization = occ_penalization != 0 ? (iter & 1) : true, is_propagation = occ_penalization != 0 ? !is_randomization : true; const unsigned int cmask = is_backward ? 1 : 2, nmask = 3 - cmask; cimg_pragma_openmp(parallel cimg_openmp_if( _width >= (cimg_openmp_sizefactor)*64 && iter < nb_iterations - 2)) { ulongT rng = (cimg::_rand(), cimg::rng()); #if cimg_use_openmp != 0 rng += omp_get_thread_num(); #endif cimg_pragma_openmp(for cimg_openmp_collapse(2)) cimg_forXYZ(*this,X,Y,Z) { const int _x = is_backward ? width() - 1 - X : X, _y = is_backward ? height() - 1 - Y : Y, _z = is_backward ? depth() - 1 - Z : Z; int x, y, z; if (!is_propagation) { // -> Eq. to 'occ_penalization!=0 && // is_randomization' x = loop_order(_x, _y, 0); y = loop_order(_x, _y, 1); if (loop_order._spectrum > 2) z = loop_order(_x, _y, _z, 2); else z = _z; } else { x = _x; y = _y; z = _z; } if (score(x, y, z) <= 1e-5 || (constraint && guide(x, y, z, constraint) != 0)) continue; const int cx1 = x <= psizew1 ? x : (x < width() - psizew2 ? psizew1 : psizew + x - width()), cx2 = psizew - cx1 - 1, cy1 = y <= psizeh1 ? y : (y < height() - psizeh2 ? psizeh1 : psizeh + y - height()), cy2 = psizeh - cy1 - 1, cz1 = z <= psized1 ? z : (z < depth() - psized2 ? psized1 : psized + z - depth()), cz2 = psized - cz1 - 1, xp = x - cx1, yp = y - cy1, zp = z - cz1; int best_u = a_map(x, y, z, 0), best_v = a_map(x, y, z, 1), best_w = a_map(x, y, z, 2), u, v, w; const float best_score0 = score(x, y, z); float best_score = best_score0, s; if (is_propagation) { // Propagation if (x > 0 && (is_updated(x - 1, y, z) & cmask)) { // Compare with left neighbor u = a_map(x - 1, y, z, 0); v = a_map(x - 1, y, z, 1); w = a_map(x - 1, y, z, 2); if (u >= cx1 - 1 && u < patch_image.width() - 1 - cx2 && v >= cy1 && v < patch_image.height() - cy2 && w >= cz1 && w < patch_image.depth() - cz2) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, patch_depth, _spectrum, xp, yp, zp, u + 1 - cx1, v - cy1, w - cz1, u, v, w, occ_penalization, best_score); if (s < best_score) { best_u = u + 1; best_v = v; best_w = w; best_score = s; } } } if (y > 0 && (is_updated(x, y - 1, z) & cmask)) { // Compare with up neighbor u = a_map(x, y - 1, z, 0); v = a_map(x, y - 1, z, 1); w = a_map(x, y - 1, z, 2); if (u >= cx1 && u < patch_image.width() - cx2 && v >= cy1 - 1 && v < patch_image.height() - 1 - cy2 && w >= cz1 && w < patch_image.depth() - cz2) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, patch_depth, _spectrum, xp, yp, zp, u - cx1, v + 1 - cy1, w - cz1, u, v, w, occ_penalization, best_score); if (s < best_score) { best_u = u; best_v = v + 1; best_w = w; best_score = s; } } } if (z > 0 && (is_updated(x, y, z - 1) & cmask)) { // Compare with backward neighbor u = a_map(x, y, z - 1, 0); v = a_map(x, y, z - 1, 1); w = a_map(x, y, z - 1, 2); if (u >= cx1 && u < patch_image.width() - cx2 && v >= cy1 && v < patch_image.height() - cy2 && w >= cz1 - 1 && w < patch_image.depth() - 1 - cz2) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, patch_depth, _spectrum, xp, yp, zp, u - cx1, v - cy1, w + 1 - cz1, u, v, w, occ_penalization, best_score); if (s < best_score) { best_u = u; best_v = v; best_w = w + 1; best_score = s; } } } if (x < width() - 1 && (is_updated(x + 1, y, z) & cmask)) { // Compare with right neighbor u = a_map(x + 1, y, z, 0); v = a_map(x + 1, y, z, 1); w = a_map(x + 1, y, z, 2); if (u >= cx1 + 1 && u < patch_image.width() + 1 - cx2 && v >= cy1 && v < patch_image.height() - cy2 && w >= cz1 && w < patch_image.depth() - cz2) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, patch_depth, _spectrum, xp, yp, zp, u - 1 - cx1, v - cy1, w - cz1, u, v, w, occ_penalization, best_score); if (s < best_score) { best_u = u - 1; best_v = v; best_w = w; best_score = s; } } } if (y < height() - 1 && (is_updated(x, y + 1, z) & cmask)) { // Compare with bottom neighbor u = a_map(x, y + 1, z, 0); v = a_map(x, y + 1, z, 1); w = a_map(x, y + 1, z, 2); if (u >= cx1 && u < patch_image.width() - cx2 && v >= cy1 + 1 && v < patch_image.height() + 1 - cy2 && w >= cz1 && w < patch_image.depth() - cz2) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, patch_depth, _spectrum, xp, yp, zp, u - cx1, v - 1 - cy1, w - cz1, u, v, w, occ_penalization, best_score); if (s < best_score) { best_u = u; best_v = v - 1; best_w = w; best_score = s; } } } if (z < depth() - 1 && (is_updated(x, y, z + 1) & cmask)) { // Compare with forward neighbor u = a_map(x, y, z + 1, 0); v = a_map(x, y, z + 1, 1); w = a_map(x, y, z + 1, 2); if (u >= cx1 && u < patch_image.width() - cx2 && v >= cy1 && v < patch_image.height() - cy2 && w >= cz1 + 1 && w < patch_image.depth() + 1 - cz2) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, patch_depth, _spectrum, xp, yp, zp, u - cx1, v - cy1, w - 1 - cz1, u, v, w, occ_penalization, best_score); if (s < best_score) { best_u = u; best_v = v; best_w = w - 1; best_score = s; } } } } if (is_randomization) { // Randomization float dw = (float)patch_image.width(), dh = (float)patch_image.height(), dd = (float)patch_image.depth(); for (unsigned int i = 0; i < nb_randoms; ++i) { u = (int)cimg::round( cimg::rand(std::max((float)cx1, best_u - dw), std::min(patch_image.width() - 1.f - cx2, best_u + dw), &rng)); v = (int)cimg::round(cimg::rand( std::max((float)cy1, best_v - dh), std::min(patch_image.height() - 1.f - cy2, best_v + dh), &rng)); w = (int)cimg::round( cimg::rand(std::max((float)cz1, best_w - dd), std::min(patch_image.depth() - 1.f - cz2, best_w + dd), &rng)); if (u != best_u || v != best_v || w != best_w) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, patch_depth, _spectrum, xp, yp, zp, u - cx1, v - cy1, w - cz1, u, v, w, occ_penalization, best_score); if (s < best_score) { best_u = u; best_v = v; best_w = w; best_score = s; } dw = std::max(5.f, dw * 0.5f); dh = std::max(5.f, dh * 0.5f); dd = std::max(5.f, dd * 0.5f); } } } if (best_score < best_score0) { if (occ_penalization != 0) { uintT& n_occ = occ(a_map(x, y, z, 0), a_map(x, y, z, 1), a_map(x, y, z, 2)); if (n_occ) cimg_pragma_openmp(atomic)-- n_occ; } a_map(x, y, z, 0) = best_u; a_map(x, y, z, 1) = best_v; a_map(x, y, z, 2) = best_w; score(x, y, z) = best_score; is_updated(x, y, z) = 3; } else is_updated(x, y, z) &= ~nmask; if (occ_penalization != 0) cimg_pragma_openmp(atomic)++ occ(best_u, best_v, best_w); } cimg::srand(rng); } } } else { // 2D version // Initialize correspondence map. if (guide) cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width,64)) cimg_forXY(*this,x,y) { // User-defined initialization const int cx1 = x <= psizew1 ? x : (x < width() - psizew2 ? psizew1 : psizew + x - width()), cx2 = psizew - cx1 - 1, cy1 = y <= psizeh1 ? y : (y < height() - psizeh2 ? psizeh1 : psizeh + y - height()), cy2 = psizeh - cy1 - 1, u = cimg::cut((int)guide(x, y, 0), cx1, patch_image.width() - 1 - cx2), v = cimg::cut((int)guide(x, y, 1), cy1, patch_image.height() - 1 - cy2); a_map(x, y, 0) = u; a_map(x, y, 1) = v; score(x, y) = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, _spectrum, x - cx1, y - cy1, u - cx1, v - cy1, u, v, 0, cimg::type::inf()); } else cimg_pragma_openmp(parallel cimg_openmp_if_size(_width, 64)) { ulongT rng = (cimg::_rand(), cimg::rng()); #if cimg_use_openmp != 0 rng += omp_get_thread_num(); #endif cimg_pragma_openmp(for) cimg_forXY(*this,x,y) { // Random initialization const int cx1 = x <= psizew1 ? x : (x < width() - psizew2 ? psizew1 : psizew + x - width()), cx2 = psizew - cx1 - 1, cy1 = y <= psizeh1 ? y : (y < height() - psizeh2 ? psizeh1 : psizeh + y - height()), cy2 = psizeh - cy1 - 1, u = (int)cimg::round(cimg::rand( cx1, patch_image.width() - 1 - cx2, &rng)), v = (int)cimg::round(cimg::rand( cy1, patch_image.height() - 1 - cy2, &rng)); a_map(x, y, 0) = u; a_map(x, y, 1) = v; score(x, y) = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, _spectrum, x - cx1, y - cy1, u - cx1, v - cy1, u, v, 0, cimg::type::inf()); } cimg::srand(rng); } // Start iteration loop. cimg_abort_init; const unsigned int _nb_iterations = nb_iterations * (occ_penalization != 0 ? 2 : 1); for (unsigned int iter = 0; iter < _nb_iterations; ++iter) { cimg_abort_test; const bool is_backward = occ_penalization != 0 ? (iter & 2) : (iter & 1), is_randomization = occ_penalization != 0 ? (iter & 1) : true, is_propagation = occ_penalization != 0 ? !is_randomization : true; const unsigned int cmask = is_backward ? 1 : 2, nmask = 3 - cmask; cimg_pragma_openmp(parallel cimg_openmp_if( _width >= (cimg_openmp_sizefactor)*64 && iter < nb_iterations - 2)) { ulongT rng = (cimg::_rand(), cimg::rng()); #if cimg_use_openmp != 0 rng += omp_get_thread_num(); #endif cimg_pragma_openmp(for) cimg_forXY(*this,X,Y) { const int _x = is_backward ? width() - 1 - X : X, _y = is_backward ? height() - 1 - Y : Y; int x, y; if (!is_propagation) { // -> Eq. to 'occ_penalization!=0 && // is_randomization' x = loop_order(_x, _y, 0); y = loop_order(_x, _y, 1); } else { x = _x; y = _y; } if (score(x, y) <= 1e-5 || (constraint && guide(x, y, constraint) != 0)) continue; const int cx1 = x <= psizew1 ? x : (x < width() - psizew2 ? psizew1 : psizew + x - width()), cx2 = psizew - cx1 - 1, cy1 = y <= psizeh1 ? y : (y < height() - psizeh2 ? psizeh1 : psizeh + y - height()), cy2 = psizeh - cy1 - 1, xp = x - cx1, yp = y - cy1; int best_u = a_map(x, y, 0), best_v = a_map(x, y, 1), u, v; const float best_score0 = score(x, y); float best_score = best_score0, s; if (is_propagation) { // Propagation if (x > 0 && (is_updated(x - 1, y) & cmask)) { // Compare with left neighbor u = a_map(x - 1, y, 0); v = a_map(x - 1, y, 1); if (u >= cx1 - 1 && u < patch_image.width() - 1 - cx2 && v >= cy1 && v < patch_image.height() - cy2) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, _spectrum, xp, yp, u + 1 - cx1, v - cy1, u, v, occ_penalization, best_score); if (s < best_score) { best_u = u + 1; best_v = v; best_score = s; } } } if (y > 0 && (is_updated(x, y - 1) & cmask)) { // Compare with up neighbor u = a_map(x, y - 1, 0); v = a_map(x, y - 1, 1); if (u >= cx1 && u < patch_image.width() - cx2 && v >= cy1 - 1 && v < patch_image.height() - 1 - cy2) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, _spectrum, xp, yp, u - cx1, v + 1 - cy1, u, v, occ_penalization, best_score); if (s < best_score) { best_u = u; best_v = v + 1; best_score = s; } } } if (x < width() - 1 && (is_updated(x + 1, y) & cmask)) { // Compare with right neighbor u = a_map(x + 1, y, 0); v = a_map(x + 1, y, 1); if (u >= cx1 + 1 && u < patch_image.width() + 1 - cx2 && v >= cy1 && v < patch_image.height() - cy2) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, _spectrum, xp, yp, u - 1 - cx1, v - cy1, u, v, occ_penalization, best_score); if (s < best_score) { best_u = u - 1; best_v = v; best_score = s; } } } if (y < height() - 1 && (is_updated(x, y + 1) & cmask)) { // Compare with bottom neighbor u = a_map(x, y + 1, 0); v = a_map(x, y + 1, 1); if (u >= cx1 && u < patch_image.width() - cx2 && v >= cy1 + 1 && v < patch_image.height() + 1 - cy2) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, _spectrum, xp, yp, u - cx1, v - 1 - cy1, u, v, occ_penalization, best_score); if (s < best_score) { best_u = u; best_v = v - 1; best_score = s; } } } } if (is_randomization) { // Randomization float dw = (float)patch_image.width(), dh = (float)patch_image.height(); for (unsigned int i = 0; i < nb_randoms; ++i) { u = (int)cimg::round( cimg::rand(std::max((float)cx1, best_u - dw), std::min(patch_image.width() - 1.f - cx2, best_u + dw), &rng)); v = (int)cimg::round(cimg::rand( std::max((float)cy1, best_v - dh), std::min(patch_image.height() - 1.f - cy2, best_v + dh), &rng)); if (u != best_u || v != best_v) { s = _matchpatch(in_this, in_patch, occ, patch_width, patch_height, _spectrum, xp, yp, u - cx1, v - cy1, u, v, occ_penalization, best_score); if (s < best_score) { best_u = u; best_v = v; best_score = s; } dw = std::max(5.f, dw * 0.5f); dh = std::max(5.f, dh * 0.5f); } } } if (best_score < best_score0) { if (occ_penalization != 0) { uintT& n_occ = occ(a_map(x, y, 0), a_map(x, y, 1)); if (n_occ) cimg_pragma_openmp(atomic)-- n_occ; } a_map(x, y, 0) = best_u; a_map(x, y, 1) = best_v; score(x, y) = best_score; is_updated(x, y) = 3; } else is_updated(x, y) &= ~nmask; if (occ_penalization != 0) cimg_pragma_openmp(atomic)++ occ(best_u, best_v); } cimg::srand(rng); } } } if (is_matching_score) score.move_to(matching_score); return a_map; } // Compute SSD between two patches in different images. static float _matchpatch( const CImg& img1, const CImg& img2, const CImg& occ, const unsigned int psizew, const unsigned int psizeh, const unsigned int psized, const unsigned int psizec, const int x1, const int y1, const int z1, const int x2, const int y2, const int z2, const int xc, const int yc, const int zc, const float occ_penalization, const float max_score) { // 3D version const T *p1 = img1.data(x1 * psizec, y1, z1), *p2 = img2.data(x2 * psizec, y2, z2); const unsigned int psizewc = psizew * psizec; const ulongT offx1 = (ulongT)img1._width - psizewc, offx2 = (ulongT)img2._width - psizewc, offy1 = (ulongT)img1._width * img1._height - (ulongT)psizeh * img1._width, offy2 = (ulongT)img2._width * img2._height - (ulongT)psizeh * img2._width; float ssd = 0; for (unsigned int k = 0; k < psized; ++k) { for (unsigned int j = 0; j < psizeh; ++j) { for (unsigned int i = 0; i < psizewc; ++i) ssd += cimg::sqr((Tfloat) * (p1++) - *(p2++)); if (ssd > max_score) return max_score; p1 += offx1; p2 += offx2; } p1 += offy1; p2 += offy2; } return occ_penalization == 0 ? ssd : cimg::sqr(std::sqrt(ssd) + occ_penalization * occ(xc, yc, zc)); } static float _matchpatch(const CImg& img1, const CImg& img2, const CImg& occ, const unsigned int psizew, const unsigned int psizeh, const unsigned int psizec, const int x1, const int y1, const int x2, const int y2, const int xc, const int yc, const float occ_penalization, const float max_score) { // 2D version const T *p1 = img1.data(x1 * psizec, y1), *p2 = img2.data(x2 * psizec, y2); const unsigned int psizewc = psizew * psizec; const ulongT offx1 = (ulongT)img1._width - psizewc, offx2 = (ulongT)img2._width - psizewc; float ssd = 0; for (unsigned int j = 0; j < psizeh; ++j) { for (unsigned int i = 0; i < psizewc; ++i) ssd += cimg::sqr((Tfloat) * (p1++) - *(p2++)); if (ssd > max_score) return max_score; p1 += offx1; p2 += offx2; } return occ_penalization == 0 ? ssd : cimg::sqr(std::sqrt(ssd) + occ_penalization * occ(xc, yc)); } //! Compute Euclidean distance function to a specified value. /** \param value Reference value. \param metric Type of metric. Can be { 0=Chebyshev | 1=Manhattan | 2=Euclidean | 3=Squared-euclidean }. \note The distance transform implementation has been submitted by A. Meijster, and implements the article 'W.H. Hesselink, A. Meijster, J.B.T.M. Roerdink, "A general algorithm for computing distance transforms in linear time.", In: Mathematical Morphology and its Applications to Image and Signal Processing, J. Goutsias, L. Vincent, and D.S. Bloomberg (eds.), Kluwer, 2000, pp. 331-340.' The submitted code has then been modified to fit CImg coding style and constraints. **/ CImg& distance(const T& value, const unsigned int metric = 2) { if (is_empty()) return *this; if (cimg::type::string() != cimg::type::string()) // For datatype < int return CImg(*this, false) .distance((Tint)value, metric) .cut((Tint)cimg::type::min(), (Tint)cimg::type::max()) .move_to(*this); bool is_value = false; cimg_for(*this, ptr, T)* ptr = *ptr == value ? is_value = true, (T)0 : (T)std::max(0, 99999999); // (avoid VC++ warning) if (!is_value) return fill(cimg::type::max()); switch (metric) { case 0: return _distance_core(_distance_sep_cdt, _distance_dist_cdt); // Chebyshev case 1: return _distance_core(_distance_sep_mdt, _distance_dist_mdt); // Manhattan case 3: return _distance_core(_distance_sep_edt, _distance_dist_edt); // Squared Euclidean default: return _distance_core(_distance_sep_edt, _distance_dist_edt) .sqrt(); // Euclidean } return *this; } //! Compute distance to a specified value \newinstance. CImg get_distance(const T& value, const unsigned int metric = 2) const { return CImg(*this, false).distance((Tfloat)value, metric); } static longT _distance_sep_edt(const longT i, const longT u, const longT* const g) { return (u * u - i * i + g[u] - g[i]) / (2 * (u - i)); } static longT _distance_dist_edt(const longT x, const longT i, const longT* const g) { return (x - i) * (x - i) + g[i]; } static longT _distance_sep_mdt(const longT i, const longT u, const longT* const g) { return (u - i <= g[u] - g[i] ? 999999999 : (g[u] - g[i] + u + i) / 2); } static longT _distance_dist_mdt(const longT x, const longT i, const longT* const g) { return (x < i ? i - x : x - i) + g[i]; } static longT _distance_sep_cdt(const longT i, const longT u, const longT* const g) { const longT h = (i + u) / 2; if (g[i] <= g[u]) { return h < i + g[u] ? i + g[u] : h; } return h < u - g[i] ? h : u - g[i]; } static longT _distance_dist_cdt(const longT x, const longT i, const longT* const g) { const longT d = x < i ? i - x : x - i; return d < g[i] ? g[i] : d; } static void _distance_scan( const unsigned int len, const longT* const g, longT (*const sep)(const longT, const longT, const longT* const), longT (*const f)(const longT, const longT, const longT* const), longT* const s, longT* const t, longT* const dt) { longT q = s[0] = t[0] = 0; for (int u = 1; u < (int)len; ++u) { // Forward scan while ((q >= 0) && f(t[q], s[q], g) > f(t[q], u, g)) { --q; } if (q < 0) { q = 0; s[0] = u; } else { const longT w = 1 + sep(s[q], u, g); if (w < (longT)len) { ++q; s[q] = u; t[q] = w; } } } for (int u = (int)len - 1; u >= 0; --u) { dt[u] = f(u, s[q], g); if (u == t[q]) --q; } // Backward scan } CImg& _distance_core(longT (*const sep)(const longT, const longT, const longT* const), longT (*const f)(const longT, const longT, const longT* const)) { // Check for g++ 4.9.X, as OpenMP seems to crash for this particular // function. I have no clues why. #define cimg_is_gcc49x (__GNUC__ == 4 && __GNUC_MINOR__ == 9) const ulongT wh = (ulongT)_width * _height; #if cimg_use_openmp != 0 && !cimg_is_gcc49x cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) #endif cimg_forC(*this,c) { CImg g(_width), dt(_width), s(_width), t(_width); CImg img = get_shared_channel(c); #if cimg_use_openmp != 0 && !cimg_is_gcc49x cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && _height*_depth>=16) firstprivate(g,dt,s,t)) #endif cimg_forYZ(*this,y,z) { // Over X-direction cimg_forX(*this, x) g[x] = (longT)img(x, y, z, 0, wh); _distance_scan(_width, g, sep, f, s, t, dt); cimg_forX(*this, x) img(x, y, z, 0, wh) = (T)dt[x]; } if (_height > 1) { g.assign(_height); dt.assign(_height); s.assign(_height); t.assign(_height); #if cimg_use_openmp != 0 && !cimg_is_gcc49x cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*512 && _width*_depth>=16) firstprivate(g,dt,s,t)) #endif cimg_forXZ(*this,x,z) { // Over Y-direction cimg_forY(*this, y) g[y] = (longT)img(x, y, z, 0, wh); _distance_scan(_height, g, sep, f, s, t, dt); cimg_forY(*this, y) img(x, y, z, 0, wh) = (T)dt[y]; } } if (_depth > 1) { g.assign(_depth); dt.assign(_depth); s.assign(_depth); t.assign(_depth); #if cimg_use_openmp != 0 && !cimg_is_gcc49x cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_depth>=(cimg_openmp_sizefactor)*512 && _width*_height>=16) firstprivate(g,dt,s,t)) #endif cimg_forXY(*this,x,y) { // Over Z-direction cimg_forZ(*this, z) g[z] = (longT)img(x, y, z, 0, wh); _distance_scan(_depth, g, sep, f, s, t, dt); cimg_forZ(*this, z) img(x, y, z, 0, wh) = (T)dt[z]; } } } return *this; } //! Compute chamfer distance to a specified value, with a custom metric. /** \param value Reference value. \param metric_mask Metric mask. \note The algorithm code has been initially proposed by A. Meijster, and modified by D. Tschumperlé. **/ template CImg& distance(const T& value, const CImg& metric_mask) { if (is_empty()) return *this; bool is_value = false; cimg_for(*this, ptr, T)* ptr = *ptr == value ? is_value = true, 0 : (T)999999999; if (!is_value) return fill(cimg::type::max()); const ulongT wh = (ulongT)_width * _height; cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) cimg_forC(*this,c) { CImg img = get_shared_channel(c); cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1024)) cimg_forXYZ(metric_mask,dx,dy,dz) { const t weight = metric_mask(dx, dy, dz); if (weight) { for (int z = dz, nz = 0; z < depth(); ++z, ++nz) { // Forward scan for (int y = dy, ny = 0; y < height(); ++y, ++ny) { for (int x = dx, nx = 0; x < width(); ++x, ++nx) { const T dd = img(nx, ny, nz, 0, wh) + weight; if (dd < img(x, y, z, 0, wh)) img(x, y, z, 0, wh) = dd; } } } for (int z = depth() - 1 - dz, nz = depth() - 1; z >= 0; --z, --nz) { // Backward scan for (int y = height() - 1 - dy, ny = height() - 1; y >= 0; --y, --ny) { for (int x = width() - 1 - dx, nx = width() - 1; x >= 0; --x, --nx) { const T dd = img(nx, ny, nz, 0, wh) + weight; if (dd < img(x, y, z, 0, wh)) img(x, y, z, 0, wh) = dd; } } } } } } return *this; } //! Compute chamfer distance to a specified value, with a custom metric //! \newinstance. template CImg get_distance(const T& value, const CImg& metric_mask) const { return CImg(*this, false).distance(value, metric_mask); } //! Compute distance to a specified value, according to a custom metric (use //! dijkstra algorithm). /** \param value Reference value. \param metric Field of distance potentials. \param is_high_connectivity Tells if the algorithm uses low or high connectivity. \param[out] return_path An image containing the nodes of the minimal path. **/ template CImg& distance_dijkstra(const T& value, const CImg& metric, const bool is_high_connectivity, CImg& return_path) { return get_distance_dijkstra(value, metric, is_high_connectivity, return_path) .move_to(*this); } //! Compute distance map to a specified value, according to a custom metric //! (use dijkstra algorithm) \newinstance. template CImg::type> get_distance_dijkstra( const T& value, const CImg& metric, const bool is_high_connectivity, CImg& return_path) const { if (is_empty()) return return_path.assign(); if (!is_sameXYZ(metric)) throw CImgArgumentException(_cimg_instance "distance_dijkstra(): image instance " "and metric map (%u,%u,%u,%u) " "have incompatible dimensions.", cimg_instance, metric._width, metric._height, metric._depth, metric._spectrum); typedef typename cimg::superset::type td; // Type used for computing cumulative distances CImg result(_width, _height, _depth, _spectrum), Q; CImg is_queued(_width, _height, _depth, 1); if (return_path) return_path.assign(_width, _height, _depth, _spectrum); cimg_forC(*this, c) { const CImg img = get_shared_channel(c); const CImg met = metric.get_shared_channel(c % metric._spectrum); CImg res = result.get_shared_channel(c); CImg path = return_path ? return_path.get_shared_channel(c) : CImg(); unsigned int sizeQ = 0; // Detect initial seeds. is_queued.fill(0); cimg_forXYZ(img, x, y, z) if (img(x, y, z) == value) { Q._priority_queue_insert(is_queued, sizeQ, 0, x, y, z); res(x, y, z) = 0; if (path) path(x, y, z) = (to)0; } // Start distance propagation. while (sizeQ) { // Get and remove point with minimal potential from the queue. const int x = (int)Q(0, 1), y = (int)Q(0, 2), z = (int)Q(0, 3); const td P = (td)-Q(0, 0); Q._priority_queue_remove(sizeQ); // Update neighbors. td npot = 0; if (x - 1 >= 0 && Q._priority_queue_insert(is_queued, sizeQ, -(npot = met(x - 1, y, z) + P), x - 1, y, z)) { res(x - 1, y, z) = npot; if (path) path(x - 1, y, z) = (to)2; } if (x + 1 < width() && Q._priority_queue_insert(is_queued, sizeQ, -(npot = met(x + 1, y, z) + P), x + 1, y, z)) { res(x + 1, y, z) = npot; if (path) path(x + 1, y, z) = (to)1; } if (y - 1 >= 0 && Q._priority_queue_insert(is_queued, sizeQ, -(npot = met(x, y - 1, z) + P), x, y - 1, z)) { res(x, y - 1, z) = npot; if (path) path(x, y - 1, z) = (to)8; } if (y + 1 < height() && Q._priority_queue_insert(is_queued, sizeQ, -(npot = met(x, y + 1, z) + P), x, y + 1, z)) { res(x, y + 1, z) = npot; if (path) path(x, y + 1, z) = (to)4; } if (z - 1 >= 0 && Q._priority_queue_insert(is_queued, sizeQ, -(npot = met(x, y, z - 1) + P), x, y, z - 1)) { res(x, y, z - 1) = npot; if (path) path(x, y, z - 1) = (to)32; } if (z + 1 < depth() && Q._priority_queue_insert(is_queued, sizeQ, -(npot = met(x, y, z + 1) + P), x, y, z + 1)) { res(x, y, z + 1) = npot; if (path) path(x, y, z + 1) = (to)16; } if (is_high_connectivity) { const float sqrt2 = std::sqrt(2.f), sqrt3 = std::sqrt(3.f); // Diagonal neighbors on slice z. if (x - 1 >= 0 && y - 1 >= 0 && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x - 1, y - 1, z) + P)), x - 1, y - 1, z)) { res(x - 1, y - 1, z) = npot; if (path) path(x - 1, y - 1, z) = (to)10; } if (x + 1 < width() && y - 1 >= 0 && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x + 1, y - 1, z) + P)), x + 1, y - 1, z)) { res(x + 1, y - 1, z) = npot; if (path) path(x + 1, y - 1, z) = (to)9; } if (x - 1 >= 0 && y + 1 < height() && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x - 1, y + 1, z) + P)), x - 1, y + 1, z)) { res(x - 1, y + 1, z) = npot; if (path) path(x - 1, y + 1, z) = (to)6; } if (x + 1 < width() && y + 1 < height() && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x + 1, y + 1, z) + P)), x + 1, y + 1, z)) { res(x + 1, y + 1, z) = npot; if (path) path(x + 1, y + 1, z) = (to)5; } if (z - 1 >= 0) { // Diagonal neighbors on slice z - 1 if (x - 1 >= 0 && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x - 1, y, z - 1) + P)), x - 1, y, z - 1)) { res(x - 1, y, z - 1) = npot; if (path) path(x - 1, y, z - 1) = (to)34; } if (x + 1 < width() && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x + 1, y, z - 1) + P)), x + 1, y, z - 1)) { res(x + 1, y, z - 1) = npot; if (path) path(x + 1, y, z - 1) = (to)33; } if (y - 1 >= 0 && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x, y - 1, z - 1) + P)), x, y - 1, z - 1)) { res(x, y - 1, z - 1) = npot; if (path) path(x, y - 1, z - 1) = (to)40; } if (y + 1 < height() && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x, y + 1, z - 1) + P)), x, y + 1, z - 1)) { res(x, y + 1, z - 1) = npot; if (path) path(x, y + 1, z - 1) = (to)36; } if (x - 1 >= 0 && y - 1 >= 0 && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt3 * met(x - 1, y - 1, z - 1) + P)), x - 1, y - 1, z - 1)) { res(x - 1, y - 1, z - 1) = npot; if (path) path(x - 1, y - 1, z - 1) = (to)42; } if (x + 1 < width() && y - 1 >= 0 && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt3 * met(x + 1, y - 1, z - 1) + P)), x + 1, y - 1, z - 1)) { res(x + 1, y - 1, z - 1) = npot; if (path) path(x + 1, y - 1, z - 1) = (to)41; } if (x - 1 >= 0 && y + 1 < height() && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt3 * met(x - 1, y + 1, z - 1) + P)), x - 1, y + 1, z - 1)) { res(x - 1, y + 1, z - 1) = npot; if (path) path(x - 1, y + 1, z - 1) = (to)38; } if (x + 1 < width() && y + 1 < height() && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt3 * met(x + 1, y + 1, z - 1) + P)), x + 1, y + 1, z - 1)) { res(x + 1, y + 1, z - 1) = npot; if (path) path(x + 1, y + 1, z - 1) = (to)37; } } if (z + 1 < depth()) { // Diagonal neighbors on slice z + 1 if (x - 1 >= 0 && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x - 1, y, z + 1) + P)), x - 1, y, z + 1)) { res(x - 1, y, z + 1) = npot; if (path) path(x - 1, y, z + 1) = (to)18; } if (x + 1 < width() && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x + 1, y, z + 1) + P)), x + 1, y, z + 1)) { res(x + 1, y, z + 1) = npot; if (path) path(x + 1, y, z + 1) = (to)17; } if (y - 1 >= 0 && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x, y - 1, z + 1) + P)), x, y - 1, z + 1)) { res(x, y - 1, z + 1) = npot; if (path) path(x, y - 1, z + 1) = (to)24; } if (y + 1 < height() && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt2 * met(x, y + 1, z + 1) + P)), x, y + 1, z + 1)) { res(x, y + 1, z + 1) = npot; if (path) path(x, y + 1, z + 1) = (to)20; } if (x - 1 >= 0 && y - 1 >= 0 && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt3 * met(x - 1, y - 1, z + 1) + P)), x - 1, y - 1, z + 1)) { res(x - 1, y - 1, z + 1) = npot; if (path) path(x - 1, y - 1, z + 1) = (to)26; } if (x + 1 < width() && y - 1 >= 0 && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt3 * met(x + 1, y - 1, z + 1) + P)), x + 1, y - 1, z + 1)) { res(x + 1, y - 1, z + 1) = npot; if (path) path(x + 1, y - 1, z + 1) = (to)25; } if (x - 1 >= 0 && y + 1 < height() && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt3 * met(x - 1, y + 1, z + 1) + P)), x - 1, y + 1, z + 1)) { res(x - 1, y + 1, z + 1) = npot; if (path) path(x - 1, y + 1, z + 1) = (to)22; } if (x + 1 < width() && y + 1 < height() && Q._priority_queue_insert( is_queued, sizeQ, -(npot = (td)(sqrt3 * met(x + 1, y + 1, z + 1) + P)), x + 1, y + 1, z + 1)) { res(x + 1, y + 1, z + 1) = npot; if (path) path(x + 1, y + 1, z + 1) = (to)21; } } } } } return result; } //! Compute distance map to a specified value, according to a custom metric //! (use dijkstra algorithm). \overloading. template CImg& distance_dijkstra(const T& value, const CImg& metric, const bool is_high_connectivity = false) { return get_distance_dijkstra(value, metric, is_high_connectivity) .move_to(*this); } //! Compute distance map to a specified value, according to a custom metric //! (use dijkstra algorithm). \newinstance. template CImg get_distance_dijkstra( const T& value, const CImg& metric, const bool is_high_connectivity = false) const { CImg return_path; return get_distance_dijkstra(value, metric, is_high_connectivity, return_path); } //! Compute distance map to one source point, according to a custom metric //! (use fast marching algorithm). /** \param value Reference value. \param metric Field of distance potentials. **/ template CImg& distance_eikonal(const T& value, const CImg& metric) { return get_distance_eikonal(value, metric).move_to(*this); } //! Compute distance map to one source point, according to a custom metric //! (use fast marching algorithm). template CImg get_distance_eikonal(const T& value, const CImg& metric) const { if (is_empty()) return *this; if (!is_sameXYZ(metric)) throw CImgArgumentException(_cimg_instance "distance_eikonal(): image instance " "and metric map (%u,%u,%u,%u) have " "incompatible dimensions.", cimg_instance, metric._width, metric._height, metric._depth, metric._spectrum); CImg result(_width, _height, _depth, _spectrum, cimg::type::max()), Q; CImg state(_width, _height, _depth); // -1=far away, 0=narrow, 1=frozen cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2) firstprivate(Q,state)) cimg_forC(*this,c) { const CImg img = get_shared_channel(c); const CImg met = metric.get_shared_channel(c % metric._spectrum); CImg res = result.get_shared_channel(c); unsigned int sizeQ = 0; state.fill(-1); // Detect initial seeds. Tfloat* ptr1 = res._data; char* ptr2 = state._data; cimg_for(img, ptr0, T) { if (*ptr0 == value) { *ptr1 = 0; *ptr2 = 1; } ++ptr1; ++ptr2; } // Initialize seeds neighbors. ptr2 = state._data; cimg_forXYZ(img, x, y, z) if (*(ptr2++) == 1) { if (x - 1 >= 0 && state(x - 1, y, z) == -1) { const Tfloat dist = res(x - 1, y, z) = __distance_eikonal(res, met(x - 1, y, z), x - 1, y, z); Q._eik_priority_queue_insert(state, sizeQ, -dist, x - 1, y, z); } if (x + 1 < width() && state(x + 1, y, z) == -1) { const Tfloat dist = res(x + 1, y, z) = __distance_eikonal(res, met(x + 1, y, z), x + 1, y, z); Q._eik_priority_queue_insert(state, sizeQ, -dist, x + 1, y, z); } if (y - 1 >= 0 && state(x, y - 1, z) == -1) { const Tfloat dist = res(x, y - 1, z) = __distance_eikonal(res, met(x, y - 1, z), x, y - 1, z); Q._eik_priority_queue_insert(state, sizeQ, -dist, x, y - 1, z); } if (y + 1 < height() && state(x, y + 1, z) == -1) { const Tfloat dist = res(x, y + 1, z) = __distance_eikonal(res, met(x, y + 1, z), x, y + 1, z); Q._eik_priority_queue_insert(state, sizeQ, -dist, x, y + 1, z); } if (z - 1 >= 0 && state(x, y, z - 1) == -1) { const Tfloat dist = res(x, y, z - 1) = __distance_eikonal(res, met(x, y, z - 1), x, y, z - 1); Q._eik_priority_queue_insert(state, sizeQ, -dist, x, y, z - 1); } if (z + 1 < depth() && state(x, y, z + 1) == -1) { const Tfloat dist = res(x, y, z + 1) = __distance_eikonal(res, met(x, y, z + 1), x, y, z + 1); Q._eik_priority_queue_insert(state, sizeQ, -dist, x, y, z + 1); } } // Propagate front. while (sizeQ) { int x = -1, y = -1, z = -1; while (sizeQ && x < 0) { x = (int)Q(0, 1); y = (int)Q(0, 2); z = (int)Q(0, 3); Q._priority_queue_remove(sizeQ); if (state(x, y, z) == 1) x = -1; else state(x, y, z) = 1; } if (x >= 0) { if (x - 1 >= 0 && state(x - 1, y, z) != 1) { const Tfloat dist = __distance_eikonal( res, met(x - 1, y, z), x - 1, y, z); if (dist < res(x - 1, y, z)) { res(x - 1, y, z) = dist; Q._eik_priority_queue_insert(state, sizeQ, -dist, x - 1, y, z); } } if (x + 1 < width() && state(x + 1, y, z) != 1) { const Tfloat dist = __distance_eikonal( res, met(x + 1, y, z), x + 1, y, z); if (dist < res(x + 1, y, z)) { res(x + 1, y, z) = dist; Q._eik_priority_queue_insert(state, sizeQ, -dist, x + 1, y, z); } } if (y - 1 >= 0 && state(x, y - 1, z) != 1) { const Tfloat dist = __distance_eikonal( res, met(x, y - 1, z), x, y - 1, z); if (dist < res(x, y - 1, z)) { res(x, y - 1, z) = dist; Q._eik_priority_queue_insert(state, sizeQ, -dist, x, y - 1, z); } } if (y + 1 < height() && state(x, y + 1, z) != 1) { const Tfloat dist = __distance_eikonal( res, met(x, y + 1, z), x, y + 1, z); if (dist < res(x, y + 1, z)) { res(x, y + 1, z) = dist; Q._eik_priority_queue_insert(state, sizeQ, -dist, x, y + 1, z); } } if (z - 1 >= 0 && state(x, y, z - 1) != 1) { const Tfloat dist = __distance_eikonal( res, met(x, y, z - 1), x, y, z - 1); if (dist < res(x, y, z - 1)) { res(x, y, z - 1) = dist; Q._eik_priority_queue_insert(state, sizeQ, -dist, x, y, z - 1); } } if (z + 1 < depth() && state(x, y, z + 1) != 1) { const Tfloat dist = __distance_eikonal( res, met(x, y, z + 1), x, y, z + 1); if (dist < res(x, y, z + 1)) { res(x, y, z + 1) = dist; Q._eik_priority_queue_insert(state, sizeQ, -dist, x, y, z + 1); } } } } } return result; } // Locally solve eikonal equation. Tfloat __distance_eikonal(const CImg& res, const Tfloat P, const int x = 0, const int y = 0, const int z = 0) const { const Tfloat M = (Tfloat)cimg::type::max(); T T1 = (T)std::min(x - 1 >= 0 ? res(x - 1, y, z) : M, x + 1 < width() ? res(x + 1, y, z) : M); Tfloat root = 0; if (_depth > 1) { // 3D T T2 = (T)std::min(y - 1 >= 0 ? res(x, y - 1, z) : M, y + 1 < height() ? res(x, y + 1, z) : M), T3 = (T)std::min(z - 1 >= 0 ? res(x, y, z - 1) : M, z + 1 < depth() ? res(x, y, z + 1) : M); if (T1 > T2) cimg::swap(T1, T2); if (T2 > T3) cimg::swap(T2, T3); if (T1 > T2) cimg::swap(T1, T2); if (P <= 0) return (Tfloat)T1; if (T3 < M && ___distance_eikonal(3, -2 * (T1 + T2 + T3), T1 * T1 + T2 * T2 + T3 * T3 - P * P, root)) return std::max((Tfloat)T3, root); if (T2 < M && ___distance_eikonal(2, -2 * (T1 + T2), T1 * T1 + T2 * T2 - P * P, root)) return std::max((Tfloat)T2, root); return P + T1; } else if (_height > 1) { // 2D T T2 = (T)std::min(y - 1 >= 0 ? res(x, y - 1, z) : M, y + 1 < height() ? res(x, y + 1, z) : M); if (T1 > T2) cimg::swap(T1, T2); if (P <= 0) return (Tfloat)T1; if (T2 < M && ___distance_eikonal(2, -2 * (T1 + T2), T1 * T1 + T2 * T2 - P * P, root)) return std::max((Tfloat)T2, root); return P + T1; } else { // 1D if (P <= 0) return (Tfloat)T1; return P + T1; } return 0; } // Find max root of a 2nd-order polynomial. static bool ___distance_eikonal(const Tfloat a, const Tfloat b, const Tfloat c, Tfloat& root) { const Tfloat delta = b * b - 4 * a * c; if (delta < 0) return false; root = 0.5f * (-b + std::sqrt(delta)) / a; return true; } // Insert new point in heap. template void _eik_priority_queue_insert(CImg& state, unsigned int& siz, const t value, const unsigned int x, const unsigned int y, const unsigned int z) { if (state(x, y, z) > 0) return; state(x, y, z) = 0; if (++siz >= _width) { if (!is_empty()) resize(_width * 2, 4, 1, 1, 0); else assign(64, 4); } (*this)(siz - 1, 0) = (T)value; (*this)(siz - 1, 1) = (T)x; (*this)(siz - 1, 2) = (T)y; (*this)(siz - 1, 3) = (T)z; for (unsigned int pos = siz - 1, par = 0; pos && value > (t)(*this)(par = (pos + 1) / 2 - 1, 0); pos = par) { cimg::swap((*this)(pos, 0), (*this)(par, 0)); cimg::swap((*this)(pos, 1), (*this)(par, 1)); cimg::swap((*this)(pos, 2), (*this)(par, 2)); cimg::swap((*this)(pos, 3), (*this)(par, 3)); } } //! Compute distance function to 0-valued isophotes, using the Eikonal PDE. /** \param nb_iterations Number of PDE iterations. \param band_size Size of the narrow band. \param time_step Time step of the PDE iterations. **/ CImg& distance_eikonal(const unsigned int nb_iterations, const float band_size = 0, const float time_step = 0.5f) { if (is_empty()) return *this; CImg velocity(*this, false); for (unsigned int iteration = 0; iteration < nb_iterations; ++iteration) { Tfloat *ptrd = velocity._data, veloc_max = 0; if (_depth > 1) { // 3D CImg_3x3x3(I, Tfloat); cimg_forC(*this, c) cimg_for3x3x3( *this, x, y, z, c, I, Tfloat) if (band_size <= 0 || cimg::abs(Iccc) < band_size) { const Tfloat gx = (Incc - Ipcc) / 2, gy = (Icnc - Icpc) / 2, gz = (Iccn - Iccp) / 2, sgn = -cimg::sign(Iccc), ix = gx * sgn > 0 ? (Incc - Iccc) : (Iccc - Ipcc), iy = gy * sgn > 0 ? (Icnc - Iccc) : (Iccc - Icpc), iz = gz * sgn > 0 ? (Iccn - Iccc) : (Iccc - Iccp), ng = 1e-5f + cimg::hypot(gx, gy, gz), ngx = gx / ng, ngy = gy / ng, ngz = gz / ng, veloc = sgn * (ngx * ix + ngy * iy + ngz * iz - 1); *(ptrd++) = veloc; if (veloc > veloc_max) veloc_max = veloc; else if (-veloc > veloc_max) veloc_max = -veloc; } else*(ptrd++) = 0; } else { // 2D version CImg_3x3(I, Tfloat); cimg_forC(*this, c) cimg_for3x3( *this, x, y, 0, c, I, Tfloat) if (band_size <= 0 || cimg::abs(Icc) < band_size) { const Tfloat gx = (Inc - Ipc) / 2, gy = (Icn - Icp) / 2, sgn = -cimg::sign(Icc), ix = gx * sgn > 0 ? (Inc - Icc) : (Icc - Ipc), iy = gy * sgn > 0 ? (Icn - Icc) : (Icc - Icp), ng = std::max((Tfloat)1e-5, cimg::hypot(gx, gy)), ngx = gx / ng, ngy = gy / ng, veloc = sgn * (ngx * ix + ngy * iy - 1); *(ptrd++) = veloc; if (veloc > veloc_max) veloc_max = veloc; else if (-veloc > veloc_max) veloc_max = -veloc; } else*(ptrd++) = 0; } if (veloc_max > 0) *this += (velocity *= time_step / veloc_max); } return *this; } //! Compute distance function to 0-valued isophotes, using the Eikonal PDE //! \newinstance. CImg get_distance_eikonal(const unsigned int nb_iterations, const float band_size = 0, const float time_step = 0.5f) const { return CImg(*this, false) .distance_eikonal(nb_iterations, band_size, time_step); } //! Compute Haar multiscale wavelet transform. /** \param axis Axis considered for the transform. \param invert Set inverse of direct transform. \param nb_scales Number of scales used for the transform. **/ CImg& haar(const char axis, const bool invert = false, const unsigned int nb_scales = 1) { return get_haar(axis, invert, nb_scales).move_to(*this); } //! Compute Haar multiscale wavelet transform \newinstance. CImg get_haar(const char axis, const bool invert = false, const unsigned int nb_scales = 1) const { if (is_empty() || !nb_scales) return +*this; CImg res; const Tfloat sqrt2 = std::sqrt(2.f); if (nb_scales == 1) { switch (cimg::lowercase(axis)) { // Single scale transform case 'x': { const unsigned int w = _width / 2; if (w) { if ((w % 2) && w != 1) throw CImgInstanceException( _cimg_instance "haar(): Sub-image width %u is not even.", cimg_instance, w); res.assign(_width, _height, _depth, _spectrum); if (invert) cimg_forYZC(*this, y, z, c) { // Inverse transform along X for (unsigned int x = 0, xw = w, x2 = 0; x < w; ++x, ++xw) { const Tfloat val0 = (Tfloat)(*this)(x, y, z, c), val1 = (Tfloat)(*this)(xw, y, z, c); res(x2++, y, z, c) = (val0 - val1) / sqrt2; res(x2++, y, z, c) = (val0 + val1) / sqrt2; } } else cimg_forYZC(*this, y, z, c) { // Direct transform along X for (unsigned int x = 0, xw = w, x2 = 0; x < w; ++x, ++xw) { const Tfloat val0 = (Tfloat)(*this)(x2++, y, z, c), val1 = (Tfloat)(*this)(x2++, y, z, c); res(x, y, z, c) = (val0 + val1) / sqrt2; res(xw, y, z, c) = (val1 - val0) / sqrt2; } } } else return *this; } break; case 'y': { const unsigned int h = _height / 2; if (h) { if ((h % 2) && h != 1) throw CImgInstanceException( _cimg_instance "haar(): Sub-image height %u is not even.", cimg_instance, h); res.assign(_width, _height, _depth, _spectrum); if (invert) cimg_forXZC(*this, x, z, c) { // Inverse transform along Y for (unsigned int y = 0, yh = h, y2 = 0; y < h; ++y, ++yh) { const Tfloat val0 = (Tfloat)(*this)(x, y, z, c), val1 = (Tfloat)(*this)(x, yh, z, c); res(x, y2++, z, c) = (val0 - val1) / sqrt2; res(x, y2++, z, c) = (val0 + val1) / sqrt2; } } else cimg_forXZC(*this, x, z, c) { for (unsigned int y = 0, yh = h, y2 = 0; y < h; ++y, ++yh) { // Direct transform along Y const Tfloat val0 = (Tfloat)(*this)(x, y2++, z, c), val1 = (Tfloat)(*this)(x, y2++, z, c); res(x, y, z, c) = (val0 + val1) / sqrt2; res(x, yh, z, c) = (val1 - val0) / sqrt2; } } } else return *this; } break; case 'z': { const unsigned int d = _depth / 2; if (d) { if ((d % 2) && d != 1) throw CImgInstanceException( _cimg_instance "haar(): Sub-image depth %u is not even.", cimg_instance, d); res.assign(_width, _height, _depth, _spectrum); if (invert) cimg_forXYC(*this, x, y, c) { // Inverse transform along Z for (unsigned int z = 0, zd = d, z2 = 0; z < d; ++z, ++zd) { const Tfloat val0 = (Tfloat)(*this)(x, y, z, c), val1 = (Tfloat)(*this)(x, y, zd, c); res(x, y, z2++, c) = (val0 - val1) / sqrt2; res(x, y, z2++, c) = (val0 + val1) / sqrt2; } } else cimg_forXYC(*this, x, y, c) { for (unsigned int z = 0, zd = d, z2 = 0; z < d; ++z, ++zd) { // Direct transform along Z const Tfloat val0 = (Tfloat)(*this)( x, y, z2++, c), val1 = (Tfloat)(*this)( x, y, z2++, c); res(x, y, z, c) = (val0 + val1) / sqrt2; res(x, y, zd, c) = (val1 - val0) / sqrt2; } } } else return *this; } break; default: throw CImgArgumentException( _cimg_instance "haar(): Invalid specified axis '%c' " "(should be { x | y | z }).", cimg_instance, axis); } } else { // Multi-scale version if (invert) { res.assign(*this, false); switch (cimg::lowercase(axis)) { case 'x': { unsigned int w = _width; for (unsigned int s = 1; w && s < nb_scales; ++s) w /= 2; for (w = w ? w : 1; w <= _width; w *= 2) res.draw_image( res.get_crop(0, w - 1).get_haar('x', true, 1)); } break; case 'y': { unsigned int h = _width; for (unsigned int s = 1; h && s < nb_scales; ++s) h /= 2; for (h = h ? h : 1; h <= _height; h *= 2) res.draw_image(res.get_crop(0, 0, _width - 1, h - 1) .get_haar('y', true, 1)); } break; case 'z': { unsigned int d = _depth; for (unsigned int s = 1; d && s < nb_scales; ++s) d /= 2; for (d = d ? d : 1; d <= _depth; d *= 2) res.draw_image(res.get_crop(0, 0, 0, _width - 1, _height - 1, d - 1) .get_haar('z', true, 1)); } break; default: throw CImgArgumentException( _cimg_instance "haar(): Invalid specified axis '%c' " "(should be { x | y | z }).", cimg_instance, axis); } } else { // Direct transform res = get_haar(axis, false, 1); switch (cimg::lowercase(axis)) { case 'x': { for (unsigned int s = 1, w = _width / 2; w && s < nb_scales; ++s, w /= 2) res.draw_image( res.get_crop(0, w - 1).get_haar('x', false, 1)); } break; case 'y': { for (unsigned int s = 1, h = _height / 2; h && s < nb_scales; ++s, h /= 2) res.draw_image(res.get_crop(0, 0, _width - 1, h - 1) .get_haar('y', false, 1)); } break; case 'z': { for (unsigned int s = 1, d = _depth / 2; d && s < nb_scales; ++s, d /= 2) res.draw_image(res.get_crop(0, 0, 0, _width - 1, _height - 1, d - 1) .get_haar('z', false, 1)); } break; default: throw CImgArgumentException( _cimg_instance "haar(): Invalid specified axis '%c' " "(should be { x | y | z }).", cimg_instance, axis); } } } return res; } //! Compute Haar multiscale wavelet transform \overloading. /** \param invert Set inverse of direct transform. \param nb_scales Number of scales used for the transform. **/ CImg& haar(const bool invert = false, const unsigned int nb_scales = 1) { return get_haar(invert, nb_scales).move_to(*this); } //! Compute Haar multiscale wavelet transform \newinstance. CImg get_haar(const bool invert = false, const unsigned int nb_scales = 1) const { CImg res; if (nb_scales == 1) { // Single scale transform if (_width > 1) get_haar('x', invert, 1).move_to(res); if (_height > 1) { if (res) res.haar('y', invert, 1); else get_haar('y', invert, 1).move_to(res); } if (_depth > 1) { if (res) res.haar('z', invert, 1); else get_haar('z', invert, 1).move_to(res); } if (res) return res; } else { // Multi-scale transform if (invert) { // Inverse transform res.assign(*this, false); if (_width > 1) { if (_height > 1) { if (_depth > 1) { unsigned int w = _width, h = _height, d = _depth; for (unsigned int s = 1; w && h && d && s < nb_scales; ++s) { w /= 2; h /= 2; d /= 2; } for (w = w ? w : 1, h = h ? h : 1, d = d ? d : 1; w <= _width && h <= _height && d <= _depth; w *= 2, h *= 2, d *= 2) res.draw_image( res.get_crop(0, 0, 0, w - 1, h - 1, d - 1) .get_haar(true, 1)); } else { unsigned int w = _width, h = _height; for (unsigned int s = 1; w && h && s < nb_scales; ++s) { w /= 2; h /= 2; } for (w = w ? w : 1, h = h ? h : 1; w <= _width && h <= _height; w *= 2, h *= 2) res.draw_image( res.get_crop(0, 0, 0, w - 1, h - 1, 0) .get_haar(true, 1)); } } else { if (_depth > 1) { unsigned int w = _width, d = _depth; for (unsigned int s = 1; w && d && s < nb_scales; ++s) { w /= 2; d /= 2; } for (w = w ? w : 1, d = d ? d : 1; w <= _width && d <= _depth; w *= 2, d *= 2) res.draw_image( res.get_crop(0, 0, 0, w - 1, 0, d - 1) .get_haar(true, 1)); } else { unsigned int w = _width; for (unsigned int s = 1; w && s < nb_scales; ++s) w /= 2; for (w = w ? w : 1; w <= _width; w *= 2) res.draw_image( res.get_crop(0, 0, 0, w - 1, 0, 0) .get_haar(true, 1)); } } } else { if (_height > 1) { if (_depth > 1) { unsigned int h = _height, d = _depth; for (unsigned int s = 1; h && d && s < nb_scales; ++s) { h /= 2; d /= 2; } for (h = h ? h : 1, d = d ? d : 1; h <= _height && d <= _depth; h *= 2, d *= 2) res.draw_image( res.get_crop(0, 0, 0, 0, h - 1, d - 1) .get_haar(true, 1)); } else { unsigned int h = _height; for (unsigned int s = 1; h && s < nb_scales; ++s) h /= 2; for (h = h ? h : 1; h <= _height; h *= 2) res.draw_image( res.get_crop(0, 0, 0, 0, h - 1, 0) .get_haar(true, 1)); } } else { if (_depth > 1) { unsigned int d = _depth; for (unsigned int s = 1; d && s < nb_scales; ++s) d /= 2; for (d = d ? d : 1; d <= _depth; d *= 2) res.draw_image( res.get_crop(0, 0, 0, 0, 0, d - 1) .get_haar(true, 1)); } else return *this; } } } else { // Direct transform res = get_haar(false, 1); if (_width > 1) { if (_height > 1) { if (_depth > 1) for (unsigned int s = 1, w = _width / 2, h = _height / 2, d = _depth / 2; w && h && d && s < nb_scales; ++s, w /= 2, h /= 2, d /= 2) res.draw_image( res.get_crop(0, 0, 0, w - 1, h - 1, d - 1) .haar(false, 1)); else for (unsigned int s = 1, w = _width / 2, h = _height / 2; w && h && s < nb_scales; ++s, w /= 2, h /= 2) res.draw_image( res.get_crop(0, 0, 0, w - 1, h - 1, 0) .haar(false, 1)); } else { if (_depth > 1) for (unsigned int s = 1, w = _width / 2, d = _depth / 2; w && d && s < nb_scales; ++s, w /= 2, d /= 2) res.draw_image( res.get_crop(0, 0, 0, w - 1, 0, d - 1) .haar(false, 1)); else for (unsigned int s = 1, w = _width / 2; w && s < nb_scales; ++s, w /= 2) res.draw_image( res.get_crop(0, 0, 0, w - 1, 0, 0) .haar(false, 1)); } } else { if (_height > 1) { if (_depth > 1) for (unsigned int s = 1, h = _height / 2, d = _depth / 2; h && d && s < nb_scales; ++s, h /= 2, d /= 2) res.draw_image( res.get_crop(0, 0, 0, 0, h - 1, d - 1) .haar(false, 1)); else for (unsigned int s = 1, h = _height / 2; h && s < nb_scales; ++s, h /= 2) res.draw_image( res.get_crop(0, 0, 0, 0, h - 1, 0) .haar(false, 1)); } else { if (_depth > 1) for (unsigned int s = 1, d = _depth / 2; d && s < nb_scales; ++s, d /= 2) res.draw_image( res.get_crop(0, 0, 0, 0, 0, d - 1) .haar(false, 1)); else return *this; } } } return res; } return *this; } //! Compute 1D Fast Fourier Transform, along a specified axis. /** \param axis Axis along which the FFT is computed. \param is_inverse Tells if the forward (\c false) or inverse (\c true) FFT is computed. **/ CImgList get_FFT(const char axis, const bool is_inverse = false) const { CImgList res(*this, CImg()); CImg::FFT(res[0], res[1], axis, is_inverse); return res; } //! Compute n-D Fast Fourier Transform. /* \param is_inverse Tells if the forward (\c false) or inverse (\c true) FFT is computed. **/ CImgList get_FFT(const bool is_inverse = false) const { CImgList res(*this, CImg()); CImg::FFT(res[0], res[1], is_inverse); return res; } //! Compute 1D Fast Fourier Transform, along a specified axis. /** \param[in,out] real Real part of the pixel values. \param[in,out] imag Imaginary part of the pixel values. \param axis Axis along which the FFT is computed. \param is_inverse Tells if the forward (\c false) or inverse (\c true) FFT is computed. **/ static void FFT(CImg& real, CImg& imag, const char axis, const bool is_inverse = false, const unsigned int nb_threads = 0) { if (!real) throw CImgInstanceException( "CImg<%s>::FFT(): Specified real part is empty.", pixel_type()); if (!imag) imag.assign(real._width, real._height, real._depth, real._spectrum, (T)0); if (!real.is_sameXYZC(imag)) throw CImgInstanceException( "CImg<%s>::FFT(): Specified real part (%u,%u,%u,%u,%p) and " "imaginary part (%u,%u,%u,%u,%p) have different dimensions.", pixel_type(), real._width, real._height, real._depth, real._spectrum, real._data, imag._width, imag._height, imag._depth, imag._spectrum, imag._data); const char _axis = cimg::lowercase(axis); if (_axis != 'x' && _axis != 'y' && _axis != 'z') throw CImgArgumentException( "CImgList<%s>::FFT(): Invalid specified axis '%c' for real and " "imaginary parts " "(%u,%u,%u,%u) " "(should be { x | y | z }).", pixel_type(), axis, real._width, real._height, real._depth, real._spectrum); cimg::unused(nb_threads); #ifdef cimg_use_fftw3 cimg::mutex(12); #ifndef cimg_use_fftw3_singlethread fftw_plan_with_nthreads(nb_threads ? nb_threads : cimg::nb_cpus()); #endif fftw_complex* data_in = (fftw_complex*)fftw_malloc( sizeof(fftw_complex) * real._width * real._height * real._depth); if (!data_in) throw CImgInstanceException( "CImgList<%s>::FFT(): Failed to allocate memory (%s) " "for computing FFT of image (%u,%u,%u,%u) along the X-axis.", pixel_type(), cimg::strbuffersize(sizeof(fftw_complex) * real._width), real._width, real._height, real._depth, real._spectrum); double* const ptrf = (double*)data_in; fftw_plan data_plan = _axis == 'x' ? fftw_plan_many_dft( 1, (int*)&real._width, real.height() * real.depth(), data_in, 0, 1, real.width(), data_in, 0, 1, real.width(), is_inverse ? FFTW_BACKWARD : FFTW_FORWARD, FFTW_ESTIMATE) : _axis == 'y' ? fftw_plan_many_dft( 1, (int*)&real._height, real.width() * real.depth(), data_in, 0, real.width(), 1, data_in, 0, real.width(), 1, is_inverse ? FFTW_BACKWARD : FFTW_FORWARD, FFTW_ESTIMATE) : fftw_plan_many_dft( 1, (int*)&real._depth, real.width() * real.height(), data_in, 0, real.width() * real.height(), 1, data_in, 0, real.width() * real.height(), 1, is_inverse ? FFTW_BACKWARD : FFTW_FORWARD, FFTW_ESTIMATE); cimg_forC(real, c) { CImg realc = real.get_shared_channel(c), imagc = imag.get_shared_channel(c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) cimg_rofoff(realc,i) { const ulongT i2 = 2 * i; ptrf[i2] = (double)realc[i]; ptrf[i2 + 1] = (double)imagc[i]; } fftw_execute(data_plan); if (is_inverse) { const double a = 1.0 / (_axis == 'x' ? real.width() : _axis == 'y' ? real.height() : real.depth()); cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) cimg_rofoff(realc,i) { const ulongT i2 = 2 * i; realc[i] = (T)(a * ptrf[i2]); imagc[i] = (T)(a * ptrf[i2 + 1]); } } else cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) cimg_rofoff(realc,i) { const ulongT i2 = 2 * i; realc[i] = (T)ptrf[i2]; imagc[i] = (T)ptrf[i2 + 1]; } } fftw_destroy_plan(data_plan); fftw_free(data_in); #ifndef cimg_use_fftw3_singlethread fftw_cleanup_threads(); #endif cimg::mutex(12, 0); #else switch (_axis) { case 'x': { // Fourier along X, using built-in functions const unsigned int N = real._width, N2 = N >> 1; if (((N - 1) & N) && N != 1) throw CImgInstanceException( "CImgList<%s>::FFT(): Specified real and imaginary " "parts (%u,%u,%u,%u) " "have non 2^N dimension along the X-axis.", pixel_type(), real._width, real._height, real._depth, real._spectrum); for (unsigned int i = 0, j = 0; i < N2; ++i) { if (j > i) cimg_forYZC(real, y, z, c) { cimg::swap(real(i, y, z, c), real(j, y, z, c)); cimg::swap(imag(i, y, z, c), imag(j, y, z, c)); if (j < N2) { const unsigned int ri = N - 1 - i, rj = N - 1 - j; cimg::swap(real(ri, y, z, c), real(rj, y, z, c)); cimg::swap(imag(ri, y, z, c), imag(rj, y, z, c)); } } for (unsigned int m = N, n = N2; (j += n) >= m; j -= m, m = n, n >>= 1) { } } for (unsigned int delta = 2; delta <= N; delta <<= 1) { const unsigned int delta2 = delta >> 1; for (unsigned int i = 0; i < N; i += delta) { float wr = 1, wi = 0; const float angle = (float)((is_inverse ? +1 : -1) * 2 * cimg::PI / delta), ca = (float)std::cos(angle), sa = (float)std::sin(angle); for (unsigned int k = 0; k < delta2; ++k) { const unsigned int j = i + k, nj = j + delta2; cimg_forYZC(real, y, z, c) { T &ir = real(j, y, z, c), &ii = imag(j, y, z, c), &nir = real(nj, y, z, c), &nii = imag(nj, y, z, c); const float tmpr = (float)(wr * nir - wi * nii), tmpi = (float)(wr * nii + wi * nir); nir = (T)(ir - tmpr); nii = (T)(ii - tmpi); ir += (T)tmpr; ii += (T)tmpi; } const float nwr = wr * ca - wi * sa; wi = wi * ca + wr * sa; wr = nwr; } } } if (is_inverse) { real /= N; imag /= N; } } break; case 'y': { // Fourier along Y, using built-in functions const unsigned int N = real._height, N2 = N >> 1; if (((N - 1) & N) && N != 1) throw CImgInstanceException( "CImgList<%s>::FFT(): Specified real and imaginary " "parts (%u,%u,%u,%u) " "have non 2^N dimension along the Y-axis.", pixel_type(), real._width, real._height, real._depth, real._spectrum); for (unsigned int i = 0, j = 0; i < N2; ++i) { if (j > i) cimg_forXZC(real, x, z, c) { cimg::swap(real(x, i, z, c), real(x, j, z, c)); cimg::swap(imag(x, i, z, c), imag(x, j, z, c)); if (j < N2) { const unsigned int ri = N - 1 - i, rj = N - 1 - j; cimg::swap(real(x, ri, z, c), real(x, rj, z, c)); cimg::swap(imag(x, ri, z, c), imag(x, rj, z, c)); } } for (unsigned int m = N, n = N2; (j += n) >= m; j -= m, m = n, n >>= 1) { } } for (unsigned int delta = 2; delta <= N; delta <<= 1) { const unsigned int delta2 = (delta >> 1); for (unsigned int i = 0; i < N; i += delta) { float wr = 1, wi = 0; const float angle = (float)((is_inverse ? +1 : -1) * 2 * cimg::PI / delta), ca = (float)std::cos(angle), sa = (float)std::sin(angle); for (unsigned int k = 0; k < delta2; ++k) { const unsigned int j = i + k, nj = j + delta2; cimg_forXZC(real, x, z, c) { T &ir = real(x, j, z, c), &ii = imag(x, j, z, c), &nir = real(x, nj, z, c), &nii = imag(x, nj, z, c); const float tmpr = (float)(wr * nir - wi * nii), tmpi = (float)(wr * nii + wi * nir); nir = (T)(ir - tmpr); nii = (T)(ii - tmpi); ir += (T)tmpr; ii += (T)tmpi; } const float nwr = wr * ca - wi * sa; wi = wi * ca + wr * sa; wr = nwr; } } } if (is_inverse) { real /= N; imag /= N; } } break; default: { // Fourier along Z, using built-in functions const unsigned int N = real._depth, N2 = N >> 1; if (((N - 1) & N) && N != 1) throw CImgInstanceException( "CImgList<%s>::FFT(): Specified real and imaginary " "parts (%u,%u,%u,%u) " "have non 2^N dimension along the Z-axis.", pixel_type(), real._width, real._height, real._depth, real._spectrum); for (unsigned int i = 0, j = 0; i < N2; ++i) { if (j > i) cimg_forXYC(real, x, y, c) { cimg::swap(real(x, y, i, c), real(x, y, j, c)); cimg::swap(imag(x, y, i, c), imag(x, y, j, c)); if (j < N2) { const unsigned int ri = N - 1 - i, rj = N - 1 - j; cimg::swap(real(x, y, ri, c), real(x, y, rj, c)); cimg::swap(imag(x, y, ri, c), imag(x, y, rj, c)); } } for (unsigned int m = N, n = N2; (j += n) >= m; j -= m, m = n, n >>= 1) { } } for (unsigned int delta = 2; delta <= N; delta <<= 1) { const unsigned int delta2 = (delta >> 1); for (unsigned int i = 0; i < N; i += delta) { float wr = 1, wi = 0; const float angle = (float)((is_inverse ? +1 : -1) * 2 * cimg::PI / delta), ca = (float)std::cos(angle), sa = (float)std::sin(angle); for (unsigned int k = 0; k < delta2; ++k) { const unsigned int j = i + k, nj = j + delta2; cimg_forXYC(real, x, y, c) { T &ir = real(x, y, j, c), &ii = imag(x, y, j, c), &nir = real(x, y, nj, c), &nii = imag(x, y, nj, c); const float tmpr = (float)(wr * nir - wi * nii), tmpi = (float)(wr * nii + wi * nir); nir = (T)(ir - tmpr); nii = (T)(ii - tmpi); ir += (T)tmpr; ii += (T)tmpi; } const float nwr = wr * ca - wi * sa; wi = wi * ca + wr * sa; wr = nwr; } } } if (is_inverse) { real /= N; imag /= N; } } break; } #endif } //! Compute n-D Fast Fourier Transform. /** \param[in,out] real Real part of the pixel values. \param[in,out] imag Imaginary part of the pixel values. \param is_inverse Tells if the forward (\c false) or inverse (\c true) FFT is computed. \param nb_threads Number of parallel threads used for the computation. Use \c 0 to set this to the number of available cpus. **/ static void FFT(CImg& real, CImg& imag, const bool is_inverse = false, const unsigned int nb_threads = 0) { if (!real) throw CImgInstanceException( "CImgList<%s>::FFT(): Empty specified real part.", pixel_type()); if (!imag) imag.assign(real._width, real._height, real._depth, real._spectrum, (T)0); if (!real.is_sameXYZC(imag)) throw CImgInstanceException( "CImgList<%s>::FFT(): Specified real part (%u,%u,%u,%u,%p) and " "imaginary part (%u,%u,%u,%u,%p) have different dimensions.", pixel_type(), real._width, real._height, real._depth, real._spectrum, real._data, imag._width, imag._height, imag._depth, imag._spectrum, imag._data); cimg::unused(nb_threads); #ifdef cimg_use_fftw3 cimg::mutex(12); #ifndef cimg_use_fftw3_singlethread fftw_plan_with_nthreads(nb_threads ? nb_threads : cimg::nb_cpus()); #endif fftw_complex* data_in = (fftw_complex*)fftw_malloc( sizeof(fftw_complex) * real._width * real._height * real._depth); if (!data_in) throw CImgInstanceException( "CImgList<%s>::FFT(): Failed to allocate memory (%s) " "for computing FFT of image (%u,%u,%u,%u).", pixel_type(), cimg::strbuffersize(sizeof(fftw_complex) * real._width * real._height * real._depth * real._spectrum), real._width, real._height, real._depth, real._spectrum); double* const ptrf = (double*)data_in; fftw_plan data_plan = real._depth > 1 ? fftw_plan_dft_3d( real._depth, real._height, real._width, data_in, data_in, is_inverse ? FFTW_BACKWARD : FFTW_FORWARD, FFTW_ESTIMATE) : real._height > 1 ? fftw_plan_dft_2d( real._height, real._width, data_in, data_in, is_inverse ? FFTW_BACKWARD : FFTW_FORWARD, FFTW_ESTIMATE) : fftw_plan_dft_1d( real._width, data_in, data_in, is_inverse ? FFTW_BACKWARD : FFTW_FORWARD, FFTW_ESTIMATE); cimg_forC(real, c) { CImg realc = real.get_shared_channel(c), imagc = imag.get_shared_channel(c); cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) cimg_rofoff(realc,i) { const ulongT i2 = 2 * i; ptrf[i2] = (double)realc[i]; ptrf[i2 + 1] = (double)imagc[i]; } fftw_execute(data_plan); if (is_inverse) { const double a = 1.0 / (real.width() * real.height() * real.depth()); cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) cimg_rofoff(realc,i) { const ulongT i2 = 2 * i; realc[i] = (T)(a * ptrf[i2]); imagc[i] = (T)(a * ptrf[i2 + 1]); } } else cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) cimg_rofoff(realc,i) { const ulongT i2 = 2 * i; realc[i] = (T)ptrf[i2]; imagc[i] = (T)ptrf[i2 + 1]; } } fftw_destroy_plan(data_plan); fftw_free(data_in); #ifndef cimg_use_fftw3_singlethread fftw_cleanup_threads(); #endif cimg::mutex(12, 0); #else if (real._depth > 1) FFT(real, imag, 'z', is_inverse); if (real._height > 1) FFT(real, imag, 'y', is_inverse); if (real._width > 1) FFT(real, imag, 'x', is_inverse); #endif } //@} //------------------------------------- // //! \name 3D Objects Management //@{ //------------------------------------- //! Shift 3D object's vertices. /** \param tx X-coordinate of the 3D displacement vector. \param ty Y-coordinate of the 3D displacement vector. \param tz Z-coordinate of the 3D displacement vector. **/ CImg& shift_object3d(const float tx, const float ty = 0, const float tz = 0) { if (_height != 3 || _depth > 1 || _spectrum > 1) throw CImgInstanceException( _cimg_instance "shift_object3d(): Instance is not a set of 3D vertices.", cimg_instance); get_shared_row(0) += tx; get_shared_row(1) += ty; get_shared_row(2) += tz; return *this; } //! Shift 3D object's vertices \newinstance. CImg get_shift_object3d(const float tx, const float ty = 0, const float tz = 0) const { return CImg(*this, false).shift_object3d(tx, ty, tz); } //! Shift 3D object's vertices, so that it becomes centered. /** \note The object center is computed as its barycenter. **/ CImg& shift_object3d() { if (_height != 3 || _depth > 1 || _spectrum > 1) throw CImgInstanceException( _cimg_instance "shift_object3d(): Instance is not a set of 3D vertices.", cimg_instance); CImg xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2); float xm, xM = (float)xcoords.max_min(xm), ym, yM = (float)ycoords.max_min(ym), zm, zM = (float)zcoords.max_min(zm); xcoords -= (xm + xM) / 2; ycoords -= (ym + yM) / 2; zcoords -= (zm + zM) / 2; return *this; } //! Shift 3D object's vertices, so that it becomes centered \newinstance. CImg get_shift_object3d() const { return CImg(*this, false).shift_object3d(); } //! Resize 3D object. /** \param sx Width of the 3D object's bounding box. \param sy Height of the 3D object's bounding box. \param sz Depth of the 3D object's bounding box. **/ CImg& resize_object3d(const float sx, const float sy = -100, const float sz = -100) { if (_height != 3 || _depth > 1 || _spectrum > 1) throw CImgInstanceException( _cimg_instance "resize_object3d(): Instance is not a set of 3D vertices.", cimg_instance); CImg xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2); float xm, xM = (float)xcoords.max_min(xm), ym, yM = (float)ycoords.max_min(ym), zm, zM = (float)zcoords.max_min(zm); if (xm < xM) { if (sx > 0) xcoords *= sx / (xM - xm); else xcoords *= -sx / 100; } if (ym < yM) { if (sy > 0) ycoords *= sy / (yM - ym); else ycoords *= -sy / 100; } if (zm < zM) { if (sz > 0) zcoords *= sz / (zM - zm); else zcoords *= -sz / 100; } return *this; } //! Resize 3D object \newinstance. CImg get_resize_object3d(const float sx, const float sy = -100, const float sz = -100) const { return CImg(*this, false).resize_object3d(sx, sy, sz); } //! Resize 3D object to unit size. CImg resize_object3d() { if (_height != 3 || _depth > 1 || _spectrum > 1) throw CImgInstanceException( _cimg_instance "resize_object3d(): Instance is not a set of 3D vertices.", cimg_instance); CImg xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2); float xm, xM = (float)xcoords.max_min(xm), ym, yM = (float)ycoords.max_min(ym), zm, zM = (float)zcoords.max_min(zm); const float dx = xM - xm, dy = yM - ym, dz = zM - zm, dmax = cimg::max(dx, dy, dz); if (dmax > 0) { xcoords /= dmax; ycoords /= dmax; zcoords /= dmax; } return *this; } //! Resize 3D object to unit size \newinstance. CImg get_resize_object3d() const { return CImg(*this, false).resize_object3d(); } //! Merge two 3D objects together. /** \param[in,out] primitives Primitives data of the current 3D object. \param obj_vertices Vertices data of the additional 3D object. \param obj_primitives Primitives data of the additional 3D object. **/ template CImg& append_object3d(CImgList& primitives, const CImg& obj_vertices, const CImgList& obj_primitives) { if (!obj_vertices || !obj_primitives) return *this; if (obj_vertices._height != 3 || obj_vertices._depth > 1 || obj_vertices._spectrum > 1) throw CImgInstanceException( _cimg_instance "append_object3d(): Specified vertice image (%u,%u,%u,%u,%p) " "is not a " "set of 3D vertices.", cimg_instance, obj_vertices._width, obj_vertices._height, obj_vertices._depth, obj_vertices._spectrum, obj_vertices._data); if (is_empty()) { primitives.assign(obj_primitives); return assign(obj_vertices); } if (_height != 3 || _depth > 1 || _spectrum > 1) throw CImgInstanceException( _cimg_instance "append_object3d(): Instance is not a set of 3D vertices.", cimg_instance); const unsigned int P = _width; append(obj_vertices, 'x'); const unsigned int N = primitives._width; primitives.insert(obj_primitives); for (unsigned int i = N; i < primitives._width; ++i) { CImg& p = primitives[i]; switch (p.size()) { case 1: p[0] += P; break; // Point case 5: p[0] += P; p[1] += P; break; // Sphere case 2: case 6: p[0] += P; p[1] += P; break; // Segment case 3: case 9: p[0] += P; p[1] += P; p[2] += P; break; // Triangle case 4: case 12: p[0] += P; p[1] += P; p[2] += P; p[3] += P; break; // Rectangle } } return *this; } //! Texturize primitives of a 3D object. /** \param[in,out] primitives Primitives data of the 3D object. \param[in,out] colors Colors data of the 3D object. \param texture Texture image to map to 3D object. \param coords Texture-mapping coordinates. **/ template const CImg& texturize_object3d( CImgList& primitives, CImgList& colors, const CImg& texture, const CImg& coords = CImg::const_empty()) const { if (is_empty()) return *this; if (_height != 3) throw CImgInstanceException(_cimg_instance "texturize_object3d(): image instance " "is not a set of 3D points.", cimg_instance); if (coords && (coords._width != _width || coords._height != 2)) throw CImgArgumentException( _cimg_instance "texturize_object3d(): Invalid specified texture coordinates " "(%u,%u,%u,%u,%p).", cimg_instance, coords._width, coords._height, coords._depth, coords._spectrum, coords._data); CImg _coords; if (!coords) { // If no texture coordinates specified, do a default // XY-projection _coords.assign(_width, 2); float xmin, xmax = (float)get_shared_row(0).max_min(xmin), ymin, ymax = (float)get_shared_row(1).max_min(ymin), dx = xmax > xmin ? xmax - xmin : 1, dy = ymax > ymin ? ymax - ymin : 1; cimg_forX(*this, p) { _coords(p, 0) = (int)(((*this)(p, 0) - xmin) * texture._width / dx); _coords(p, 1) = (int)(((*this)(p, 1) - ymin) * texture._height / dy); } } else _coords = coords; int texture_ind = -1; cimglist_for(primitives, l) { CImg& p = primitives[l]; const unsigned int siz = p.size(); switch (siz) { case 1: { // Point const unsigned int i0 = (unsigned int)p[0]; const int x0 = _coords(i0, 0), y0 = _coords(i0, 1); texture .get_vector_at(x0 <= 0 ? 0 : x0 >= texture.width() ? texture.width() - 1 : x0, y0 <= 0 ? 0 : y0 >= texture.height() ? texture.height() - 1 : y0) .move_to(colors[l]); } break; case 2: case 6: { // Line const unsigned int i0 = (unsigned int)p[0], i1 = (unsigned int)p[1]; const int x0 = _coords(i0, 0), y0 = _coords(i0, 1), x1 = _coords(i1, 0), y1 = _coords(i1, 1); if (texture_ind < 0) colors[texture_ind = l].assign(texture, false); else colors[l].assign(colors[texture_ind], true); CImg::vector(i0, i1, x0, y0, x1, y1).move_to(p); } break; case 3: case 9: { // Triangle const unsigned int i0 = (unsigned int)p[0], i1 = (unsigned int)p[1], i2 = (unsigned int)p[2]; const int x0 = _coords(i0, 0), y0 = _coords(i0, 1), x1 = _coords(i1, 0), y1 = _coords(i1, 1), x2 = _coords(i2, 0), y2 = _coords(i2, 1); if (texture_ind < 0) colors[texture_ind = l].assign(texture, false); else colors[l].assign(colors[texture_ind], true); CImg::vector(i0, i1, i2, x0, y0, x1, y1, x2, y2) .move_to(p); } break; case 4: case 12: { // Quadrangle const unsigned int i0 = (unsigned int)p[0], i1 = (unsigned int)p[1], i2 = (unsigned int)p[2], i3 = (unsigned int)p[3]; const int x0 = _coords(i0, 0), y0 = _coords(i0, 1), x1 = _coords(i1, 0), y1 = _coords(i1, 1), x2 = _coords(i2, 0), y2 = _coords(i2, 1), x3 = _coords(i3, 0), y3 = _coords(i3, 1); if (texture_ind < 0) colors[texture_ind = l].assign(texture, false); else colors[l].assign(colors[texture_ind], true); CImg::vector(i0, i1, i2, i3, x0, y0, x1, y1, x2, y2, x3, y3) .move_to(p); } break; } } return *this; } //! Generate a 3D elevation of the image instance. /** \param[out] primitives The returned list of the 3D object primitives (template type \e tf should be at least \e unsigned \e int). \param[out] colors The returned list of the 3D object colors. \param elevation The input elevation map. \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). \par Example \code const CImg img("reference.jpg"); CImgList faces3d; CImgList colors3d; const CImg points3d = img.get_elevation3d(faces3d,colors3d,img.get_norm()*0.2); CImg().display_object3d("Elevation3d",points3d,faces3d,colors3d); \endcode \image html ref_elevation3d.jpg **/ template CImg get_elevation3d(CImgList& primitives, CImgList& colors, const CImg& elevation) const { if (!is_sameXY(elevation) || elevation._depth > 1 || elevation._spectrum > 1) throw CImgArgumentException(_cimg_instance "get_elevation3d(): Instance and " "specified elevation (%u,%u,%u,%u,%p) " "have incompatible dimensions.", cimg_instance, elevation._width, elevation._height, elevation._depth, elevation._spectrum, elevation._data); if (is_empty()) return *this; float m, M = (float)max_min(m); if (M == m) ++M; colors.assign(); const unsigned int size_x1 = _width - 1, size_y1 = _height - 1; for (unsigned int y = 0; y < size_y1; ++y) for (unsigned int x = 0; x < size_x1; ++x) { const unsigned char r = (unsigned char)(((*this)(x, y, 0) - m) * 255 / (M - m)), g = (unsigned char)(_spectrum > 1 ? ((*this)(x, y, 1) - m) * 255 / (M - m) : r), b = (unsigned char)(_spectrum > 2 ? ((*this)(x, y, 2) - m) * 255 / (M - m) : _spectrum > 1 ? 0 : r); CImg::vector((tc)r, (tc)g, (tc)b).move_to(colors); } const typename CImg::_functor2d_int func(elevation); return elevation3d(primitives, func, 0, 0, _width - 1.f, _height - 1.f, _width, _height); } //! Generate the 3D projection planes of the image instance. /** \param[out] primitives Primitives data of the returned 3D object. \param[out] colors Colors data of the returned 3D object. \param x0 X-coordinate of the projection point. \param y0 Y-coordinate of the projection point. \param z0 Z-coordinate of the projection point. \param normalize_colors Tells if the created textures have normalized colors. **/ template CImg get_projections3d(CImgList& primitives, CImgList& colors, const unsigned int x0, const unsigned int y0, const unsigned int z0, const bool normalize_colors = false) const { float m = 0, M = 0, delta = 1; if (normalize_colors) { m = (float)min_max(M); delta = 255 / (m == M ? 1 : M - m); } const unsigned int _x0 = (x0 >= _width) ? _width - 1 : x0, _y0 = (y0 >= _height) ? _height - 1 : y0, _z0 = (z0 >= _depth) ? _depth - 1 : z0; CImg img_xy, img_xz, img_yz; if (normalize_colors) { ((get_crop(0, 0, _z0, 0, _width - 1, _height - 1, _z0, _spectrum - 1) -= m) *= delta) .move_to(img_xy); ((get_crop(0, _y0, 0, 0, _width - 1, _y0, _depth - 1, _spectrum - 1) -= m) *= delta) .resize(_width, _depth, 1, -100, -1) .move_to(img_xz); ((get_crop(_x0, 0, 0, 0, _x0, _height - 1, _depth - 1, _spectrum - 1) -= m) *= delta) .resize(_height, _depth, 1, -100, -1) .move_to(img_yz); } else { get_crop(0, 0, _z0, 0, _width - 1, _height - 1, _z0, _spectrum - 1) .move_to(img_xy); get_crop(0, _y0, 0, 0, _width - 1, _y0, _depth - 1, _spectrum - 1) .resize(_width, _depth, 1, -100, -1) .move_to(img_xz); get_crop(_x0, 0, 0, 0, _x0, _height - 1, _depth - 1, _spectrum - 1) .resize(_height, _depth, 1, -100, -1) .move_to(img_yz); } CImg points( 12, 3, 1, 1, 0, _width - 1, _width - 1, 0, 0, _width - 1, _width - 1, 0, _x0, _x0, _x0, _x0, 0, 0, _height - 1, _height - 1, _y0, _y0, _y0, _y0, 0, _height - 1, _height - 1, 0, _z0, _z0, _z0, _z0, 0, 0, _depth - 1, _depth - 1, 0, 0, _depth - 1, _depth - 1); primitives.assign(); CImg::vector(0, 1, 2, 3, 0, 0, img_xy._width - 1, 0, img_xy._width - 1, img_xy._height - 1, 0, img_xy._height - 1) .move_to(primitives); CImg::vector(4, 5, 6, 7, 0, 0, img_xz._width - 1, 0, img_xz._width - 1, img_xz._height - 1, 0, img_xz._height - 1) .move_to(primitives); CImg::vector(8, 9, 10, 11, 0, 0, img_yz._width - 1, 0, img_yz._width - 1, img_yz._height - 1, 0, img_yz._height - 1) .move_to(primitives); colors.assign(); img_xy.move_to(colors); img_xz.move_to(colors); img_yz.move_to(colors); return points; } //! Generate a isoline of the image instance as a 3D object. /** \param[out] primitives The returned list of the 3D object primitives (template type \e tf should be at least \e unsigned \e int). \param isovalue The returned list of the 3D object colors. \param size_x The number of subdivisions along the X-axis. \param size_y The number of subdisivions along the Y-axis. \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). \par Example \code const CImg img("reference.jpg"); CImgList faces3d; const CImg points3d = img.get_isoline3d(faces3d,100); CImg().display_object3d("Isoline3d",points3d,faces3d,colors3d); \endcode \image html ref_isoline3d.jpg **/ template CImg get_isoline3d(CImgList& primitives, const float isovalue, const int size_x = -100, const int size_y = -100) const { if (_spectrum > 1) throw CImgInstanceException( _cimg_instance "get_isoline3d(): Instance is not a scalar image.", cimg_instance); if (_depth > 1) throw CImgInstanceException( _cimg_instance "get_isoline3d(): Instance is not a 2D image.", cimg_instance); primitives.assign(); if (is_empty()) return *this; CImg vertices; if ((size_x == -100 && size_y == -100) || (size_x == width() && size_y == height())) { const _functor2d_int func(*this); vertices = isoline3d(primitives, func, isovalue, 0, 0, width() - 1.f, height() - 1.f, width(), height()); } else { const _functor2d_float func(*this); vertices = isoline3d(primitives, func, isovalue, 0, 0, width() - 1.f, height() - 1.f, size_x, size_y); } return vertices; } //! Generate an isosurface of the image instance as a 3D object. /** \param[out] primitives The returned list of the 3D object primitives (template type \e tf should be at least \e unsigned \e int). \param isovalue The returned list of the 3D object colors. \param size_x Number of subdivisions along the X-axis. \param size_y Number of subdisivions along the Y-axis. \param size_z Number of subdisivions along the Z-axis. \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). \par Example \code const CImg img = CImg("reference.jpg").resize(-100,-100,20); CImgList faces3d; const CImg points3d = img.get_isosurface3d(faces3d,100); CImg().display_object3d("Isosurface3d",points3d,faces3d,colors3d); \endcode \image html ref_isosurface3d.jpg **/ template CImg get_isosurface3d(CImgList& primitives, const float isovalue, const int size_x = -100, const int size_y = -100, const int size_z = -100) const { if (_spectrum > 1) throw CImgInstanceException( _cimg_instance "get_isosurface3d(): Instance is not a scalar image.", cimg_instance); primitives.assign(); if (is_empty()) return *this; CImg vertices; if ((size_x == -100 && size_y == -100 && size_z == -100) || (size_x == width() && size_y == height() && size_z == depth())) { const _functor3d_int func(*this); vertices = isosurface3d(primitives, func, isovalue, 0, 0, 0, width() - 1.f, height() - 1.f, depth() - 1.f, width(), height(), depth()); } else { const _functor3d_float func(*this); vertices = isosurface3d(primitives, func, isovalue, 0, 0, 0, width() - 1.f, height() - 1.f, depth() - 1.f, size_x, size_y, size_z); } return vertices; } //! Compute 3D elevation of a function as a 3D object. /** \param[out] primitives Primitives data of the resulting 3D object. \param func Elevation function. Is of type float (*func)(const float x,const float y). \param x0 X-coordinate of the starting point. \param y0 Y-coordinate of the starting point. \param x1 X-coordinate of the ending point. \param y1 Y-coordinate of the ending point. \param size_x Resolution of the function along the X-axis. \param size_y Resolution of the function along the Y-axis. **/ template static CImg elevation3d(CImgList& primitives, const tfunc& func, const float x0, const float y0, const float x1, const float y1, const int size_x = 256, const int size_y = 256) { const float nx0 = x0 < x1 ? x0 : x1, ny0 = y0 < y1 ? y0 : y1, nx1 = x0 < x1 ? x1 : x0, ny1 = y0 < y1 ? y1 : y0; const unsigned int _nsize_x = (unsigned int)(size_x >= 0 ? size_x : (nx1 - nx0) * -size_x / 100), nsize_x = _nsize_x ? _nsize_x : 1, nsize_x1 = nsize_x - 1, _nsize_y = (unsigned int)(size_y >= 0 ? size_y : (ny1 - ny0) * -size_y / 100), nsize_y = _nsize_y ? _nsize_y : 1, nsize_y1 = nsize_y - 1; if (nsize_x < 2 || nsize_y < 2) throw CImgArgumentException( "CImg<%s>::elevation3d(): Invalid specified size (%d,%d).", pixel_type(), nsize_x, nsize_y); CImg vertices(nsize_x * nsize_y, 3); floatT *ptr_x = vertices.data(0, 0), *ptr_y = vertices.data(0, 1), *ptr_z = vertices.data(0, 2); for (unsigned int y = 0; y < nsize_y; ++y) { const float Y = ny0 + y * (ny1 - ny0) / nsize_y1; for (unsigned int x = 0; x < nsize_x; ++x) { const float X = nx0 + x * (nx1 - nx0) / nsize_x1; *(ptr_x++) = (float)x; *(ptr_y++) = (float)y; *(ptr_z++) = (float)func(X, Y); } } primitives.assign(nsize_x1 * nsize_y1, 1, 4); for (unsigned int p = 0, y = 0; y < nsize_y1; ++y) { const unsigned int yw = y * nsize_x; for (unsigned int x = 0; x < nsize_x1; ++x) { const unsigned int xpyw = x + yw, xpyww = xpyw + nsize_x; primitives[p++].fill(xpyw, xpyww, xpyww + 1, xpyw + 1); } } return vertices; } //! Compute 3D elevation of a function, as a 3D object \overloading. template static CImg elevation3d(CImgList& primitives, const char* const expression, const float x0, const float y0, const float x1, const float y1, const int size_x = 256, const int size_y = 256) { const _functor2d_expr func(expression); return elevation3d(primitives, func, x0, y0, x1, y1, size_x, size_y); } //! Compute 0-isolines of a function, as a 3D object. /** \param[out] primitives Primitives data of the resulting 3D object. \param func Elevation function. Is of type float (*func)(const float x,const float y). \param isovalue Isovalue to extract from function. \param x0 X-coordinate of the starting point. \param y0 Y-coordinate of the starting point. \param x1 X-coordinate of the ending point. \param y1 Y-coordinate of the ending point. \param size_x Resolution of the function along the X-axis. \param size_y Resolution of the function along the Y-axis. \note Use the marching squares algorithm for extracting the isolines. **/ template static CImg isoline3d(CImgList& primitives, const tfunc& func, const float isovalue, const float x0, const float y0, const float x1, const float y1, const int size_x = 256, const int size_y = 256) { static const unsigned int edges[16] = {0x0, 0x9, 0x3, 0xa, 0x6, 0xf, 0x5, 0xc, 0xc, 0x5, 0xf, 0x6, 0xa, 0x3, 0x9, 0x0}; static const int segments[16][4] = { {-1, -1, -1, -1}, {0, 3, -1, -1}, {0, 1, -1, -1}, {1, 3, -1, -1}, {1, 2, -1, -1}, {0, 1, 2, 3}, {0, 2, -1, -1}, {2, 3, -1, -1}, {2, 3, -1, -1}, {0, 2, -1, -1}, {0, 3, 1, 2}, {1, 2, -1, -1}, {1, 3, -1, -1}, {0, 1, -1, -1}, {0, 3, -1, -1}, {-1, -1, -1, -1}}; const unsigned int _nx = (unsigned int)(size_x >= 0 ? size_x : cimg::round((x1 - x0) * -size_x / 100 + 1)), _ny = (unsigned int)(size_y >= 0 ? size_y : cimg::round((y1 - y0) * -size_y / 100 + 1)), nx = _nx ? _nx : 1, ny = _ny ? _ny : 1, nxm1 = nx - 1, nym1 = ny - 1; primitives.assign(); if (!nxm1 || !nym1) return CImg(); const float dx = (x1 - x0) / nxm1, dy = (y1 - y0) / nym1; CImgList vertices; CImg indices1(nx, 1, 1, 2, -1), indices2(nx, 1, 1, 2); CImg values1(nx), values2(nx); float X = x0, Y = y0, nX = X + dx, nY = Y + dy; // Fill first line with values cimg_forX(values1, x) { values1(x) = (float)func(X, Y); X += dx; } // Run the marching squares algorithm for (unsigned int yi = 0, nyi = 1; yi < nym1; ++yi, ++nyi, Y = nY, nY += dy) { X = x0; nX = X + dx; indices2.fill(-1); for (unsigned int xi = 0, nxi = 1; xi < nxm1; ++xi, ++nxi, X = nX, nX += dx) { // Determine square configuration const float val0 = values1(xi), val1 = values1(nxi), val2 = values2(nxi) = (float)func(nX, nY), val3 = values2(xi) = (float)func(X, nY); const unsigned int configuration = (val0 < isovalue ? 1U : 0U) | (val1 < isovalue ? 2U : 0U) | (val2 < isovalue ? 4U : 0U) | (val3 < isovalue ? 8U : 0U), edge = edges[configuration]; // Compute intersection vertices if (edge) { if ((edge & 1) && indices1(xi, 0) < 0) { const float Xi = X + (isovalue - val0) * dx / (val1 - val0); indices1(xi, 0) = vertices.width(); CImg::vector(Xi, Y, 0).move_to(vertices); } if ((edge & 2) && indices1(nxi, 1) < 0) { const float Yi = Y + (isovalue - val1) * dy / (val2 - val1); indices1(nxi, 1) = vertices.width(); CImg::vector(nX, Yi, 0).move_to(vertices); } if ((edge & 4) && indices2(xi, 0) < 0) { const float Xi = X + (isovalue - val3) * dx / (val2 - val3); indices2(xi, 0) = vertices.width(); CImg::vector(Xi, nY, 0).move_to(vertices); } if ((edge & 8) && indices1(xi, 1) < 0) { const float Yi = Y + (isovalue - val0) * dy / (val3 - val0); indices1(xi, 1) = vertices.width(); CImg::vector(X, Yi, 0).move_to(vertices); } // Create segments for (const int* segment = segments[configuration]; *segment != -1;) { const unsigned int p0 = (unsigned int)*(segment++), p1 = (unsigned int)*(segment++); const tf i0 = (tf)(_isoline3d_index(p0, indices1, indices2, xi, nxi)), i1 = (tf)(_isoline3d_index(p1, indices1, indices2, xi, nxi)); CImg::vector(i0, i1).move_to(primitives); } } } values1.swap(values2); indices1.swap(indices2); } return vertices > 'x'; } //! Compute isolines of a function, as a 3D object \overloading. template static CImg isoline3d(CImgList& primitives, const char* const expression, const float isovalue, const float x0, const float y0, const float x1, const float y1, const int size_x = 256, const int size_y = 256) { const _functor2d_expr func(expression); return isoline3d(primitives, func, isovalue, x0, y0, x1, y1, size_x, size_y); } template static int _isoline3d_index(const unsigned int edge, const CImg& indices1, const CImg& indices2, const unsigned int x, const unsigned int nx) { switch (edge) { case 0: return (int)indices1(x, 0); case 1: return (int)indices1(nx, 1); case 2: return (int)indices2(x, 0); case 3: return (int)indices1(x, 1); } return 0; } //! Compute isosurface of a function, as a 3D object. /** \param[out] primitives Primitives data of the resulting 3D object. \param func Implicit function. Is of type float (*func)(const float x, const float y, const float z). \param isovalue Isovalue to extract. \param x0 X-coordinate of the starting point. \param y0 Y-coordinate of the starting point. \param z0 Z-coordinate of the starting point. \param x1 X-coordinate of the ending point. \param y1 Y-coordinate of the ending point. \param z1 Z-coordinate of the ending point. \param size_x Resolution of the elevation function along the X-axis. \param size_y Resolution of the elevation function along the Y-axis. \param size_z Resolution of the elevation function along the Z-axis. \note Use the marching cubes algorithm for extracting the isosurface. **/ template static CImg isosurface3d( CImgList& primitives, const tfunc& func, const float isovalue, const float x0, const float y0, const float z0, const float x1, const float y1, const float z1, const int size_x = 32, const int size_y = 32, const int size_z = 32) { static const unsigned int edges[256] = { 0x000, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, 0x190, 0x99, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 0x230, 0x339, 0x33, 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 0x3a0, 0x2a9, 0x1a3, 0xaa, 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 0x460, 0x569, 0x663, 0x76a, 0x66, 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff, 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55, 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0xcc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0xff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66, 0x76a, 0x663, 0x569, 0x460, 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa, 0x1a3, 0x2a9, 0x3a0, 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33, 0x339, 0x230, 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99, 0x190, 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x000}; static const int triangles[256][16] = { {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1}, {3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1}, {3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1}, {3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1}, {9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, {2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1}, {8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1}, {3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1}, {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, {5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1}, {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1}, {9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, {0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, {2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1}, {10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1}, {5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1}, {9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1}, {1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1}, {10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1}, {8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1}, {2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1}, {7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1}, {2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1}, {11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1}, {5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1}, {11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1}, {11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1}, {9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1}, {2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1}, {6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1}, {3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1}, {6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, {10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1}, {6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1}, {8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1}, {7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1}, {3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1}, {0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1}, {9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1}, {8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1}, {5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1}, {0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1}, {6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1}, {10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1}, {10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1}, {8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1}, {1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1}, {0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1}, {10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1}, {3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1}, {6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1}, {9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1}, {8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1}, {3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1}, {6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1}, {0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1}, {10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1}, {10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1}, {2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1}, {7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1}, {7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1}, {2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1}, {1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1}, {11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1}, {8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1}, {0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1}, {7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, {10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, {2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, {6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1}, {7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1}, {2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1}, {10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1}, {10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1}, {0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1}, {7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1}, {6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1}, {8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1}, {9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1}, {6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1}, {4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1}, {10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1}, {8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1}, {0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1}, {1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1}, {8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1}, {10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1}, {4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1}, {10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, {11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1}, {9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, {6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1}, {7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1}, {3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1}, {7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1}, {3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1}, {6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1}, {9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1}, {1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1}, {4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1}, {7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1}, {6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1}, {3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1}, {0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1}, {6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1}, {0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1}, {11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1}, {6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1}, {5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1}, {9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}, {1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1}, {1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1}, {10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1}, {0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1}, {5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1}, {10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1}, {11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1}, {9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1}, {7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1}, {2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1}, {8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1}, {9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1}, {9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1}, {1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1}, {9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1}, {5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1}, {0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1}, {10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1}, {2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1}, {0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1}, {0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1}, {9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1}, {5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1}, {3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1}, {5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1}, {8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1}, {0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1}, {9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1}, {1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1}, {3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1}, {4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1}, {9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1}, {11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1}, {11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1}, {2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1}, {9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1}, {3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1}, {1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1}, {4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1}, {3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1}, {0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1}, {1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}; const unsigned int _nx = (unsigned int)(size_x >= 0 ? size_x : cimg::round((x1 - x0) * -size_x / 100 + 1)), _ny = (unsigned int)(size_y >= 0 ? size_y : cimg::round((y1 - y0) * -size_y / 100 + 1)), _nz = (unsigned int)(size_z >= 0 ? size_z : cimg::round((z1 - z0) * -size_z / 100 + 1)), nx = _nx ? _nx : 1, ny = _ny ? _ny : 1, nz = _nz ? _nz : 1, nxm1 = nx - 1, nym1 = ny - 1, nzm1 = nz - 1; primitives.assign(); if (!nxm1 || !nym1 || !nzm1) return CImg(); const float dx = (x1 - x0) / nxm1, dy = (y1 - y0) / nym1, dz = (z1 - z0) / nzm1; CImgList vertices; CImg indices1(nx, ny, 1, 3, -1), indices2(indices1); CImg values1(nx, ny), values2(nx, ny); float X = 0, Y = 0, Z = 0, nX = 0, nY = 0, nZ = 0; // Fill the first plane with function values Y = y0; cimg_forY(values1, y) { X = x0; cimg_forX(values1, x) { values1(x, y) = (float)func(X, Y, z0); X += dx; } Y += dy; } // Run Marching Cubes algorithm Z = z0; nZ = Z + dz; for (unsigned int zi = 0; zi < nzm1; ++zi, Z = nZ, nZ += dz) { Y = y0; nY = Y + dy; indices2.fill(-1); for (unsigned int yi = 0, nyi = 1; yi < nym1; ++yi, ++nyi, Y = nY, nY += dy) { X = x0; nX = X + dx; for (unsigned int xi = 0, nxi = 1; xi < nxm1; ++xi, ++nxi, X = nX, nX += dx) { // Determine cube configuration const float val0 = values1(xi, yi), val1 = values1(nxi, yi), val2 = values1(nxi, nyi), val3 = values1(xi, nyi), val4 = values2(xi, yi) = (float)func(X, Y, nZ), val5 = values2(nxi, yi) = (float)func(nX, Y, nZ), val6 = values2(nxi, nyi) = (float)func(nX, nY, nZ), val7 = values2(xi, nyi) = (float)func(X, nY, nZ); const unsigned int configuration = (val0 < isovalue ? 1U : 0U) | (val1 < isovalue ? 2U : 0U) | (val2 < isovalue ? 4U : 0U) | (val3 < isovalue ? 8U : 0U) | (val4 < isovalue ? 16U : 0U) | (val5 < isovalue ? 32U : 0U) | (val6 < isovalue ? 64U : 0U) | (val7 < isovalue ? 128U : 0U), edge = edges[configuration]; // Compute intersection vertices if (edge) { if ((edge & 1) && indices1(xi, yi, 0) < 0) { const float Xi = X + (isovalue - val0) * dx / (val1 - val0); indices1(xi, yi, 0) = vertices.width(); CImg::vector(Xi, Y, Z).move_to(vertices); } if ((edge & 2) && indices1(nxi, yi, 1) < 0) { const float Yi = Y + (isovalue - val1) * dy / (val2 - val1); indices1(nxi, yi, 1) = vertices.width(); CImg::vector(nX, Yi, Z).move_to(vertices); } if ((edge & 4) && indices1(xi, nyi, 0) < 0) { const float Xi = X + (isovalue - val3) * dx / (val2 - val3); indices1(xi, nyi, 0) = vertices.width(); CImg::vector(Xi, nY, Z).move_to(vertices); } if ((edge & 8) && indices1(xi, yi, 1) < 0) { const float Yi = Y + (isovalue - val0) * dy / (val3 - val0); indices1(xi, yi, 1) = vertices.width(); CImg::vector(X, Yi, Z).move_to(vertices); } if ((edge & 16) && indices2(xi, yi, 0) < 0) { const float Xi = X + (isovalue - val4) * dx / (val5 - val4); indices2(xi, yi, 0) = vertices.width(); CImg::vector(Xi, Y, nZ).move_to(vertices); } if ((edge & 32) && indices2(nxi, yi, 1) < 0) { const float Yi = Y + (isovalue - val5) * dy / (val6 - val5); indices2(nxi, yi, 1) = vertices.width(); CImg::vector(nX, Yi, nZ).move_to(vertices); } if ((edge & 64) && indices2(xi, nyi, 0) < 0) { const float Xi = X + (isovalue - val7) * dx / (val6 - val7); indices2(xi, nyi, 0) = vertices.width(); CImg::vector(Xi, nY, nZ).move_to(vertices); } if ((edge & 128) && indices2(xi, yi, 1) < 0) { const float Yi = Y + (isovalue - val4) * dy / (val7 - val4); indices2(xi, yi, 1) = vertices.width(); CImg::vector(X, Yi, nZ).move_to(vertices); } if ((edge & 256) && indices1(xi, yi, 2) < 0) { const float Zi = Z + (isovalue - val0) * dz / (val4 - val0); indices1(xi, yi, 2) = vertices.width(); CImg::vector(X, Y, Zi).move_to(vertices); } if ((edge & 512) && indices1(nxi, yi, 2) < 0) { const float Zi = Z + (isovalue - val1) * dz / (val5 - val1); indices1(nxi, yi, 2) = vertices.width(); CImg::vector(nX, Y, Zi).move_to(vertices); } if ((edge & 1024) && indices1(nxi, nyi, 2) < 0) { const float Zi = Z + (isovalue - val2) * dz / (val6 - val2); indices1(nxi, nyi, 2) = vertices.width(); CImg::vector(nX, nY, Zi).move_to(vertices); } if ((edge & 2048) && indices1(xi, nyi, 2) < 0) { const float Zi = Z + (isovalue - val3) * dz / (val7 - val3); indices1(xi, nyi, 2) = vertices.width(); CImg::vector(X, nY, Zi).move_to(vertices); } // Create triangles for (const int* triangle = triangles[configuration]; *triangle != -1;) { const unsigned int p0 = (unsigned int)*(triangle++), p1 = (unsigned int)*(triangle++), p2 = (unsigned int)*(triangle++); const tf i0 = (tf)(_isosurface3d_index( p0, indices1, indices2, xi, yi, nxi, nyi)), i1 = (tf)(_isosurface3d_index( p1, indices1, indices2, xi, yi, nxi, nyi)), i2 = (tf)(_isosurface3d_index( p2, indices1, indices2, xi, yi, nxi, nyi)); CImg::vector(i0, i2, i1).move_to(primitives); } } } } cimg::swap(values1, values2); cimg::swap(indices1, indices2); } return vertices > 'x'; } //! Compute isosurface of a function, as a 3D object \overloading. template static CImg isosurface3d(CImgList& primitives, const char* const expression, const float isovalue, const float x0, const float y0, const float z0, const float x1, const float y1, const float z1, const int dx = 32, const int dy = 32, const int dz = 32) { const _functor3d_expr func(expression); return isosurface3d(primitives, func, isovalue, x0, y0, z0, x1, y1, z1, dx, dy, dz); } template static int _isosurface3d_index(const unsigned int edge, const CImg& indices1, const CImg& indices2, const unsigned int x, const unsigned int y, const unsigned int nx, const unsigned int ny) { switch (edge) { case 0: return indices1(x, y, 0); case 1: return indices1(nx, y, 1); case 2: return indices1(x, ny, 0); case 3: return indices1(x, y, 1); case 4: return indices2(x, y, 0); case 5: return indices2(nx, y, 1); case 6: return indices2(x, ny, 0); case 7: return indices2(x, y, 1); case 8: return indices1(x, y, 2); case 9: return indices1(nx, y, 2); case 10: return indices1(nx, ny, 2); case 11: return indices1(x, ny, 2); } return 0; } // Define functors for accessing image values (used in previous functions). struct _functor2d_int { const CImg& ref; _functor2d_int(const CImg& pref) : ref(pref) {} float operator()(const float x, const float y) const { return (float)ref((int)x, (int)y); } }; struct _functor2d_float { const CImg& ref; _functor2d_float(const CImg& pref) : ref(pref) {} float operator()(const float x, const float y) const { return (float)ref._linear_atXY(x, y); } }; struct _functor2d_expr { _cimg_math_parser* mp; ~_functor2d_expr() { mp->end(); delete mp; } _functor2d_expr(const char* const expr) : mp(0) { mp = new _cimg_math_parser(expr, 0, CImg::const_empty(), 0); } float operator()(const float x, const float y) const { return (float)(*mp)(x, y, 0, 0); } }; struct _functor3d_int { const CImg& ref; _functor3d_int(const CImg& pref) : ref(pref) {} float operator()(const float x, const float y, const float z) const { return (float)ref((int)x, (int)y, (int)z); } }; struct _functor3d_float { const CImg& ref; _functor3d_float(const CImg& pref) : ref(pref) {} float operator()(const float x, const float y, const float z) const { return (float)ref._linear_atXYZ(x, y, z); } }; struct _functor3d_expr { _cimg_math_parser* mp; ~_functor3d_expr() { mp->end(); delete mp; } _functor3d_expr(const char* const expr) : mp(0) { mp = new _cimg_math_parser(expr, 0, CImg::const_empty(), 0); } float operator()(const float x, const float y, const float z) const { return (float)(*mp)(x, y, z, 0); } }; struct _functor4d_int { const CImg& ref; _functor4d_int(const CImg& pref) : ref(pref) {} float operator()(const float x, const float y, const float z, const unsigned int c) const { return (float)ref((int)x, (int)y, (int)z, c); } }; //! Generate a 3D box object. /** \param[out] primitives The returned list of the 3D object primitives (template type \e tf should be at least \e unsigned \e int). \param size_x The width of the box (dimension along the X-axis). \param size_y The height of the box (dimension along the Y-axis). \param size_z The depth of the box (dimension along the Z-axis). \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). \par Example \code CImgList faces3d; const CImg points3d = CImg::box3d(faces3d,10,20,30); CImg().display_object3d("Box3d",points3d,faces3d); \endcode \image html ref_box3d.jpg **/ template static CImg box3d(CImgList& primitives, const float size_x = 200, const float size_y = 100, const float size_z = 100) { primitives.assign(6, 1, 4, 1, 1, 0, 3, 2, 1, 4, 5, 6, 7, 0, 1, 5, 4, 3, 7, 6, 2, 0, 4, 7, 3, 1, 2, 6, 5); return CImg(8, 3, 1, 1, 0., size_x, size_x, 0., 0., size_x, size_x, 0., 0., 0., size_y, size_y, 0., 0., size_y, size_y, 0., 0., 0., 0., size_z, size_z, size_z, size_z); } //! Generate a 3D cone. /** \param[out] primitives The returned list of the 3D object primitives (template type \e tf should be at least \e unsigned \e int). \param radius The radius of the cone basis. \param size_z The cone's height. \param subdivisions The number of basis angular subdivisions. \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). \par Example \code CImgList faces3d; const CImg points3d = CImg::cone3d(faces3d,50); CImg().display_object3d("Cone3d",points3d,faces3d); \endcode \image html ref_cone3d.jpg **/ template static CImg cone3d(CImgList& primitives, const float radius = 50, const float size_z = 100, const unsigned int subdivisions = 24) { primitives.assign(); if (!subdivisions) return CImg(); CImgList vertices(2, 1, 3, 1, 1, 0., 0., size_z, 0., 0., 0.); for (float delta = 360.f / subdivisions, angle = 0; angle < 360; angle += delta) { const float a = (float)(angle * cimg::PI / 180); CImg::vector((float)(radius * std::cos(a)), (float)(radius * std::sin(a)), 0) .move_to(vertices); } const unsigned int nbr = vertices._width - 2; for (unsigned int p = 0; p < nbr; ++p) { const unsigned int curr = 2 + p, next = 2 + ((p + 1) % nbr); CImg::vector(1, next, curr).move_to(primitives); CImg::vector(0, curr, next).move_to(primitives); } return vertices > 'x'; } //! Generate a 3D cylinder. /** \param[out] primitives The returned list of the 3D object primitives (template type \e tf should be at least \e unsigned \e int). \param radius The radius of the cylinder basis. \param size_z The cylinder's height. \param subdivisions The number of basis angular subdivisions. \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). \par Example \code CImgList faces3d; const CImg points3d = CImg::cylinder3d(faces3d,50); CImg().display_object3d("Cylinder3d",points3d,faces3d); \endcode \image html ref_cylinder3d.jpg **/ template static CImg cylinder3d(CImgList& primitives, const float radius = 50, const float size_z = 100, const unsigned int subdivisions = 24) { primitives.assign(); if (!subdivisions) return CImg(); CImgList vertices(2, 1, 3, 1, 1, 0., 0., 0., 0., 0., size_z); for (float delta = 360.f / subdivisions, angle = 0; angle < 360; angle += delta) { const float a = (float)(angle * cimg::PI / 180); CImg::vector((float)(radius * std::cos(a)), (float)(radius * std::sin(a)), 0.f) .move_to(vertices); CImg::vector((float)(radius * std::cos(a)), (float)(radius * std::sin(a)), size_z) .move_to(vertices); } const unsigned int nbr = (vertices._width - 2) / 2; for (unsigned int p = 0; p < nbr; ++p) { const unsigned int curr = 2 + 2 * p, next = 2 + (2 * ((p + 1) % nbr)); CImg::vector(0, next, curr).move_to(primitives); CImg::vector(1, curr + 1, next + 1).move_to(primitives); CImg::vector(curr, next, next + 1, curr + 1) .move_to(primitives); } return vertices > 'x'; } //! Generate a 3D torus. /** \param[out] primitives The returned list of the 3D object primitives (template type \e tf should be at least \e unsigned \e int). \param radius1 The large radius. \param radius2 The small radius. \param subdivisions1 The number of angular subdivisions for the large radius. \param subdivisions2 The number of angular subdivisions for the small radius. \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). \par Example \code CImgList faces3d; const CImg points3d = CImg::torus3d(faces3d,20,4); CImg().display_object3d("Torus3d",points3d,faces3d); \endcode \image html ref_torus3d.jpg **/ template static CImg torus3d(CImgList& primitives, const float radius1 = 100, const float radius2 = 30, const unsigned int subdivisions1 = 24, const unsigned int subdivisions2 = 12) { primitives.assign(); if (!subdivisions1 || !subdivisions2) return CImg(); CImgList vertices; for (unsigned int v = 0; v < subdivisions1; ++v) { const float beta = (float)(v * 2 * cimg::PI / subdivisions1), xc = radius1 * (float)std::cos(beta), yc = radius1 * (float)std::sin(beta); for (unsigned int u = 0; u < subdivisions2; ++u) { const float alpha = (float)(u * 2 * cimg::PI / subdivisions2), x = xc + radius2 * (float)(std::cos(alpha) * std::cos(beta)), y = yc + radius2 * (float)(std::cos(alpha) * std::sin(beta)), z = radius2 * (float)std::sin(alpha); CImg::vector(x, y, z).move_to(vertices); } } for (unsigned int vv = 0; vv < subdivisions1; ++vv) { const unsigned int nv = (vv + 1) % subdivisions1; for (unsigned int uu = 0; uu < subdivisions2; ++uu) { const unsigned int nu = (uu + 1) % subdivisions2, svv = subdivisions2 * vv, snv = subdivisions2 * nv; CImg::vector(svv + nu, svv + uu, snv + uu, snv + nu) .move_to(primitives); } } return vertices > 'x'; } //! Generate a 3D XY-plane. /** \param[out] primitives The returned list of the 3D object primitives (template type \e tf should be at least \e unsigned \e int). \param size_x The width of the plane (dimension along the X-axis). \param size_y The height of the plane (dimensions along the Y-axis). \param subdivisions_x The number of planar subdivisions along the X-axis. \param subdivisions_y The number of planar subdivisions along the Y-axis. \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). \par Example \code CImgList faces3d; const CImg points3d = CImg::plane3d(faces3d,100,50); CImg().display_object3d("Plane3d",points3d,faces3d); \endcode \image html ref_plane3d.jpg **/ template static CImg plane3d(CImgList& primitives, const float size_x = 100, const float size_y = 100, const unsigned int subdivisions_x = 10, const unsigned int subdivisions_y = 10) { primitives.assign(); if (!subdivisions_x || !subdivisions_y) return CImg(); CImgList vertices; const unsigned int w = subdivisions_x + 1, h = subdivisions_y + 1; const float fx = (float)size_x / w, fy = (float)size_y / h; for (unsigned int y = 0; y < h; ++y) for (unsigned int x = 0; x < w; ++x) CImg::vector(fx * x, fy * y, 0).move_to(vertices); for (unsigned int y = 0; y < subdivisions_y; ++y) for (unsigned int x = 0; x < subdivisions_x; ++x) { const int off1 = x + y * w, off2 = x + 1 + y * w, off3 = x + 1 + (y + 1) * w, off4 = x + (y + 1) * w; CImg::vector(off1, off4, off3, off2).move_to(primitives); } return vertices > 'x'; } //! Generate a 3D sphere. /** \param[out] primitives The returned list of the 3D object primitives (template type \e tf should be at least \e unsigned \e int). \param radius The radius of the sphere (dimension along the X-axis). \param subdivisions The number of recursive subdivisions from an initial icosahedron. \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). \par Example \code CImgList faces3d; const CImg points3d = CImg::sphere3d(faces3d,100,4); CImg().display_object3d("Sphere3d",points3d,faces3d); \endcode \image html ref_sphere3d.jpg **/ template static CImg sphere3d(CImgList& primitives, const float radius = 50, const unsigned int subdivisions = 3) { // Create initial icosahedron primitives.assign(); const double tmp = (1 + std::sqrt(5.f)) / 2, a = 1. / std::sqrt(1 + tmp * tmp), b = tmp * a; CImgList vertices(12, 1, 3, 1, 1, b, a, 0., -b, a, 0., -b, -a, 0., b, -a, 0., a, 0., b, a, 0., -b, -a, 0., -b, -a, 0., b, 0., b, a, 0., -b, a, 0., -b, -a, 0., b, -a); primitives.assign(20, 1, 3, 1, 1, 4, 8, 7, 4, 7, 9, 5, 6, 11, 5, 10, 6, 0, 4, 3, 0, 3, 5, 2, 7, 1, 2, 1, 6, 8, 0, 11, 8, 11, 1, 9, 10, 3, 9, 2, 10, 8, 4, 0, 11, 0, 5, 4, 9, 3, 5, 3, 10, 7, 8, 1, 6, 1, 11, 7, 2, 9, 6, 10, 2); // edge - length/2 float he = (float)a; // Recurse subdivisions for (unsigned int i = 0; i < subdivisions; ++i) { const unsigned int L = primitives._width; he /= 2; const float he2 = he * he; for (unsigned int l = 0; l < L; ++l) { const unsigned int p0 = (unsigned int)primitives(0, 0), p1 = (unsigned int)primitives(0, 1), p2 = (unsigned int)primitives(0, 2); const float x0 = vertices(p0, 0), y0 = vertices(p0, 1), z0 = vertices(p0, 2), x1 = vertices(p1, 0), y1 = vertices(p1, 1), z1 = vertices(p1, 2), x2 = vertices(p2, 0), y2 = vertices(p2, 1), z2 = vertices(p2, 2), tnx0 = (x0 + x1) / 2, tny0 = (y0 + y1) / 2, tnz0 = (z0 + z1) / 2, nn0 = cimg::hypot(tnx0, tny0, tnz0), tnx1 = (x0 + x2) / 2, tny1 = (y0 + y2) / 2, tnz1 = (z0 + z2) / 2, nn1 = cimg::hypot(tnx1, tny1, tnz1), tnx2 = (x1 + x2) / 2, tny2 = (y1 + y2) / 2, tnz2 = (z1 + z2) / 2, nn2 = cimg::hypot(tnx2, tny2, tnz2), nx0 = tnx0 / nn0, ny0 = tny0 / nn0, nz0 = tnz0 / nn0, nx1 = tnx1 / nn1, ny1 = tny1 / nn1, nz1 = tnz1 / nn1, nx2 = tnx2 / nn2, ny2 = tny2 / nn2, nz2 = tnz2 / nn2; int i0 = -1, i1 = -1, i2 = -1; cimglist_for(vertices, p) { const float x = (float)vertices(p, 0), y = (float)vertices(p, 1), z = (float)vertices(p, 2); if (cimg::sqr(x - nx0) + cimg::sqr(y - ny0) + cimg::sqr(z - nz0) < he2) i0 = p; if (cimg::sqr(x - nx1) + cimg::sqr(y - ny1) + cimg::sqr(z - nz1) < he2) i1 = p; if (cimg::sqr(x - nx2) + cimg::sqr(y - ny2) + cimg::sqr(z - nz2) < he2) i2 = p; } if (i0 < 0) { CImg::vector(nx0, ny0, nz0).move_to(vertices); i0 = vertices.width() - 1; } if (i1 < 0) { CImg::vector(nx1, ny1, nz1).move_to(vertices); i1 = vertices.width() - 1; } if (i2 < 0) { CImg::vector(nx2, ny2, nz2).move_to(vertices); i2 = vertices.width() - 1; } primitives.remove(0); CImg::vector(p0, i0, i1).move_to(primitives); CImg::vector((tf)i0, (tf)p1, (tf)i2).move_to(primitives); CImg::vector((tf)i1, (tf)i2, (tf)p2).move_to(primitives); CImg::vector((tf)i1, (tf)i0, (tf)i2).move_to(primitives); } } return (vertices > 'x') *= radius; } //! Generate a 3D ellipsoid. /** \param[out] primitives The returned list of the 3D object primitives (template type \e tf should be at least \e unsigned \e int). \param tensor The tensor which gives the shape and size of the ellipsoid. \param subdivisions The number of recursive subdivisions from an initial stretched icosahedron. \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). \par Example \code CImgList faces3d; const CImg tensor = CImg::diagonal(10,7,3), points3d = CImg::ellipsoid3d(faces3d,tensor,4); CImg().display_object3d("Ellipsoid3d",points3d,faces3d); \endcode \image html ref_ellipsoid3d.jpg **/ template static CImg ellipsoid3d(CImgList& primitives, const CImg& tensor, const unsigned int subdivisions = 3) { primitives.assign(); if (!subdivisions) return CImg(); CImg S, V; tensor.symmetric_eigen(S, V); const float orient = (V(0, 1) * V(1, 2) - V(0, 2) * V(1, 1)) * V(2, 0) + (V(0, 2) * V(1, 0) - V(0, 0) * V(1, 2)) * V(2, 1) + (V(0, 0) * V(1, 1) - V(0, 1) * V(1, 0)) * V(2, 2); if (orient < 0) { V(2, 0) = -V(2, 0); V(2, 1) = -V(2, 1); V(2, 2) = -V(2, 2); } const float l0 = S[0], l1 = S[1], l2 = S[2]; CImg vertices = sphere3d(primitives, 1., subdivisions); vertices.get_shared_row(0) *= l0; vertices.get_shared_row(1) *= l1; vertices.get_shared_row(2) *= l2; return V * vertices; } //! Convert 3D object into a CImg3d representation. /** \param primitives Primitives data of the 3D object. \param colors Colors data of the 3D object. \param opacities Opacities data of the 3D object. \param full_check Tells if full checking of the 3D object must be performed. **/ template CImg& object3dtoCImg3d(const CImgList& primitives, const CImgList& colors, const to& opacities, const bool full_check = true) { return get_object3dtoCImg3d(primitives, colors, opacities, full_check) .move_to(*this); } //! Convert 3D object into a CImg3d representation \overloading. template CImg& object3dtoCImg3d(const CImgList& primitives, const CImgList& colors, const bool full_check = true) { return get_object3dtoCImg3d(primitives, colors, full_check) .move_to(*this); } //! Convert 3D object into a CImg3d representation \overloading. template CImg& object3dtoCImg3d(const CImgList& primitives, const bool full_check = true) { return get_object3dtoCImg3d(primitives, full_check).move_to(*this); } //! Convert 3D object into a CImg3d representation \overloading. CImg& object3dtoCImg3d(const bool full_check = true) { return get_object3dtoCImg3d(full_check).move_to(*this); } //! Convert 3D object into a CImg3d representation \newinstance. template CImg get_object3dtoCImg3d(const CImgList& primitives, const CImgList& colors, const to& opacities, const bool full_check = true) const { CImg error_message(1024); if (!is_object3d(primitives, colors, opacities, full_check, error_message)) throw CImgInstanceException( _cimg_instance "object3dtoCImg3d(): Invalid specified 3D object (%u,%u) (%s).", cimg_instance, _width, primitives._width, error_message.data()); CImg res(1, _size_object3dtoCImg3d(primitives, colors, opacities)); float* ptrd = res._data; // Put magick number. *(ptrd++) = 'C' + 0.5f; *(ptrd++) = 'I' + 0.5f; *(ptrd++) = 'm' + 0.5f; *(ptrd++) = 'g' + 0.5f; *(ptrd++) = '3' + 0.5f; *(ptrd++) = 'd' + 0.5f; // Put number of vertices and primitives. *(ptrd++) = cimg::uint2float(_width); *(ptrd++) = cimg::uint2float(primitives._width); // Put vertex data. if (is_empty() || !primitives) return res; const T *ptrx = data(0, 0), *ptry = data(0, 1), *ptrz = data(0, 2); cimg_forX(*this, p) { *(ptrd++) = (float)*(ptrx++); *(ptrd++) = (float)*(ptry++); *(ptrd++) = (float)*(ptrz++); } // Put primitive data. cimglist_for(primitives, p) { *(ptrd++) = (float)primitives[p].size(); const tp* ptrp = primitives[p]._data; cimg_foroff(primitives[p], i) * (ptrd++) = cimg::uint2float((unsigned int)*(ptrp++)); } // Put color/texture data. const unsigned int csiz = std::min(colors._width, primitives._width); for (int c = 0; c < (int)csiz; ++c) { const CImg& color = colors[c]; const tc* ptrc = color._data; if (color.size() == 3) { *(ptrd++) = (float)*(ptrc++); *(ptrd++) = (float)*(ptrc++); *(ptrd++) = (float)*ptrc; } else { *(ptrd++) = -128.f; int shared_ind = -1; if (color.is_shared()) for (int i = 0; i < c; ++i) if (ptrc == colors[i]._data) { shared_ind = i; break; } if (shared_ind < 0) { *(ptrd++) = (float)color._width; *(ptrd++) = (float)color._height; *(ptrd++) = (float)color._spectrum; cimg_foroff(color, l) * (ptrd++) = (float)*(ptrc++); } else { *(ptrd++) = (float)shared_ind; *(ptrd++) = 0; *(ptrd++) = 0; } } } const int csiz2 = primitives.width() - colors.width(); for (int c = 0; c < csiz2; ++c) { *(ptrd++) = 200.f; *(ptrd++) = 200.f; *(ptrd++) = 200.f; } // Put opacity data. ptrd = _object3dtoCImg3d(opacities, ptrd); const float* ptre = res.end(); while (ptrd < ptre) *(ptrd++) = 1.f; return res; } template float* _object3dtoCImg3d(const CImgList& opacities, float* ptrd) const { cimglist_for(opacities, o) { const CImg& opacity = opacities[o]; const to* ptro = opacity._data; if (opacity.size() == 1) *(ptrd++) = (float)*ptro; else { *(ptrd++) = -128.f; int shared_ind = -1; if (opacity.is_shared()) for (int i = 0; i < o; ++i) if (ptro == opacities[i]._data) { shared_ind = i; break; } if (shared_ind < 0) { *(ptrd++) = (float)opacity._width; *(ptrd++) = (float)opacity._height; *(ptrd++) = (float)opacity._spectrum; cimg_foroff(opacity, l) * (ptrd++) = (float)*(ptro++); } else { *(ptrd++) = (float)shared_ind; *(ptrd++) = 0; *(ptrd++) = 0; } } } return ptrd; } template float* _object3dtoCImg3d(const CImg& opacities, float* ptrd) const { const to* ptro = opacities._data; cimg_foroff(opacities, o) * (ptrd++) = (float)*(ptro++); return ptrd; } template unsigned int _size_object3dtoCImg3d(const CImgList& primitives, const CImgList& colors, const CImgList& opacities) const { unsigned int siz = 8U + 3 * _width; cimglist_for(primitives, p) siz += primitives[p].size() + 1; for (int c = std::min(primitives.width(), colors.width()) - 1; c >= 0; --c) { if (colors[c].is_shared()) siz += 4; else { const unsigned int csiz = colors[c].size(); siz += (csiz != 3) ? 4 + csiz : 3; } } if (colors._width < primitives._width) siz += 3 * (primitives._width - colors._width); cimglist_for(opacities, o) { if (opacities[o].is_shared()) siz += 4; else { const unsigned int osiz = opacities[o].size(); siz += (osiz != 1) ? 4 + osiz : 1; } } siz += primitives._width - opacities._width; return siz; } template unsigned int _size_object3dtoCImg3d(const CImgList& primitives, const CImgList& colors, const CImg& opacities) const { unsigned int siz = 8U + 3 * _width; cimglist_for(primitives, p) siz += primitives[p].size() + 1; for (int c = std::min(primitives.width(), colors.width()) - 1; c >= 0; --c) { const unsigned int csiz = colors[c].size(); siz += (csiz != 3) ? 4 + csiz : 3; } if (colors._width < primitives._width) siz += 3 * (primitives._width - colors._width); siz += primitives.size(); cimg::unused(opacities); return siz; } //! Convert 3D object into a CImg3d representation \overloading. template CImg get_object3dtoCImg3d(const CImgList& primitives, const CImgList& colors, const bool full_check = true) const { CImgList opacities; return get_object3dtoCImg3d(primitives, colors, opacities, full_check); } //! Convert 3D object into a CImg3d representation \overloading. template CImg get_object3dtoCImg3d(const CImgList& primitives, const bool full_check = true) const { CImgList colors, opacities; return get_object3dtoCImg3d(primitives, colors, opacities, full_check); } //! Convert 3D object into a CImg3d representation \overloading. CImg get_object3dtoCImg3d(const bool full_check = true) const { CImgList opacities, colors; CImgList primitives(width(), 1, 1, 1, 1); cimglist_for(primitives, p) primitives(p, 0) = p; return get_object3dtoCImg3d(primitives, colors, opacities, full_check); } //! Convert CImg3d representation into a 3D object. /** \param[out] primitives Primitives data of the 3D object. \param[out] colors Colors data of the 3D object. \param[out] opacities Opacities data of the 3D object. \param full_check Tells if full checking of the 3D object must be performed. **/ template CImg& CImg3dtoobject3d(CImgList& primitives, CImgList& colors, CImgList& opacities, const bool full_check = true) { return get_CImg3dtoobject3d(primitives, colors, opacities, full_check) .move_to(*this); } //! Convert CImg3d representation into a 3D object \newinstance. template CImg get_CImg3dtoobject3d(CImgList& primitives, CImgList& colors, CImgList& opacities, const bool full_check = true) const { CImg error_message(1024); if (!is_CImg3d(full_check, error_message)) throw CImgInstanceException( _cimg_instance "CImg3dtoobject3d(): image instance is not a CImg3d (%s).", cimg_instance, error_message.data()); const T* ptrs = _data + 6; const unsigned int nb_points = cimg::float2uint((float)*(ptrs++)), nb_primitives = cimg::float2uint((float)*(ptrs++)); const CImg points = CImg(ptrs, 3, nb_points, 1, 1, true).get_transpose(); ptrs += 3 * nb_points; primitives.assign(nb_primitives); cimglist_for(primitives, p) { const unsigned int nb_inds = (unsigned int)*(ptrs++); primitives[p].assign(1, nb_inds); tp* ptrp = primitives[p]._data; for (unsigned int i = 0; i < nb_inds; ++i) *(ptrp++) = (tp)cimg::float2uint((float)*(ptrs++)); } colors.assign(nb_primitives); cimglist_for(colors, c) { if (*ptrs == (T)-128) { ++ptrs; const unsigned int w = (unsigned int)*(ptrs++), h = (unsigned int)*(ptrs++), s = (unsigned int)*(ptrs++); if (!h && !s) colors[c].assign(colors[w], true); else { colors[c].assign(ptrs, w, h, 1, s, false); ptrs += w * h * s; } } else { colors[c].assign(ptrs, 1, 1, 1, 3, false); ptrs += 3; } } opacities.assign(nb_primitives); cimglist_for(opacities, o) { if (*ptrs == (T)-128) { ++ptrs; const unsigned int w = (unsigned int)*(ptrs++), h = (unsigned int)*(ptrs++), s = (unsigned int)*(ptrs++); if (!h && !s) opacities[o].assign(opacities[w], true); else { opacities[o].assign(ptrs, w, h, 1, s, false); ptrs += w * h * s; } } else opacities[o].assign(1, 1, 1, 1, *(ptrs++)); } return points; } //@} //--------------------------- // //! \name Drawing Functions //@{ //--------------------------- #define cimg_init_scanline(opacity) \ static const T _sc_maxval = \ (T)std::min(cimg::type::max(), (T)cimg::type::max()); \ const float _sc_nopacity = cimg::abs((float)opacity), \ _sc_copacity = 1 - std::max((float)opacity, 0.f); \ const ulongT _sc_whd = (ulongT)_width * _height * _depth; \ cimg::unused(_sc_maxval); #define cimg_draw_scanline(x0, x1, y, color, opacity, brightness) \ _draw_scanline(x0, x1, y, color, opacity, brightness, _sc_nopacity, \ _sc_copacity, _sc_whd, _sc_maxval) // [internal] The following _draw_scanline() routines are *non user-friendly // functions*, used only for internal purpose. Pre-requisites: x0<=x1, // y-coordinate is valid, col is valid. template CImg& _draw_scanline(const int x0, const int x1, const int y, const tc* const color, const float opacity, const float brightness, const float nopacity, const float copacity, const ulongT whd, const T _sc_maxval) { const int nx0 = x0 > 0 ? x0 : 0, nx1 = x1 < width() ? x1 : width() - 1, dx = nx1 - nx0; if (dx >= 0) { const tc* col = color; const ulongT off = whd - dx - 1; T* ptrd = data(nx0, y); if (opacity >= 1) { // ** Opaque drawing ** if (brightness == 1) { // Brightness==1 if (sizeof(T) != 1) cimg_forC(*this, c) { const T val = (T) * (col++); for (int x = dx; x >= 0; --x) *(ptrd++) = val; ptrd += off; } else cimg_forC(*this, c) { const T val = (T) * (col++); std::memset(ptrd, (int)val, dx + 1); ptrd += whd; } } else if (brightness < 1) { // Brightness<1 if (sizeof(T) != 1) cimg_forC(*this, c) { const T val = (T)(*(col++) * brightness); for (int x = dx; x >= 0; --x) *(ptrd++) = val; ptrd += off; } else cimg_forC(*this, c) { const T val = (T)(*(col++) * brightness); std::memset(ptrd, (int)val, dx + 1); ptrd += whd; } } else { // Brightness>1 if (sizeof(T) != 1) cimg_forC(*this, c) { const T val = (T)((2 - brightness) * *(col++) + (brightness - 1) * _sc_maxval); for (int x = dx; x >= 0; --x) *(ptrd++) = val; ptrd += off; } else cimg_forC(*this, c) { const T val = (T)((2 - brightness) * *(col++) + (brightness - 1) * _sc_maxval); std::memset(ptrd, (int)val, dx + 1); ptrd += whd; } } } else { // ** Transparent drawing ** if (brightness == 1) { // Brightness==1 cimg_forC(*this, c) { const Tfloat val = *(col++) * nopacity; for (int x = dx; x >= 0; --x) { *ptrd = (T)(val + *ptrd * copacity); ++ptrd; } ptrd += off; } } else if (brightness <= 1) { // Brightness<1 cimg_forC(*this, c) { const Tfloat val = *(col++) * brightness * nopacity; for (int x = dx; x >= 0; --x) { *ptrd = (T)(val + *ptrd * copacity); ++ptrd; } ptrd += off; } } else { // Brightness>1 cimg_forC(*this, c) { const Tfloat val = ((2 - brightness) * *(col++) + (brightness - 1) * _sc_maxval) * nopacity; for (int x = dx; x >= 0; --x) { *ptrd = (T)(val + *ptrd * copacity); ++ptrd; } ptrd += off; } } } } return *this; } //! Draw a 3D point. /** \param x0 X-coordinate of the point. \param y0 Y-coordinate of the point. \param z0 Z-coordinate of the point. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. \note - To set pixel values without clipping needs, you should use the faster CImg::operator()() function. \par Example: \code CImg img(100,100,1,3,0); const unsigned char color[] = { 255,128,64 }; img.draw_point(50,50,color); \endcode **/ template CImg& draw_point(const int x0, const int y0, const int z0, const tc* const color, const float opacity = 1) { if (is_empty()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_point(): Specified color is (null).", cimg_instance); if (x0 >= 0 && y0 >= 0 && z0 >= 0 && x0 < width() && y0 < height() && z0 < depth()) { const ulongT whd = (ulongT)_width * _height * _depth; const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity, 0.f); T* ptrd = data(x0, y0, z0, 0); const tc* col = color; if (opacity >= 1) cimg_forC(*this, c) { *ptrd = (T) * (col++); ptrd += whd; } else cimg_forC(*this, c) { *ptrd = (T)(*(col++) * nopacity + *ptrd * copacity); ptrd += whd; } } return *this; } //! Draw a 2D point \simplification. template CImg& draw_point(const int x0, const int y0, const tc* const color, const float opacity = 1) { return draw_point(x0, y0, 0, color, opacity); } // Draw a points cloud. /** \param points Image of vertices coordinates. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. **/ template CImg& draw_point(const CImg& points, const tc* const color, const float opacity = 1) { if (is_empty() || !points) return *this; switch (points._height) { case 0: case 1: throw CImgArgumentException(_cimg_instance "draw_point(): Invalid specified " "point set (%u,%u,%u,%u,%p).", cimg_instance, points._width, points._height, points._depth, points._spectrum, points._data); case 2: { cimg_forX(points, i) draw_point( (int)points(i, 0), (int)points(i, 1), color, opacity); } break; default: { cimg_forX(points, i) draw_point((int)points(i, 0), (int)points(i, 1), (int)points(i, 2), color, opacity); } } return *this; } //! Draw a 2D line. /** \param x0 X-coordinate of the starting line point. \param y0 Y-coordinate of the starting line point. \param x1 X-coordinate of the ending line point. \param y1 Y-coordinate of the ending line point. \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param opacity Drawing opacity. \param pattern An integer whose bits describe the line pattern. \param init_hatch Tells if a reinitialization of the hash state must be done. \note - Line routine uses Bresenham's algorithm. - Set \p init_hatch = false to draw consecutive hatched segments without breaking the line pattern. \par Example: \code CImg img(100,100,1,3,0); const unsigned char color[] = { 255,128,64 }; img.draw_line(40,40,80,70,color); \endcode **/ template CImg& draw_line(int x0, int y0, int x1, int y1, const tc* const color, const float opacity = 1, const unsigned int pattern = ~0U, const bool init_hatch = true) { if (is_empty() || !opacity || !pattern || std::min(y0, y1) >= height() || std::max(y0, y1) < 0 || std::min(x0, x1) >= width() || std::max(x0, x1) < 0) return *this; int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dy01 = y1 - y0; const bool is_horizontal = cimg::abs(dx01) > cimg::abs(dy01); if (is_horizontal) cimg::swap(x0, y0, x1, y1, w1, h1, dx01, dy01); if (pattern == ~0U && y0 > y1) { cimg::swap(x0, x1, y0, y1); dx01 *= -1; dy01 *= -1; } static unsigned int hatch = ~0U - (~0U >> 1); if (init_hatch) hatch = ~0U - (~0U >> 1); cimg_init_scanline(opacity); const int step = y0 <= y1 ? 1 : -1, hdy01 = dy01 * cimg::sign(dx01) / 2, cy0 = cimg::cut(y0, 0, h1), cy1 = cimg::cut(y1, 0, h1) + step; dy01 += dy01 ? 0 : 1; for (int y = cy0; y != cy1; y += step) { const int yy0 = y - y0, x = x0 + (dx01 * yy0 + hdy01) / dy01; if (x >= 0 && x <= w1 && pattern & hatch) { T* const ptrd = is_horizontal ? data(y, x) : data(x, y); cimg_forC(*this, c) { const T val = color[c]; ptrd[c * _sc_whd] = (T)( opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } if (!(hatch >>= 1)) hatch = ~0U - (~0U >> 1); } return *this; } //! Draw a 2D line, with z-buffering. /** \param zbuffer Zbuffer image. \param x0 X-coordinate of the starting point. \param y0 Y-coordinate of the starting point. \param z0 Z-coordinate of the starting point \param x1 X-coordinate of the ending point. \param y1 Y-coordinate of the ending point. \param z1 Z-coordinate of the ending point. \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param opacity Drawing opacity. \param pattern An integer whose bits describe the line pattern. \param init_hatch Tells if a reinitialization of the hash state must be done. **/ template CImg& draw_line(CImg& zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, const tc* const color, const float opacity = 1, const unsigned int pattern = ~0U, const bool init_hatch = true) { if (is_empty() || z0 <= 0 || z1 <= 0 || !opacity || !pattern) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_line(): Specified color is (null).", cimg_instance); if (!is_sameXY(zbuffer)) throw CImgArgumentException(_cimg_instance "draw_line(): Instance and specified " "Z-buffer (%u,%u,%u,%u,%p) have " "different dimensions.", cimg_instance, zbuffer._width, zbuffer._height, zbuffer._depth, zbuffer._spectrum, zbuffer._data); if (std::min(y0, y1) >= height() || std::max(y0, y1) < 0 || std::min(x0, x1) >= width() || std::max(x0, x1) < 0) return *this; float iz0 = 1 / z0, iz1 = 1 / z1; int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dy01 = y1 - y0; float diz01 = iz1 - iz0; const bool is_horizontal = cimg::abs(dx01) > cimg::abs(dy01); if (is_horizontal) cimg::swap(x0, y0, x1, y1, w1, h1, dx01, dy01); if (pattern == ~0U && y0 > y1) { cimg::swap(x0, x1, y0, y1, iz0, iz1); dx01 *= -1; dy01 *= -1; diz01 *= -1; } static unsigned int hatch = ~0U - (~0U >> 1); if (init_hatch) hatch = ~0U - (~0U >> 1); cimg_init_scanline(opacity); const int step = y0 <= y1 ? 1 : -1, hdy01 = dy01 * cimg::sign(dx01) / 2, cy0 = cimg::cut(y0, 0, h1), cy1 = cimg::cut(y1, 0, h1) + step; dy01 += dy01 ? 0 : 1; for (int y = cy0; y != cy1; y += step) { const int yy0 = y - y0, x = x0 + (dx01 * yy0 + hdy01) / dy01; const float iz = iz0 + diz01 * yy0 / dy01; tz* const ptrz = is_horizontal ? zbuffer.data(y, x) : zbuffer.data(x, y); if (x >= 0 && x <= w1 && pattern & hatch && iz >= *ptrz) { *ptrz = (tz)iz; T* const ptrd = is_horizontal ? data(y, x) : data(x, y); cimg_forC(*this, c) { const T val = color[c]; ptrd[c * _sc_whd] = (T)( opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } if (!(hatch >>= 1)) hatch = ~0U - (~0U >> 1); } return *this; } //! Draw a textured 2D line. /** \param x0 X-coordinate of the starting line point. \param y0 Y-coordinate of the starting line point. \param x1 X-coordinate of the ending line point. \param y1 Y-coordinate of the ending line point. \param texture Texture image defining the pixel colors. \param tx0 X-coordinate of the starting texture point. \param ty0 Y-coordinate of the starting texture point. \param tx1 X-coordinate of the ending texture point. \param ty1 Y-coordinate of the ending texture point. \param opacity Drawing opacity. \param pattern An integer whose bits describe the line pattern. \param init_hatch Tells if the hash variable must be reinitialized. \note - Line routine uses the well known Bresenham's algorithm. \par Example: \code CImg img(100,100,1,3,0), texture("texture256x256.ppm"); const unsigned char color[] = { 255,128,64 }; img.draw_line(40,40,80,70,texture,0,0,255,255); \endcode **/ template CImg& draw_line(int x0, int y0, int x1, int y1, const CImg& texture, int tx0, int ty0, int tx1, int ty1, const float opacity = 1, const unsigned int pattern = ~0U, const bool init_hatch = true) { if (is_empty() || !opacity || !pattern) return *this; if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (is_overlapped(texture)) return draw_line(x0, y0, x1, y1, +texture, tx0, ty0, tx1, ty1, opacity, pattern, init_hatch); if (std::min(y0, y1) >= height() || std::max(y0, y1) < 0 || std::min(x0, x1) >= width() || std::max(x0, x1) < 0) return *this; int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dy01 = y1 - y0; int dtx01 = tx1 - tx0, dty01 = ty1 - ty0; const bool is_horizontal = cimg::abs(dx01) > cimg::abs(dy01); if (is_horizontal) cimg::swap(x0, y0, x1, y1, w1, h1, dx01, dy01); if (pattern == ~0U && y0 > y1) { cimg::swap(x0, x1, y0, y1, tx0, tx1, ty0, ty1); dx01 *= -1; dy01 *= -1; dtx01 *= -1; dty01 *= -1; } const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth; static unsigned int hatch = ~0U - (~0U >> 1); if (init_hatch) hatch = ~0U - (~0U >> 1); cimg_init_scanline(opacity); const int step = y0 <= y1 ? 1 : -1, hdy01 = dy01 * cimg::sign(dx01) / 2, hdy01tx = dy01 * cimg::sign(dtx01) / 2, hdy01ty = dy01 * cimg::sign(dty01) / 2, cy0 = cimg::cut(y0, 0, h1), cy1 = cimg::cut(y1, 0, h1) + step; dy01 += dy01 ? 0 : 1; for (int y = cy0; y != cy1; y += step) { const int yy0 = y - y0, x = x0 + (dx01 * yy0 + hdy01) / dy01, tx = tx0 + (dtx01 * yy0 + hdy01tx) / dy01, ty = ty0 + (dty01 * yy0 + hdy01ty) / dy01; if (x >= 0 && x <= w1 && pattern & hatch) { T* const ptrd = is_horizontal ? data(y, x) : data(x, y); const tc* const color = &texture._atXY(tx, ty); cimg_forC(*this, c) { const T val = color[c * twhd]; ptrd[c * _sc_whd] = (T)( opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } if (!(hatch >>= 1)) hatch = ~0U - (~0U >> 1); } return *this; } //! Draw a textured 2D line, with perspective correction. /** \param x0 X-coordinate of the starting point. \param y0 Y-coordinate of the starting point. \param z0 Z-coordinate of the starting point \param x1 X-coordinate of the ending point. \param y1 Y-coordinate of the ending point. \param z1 Z-coordinate of the ending point. \param texture Texture image defining the pixel colors. \param tx0 X-coordinate of the starting texture point. \param ty0 Y-coordinate of the starting texture point. \param tx1 X-coordinate of the ending texture point. \param ty1 Y-coordinate of the ending texture point. \param opacity Drawing opacity. \param pattern An integer whose bits describe the line pattern. \param init_hatch Tells if the hash variable must be reinitialized. **/ template CImg& draw_line(int x0, int y0, const float z0, int x1, int y1, const float z1, const CImg& texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity = 1, const unsigned int pattern = ~0U, const bool init_hatch = true) { if (is_empty() || z0 <= 0 || z1 <= 0 || !opacity || !pattern) return *this; if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (is_overlapped(texture)) return draw_line(x0, y0, z0, x1, y1, z1, +texture, tx0, ty0, tx1, ty1, opacity, pattern, init_hatch); if (std::min(y0, y1) >= height() || std::max(y0, y1) < 0 || std::min(x0, x1) >= width() || std::max(x0, x1) < 0) return *this; float iz0 = 1 / z0, iz1 = 1 / z1; int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dy01 = y1 - y0; float diz01 = iz1 - iz0, txz0 = tx0 * iz0, txz1 = tx1 * iz1, tyz0 = ty0 * iz0, tyz1 = ty1 * iz1, dtxz01 = txz1 - txz0, dtyz01 = tyz1 - tyz0; const bool is_horizontal = cimg::abs(dx01) > cimg::abs(dy01); if (is_horizontal) cimg::swap(x0, y0, x1, y1, w1, h1, dx01, dy01); if (pattern == ~0U && y0 > y1) { cimg::swap(x0, x1, y0, y1, iz0, iz1, txz0, txz1, tyz0, tyz1); dx01 *= -1; dy01 *= -1; diz01 *= -1; dtxz01 *= -1; dtyz01 *= -1; } const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth; static unsigned int hatch = ~0U - (~0U >> 1); if (init_hatch) hatch = ~0U - (~0U >> 1); cimg_init_scanline(opacity); const int step = y0 <= y1 ? 1 : -1, hdy01 = dy01 * cimg::sign(dx01) / 2, cy0 = cimg::cut(y0, 0, h1), cy1 = cimg::cut(y1, 0, h1) + step; dy01 += dy01 ? 0 : 1; for (int y = cy0; y != cy1; y += step) { const int yy0 = y - y0, x = x0 + (dx01 * yy0 + hdy01) / dy01; const float iz = iz0 + diz01 * yy0 / dy01, txz = txz0 + dtxz01 * yy0 / dy01, tyz = tyz0 + dtyz01 * yy0 / dy01; if (x >= 0 && x <= w1 && pattern & hatch) { const int tx = (int)cimg::round(txz / iz), ty = (int)cimg::round(tyz / iz); T* const ptrd = is_horizontal ? data(y, x) : data(x, y); const tc* const color = &texture._atXY(tx, ty); cimg_forC(*this, c) { const T val = color[c * twhd]; ptrd[c * _sc_whd] = (T)( opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } if (!(hatch >>= 1)) hatch = ~0U - (~0U >> 1); } return *this; } //! Draw a textured 2D line, with perspective correction and z-buffering. /** \param zbuffer Z-buffer image. \param x0 X-coordinate of the starting point. \param y0 Y-coordinate of the starting point. \param z0 Z-coordinate of the starting point \param x1 X-coordinate of the ending point. \param y1 Y-coordinate of the ending point. \param z1 Z-coordinate of the ending point. \param texture Texture image defining the pixel colors. \param tx0 X-coordinate of the starting texture point. \param ty0 Y-coordinate of the starting texture point. \param tx1 X-coordinate of the ending texture point. \param ty1 Y-coordinate of the ending texture point. \param opacity Drawing opacity. \param pattern An integer whose bits describe the line pattern. \param init_hatch Tells if the hash variable must be reinitialized. **/ template CImg& draw_line(CImg& zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, const CImg& texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity = 1, const unsigned int pattern = ~0U, const bool init_hatch = true) { if (is_empty() || z0 <= 0 || z1 <= 0 || !opacity || !pattern) return *this; if (!is_sameXY(zbuffer)) throw CImgArgumentException(_cimg_instance "draw_line(): Instance and specified " "Z-buffer (%u,%u,%u,%u,%p) have " "different dimensions.", cimg_instance, zbuffer._width, zbuffer._height, zbuffer._depth, zbuffer._spectrum, zbuffer._data); if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (is_overlapped(texture)) return draw_line(zbuffer, x0, y0, z0, x1, y1, z1, +texture, tx0, ty0, tx1, ty1, opacity, pattern, init_hatch); if (std::min(y0, y1) >= height() || std::max(y0, y1) < 0 || std::min(x0, x1) >= width() || std::max(x0, x1) < 0) return *this; float iz0 = 1 / z0, iz1 = 1 / z1; int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dy01 = y1 - y0; float diz01 = iz1 - iz0, txz0 = tx0 * iz0, txz1 = tx1 * iz1, tyz0 = ty0 * iz0, tyz1 = ty1 * iz1, dtxz01 = txz1 - txz0, dtyz01 = tyz1 - tyz0; const bool is_horizontal = cimg::abs(dx01) > cimg::abs(dy01); if (is_horizontal) cimg::swap(x0, y0, x1, y1, w1, h1, dx01, dy01); if (pattern == ~0U && y0 > y1) { cimg::swap(x0, x1, y0, y1, iz0, iz1, txz0, txz1, tyz0, tyz1); dx01 *= -1; dy01 *= -1; diz01 *= -1; dtxz01 *= -1; dtyz01 *= -1; } const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth; static unsigned int hatch = ~0U - (~0U >> 1); if (init_hatch) hatch = ~0U - (~0U >> 1); cimg_init_scanline(opacity); const int step = y0 <= y1 ? 1 : -1, hdy01 = dy01 * cimg::sign(dx01) / 2, cy0 = cimg::cut(y0, 0, h1), cy1 = cimg::cut(y1, 0, h1) + step; dy01 += dy01 ? 0 : 1; for (int y = cy0; y != cy1; y += step) { const int yy0 = y - y0, x = x0 + (dx01 * yy0 + hdy01) / dy01; const float iz = iz0 + diz01 * yy0 / dy01, txz = txz0 + dtxz01 * yy0 / dy01, tyz = tyz0 + dtyz01 * yy0 / dy01; tz* const ptrz = is_horizontal ? zbuffer.data(y, x) : zbuffer.data(x, y); if (x >= 0 && x <= w1 && pattern & hatch && iz >= *ptrz) { *ptrz = (tz)iz; const int tx = (int)cimg::round(txz / iz), ty = (int)cimg::round(tyz / iz); T* const ptrd = is_horizontal ? data(y, x) : data(x, y); const tc* const color = &texture._atXY(tx, ty); cimg_forC(*this, c) { const T val = color[c * twhd]; ptrd[c * _sc_whd] = (T)( opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } if (!(hatch >>= 1)) hatch = ~0U - (~0U >> 1); } return *this; } //! Draw a set of consecutive lines. /** \param points Coordinates of vertices, stored as a list of vectors. \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param opacity Drawing opacity. \param pattern An integer whose bits describe the line pattern. \param init_hatch If set to true, init hatch motif. \note - This function uses several call to the single CImg::draw_line() procedure, depending on the vectors size in \p points. **/ template CImg& draw_line(const CImg& points, const tc* const color, const float opacity = 1, const unsigned int pattern = ~0U, const bool init_hatch = true) { if (is_empty() || !points || points._width < 2) return *this; bool ninit_hatch = init_hatch; switch (points._height) { case 0: case 1: throw CImgArgumentException(_cimg_instance "draw_line(): Invalid specified " "point set (%u,%u,%u,%u,%p).", cimg_instance, points._width, points._height, points._depth, points._spectrum, points._data); default: { const int x0 = (int)points(0, 0), y0 = (int)points(0, 1); int ox = x0, oy = y0; for (unsigned int i = 1; i < points._width; ++i) { const int x = (int)points(i, 0), y = (int)points(i, 1); draw_line(ox, oy, x, y, color, opacity, pattern, ninit_hatch); ninit_hatch = false; ox = x; oy = y; } } } return *this; } //! Draw a 2D arrow. /** \param x0 X-coordinate of the starting arrow point (tail). \param y0 Y-coordinate of the starting arrow point (tail). \param x1 X-coordinate of the ending arrow point (head). \param y1 Y-coordinate of the ending arrow point (head). \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param angle Aperture angle of the arrow head. \param length Length of the arrow head. If negative, describes a percentage of the arrow length. \param opacity Drawing opacity. \param pattern An integer whose bits describe the line pattern. **/ template CImg& draw_arrow(const int x0, const int y0, const int x1, const int y1, const tc* const color, const float opacity = 1, const float angle = 30, const float length = -10, const unsigned int pattern = ~0U) { if (is_empty()) return *this; const float u = (float)(x0 - x1), v = (float)(y0 - y1), sq = u * u + v * v, deg = (float)(angle * cimg::PI / 180), ang = (sq > 0) ? (float)std::atan2(v, u) : 0.f, l = (length >= 0) ? length : -length * (float)std::sqrt(sq) / 100; if (sq > 0) { const float cl = (float)std::cos(ang - deg), sl = (float)std::sin(ang - deg), cr = (float)std::cos(ang + deg), sr = (float)std::sin(ang + deg); const int xl = x1 + (int)(l * cl), yl = y1 + (int)(l * sl), xr = x1 + (int)(l * cr), yr = y1 + (int)(l * sr), xc = x1 + (int)((l + 1) * (cl + cr)) / 2, yc = y1 + (int)((l + 1) * (sl + sr)) / 2; draw_line(x0, y0, xc, yc, color, opacity, pattern) .draw_triangle(x1, y1, xl, yl, xr, yr, color, opacity); } else draw_point(x0, y0, color, opacity); return *this; } //! Draw a 2D spline. /** \param x0 X-coordinate of the starting curve point \param y0 Y-coordinate of the starting curve point \param u0 X-coordinate of the starting velocity \param v0 Y-coordinate of the starting velocity \param x1 X-coordinate of the ending curve point \param y1 Y-coordinate of the ending curve point \param u1 X-coordinate of the ending velocity \param v1 Y-coordinate of the ending velocity \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param precision Curve drawing precision. \param opacity Drawing opacity. \param pattern An integer whose bits describe the line pattern. \param init_hatch If \c true, init hatch motif. \note - The curve is a 2D cubic Bezier spline, from the set of specified starting/ending points and corresponding velocity vectors. - The spline is drawn as a serie of connected segments. The \p precision parameter sets the average number of pixels in each drawn segment. - A cubic Bezier curve is sometimes defined by a set of 4 points { (\p x0,\p y0), (\p xa,\p ya), (\p xb,\p yb), (\p x1,\p y1) } where (\p x0,\p y0) is the starting point, (\p x1,\p y1) is the ending point and (\p xa,\p ya), (\p xb,\p yb) are two \e control points. The starting and ending velocities (\p u0,\p v0) and (\p u1,\p v1) can be deduced easily from the control points as \p u0 = (\p xa - \p x0), \p v0 = (\p ya - \p y0), \p u1 = (\p x1 - \p xb) and \p v1 = (\p y1 - \p yb). \par Example: \code CImg img(100,100,1,3,0); const unsigned char color[] = { 255,255,255 }; img.draw_spline(30,30,0,100,90,40,0,-100,color); \endcode **/ template CImg& draw_spline(const int x0, const int y0, const float u0, const float v0, const int x1, const int y1, const float u1, const float v1, const tc* const color, const float opacity = 1, const float precision = 0.25, const unsigned int pattern = ~0U, const bool init_hatch = true) { if (is_empty()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_spline(): Specified color is (null).", cimg_instance); if (x0 == x1 && y0 == y1) return draw_point(x0, y0, color, opacity); bool ninit_hatch = init_hatch; const float ax = u0 + u1 + 2 * (x0 - x1), bx = 3 * (x1 - x0) - 2 * u0 - u1, ay = v0 + v1 + 2 * (y0 - y1), by = 3 * (y1 - y0) - 2 * v0 - v1, _precision = 1 / (cimg::hypot((float)x0 - x1, (float)y0 - y1) * (precision > 0 ? precision : 1)); int ox = x0, oy = y0; for (float t = 0; t < 1; t += _precision) { const float t2 = t * t, t3 = t2 * t; const int nx = (int)(ax * t3 + bx * t2 + u0 * t + x0), ny = (int)(ay * t3 + by * t2 + v0 * t + y0); draw_line(ox, oy, nx, ny, color, opacity, pattern, ninit_hatch); ninit_hatch = false; ox = nx; oy = ny; } return draw_line(ox, oy, x1, y1, color, opacity, pattern, false); } //! Draw a textured 2D spline. /** \param x0 X-coordinate of the starting curve point \param y0 Y-coordinate of the starting curve point \param u0 X-coordinate of the starting velocity \param v0 Y-coordinate of the starting velocity \param x1 X-coordinate of the ending curve point \param y1 Y-coordinate of the ending curve point \param u1 X-coordinate of the ending velocity \param v1 Y-coordinate of the ending velocity \param texture Texture image defining line pixel colors. \param tx0 X-coordinate of the starting texture point. \param ty0 Y-coordinate of the starting texture point. \param tx1 X-coordinate of the ending texture point. \param ty1 Y-coordinate of the ending texture point. \param precision Curve drawing precision. \param opacity Drawing opacity. \param pattern An integer whose bits describe the line pattern. \param init_hatch if \c true, reinit hatch motif. **/ template CImg& draw_spline(const int x0, const int y0, const float u0, const float v0, const int x1, const int y1, const float u1, const float v1, const CImg& texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity = 1, const float precision = 4, const unsigned int pattern = ~0U, const bool init_hatch = true) { if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_spline(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (is_empty()) return *this; if (is_overlapped(texture)) return draw_spline(x0, y0, u0, v0, x1, y1, u1, v1, +texture, tx0, ty0, tx1, ty1, precision, opacity, pattern, init_hatch); if (x0 == x1 && y0 == y1) return draw_point( x0, y0, texture .get_vector_at( x0 <= 0 ? 0 : x0 >= texture.width() ? texture.width() - 1 : x0, y0 <= 0 ? 0 : y0 >= texture.height() ? texture.height() - 1 : y0) .data(), opacity); bool ninit_hatch = init_hatch; const float ax = u0 + u1 + 2 * (x0 - x1), bx = 3 * (x1 - x0) - 2 * u0 - u1, ay = v0 + v1 + 2 * (y0 - y1), by = 3 * (y1 - y0) - 2 * v0 - v1, _precision = 1 / (cimg::hypot((float)x0 - x1, (float)y0 - y1) * (precision > 0 ? precision : 1)); int ox = x0, oy = y0, otx = tx0, oty = ty0; for (float t1 = 0; t1 < 1; t1 += _precision) { const float t2 = t1 * t1, t3 = t2 * t1; const int nx = (int)(ax * t3 + bx * t2 + u0 * t1 + x0), ny = (int)(ay * t3 + by * t2 + v0 * t1 + y0), ntx = tx0 + (int)((tx1 - tx0) * t1), nty = ty0 + (int)((ty1 - ty0) * t1); draw_line(ox, oy, nx, ny, texture, otx, oty, ntx, nty, opacity, pattern, ninit_hatch); ninit_hatch = false; ox = nx; oy = ny; otx = ntx; oty = nty; } return draw_line(ox, oy, x1, y1, texture, otx, oty, tx1, ty1, opacity, pattern, false); } //! Draw a set of consecutive splines. /** \param points Vertices data. \param tangents Tangents data. \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param opacity Drawing opacity. \param is_closed_set Tells if the drawn spline set is closed. \param precision Precision of the drawing. \param pattern An integer whose bits describe the line pattern. \param init_hatch If \c true, init hatch motif. **/ template CImg& draw_spline(const CImg& points, const CImg& tangents, const tc* const color, const float opacity = 1, const bool is_closed_set = false, const float precision = 4, const unsigned int pattern = ~0U, const bool init_hatch = true) { if (is_empty() || !points || !tangents || points._width < 2 || tangents._width < 2) return *this; bool ninit_hatch = init_hatch; switch (points._height) { case 0: case 1: throw CImgArgumentException(_cimg_instance "draw_spline(): Invalid specified " "point set (%u,%u,%u,%u,%p).", cimg_instance, points._width, points._height, points._depth, points._spectrum, points._data); default: { const int x0 = (int)points(0, 0), y0 = (int)points(0, 1); const float u0 = (float)tangents(0, 0), v0 = (float)tangents(0, 1); int ox = x0, oy = y0; float ou = u0, ov = v0; for (unsigned int i = 1; i < points._width; ++i) { const int x = (int)points(i, 0), y = (int)points(i, 1); const float u = (float)tangents(i, 0), v = (float)tangents(i, 1); draw_spline(ox, oy, ou, ov, x, y, u, v, color, precision, opacity, pattern, ninit_hatch); ninit_hatch = false; ox = x; oy = y; ou = u; ov = v; } if (is_closed_set) draw_spline(ox, oy, ou, ov, x0, y0, u0, v0, color, precision, opacity, pattern, false); } } return *this; } //! Draw a set of consecutive splines \overloading. /** Similar to previous function, with the point tangents automatically estimated from the given points set. **/ template CImg& draw_spline(const CImg& points, const tc* const color, const float opacity = 1, const bool is_closed_set = false, const float precision = 4, const unsigned int pattern = ~0U, const bool init_hatch = true) { if (is_empty() || !points || points._width < 2) return *this; CImg tangents; switch (points._height) { case 0: case 1: throw CImgArgumentException(_cimg_instance "draw_spline(): Invalid specified " "point set (%u,%u,%u,%u,%p).", cimg_instance, points._width, points._height, points._depth, points._spectrum, points._data); case 2: { tangents.assign(points._width, points._height); cimg_forX(points, p) { const unsigned int p0 = is_closed_set ? (p + points.width() - 1) % points.width() : (p ? p - 1 : 0), p1 = is_closed_set ? (p + 1) % points.width() : (p + 1 < points.width() ? p + 1 : p); const float x = (float)points(p, 0), y = (float)points(p, 1), x0 = (float)points(p0, 0), y0 = (float)points(p0, 1), x1 = (float)points(p1, 0), y1 = (float)points(p1, 1), u0 = x - x0, v0 = y - y0, n0 = 1e-8f + cimg::hypot(u0, v0), u1 = x1 - x, v1 = y1 - y, n1 = 1e-8f + cimg::hypot(u1, v1), u = u0 / n0 + u1 / n1, v = v0 / n0 + v1 / n1, n = 1e-8f + cimg::hypot(u, v), fact = 0.5f * (n0 + n1); tangents(p, 0) = (Tfloat)(fact * u / n); tangents(p, 1) = (Tfloat)(fact * v / n); } } break; default: { tangents.assign(points._width, points._height); cimg_forX(points, p) { const unsigned int p0 = is_closed_set ? (p + points.width() - 1) % points.width() : (p ? p - 1 : 0), p1 = is_closed_set ? (p + 1) % points.width() : (p + 1 < points.width() ? p + 1 : p); const float x = (float)points(p, 0), y = (float)points(p, 1), z = (float)points(p, 2), x0 = (float)points(p0, 0), y0 = (float)points(p0, 1), z0 = (float)points(p0, 2), x1 = (float)points(p1, 0), y1 = (float)points(p1, 1), z1 = (float)points(p1, 2), u0 = x - x0, v0 = y - y0, w0 = z - z0, n0 = 1e-8f + cimg::hypot(u0, v0, w0), u1 = x1 - x, v1 = y1 - y, w1 = z1 - z, n1 = 1e-8f + cimg::hypot(u1, v1, w1), u = u0 / n0 + u1 / n1, v = v0 / n0 + v1 / n1, w = w0 / n0 + w1 / n1, n = 1e-8f + cimg::hypot(u, v, w), fact = 0.5f * (n0 + n1); tangents(p, 0) = (Tfloat)(fact * u / n); tangents(p, 1) = (Tfloat)(fact * v / n); tangents(p, 2) = (Tfloat)(fact * w / n); } } } return draw_spline(points, tangents, color, opacity, is_closed_set, precision, pattern, init_hatch); } // [internal] Draw a filled triangle. template CImg& _draw_triangle(int x0, int y0, int x1, int y1, int x2, int y2, const tc* const color, const float opacity, const float brightness) { if (y0 > y1) cimg::swap(x0, x1, y0, y1); if (y0 > y2) cimg::swap(x0, x2, y0, y2); if (y1 > y2) cimg::swap(x1, x2, y1, y2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2; const float cbs = cimg::cut(brightness, 0, 2); cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02; if (xm > xM) cimg::swap(xm, xM); cimg_draw_scanline(xm, xM, y, color, opacity, cbs); } return *this; } //! Draw a filled 2D triangle. /** \param x0 X-coordinate of the first vertex. \param y0 Y-coordinate of the first vertex. \param x1 X-coordinate of the second vertex. \param y1 Y-coordinate of the second vertex. \param x2 X-coordinate of the third vertex. \param y2 Y-coordinate of the third vertex. \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param opacity Drawing opacity. **/ template CImg& draw_triangle(const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc* const color, const float opacity = 1) { if (is_empty()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_triangle(): Specified color is (null).", cimg_instance); _draw_triangle(x0, y0, x1, y1, x2, y2, color, opacity, 1); return *this; } //! Draw a outlined 2D triangle. /** \param x0 X-coordinate of the first vertex. \param y0 Y-coordinate of the first vertex. \param x1 X-coordinate of the second vertex. \param y1 Y-coordinate of the second vertex. \param x2 X-coordinate of the third vertex. \param y2 Y-coordinate of the third vertex. \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param opacity Drawing opacity. \param pattern An integer whose bits describe the outline pattern. **/ template CImg& draw_triangle(const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc* const color, const float opacity, const unsigned int pattern) { if (is_empty()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_triangle(): Specified color is (null).", cimg_instance); draw_line(x0, y0, x1, y1, color, opacity, pattern, true) .draw_line(x1, y1, x2, y2, color, opacity, pattern, false) .draw_line(x2, y2, x0, y0, color, opacity, pattern, false); return *this; } //! Draw a filled 2D triangle, with z-buffering. /** \param zbuffer Z-buffer image. \param x0 X-coordinate of the first vertex. \param y0 Y-coordinate of the first vertex. \param z0 Z-coordinate of the first vertex. \param x1 X-coordinate of the second vertex. \param y1 Y-coordinate of the second vertex. \param z1 Z-coordinate of the second vertex. \param x2 X-coordinate of the third vertex. \param y2 Y-coordinate of the third vertex. \param z2 Z-coordinate of the third vertex. \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param opacity Drawing opacity. \param brightness Brightness factor. **/ template CImg& draw_triangle(CImg& zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const tc* const color, const float opacity = 1, const float brightness = 1) { if (is_empty() || z0 <= 0 || z1 <= 0 || z2 <= 0) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_triangle(): Specified color is (null).", cimg_instance); if (!is_sameXY(zbuffer)) throw CImgArgumentException( _cimg_instance "draw_triangle(): Instance and specified Z-buffer " "(%u,%u,%u,%u,%p) have " "different dimensions.", cimg_instance, zbuffer._width, zbuffer._height, zbuffer._depth, zbuffer._spectrum, zbuffer._data); float iz0 = 1 / z0, iz1 = 1 / z1, iz2 = 1 / z2; if (y0 > y1) cimg::swap(x0, x1, y0, y1, iz0, iz1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, iz0, iz2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, iz1, iz2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2; const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1; const float cbs = cimg::cut(brightness, 0, 2); cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02; float izm = y < y1 ? (iz0 + diz01 * yy0 / dy01) : (iz1 + diz12 * yy1 / dy12), izM = iz0 + diz02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, izm, izM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); tz* ptrz = zbuffer.data(cxm, y); const int dxmM = std::max(1, xM - xm); const float dizmM = izM - izm; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm; const float iz = izm + dizmM * xxm / dxmM; if (iz >= *ptrz) { *ptrz = (tz)iz; cimg_forC(*this, c) { const Tfloat val = cbs <= 1 ? color[c] * cbs : (2 - cbs) * color[c] + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } ++ptrd; ++ptrz; } } } return *this; } //! Draw a Gouraud-shaded 2D triangle. /** \param x0 X-coordinate of the first vertex in the image instance. \param y0 Y-coordinate of the first vertex in the image instance. \param x1 X-coordinate of the second vertex in the image instance. \param y1 Y-coordinate of the second vertex in the image instance. \param x2 X-coordinate of the third vertex in the image instance. \param y2 Y-coordinate of the third vertex in the image instance. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param bs0 Brightness factor of the first vertex (in [0,2]). \param bs1 brightness factor of the second vertex (in [0,2]). \param bs2 brightness factor of the third vertex (in [0,2]). \param opacity Drawing opacity. **/ template CImg& draw_triangle(int x0, int y0, int x1, int y1, int x2, int y2, const tc* const color, float bs0, float bs1, float bs2, const float opacity = 1) { if (is_empty()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_triangle(): Specified color is (null).", cimg_instance); if (y0 > y1) cimg::swap(x0, x1, y0, y1, bs0, bs1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, bs0, bs2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, bs1, bs2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2; const float dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1; cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02; float bsm = y < y1 ? (bs0 + dbs01 * yy0 / dy01) : (bs1 + dbs12 * yy1 / dy12), bsM = bs0 + dbs02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, bsm, bsM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); const int dxmM = std::max(1, xM - xm); const float dbsmM = bsM - bsm; for (int x = cxm; x <= cxM; ++x) { const int xxm = x - xm; const float cbs = cimg::cut(bsm + dbsmM * xxm / dxmM, 0, 2); cimg_forC(*this, c) { const Tfloat val = cbs <= 1 ? color[c] * cbs : (2 - cbs) * color[c] + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } ++ptrd; } } } return *this; } //! Draw a Gouraud-shaded 2D triangle, with z-buffering \overloading. template CImg& draw_triangle(CImg& zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const tc* const color, float bs0, float bs1, float bs2, float opacity = 1) { if (is_empty() || z0 <= 0 || z1 <= 0 || z2 <= 0) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_triangle(): Specified color is (null).", cimg_instance); if (!is_sameXY(zbuffer)) throw CImgArgumentException( _cimg_instance "draw_triangle(): Instance and specified Z-buffer " "(%u,%u,%u,%u,%p) have " "different dimensions.", cimg_instance, zbuffer._width, zbuffer._height, zbuffer._depth, zbuffer._spectrum, zbuffer._data); float iz0 = 1 / z0, iz1 = 1 / z1, iz2 = 1 / z2; if (y0 > y1) cimg::swap(x0, x1, y0, y1, iz0, iz1, bs0, bs1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, iz0, iz2, bs0, bs2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, iz1, iz2, bs1, bs2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2; const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1; cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02; float izm = y < y1 ? (iz0 + diz01 * yy0 / dy01) : (iz1 + diz12 * yy1 / dy12), izM = iz0 + diz02 * yy0 / dy02, bsm = y < y1 ? (bs0 + dbs01 * yy0 / dy01) : (bs1 + dbs12 * yy1 / dy12), bsM = bs0 + dbs02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, izm, izM, bsm, bsM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); tz* ptrz = zbuffer.data(cxm, y); const int dxmM = std::max(1, xM - xm); const float dizmM = izM - izm, dbsmM = bsM - bsm; for (int x = cxm; x <= cxM; ++x) { const int xxm = x - xm; const float iz = izm + dizmM * xxm / dxmM; if (iz >= *ptrz) { *ptrz = (tz)iz; const float cbs = cimg::cut(bsm + dbsmM * xxm / dxmM, 0, 2); cimg_forC(*this, c) { const Tfloat val = cbs <= 1 ? color[c] * cbs : (2 - cbs) * color[c] + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } ++ptrd; ++ptrz; } } } return *this; } //! Draw a color-interpolated 2D triangle. /** \param x0 X-coordinate of the first vertex in the image instance. \param y0 Y-coordinate of the first vertex in the image instance. \param x1 X-coordinate of the second vertex in the image instance. \param y1 Y-coordinate of the second vertex in the image instance. \param x2 X-coordinate of the third vertex in the image instance. \param y2 Y-coordinate of the third vertex in the image instance. \param color1 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the first vertex. \param color2 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the seconf vertex. \param color3 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the third vertex. \param opacity Drawing opacity. **/ template CImg& draw_triangle(const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc1* const color1, const tc2* const color2, const tc3* const color3, const float opacity = 1) { const unsigned char one = 1; cimg_forC(*this, c) get_shared_channel(c).draw_triangle( x0, y0, x1, y1, x2, y2, &one, color1[c], color2[c], color3[c], opacity); return *this; } //! Draw a textured 2D triangle. /** \param x0 X-coordinate of the first vertex in the image instance. \param y0 Y-coordinate of the first vertex in the image instance. \param x1 X-coordinate of the second vertex in the image instance. \param y1 Y-coordinate of the second vertex in the image instance. \param x2 X-coordinate of the third vertex in the image instance. \param y2 Y-coordinate of the third vertex in the image instance. \param texture Texture image used to fill the triangle. \param tx0 X-coordinate of the first vertex in the texture image. \param ty0 Y-coordinate of the first vertex in the texture image. \param tx1 X-coordinate of the second vertex in the texture image. \param ty1 Y-coordinate of the second vertex in the texture image. \param tx2 X-coordinate of the third vertex in the texture image. \param ty2 Y-coordinate of the third vertex in the texture image. \param opacity Drawing opacity. \param brightness Brightness factor of the drawing (in [0,2]). **/ template CImg& draw_triangle(int x0, int y0, int x1, int y1, int x2, int y2, const CImg& texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const float opacity = 1, const float brightness = 1) { if (is_empty()) return *this; if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (is_overlapped(texture)) return draw_triangle(x0, y0, x1, y1, x2, y2, +texture, tx0, ty0, tx1, ty1, tx2, ty2, opacity, brightness); if (y0 > y1) cimg::swap(x0, x1, y0, y1, tx0, tx1, ty0, ty1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, tx0, tx2, ty0, ty2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, tx1, ty1, tx2, ty2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2, dtx01 = tx1 - tx0, dtx02 = tx2 - tx0, dtx12 = tx2 - tx1, dty01 = ty1 - ty0, dty02 = ty2 - ty0, dty12 = ty2 - ty1, hdy01tx = dy01 * cimg::sign(dtx01) / 2, hdy02tx = dy02 * cimg::sign(dtx02) / 2, hdy12tx = dy12 * cimg::sign(dtx12) / 2, hdy01ty = dy01 * cimg::sign(dty01) / 2, hdy02ty = dy02 * cimg::sign(dty02) / 2, hdy12ty = dy12 * cimg::sign(dty12) / 2; const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth; const float cbs = cimg::cut(brightness, 0, 2); cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02, txm = y < y1 ? tx0 + (dtx01 * yy0 + hdy01tx) / dy01 : tx1 + (dtx12 * yy1 + hdy12tx) / dy12, txM = tx0 + (dtx02 * yy0 + hdy02tx) / dy02, tym = y < y1 ? ty0 + (dty01 * yy0 + hdy01ty) / dy01 : ty1 + (dty12 * yy1 + hdy12ty) / dy12, tyM = ty0 + (dty02 * yy0 + hdy02ty) / dy02; if (xm > xM) cimg::swap(xm, xM, txm, txM, tym, tyM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); const int dxmM = std::max(1, xM - xm), hdxmM = dxmM / 2, dtxmM = txM - txm, dtymM = tyM - tym; for (int x = cxm; x <= cxM; ++x) { const int xxm = x - xm, tx = (txm * dxmM + dtxmM * xxm + hdxmM) / dxmM, ty = (tym * dxmM + dtymM * xxm + hdxmM) / dxmM; const tc* const color = &texture._atXY(tx, ty); cimg_forC(*this, c) { const Tfloat val = cbs <= 1 ? color[c * twhd] * cbs : (2 - cbs) * color[c * twhd] + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } ++ptrd; } } } return *this; } //! Draw a 2D textured triangle, with perspective correction. template CImg& draw_triangle(int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const CImg& texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const float opacity = 1, const float brightness = 1) { if (is_empty() || z0 <= 0 || z1 <= 0 || z2 <= 0) return *this; if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (is_overlapped(texture)) return draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, +texture, tx0, ty0, tx1, ty1, tx2, ty2, opacity, brightness); float iz0 = 1 / z0, iz1 = 1 / z1, iz2 = 1 / z2; if (y0 > y1) cimg::swap(x0, x1, y0, y1, iz0, iz1, tx0, tx1, ty0, ty1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, iz0, iz2, tx0, tx2, ty0, ty2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, iz1, iz2, tx1, tx2, ty1, ty2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2; const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, txz0 = tx0 * iz0, txz1 = tx1 * iz1, txz2 = tx2 * iz2, tyz0 = ty0 * iz0, tyz1 = ty1 * iz1, tyz2 = ty2 * iz2, dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1; const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth; const float cbs = cimg::cut(brightness, 0, 2); cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02; float izm = y < y1 ? (iz0 + diz01 * yy0 / dy01) : (iz1 + diz12 * yy1 / dy12), izM = iz0 + diz02 * yy0 / dy02, txzm = y < y1 ? (txz0 + dtxz01 * yy0 / dy01) : (txz1 + dtxz12 * yy1 / dy12), txzM = txz0 + dtxz02 * yy0 / dy02, tyzm = y < y1 ? (tyz0 + dtyz01 * yy0 / dy01) : (tyz1 + dtyz12 * yy1 / dy12), tyzM = tyz0 + dtyz02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, txzm, txzM, tyzm, tyzM, izm, izM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); const int dxmM = std::max(1, xM - xm); const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm; const float iz = izm + dizmM * xxm / dxmM, txz = txzm + dtxzmM * xxm / dxmM, tyz = tyzm + dtyzmM * xxm / dxmM; const int tx = (int)cimg::round(txz / iz), ty = (int)cimg::round(tyz / iz); const tc* const color = &texture._atXY(tx, ty); cimg_forC(*this, c) { const Tfloat val = cbs <= 1 ? color[c * twhd] * cbs : (2 - cbs) * color[c * twhd] + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } ++ptrd; } } } return *this; } //! Draw a textured 2D triangle, with perspective correction and //! z-buffering. template CImg& draw_triangle(CImg& zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const CImg& texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const float opacity = 1, const float brightness = 1) { if (is_empty() || z0 <= 0 || z1 <= 0 || z2 <= 0) return *this; if (!is_sameXY(zbuffer)) throw CImgArgumentException( _cimg_instance "draw_triangle(): Instance and specified Z-buffer " "(%u,%u,%u,%u,%p) have " "different dimensions.", cimg_instance, zbuffer._width, zbuffer._height, zbuffer._depth, zbuffer._spectrum, zbuffer._data); if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (is_overlapped(texture)) return draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, +texture, tx0, ty0, tx1, ty1, tx2, ty2, opacity, brightness); float iz0 = 1 / z0, iz1 = 1 / z1, iz2 = 1 / z2; if (y0 > y1) cimg::swap(x0, x1, y0, y1, iz0, iz1, tx0, tx1, ty0, ty1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, iz0, iz2, tx0, tx2, ty0, ty2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, iz1, iz2, tx1, tx2, ty1, ty2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2; const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, txz0 = tx0 * iz0, txz1 = tx1 * iz1, txz2 = tx2 * iz2, tyz0 = ty0 * iz0, tyz1 = ty1 * iz1, tyz2 = ty2 * iz2, dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1; const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth; const float cbs = cimg::cut(brightness, 0, 2); cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02; float izm = y < y1 ? (iz0 + diz01 * yy0 / dy01) : (iz1 + diz12 * yy1 / dy12), izM = iz0 + diz02 * yy0 / dy02, txzm = y < y1 ? (txz0 + dtxz01 * yy0 / dy01) : (txz1 + dtxz12 * yy1 / dy12), txzM = txz0 + dtxz02 * yy0 / dy02, tyzm = y < y1 ? (tyz0 + dtyz01 * yy0 / dy01) : (tyz1 + dtyz12 * yy1 / dy12), tyzM = tyz0 + dtyz02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, txzm, txzM, tyzm, tyzM, izm, izM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); tz* ptrz = zbuffer.data(cxm, y); const int dxmM = std::max(1, xM - xm); const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm; const float iz = izm + dizmM * xxm / dxmM; if (iz >= *ptrz) { *ptrz = (tz)iz; const float txz = txzm + dtxzmM * xxm / dxmM, tyz = tyzm + dtyzmM * xxm / dxmM; const int tx = (int)cimg::round(txz / iz), ty = (int)cimg::round(tyz / iz); const tc* const color = &texture._atXY(tx, ty); cimg_forC(*this, c) { const Tfloat val = cbs <= 1 ? color[c * twhd] * cbs : (2 - cbs) * color[c * twhd] + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } ++ptrd; ++ptrz; } } } return *this; } //! Draw a Phong-shaded 2D triangle. /** \param x0 X-coordinate of the first vertex in the image instance. \param y0 Y-coordinate of the first vertex in the image instance. \param x1 X-coordinate of the second vertex in the image instance. \param y1 Y-coordinate of the second vertex in the image instance. \param x2 X-coordinate of the third vertex in the image instance. \param y2 Y-coordinate of the third vertex in the image instance. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param light Light image. \param lx0 X-coordinate of the first vertex in the light image. \param ly0 Y-coordinate of the first vertex in the light image. \param lx1 X-coordinate of the second vertex in the light image. \param ly1 Y-coordinate of the second vertex in the light image. \param lx2 X-coordinate of the third vertex in the light image. \param ly2 Y-coordinate of the third vertex in the light image. \param opacity Drawing opacity. **/ template CImg& draw_triangle(int x0, int y0, int x1, int y1, int x2, int y2, const tc* const color, const CImg& light, int lx0, int ly0, int lx1, int ly1, int lx2, int ly2, const float opacity = 1) { if (is_empty()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_triangle(): Specified color is (null).", cimg_instance); if (light._depth > 1 || light._spectrum < _spectrum) throw CImgArgumentException(_cimg_instance "draw_triangle(): Invalid specified " "light texture (%u,%u,%u,%u,%p).", cimg_instance, light._width, light._height, light._depth, light._spectrum, light._data); if (y0 > y1) cimg::swap(x0, x1, y0, y1, lx0, lx1, ly0, ly1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, lx0, lx2, ly0, ly2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, lx1, lx2, ly1, ly2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2, dlx01 = lx1 - lx0, dlx02 = lx2 - lx0, dlx12 = lx2 - lx1, dly01 = ly1 - ly0, dly02 = ly2 - ly0, dly12 = ly2 - ly1, hdy01lx = dy01 * cimg::sign(dlx01) / 2, hdy02lx = dy02 * cimg::sign(dlx02) / 2, hdy12lx = dy12 * cimg::sign(dlx12) / 2, hdy01ly = dy01 * cimg::sign(dly01) / 2, hdy02ly = dy02 * cimg::sign(dly02) / 2, hdy12ly = dy12 * cimg::sign(dly12) / 2; const ulongT lwhd = (ulongT)light._width * light._height * light._depth; cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02, lxm = y < y1 ? lx0 + (dlx01 * yy0 + hdy01lx) / dy01 : lx1 + (dlx12 * yy1 + hdy12lx) / dy12, lxM = lx0 + (dlx02 * yy0 + hdy02lx) / dy02, lym = y < y1 ? ly0 + (dly01 * yy0 + hdy01ly) / dy01 : ly1 + (dly12 * yy1 + hdy12ly) / dy12, lyM = ly0 + (dly02 * yy0 + hdy02ly) / dy02; if (xm > xM) cimg::swap(xm, xM, lxm, lxM, lym, lyM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); const int dxmM = std::max(1, xM - xm), hdxmM = dxmM / 2, dlxmM = lxM - lxm, dlymM = lyM - lym; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm, lx = (lxm * dxmM + dlxmM * xxm + hdxmM) / dxmM, ly = (lym * dxmM + dlymM * xxm + hdxmM) / dxmM; const tl* const lig = &light._atXY(lx, ly); cimg_forC(*this, c) { const tc col = color[c]; const float cbs = cimg::cut((float)lig[c * lwhd], 0, 2); const Tfloat val = cbs <= 1 ? cbs * col : (2 - cbs) * col + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } ++ptrd; } } } return *this; } //! Draw a Phong-shaded 2D triangle, with z-buffering. template CImg& draw_triangle(CImg& zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const tc* const color, const CImg& light, int lx0, int ly0, int lx1, int ly1, int lx2, int ly2, const float opacity = 1) { if (is_empty() || z0 <= 0 || z1 <= 0 || z2 <= 0) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_triangle(): Specified color is (null).", cimg_instance); if (light._depth > 1 || light._spectrum < _spectrum) throw CImgArgumentException(_cimg_instance "draw_triangle(): Invalid specified " "light texture (%u,%u,%u,%u,%p).", cimg_instance, light._width, light._height, light._depth, light._spectrum, light._data); if (!is_sameXY(zbuffer)) throw CImgArgumentException( _cimg_instance "draw_triangle(): Instance and specified Z-buffer " "(%u,%u,%u,%u,%p) have " "different dimensions.", cimg_instance, zbuffer._width, zbuffer._height, zbuffer._depth, zbuffer._spectrum, zbuffer._data); if (is_overlapped(light)) return draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, color, +light, lx0, ly0, lx1, ly1, lx2, ly2, opacity); float iz0 = 1 / z0, iz1 = 1 / z1, iz2 = 1 / z2; if (y0 > y1) cimg::swap(x0, x1, y0, y1, iz0, iz1, lx0, lx1, ly0, ly1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, iz0, iz2, lx0, lx2, ly0, ly2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, iz1, iz2, lx1, lx2, ly1, ly2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2, dlx01 = lx1 - lx0, dlx02 = lx2 - lx0, dlx12 = lx2 - lx1, dly01 = ly1 - ly0, dly02 = ly2 - ly0, dly12 = ly2 - ly1, hdy01lx = dy01 * cimg::sign(dlx01) / 2, hdy02lx = dy02 * cimg::sign(dlx02) / 2, hdy12lx = dy12 * cimg::sign(dlx12) / 2, hdy01ly = dy01 * cimg::sign(dly01) / 2, hdy02ly = dy02 * cimg::sign(dly02) / 2, hdy12ly = dy12 * cimg::sign(dly12) / 2; const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1; const ulongT lwhd = (ulongT)light._width * light._height * light._depth; cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02, lxm = y < y1 ? lx0 + (dlx01 * yy0 + hdy01lx) / dy01 : lx1 + (dlx12 * yy1 + hdy12lx) / dy12, lxM = lx0 + (dlx02 * yy0 + hdy02lx) / dy02, lym = y < y1 ? ly0 + (dly01 * yy0 + hdy01ly) / dy01 : ly1 + (dly12 * yy1 + hdy12ly) / dy12, lyM = ly0 + (dly02 * yy0 + hdy02ly) / dy02; float izm = y < y1 ? (iz0 + diz01 * yy0 / dy01) : (iz1 + diz12 * yy1 / dy12), izM = iz0 + diz02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, lxm, lxM, lym, lyM, izm, izM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); tz* ptrz = zbuffer.data(cxm, y); const int dxmM = std::max(1, xM - xm), hdxmM = dxmM / 2, dlxmM = lxM - lxm, dlymM = lyM - lym; const float dizmM = izM - izm; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm; const float iz = izm + dizmM * xxm / dxmM; if (iz >= *ptrz) { *ptrz = (tz)iz; const int lx = (lxm * dxmM + dlxmM * xxm + hdxmM) / dxmM, ly = (lym * dxmM + dlymM * xxm + hdxmM) / dxmM; const tl* const lig = &light._atXY(lx, ly); cimg_forC(*this, c) { const float cbs = cimg::cut((float)lig[c * lwhd], 0, 2); const tc col = color[c]; const Tfloat val = cbs <= 1 ? cbs * col : (2 - cbs) * col + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } ++ptrd; ++ptrz; } } } return *this; } //! Draw a textured Gouraud-shaded 2D triangle. /** \param x0 X-coordinate of the first vertex in the image instance. \param y0 Y-coordinate of the first vertex in the image instance. \param x1 X-coordinate of the second vertex in the image instance. \param y1 Y-coordinate of the second vertex in the image instance. \param x2 X-coordinate of the third vertex in the image instance. \param y2 Y-coordinate of the third vertex in the image instance. \param texture Texture image used to fill the triangle. \param tx0 X-coordinate of the first vertex in the texture image. \param ty0 Y-coordinate of the first vertex in the texture image. \param tx1 X-coordinate of the second vertex in the texture image. \param ty1 Y-coordinate of the second vertex in the texture image. \param tx2 X-coordinate of the third vertex in the texture image. \param ty2 Y-coordinate of the third vertex in the texture image. \param bs0 Brightness factor of the first vertex. \param bs1 Brightness factor of the second vertex. \param bs2 Brightness factor of the third vertex. \param opacity Drawing opacity. **/ template CImg& draw_triangle(int x0, int y0, int x1, int y1, int x2, int y2, const CImg& texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, float bs0, float bs1, float bs2, const float opacity = 1) { if (is_empty()) return *this; if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (is_overlapped(texture)) return draw_triangle(x0, y0, x1, y1, x2, y2, +texture, tx0, ty0, tx1, ty1, tx2, ty2, bs0, bs1, bs2, opacity); if (y0 > y1) cimg::swap(x0, x1, y0, y1, tx0, tx1, ty0, ty1, bs0, bs1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, tx0, tx2, ty0, ty2, bs0, bs2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, tx1, tx2, ty1, ty2, bs1, bs2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2, dtx01 = tx1 - tx0, dtx02 = tx2 - tx0, dtx12 = tx2 - tx1, dty01 = ty1 - ty0, dty02 = ty2 - ty0, dty12 = ty2 - ty1, hdy01tx = dy01 * cimg::sign(dtx01) / 2, hdy02tx = dy02 * cimg::sign(dtx02) / 2, hdy12tx = dy12 * cimg::sign(dtx12) / 2, hdy01ty = dy01 * cimg::sign(dty01) / 2, hdy02ty = dy02 * cimg::sign(dty02) / 2, hdy12ty = dy12 * cimg::sign(dty12) / 2; const float dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1; const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth; cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02, txm = y < y1 ? tx0 + (dtx01 * yy0 + hdy01tx) / dy01 : tx1 + (dtx12 * yy1 + hdy12tx) / dy12, txM = tx0 + (dtx02 * yy0 + hdy02tx) / dy02, tym = y < y1 ? ty0 + (dty01 * yy0 + hdy01ty) / dy01 : ty1 + (dty12 * yy1 + hdy12ty) / dy12, tyM = ty0 + (dty02 * yy0 + hdy02ty) / dy02; float bsm = y < y1 ? (bs0 + dbs01 * yy0 / dy01) : (bs1 + dbs12 * yy1 / dy12), bsM = bs0 + dbs02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, txm, txM, tym, tyM, bsm, bsM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); const int dxmM = std::max(1, xM - xm), hdxmM = dxmM / 2, dtxmM = txM - txm, dtymM = tyM - tym; const float dbsmM = bsM - bsm; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm, tx = (txm * dxmM + dtxmM * xxm + hdxmM) / dxmM, ty = (tym * dxmM + dtymM * xxm + hdxmM) / dxmM; const float cbs = cimg::cut(bsm + dbsmM * xxm / dxmM, 0, 2); const tc* const color = &texture._atXY(tx, ty); cimg_forC(*this, c) { const tc col = color[c * twhd]; const Tfloat val = cbs <= 1 ? cbs * col : (2 - cbs) * col + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } ++ptrd; } } } return *this; } //! Draw a textured Gouraud-shaded 2D triangle, with perspective correction //! \overloading. template CImg& draw_triangle(int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const CImg& texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, float bs0, float bs1, float bs2, const float opacity = 1) { if (is_empty() || z0 <= 0 || z1 <= 0 || z2 <= 0) return *this; if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (is_overlapped(texture)) return draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, +texture, tx0, ty0, tx1, ty1, tx2, ty2, bs0, bs1, bs2, opacity); float iz0 = 1 / z0, iz1 = 1 / z1, iz2 = 1 / z2; if (y0 > y1) cimg::swap(x0, x1, y0, y1, iz0, iz1, tx0, tx1, ty0, ty1, bs0, bs1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, iz0, iz2, tx0, tx2, ty0, ty2, bs0, bs2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, iz1, iz2, tx1, tx2, ty1, ty2, bs1, bs2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2; const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, txz0 = tx0 * iz0, txz1 = tx1 * iz1, txz2 = tx2 * iz2, tyz0 = ty0 * iz0, tyz1 = ty1 * iz1, tyz2 = ty2 * iz2, dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1, dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1; const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth; cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02; float izm = y < y1 ? (iz0 + diz01 * yy0 / dy01) : (iz1 + diz12 * yy1 / dy12), izM = iz0 + diz02 * yy0 / dy02, txzm = y < y1 ? (txz0 + dtxz01 * yy0 / dy01) : (txz1 + dtxz12 * yy1 / dy12), txzM = txz0 + dtxz02 * yy0 / dy02, tyzm = y < y1 ? (tyz0 + dtyz01 * yy0 / dy01) : (tyz1 + dtyz12 * yy1 / dy12), tyzM = tyz0 + dtyz02 * yy0 / dy02, bsm = y < y1 ? (bs0 + dbs01 * yy0 / dy01) : (bs1 + dbs12 * yy1 / dy12), bsM = bs0 + dbs02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, txzm, txzM, tyzm, tyzM, izm, izM, bsm, bsM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); const int dxmM = std::max(1, xM - xm); const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm, dbsmM = bsM - bsm; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm; const float iz = izm + dizmM * xxm / dxmM, txz = txzm + dtxzmM * xxm / dxmM, tyz = tyzm + dtyzmM * xxm / dxmM, cbs = cimg::cut(bsm + dbsmM * xxm / dxmM, 0, 2); const int tx = (int)cimg::round(txz / iz), ty = (int)cimg::round(tyz / iz); const tc* const color = &texture._atXY(tx, ty); cimg_forC(*this, c) { const tc col = color[c * twhd]; const Tfloat val = cbs <= 1 ? cbs * col : (2 - cbs) * col + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } ++ptrd; } } } return *this; } //! Draw a textured Gouraud-shaded 2D triangle, with perspective correction //! and z-buffering \overloading. template CImg& draw_triangle(CImg& zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const CImg& texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, float bs0, float bs1, float bs2, const float opacity = 1) { if (is_empty() || z0 <= 0 || z1 <= 0 || z2 <= 0) return *this; if (!is_sameXY(zbuffer)) throw CImgArgumentException( _cimg_instance "draw_triangle(): Instance and specified Z-buffer " "(%u,%u,%u,%u,%p) have " "different dimensions.", cimg_instance, zbuffer._width, zbuffer._height, zbuffer._depth, zbuffer._spectrum, zbuffer._data); if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (is_overlapped(texture)) return draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, +texture, tx0, ty0, tx1, ty1, tx2, ty2, bs0, bs1, bs2, opacity); float iz0 = 1 / z0, iz1 = 1 / z1, iz2 = 1 / z2; if (y0 > y1) cimg::swap(x0, x1, y0, y1, iz0, iz1, tx0, tx1, ty0, ty1, bs0, bs1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, iz0, iz2, tx0, tx2, ty0, ty2, bs0, bs2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, iz1, iz2, tx1, tx2, ty1, ty2, bs1, bs2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2; const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, txz0 = tx0 * iz0, txz1 = tx1 * iz1, txz2 = tx2 * iz2, tyz0 = ty0 * iz0, tyz1 = ty1 * iz1, tyz2 = ty2 * iz2, dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1, dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1; const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth; cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02; float izm = y < y1 ? (iz0 + diz01 * yy0 / dy01) : (iz1 + diz12 * yy1 / dy12), izM = iz0 + diz02 * yy0 / dy02, txzm = y < y1 ? (txz0 + dtxz01 * yy0 / dy01) : (txz1 + dtxz12 * yy1 / dy12), txzM = txz0 + dtxz02 * yy0 / dy02, tyzm = y < y1 ? (tyz0 + dtyz01 * yy0 / dy01) : (tyz1 + dtyz12 * yy1 / dy12), tyzM = tyz0 + dtyz02 * yy0 / dy02, bsm = y < y1 ? (bs0 + dbs01 * yy0 / dy01) : (bs1 + dbs12 * yy1 / dy12), bsM = bs0 + dbs02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, txzm, txzM, tyzm, tyzM, izm, izM, bsm, bsM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); tz* ptrz = zbuffer.data(cxm, y); const int dxmM = std::max(1, xM - xm); const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm, dbsmM = bsM - bsm; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm; const float iz = izm + dizmM * xxm / dxmM; if (iz >= *ptrz) { *ptrz = (tz)iz; const float txz = txzm + dtxzmM * xxm / dxmM, tyz = tyzm + dtyzmM * xxm / dxmM, cbs = cimg::cut(bsm + dbsmM * xxm / dxmM, 0, 2); const int tx = (int)cimg::round(txz / iz), ty = (int)cimg::round(tyz / iz); const tc* const color = &texture._atXY(tx, ty); cimg_forC(*this, c) { const tc col = color[c * twhd]; const Tfloat val = cbs <= 1 ? cbs * col : (2 - cbs) * col + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } ++ptrd; ++ptrz; } } } return *this; } //! Draw a textured Phong-shaded 2D triangle. /** \param x0 X-coordinate of the first vertex in the image instance. \param y0 Y-coordinate of the first vertex in the image instance. \param x1 X-coordinate of the second vertex in the image instance. \param y1 Y-coordinate of the second vertex in the image instance. \param x2 X-coordinate of the third vertex in the image instance. \param y2 Y-coordinate of the third vertex in the image instance. \param texture Texture image used to fill the triangle. \param tx0 X-coordinate of the first vertex in the texture image. \param ty0 Y-coordinate of the first vertex in the texture image. \param tx1 X-coordinate of the second vertex in the texture image. \param ty1 Y-coordinate of the second vertex in the texture image. \param tx2 X-coordinate of the third vertex in the texture image. \param ty2 Y-coordinate of the third vertex in the texture image. \param light Light image. \param lx0 X-coordinate of the first vertex in the light image. \param ly0 Y-coordinate of the first vertex in the light image. \param lx1 X-coordinate of the second vertex in the light image. \param ly1 Y-coordinate of the second vertex in the light image. \param lx2 X-coordinate of the third vertex in the light image. \param ly2 Y-coordinate of the third vertex in the light image. \param opacity Drawing opacity. **/ template CImg& draw_triangle(int x0, int y0, int x1, int y1, int x2, int y2, const CImg& texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const CImg& light, int lx0, int ly0, int lx1, int ly1, int lx2, int ly2, const float opacity = 1) { if (is_empty()) return *this; if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (light._depth > 1 || light._spectrum < _spectrum) throw CImgArgumentException(_cimg_instance "draw_triangle(): Invalid specified " "light texture (%u,%u,%u,%u,%p).", cimg_instance, light._width, light._height, light._depth, light._spectrum, light._data); if (is_overlapped(texture)) return draw_triangle(x0, y0, x1, y1, x2, y2, +texture, tx0, ty0, tx1, ty1, tx2, ty2, light, lx0, ly0, lx1, ly1, lx2, ly2, opacity); if (is_overlapped(light)) return draw_triangle(x0, y0, x1, y1, x2, y2, texture, tx0, ty0, tx1, ty1, tx2, ty2, +light, lx0, ly0, lx1, ly1, lx2, ly2, opacity); if (y0 > y1) cimg::swap(x0, x1, y0, y1, tx0, tx1, ty0, ty1, lx0, lx1, ly0, ly1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, tx0, tx2, ty0, ty2, lx0, lx2, ly0, ly2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, tx1, tx2, ty1, ty2, lx1, lx2, ly1, ly2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2, dtx01 = tx1 - tx0, dtx02 = tx2 - tx0, dtx12 = tx2 - tx1, dty01 = ty1 - ty0, dty02 = ty2 - ty0, dty12 = ty2 - ty1, hdy01tx = dy01 * cimg::sign(dtx01) / 2, hdy02tx = dy02 * cimg::sign(dtx02) / 2, hdy12tx = dy12 * cimg::sign(dtx12) / 2, hdy01ty = dy01 * cimg::sign(dty01) / 2, hdy02ty = dy02 * cimg::sign(dty02) / 2, hdy12ty = dy12 * cimg::sign(dty12) / 2, dlx01 = lx1 - lx0, dlx02 = lx2 - lx0, dlx12 = lx2 - lx1, dly01 = ly1 - ly0, dly02 = ly2 - ly0, dly12 = ly2 - ly1, hdy01lx = dy01 * cimg::sign(dlx01) / 2, hdy02lx = dy02 * cimg::sign(dlx02) / 2, hdy12lx = dy12 * cimg::sign(dlx12) / 2, hdy01ly = dy01 * cimg::sign(dly01) / 2, hdy02ly = dy02 * cimg::sign(dly02) / 2, hdy12ly = dy12 * cimg::sign(dly12) / 2; const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth, lwhd = (ulongT)light._width * light._height * light._depth; cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02, txm = y < y1 ? tx0 + (dtx01 * yy0 + hdy01tx) / dy01 : tx1 + (dtx12 * yy1 + hdy12tx) / dy12, txM = tx0 + (dtx02 * yy0 + hdy02tx) / dy02, tym = y < y1 ? ty0 + (dty01 * yy0 + hdy01ty) / dy01 : ty1 + (dty12 * yy1 + hdy12ty) / dy12, tyM = ty0 + (dty02 * yy0 + hdy02ty) / dy02, lxm = y < y1 ? lx0 + (dlx01 * yy0 + hdy01lx) / dy01 : lx1 + (dlx12 * yy1 + hdy12lx) / dy12, lxM = lx0 + (dlx02 * yy0 + hdy02lx) / dy02, lym = y < y1 ? ly0 + (dly01 * yy0 + hdy01ly) / dy01 : ly1 + (dly12 * yy1 + hdy12ly) / dy12, lyM = ly0 + (dly02 * yy0 + hdy02ly) / dy02; if (xm > xM) cimg::swap(xm, xM, txm, txM, tym, tyM, lxm, lxM, lym, lyM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); const int dxmM = std::max(1, xM - xm), hdxmM = dxmM / 2, dtxmM = txM - txm, dtymM = tyM - tym, dlxmM = lxM - lxm, dlymM = lyM - lym; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm, tx = (txm * dxmM + dtxmM * xxm + hdxmM) / dxmM, ty = (tym * dxmM + dtymM * xxm + hdxmM) / dxmM, lx = (lxm * dxmM + dlxmM * xxm + hdxmM) / dxmM, ly = (lym * dxmM + dlymM * xxm + hdxmM) / dxmM; const tc* const color = &texture._atXY(tx, ty); const tl* const lig = &light._atXY(lx, ly); cimg_forC(*this, c) { const tc col = color[c * twhd]; const float cbs = cimg::cut((float)lig[c * lwhd], 0, 2); const Tfloat val = cbs <= 1 ? cbs * col : (2 - cbs) * col + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } ++ptrd; } } } return *this; } //! Draw a textured Phong-shaded 2D triangle, with perspective correction. template CImg& draw_triangle(int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const CImg& texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const CImg& light, int lx0, int ly0, int lx1, int ly1, int lx2, int ly2, const float opacity = 1) { if (is_empty() || z0 <= 0 || z1 <= 0 || z2 <= 0) return *this; if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (light._depth > 1 || light._spectrum < _spectrum) throw CImgArgumentException(_cimg_instance "draw_triangle(): Invalid specified " "light texture (%u,%u,%u,%u,%p).", cimg_instance, light._width, light._height, light._depth, light._spectrum, light._data); if (is_overlapped(texture)) return draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, +texture, tx0, ty0, tx1, ty1, tx2, ty2, light, lx0, ly0, lx1, ly1, lx2, ly2, opacity); if (is_overlapped(light)) return draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, texture, tx0, ty0, tx1, ty1, tx2, ty2, +light, lx0, ly0, lx1, ly1, lx2, ly2, opacity); float iz0 = 1 / z0, iz1 = 1 / z1, iz2 = 1 / z2; if (y0 > y1) cimg::swap(x0, x1, y0, y1, iz0, iz1, tx0, tx1, ty0, ty1, lx0, lx1, ly0, ly1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, iz0, iz2, tx0, tx2, ty0, ty2, lx0, lx2, ly0, ly2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, iz1, iz2, tx1, tx2, ty1, ty2, lx1, lx2, ly1, ly2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2; const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, txz0 = tx0 * iz0, txz1 = tx1 * iz1, txz2 = tx2 * iz2, tyz0 = ty0 * iz0, tyz1 = ty1 * iz1, tyz2 = ty2 * iz2, dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1, lxz0 = lx0 * iz0, lxz1 = lx1 * iz1, lxz2 = lx2 * iz2, lyz0 = ly0 * iz0, lyz1 = ly1 * iz1, lyz2 = ly2 * iz2, dlxz01 = lxz1 - lxz0, dlxz02 = lxz2 - lxz0, dlxz12 = lxz2 - lxz1, dlyz01 = lyz1 - lyz0, dlyz02 = lyz2 - lyz0, dlyz12 = lyz2 - lyz1; const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth, lwhd = (ulongT)light._width * light._height * light._depth; cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02; float izm = y < y1 ? (iz0 + diz01 * yy0 / dy01) : (iz1 + diz12 * yy1 / dy12), izM = iz0 + diz02 * yy0 / dy02, txzm = y < y1 ? (txz0 + dtxz01 * yy0 / dy01) : (txz1 + dtxz12 * yy1 / dy12), txzM = txz0 + dtxz02 * yy0 / dy02, tyzm = y < y1 ? (tyz0 + dtyz01 * yy0 / dy01) : (tyz1 + dtyz12 * yy1 / dy12), tyzM = tyz0 + dtyz02 * yy0 / dy02, lxzm = y < y1 ? (lxz0 + dlxz01 * yy0 / dy01) : (lxz1 + dlxz12 * yy1 / dy12), lxzM = lxz0 + dlxz02 * yy0 / dy02, lyzm = y < y1 ? (lyz0 + dlyz01 * yy0 / dy01) : (lyz1 + dlyz12 * yy1 / dy12), lyzM = lyz0 + dlyz02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, izm, izM, txzm, txzM, tyzm, tyzM, lxzm, lxzM, lyzm, lyzM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); const int dxmM = std::max(1, xM - xm); const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm, dlxzmM = lxzM - lxzm, dlyzmM = lyzM - lyzm; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm; const float iz = izm + dizmM * xxm / dxmM, txz = txzm + dtxzmM * xxm / dxmM, tyz = tyzm + dtyzmM * xxm / dxmM, lxz = lxzm + dlxzmM * xxm / dxmM, lyz = lyzm + dlyzmM * xxm / dxmM; const int tx = (int)cimg::round(txz / iz), ty = (int)cimg::round(tyz / iz), lx = (int)cimg::round(lxz / iz), ly = (int)cimg::round(lyz / iz); const tc* const color = &texture._atXY(tx, ty); const tl* const lig = &light._atXY(lx, ly); cimg_forC(*this, c) { const tc col = color[c * twhd]; const float cbs = cimg::cut((float)lig[c * lwhd], 0, 2); const Tfloat val = cbs <= 1 ? cbs * col : (2 - cbs) * col + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } ++ptrd; } } } return *this; } //! Draw a textured Phong-shaded 2D triangle, with perspective correction //! and z-buffering. template CImg& draw_triangle(CImg& zbuffer, int x0, int y0, const float z0, int x1, int y1, const float z1, int x2, int y2, const float z2, const CImg& texture, int tx0, int ty0, int tx1, int ty1, int tx2, int ty2, const CImg& light, int lx0, int ly0, int lx1, int ly1, int lx2, int ly2, const float opacity = 1) { if (is_empty() || z0 <= 0 || z1 <= 0 || z2 <= 0) return *this; if (!is_sameXY(zbuffer)) throw CImgArgumentException( _cimg_instance "draw_triangle(): Instance and specified Z-buffer " "(%u,%u,%u,%u,%p) have " "different dimensions.", cimg_instance, zbuffer._width, zbuffer._height, zbuffer._depth, zbuffer._spectrum, zbuffer._data); if (texture._depth > 1 || texture._spectrum < _spectrum) throw CImgArgumentException( _cimg_instance "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", cimg_instance, texture._width, texture._height, texture._depth, texture._spectrum, texture._data); if (light._depth > 1 || light._spectrum < _spectrum) throw CImgArgumentException(_cimg_instance "draw_triangle(): Invalid specified " "light texture (%u,%u,%u,%u,%p).", cimg_instance, light._width, light._height, light._depth, light._spectrum, light._data); if (is_overlapped(texture)) return draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, +texture, tx0, ty0, tx1, ty1, tx2, ty2, light, lx0, ly0, lx1, ly1, lx2, ly2, opacity); if (is_overlapped(light)) return draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, texture, tx0, ty0, tx1, ty1, tx2, ty2, +light, lx0, ly0, lx1, ly1, lx2, ly2, opacity); float iz0 = 1 / z0, iz1 = 1 / z1, iz2 = 1 / z2; if (y0 > y1) cimg::swap(x0, x1, y0, y1, iz0, iz1, tx0, tx1, ty0, ty1, lx0, lx1, ly0, ly1); if (y0 > y2) cimg::swap(x0, x2, y0, y2, iz0, iz2, tx0, tx2, ty0, ty2, lx0, lx2, ly0, ly2); if (y1 > y2) cimg::swap(x1, x2, y1, y2, iz1, iz2, tx1, tx2, ty1, ty2, lx1, lx2, ly1, ly2); if (y2 < 0 || y0 >= height() || cimg::min(x0, x1, x2) >= width() || cimg::max(x0, x1, x2) < 0 || !opacity) return *this; const int w1 = width() - 1, h1 = height() - 1, dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, dy01 = std::max(1, y1 - y0), dy02 = std::max(1, y2 - y0), dy12 = std::max(1, y2 - y1), cy0 = cimg::cut(y0, 0, h1), cy2 = cimg::cut(y2, 0, h1), hdy01 = dy01 * cimg::sign(dx01) / 2, hdy02 = dy02 * cimg::sign(dx02) / 2, hdy12 = dy12 * cimg::sign(dx12) / 2; const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, txz0 = tx0 * iz0, txz1 = tx1 * iz1, txz2 = tx2 * iz2, tyz0 = ty0 * iz0, tyz1 = ty1 * iz1, tyz2 = ty2 * iz2, dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1, lxz0 = lx0 * iz0, lxz1 = lx1 * iz1, lxz2 = lx2 * iz2, lyz0 = ly0 * iz0, lyz1 = ly1 * iz1, lyz2 = ly2 * iz2, dlxz01 = lxz1 - lxz0, dlxz02 = lxz2 - lxz0, dlxz12 = lxz2 - lxz1, dlyz01 = lyz1 - lyz0, dlyz02 = lyz2 - lyz0, dlyz12 = lyz2 - lyz1; const ulongT twhd = (ulongT)texture._width * texture._height * texture._depth, lwhd = (ulongT)light._width * light._height * light._depth; cimg_init_scanline(opacity); for (int y = cy0; y <= cy2; ++y) { const int yy0 = y - y0, yy1 = y - y1; int xm = y < y1 ? x0 + (dx01 * yy0 + hdy01) / dy01 : x1 + (dx12 * yy1 + hdy12) / dy12, xM = x0 + (dx02 * yy0 + hdy02) / dy02; float izm = y < y1 ? (iz0 + diz01 * yy0 / dy01) : (iz1 + diz12 * yy1 / dy12), izM = iz0 + diz02 * yy0 / dy02, txzm = y < y1 ? (txz0 + dtxz01 * yy0 / dy01) : (txz1 + dtxz12 * yy1 / dy12), txzM = txz0 + dtxz02 * yy0 / dy02, tyzm = y < y1 ? (tyz0 + dtyz01 * yy0 / dy01) : (tyz1 + dtyz12 * yy1 / dy12), tyzM = tyz0 + dtyz02 * yy0 / dy02, lxzm = y < y1 ? (lxz0 + dlxz01 * yy0 / dy01) : (lxz1 + dlxz12 * yy1 / dy12), lxzM = lxz0 + dlxz02 * yy0 / dy02, lyzm = y < y1 ? (lyz0 + dlyz01 * yy0 / dy01) : (lyz1 + dlyz12 * yy1 / dy12), lyzM = lyz0 + dlyz02 * yy0 / dy02; if (xm > xM) cimg::swap(xm, xM, izm, izM, txzm, txzM, tyzm, tyzM, lxzm, lxzM, lyzm, lyzM); if (xM >= 0 || xm <= w1) { const int cxm = cimg::cut(xm, 0, w1), cxM = cimg::cut(xM, 0, w1); T* ptrd = data(cxm, y); tz* ptrz = zbuffer.data(cxm, y); const int dxmM = std::max(1, xM - xm); const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm, dlxzmM = lxzM - lxzm, dlyzmM = lyzM - lyzm; for (int x = cxm; x < cxM; ++x) { const int xxm = x - xm; const float iz = izm + dizmM * xxm / dxmM; if (iz >= *ptrz) { *ptrz = (tz)iz; const float txz = txzm + dtxzmM * xxm / dxmM, tyz = tyzm + dtyzmM * xxm / dxmM, lxz = lxzm + dlxzmM * xxm / dxmM, lyz = lyzm + dlyzmM * xxm / dxmM; const int tx = (int)cimg::round(txz / iz), ty = (int)cimg::round(tyz / iz), lx = (int)cimg::round(lxz / iz), ly = (int)cimg::round(lyz / iz); const tc* const color = &texture._atXY(tx, ty); const tl* const lig = &light._atXY(lx, ly); cimg_forC(*this, c) { const tc col = color[c * twhd]; const float cbs = cimg::cut((float)lig[c * lwhd], 0, 2); const Tfloat val = cbs <= 1 ? cbs * col : (2 - cbs) * col + (cbs - 1) * _sc_maxval; ptrd[c * _sc_whd] = (T)(opacity >= 1 ? val : val * _sc_nopacity + ptrd[c * _sc_whd] * _sc_copacity); } } ++ptrd; ++ptrz; } } } return *this; } //! Draw a filled 4D rectangle. /** \param x0 X-coordinate of the upper-left rectangle corner. \param y0 Y-coordinate of the upper-left rectangle corner. \param z0 Z-coordinate of the upper-left rectangle corner. \param c0 C-coordinate of the upper-left rectangle corner. \param x1 X-coordinate of the lower-right rectangle corner. \param y1 Y-coordinate of the lower-right rectangle corner. \param z1 Z-coordinate of the lower-right rectangle corner. \param c1 C-coordinate of the lower-right rectangle corner. \param val Scalar value used to fill the rectangle area. \param opacity Drawing opacity. **/ CImg& draw_rectangle(const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const T val, const float opacity = 1) { if (is_empty()) return *this; const int nx0 = x0 < x1 ? x0 : x1, nx1 = x0 ^ x1 ^ nx0, ny0 = y0 < y1 ? y0 : y1, ny1 = y0 ^ y1 ^ ny0, nz0 = z0 < z1 ? z0 : z1, nz1 = z0 ^ z1 ^ nz0, nc0 = c0 < c1 ? c0 : c1, nc1 = c0 ^ c1 ^ nc0; const int lx = (1 + nx1 - nx0) + (nx1 >= width() ? width() - 1 - nx1 : 0) + (nx0 < 0 ? nx0 : 0), ly = (1 + ny1 - ny0) + (ny1 >= height() ? height() - 1 - ny1 : 0) + (ny0 < 0 ? ny0 : 0), lz = (1 + nz1 - nz0) + (nz1 >= depth() ? depth() - 1 - nz1 : 0) + (nz0 < 0 ? nz0 : 0), lc = (1 + nc1 - nc0) + (nc1 >= spectrum() ? spectrum() - 1 - nc1 : 0) + (nc0 < 0 ? nc0 : 0); const ulongT offX = (ulongT)_width - lx, offY = (ulongT)_width * (_height - ly), offZ = (ulongT)_width * _height * (_depth - lz); const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity, 0.f); T* ptrd = data(nx0 < 0 ? 0 : nx0, ny0 < 0 ? 0 : ny0, nz0 < 0 ? 0 : nz0, nc0 < 0 ? 0 : nc0); if (lx > 0 && ly > 0 && lz > 0 && lc > 0) for (int v = 0; v < lc; ++v) { for (int z = 0; z < lz; ++z) { for (int y = 0; y < ly; ++y) { if (opacity >= 1) { if (sizeof(T) != 1) { for (int x = 0; x < lx; ++x) *(ptrd++) = val; ptrd += offX; } else { std::memset(ptrd, (int)val, lx); ptrd += _width; } } else { for (int x = 0; x < lx; ++x) { *ptrd = (T)(nopacity * val + *ptrd * copacity); ++ptrd; } ptrd += offX; } } ptrd += offY; } ptrd += offZ; } return *this; } //! Draw a filled 3D rectangle. /** \param x0 X-coordinate of the upper-left rectangle corner. \param y0 Y-coordinate of the upper-left rectangle corner. \param z0 Z-coordinate of the upper-left rectangle corner. \param x1 X-coordinate of the lower-right rectangle corner. \param y1 Y-coordinate of the lower-right rectangle corner. \param z1 Z-coordinate of the lower-right rectangle corner. \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param opacity Drawing opacity. **/ template CImg& draw_rectangle(const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const tc* const color, const float opacity = 1) { if (is_empty()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_rectangle(): Specified color is (null).", cimg_instance); cimg_forC(*this, c) draw_rectangle(x0, y0, z0, c, x1, y1, z1, c, (T)color[c], opacity); return *this; } //! Draw a filled 2D rectangle. /** \param x0 X-coordinate of the upper-left rectangle corner. \param y0 Y-coordinate of the upper-left rectangle corner. \param x1 X-coordinate of the lower-right rectangle corner. \param y1 Y-coordinate of the lower-right rectangle corner. \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param opacity Drawing opacity. **/ template CImg& draw_rectangle(const int x0, const int y0, const int x1, const int y1, const tc* const color, const float opacity = 1) { return draw_rectangle(x0, y0, 0, x1, y1, _depth - 1, color, opacity); } //! Draw a outlined 2D rectangle \overloading. template CImg& draw_rectangle(const int x0, const int y0, const int x1, const int y1, const tc* const color, const float opacity, const unsigned int pattern) { if (is_empty()) return *this; if (y0 == y1) return draw_line(x0, y0, x1, y0, color, opacity, pattern, true); if (x0 == x1) return draw_line(x0, y0, x0, y1, color, opacity, pattern, true); const int nx0 = x0 < x1 ? x0 : x1, nx1 = x0 ^ x1 ^ nx0, ny0 = y0 < y1 ? y0 : y1, ny1 = y0 ^ y1 ^ ny0; if (ny1 == ny0 + 1) return draw_line(nx0, ny0, nx1, ny0, color, opacity, pattern, true) .draw_line(nx1, ny1, nx0, ny1, color, opacity, pattern, false); return draw_line(nx0, ny0, nx1, ny0, color, opacity, pattern, true) .draw_line(nx1, ny0 + 1, nx1, ny1 - 1, color, opacity, pattern, false) .draw_line(nx1, ny1, nx0, ny1, color, opacity, pattern, false) .draw_line(nx0, ny1 - 1, nx0, ny0 + 1, color, opacity, pattern, false); } //! Draw a filled 2D polygon. /** \param points Set of polygon vertices. \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. \param opacity Drawing opacity. **/ template CImg& draw_polygon(const CImg& points, const tc* const color, const float opacity = 1) { if (is_empty() || !points) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_polygon(): Specified color is (null).", cimg_instance); if (points.height() != 2) throw CImgArgumentException( _cimg_instance "draw_polygon(): Invalid specified point set (%u,%u,%u,%u).", cimg_instance, points._width, points._height, points._depth, points._spectrum); if (points._width == 1) return draw_point(cimg::uiround(points(0, 0)), cimg::uiround(points(0, 1)), color, opacity); if (points._width == 2) return draw_line(cimg::uiround(points(0, 0)), cimg::uiround(points(0, 1)), cimg::uiround(points(1, 0)), cimg::uiround(points(1, 1)), color, opacity); if (points._width == 3) return draw_triangle( cimg::uiround(points(0, 0)), cimg::uiround(points(0, 1)), cimg::uiround(points(1, 0)), cimg::uiround(points(1, 1)), cimg::uiround(points(2, 0)), cimg::uiround(points(2, 1)), color, opacity); cimg_init_scanline(opacity); int xmin = 0, ymin = 0, xmax = points.get_shared_row(0).max_min(xmin), ymax = points.get_shared_row(1).max_min(ymin); if (xmax < 0 || xmin >= width() || ymax < 0 || ymin >= height()) return *this; if (ymin == ymax) return draw_line(xmin, ymin, xmax, ymax, color, opacity); ymin = std::max(0, ymin); ymax = std::min(height() - 1, ymax); CImg Xs(points._width, ymax - ymin + 1); CImg count(Xs._height, 1, 1, 1, 0); unsigned int n = 0, nn = 1; bool go_on = true; while (go_on) { unsigned int an = (nn + 1) % points._width; const int x0 = cimg::uiround(points(n, 0)), y0 = cimg::uiround(points(n, 1)); if (points(nn, 1) == y0) while (points(an, 1) == y0) { nn = an; (an += 1) %= points._width; } const int x1 = cimg::uiround(points(nn, 0)), y1 = cimg::uiround(points(nn, 1)); unsigned int tn = an; while (points(tn, 1) == y1) (tn += 1) %= points._width; if (y0 != y1) { const int y2 = cimg::uiround(points(tn, 1)), x01 = x1 - x0, y01 = y1 - y0, y12 = y2 - y1, step = cimg::sign(y01), tmax = std::max(1, cimg::abs(y01)), htmax = tmax * cimg::sign(x01) / 2, tend = tmax - (step == cimg::sign(y12)); unsigned int y = (unsigned int)y0 - ymin; for (int t = 0; t <= tend; ++t, y += step) if (y < Xs._height) Xs(count[y]++, y) = x0 + (t * x01 + htmax) / tmax; } go_on = nn > n; n = nn; nn = an; } cimg_pragma_openmp(parallel for cimg_openmp_if(Xs._height>=(cimg_openmp_sizefactor)*32)) cimg_forY(Xs,y) { const CImg Xsy = Xs.get_shared_points(0, count[y] - 1, y).sort(); int px = width(); for (unsigned int k = 0; k < Xsy._width; k += 2) { int x0 = Xsy[k]; const int x1 = Xsy[k + 1]; x0 += x0 == px; cimg_draw_scanline(x0, x1, y + ymin, color, opacity, 1); px = x1; } } return *this; } //! Draw a outlined 2D or 3D polygon \overloading. template CImg& draw_polygon(const CImg& points, const tc* const color, const float opacity, const unsigned int pattern) { if (is_empty() || !points) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_polygon(): Specified color is (null).", cimg_instance); if (points._width == 1) return draw_point((int)points(0, 0), (int)points(0, 1), color, opacity); if (points._width == 2) return draw_line((int)points(0, 0), (int)points(0, 1), (int)points(1, 0), (int)points(1, 1), color, opacity, pattern); bool ninit_hatch = true; switch (points._height) { case 0: case 1: throw CImgArgumentException(_cimg_instance "draw_polygon(): Invalid specified " "point set (%u,%u,%u,%u).", cimg_instance, points._width, points._height, points._depth, points._spectrum); default: { CImg npoints(points._width, 2); int x = npoints(0, 0) = (int)points(0, 0), y = npoints(0, 1) = (int)points(0, 1); unsigned int nb_points = 1; for (unsigned int p = 1; p < points._width; ++p) { const int nx = (int)points(p, 0), ny = (int)points(p, 1); if (nx != x || ny != y) { npoints(nb_points, 0) = nx; npoints(nb_points++, 1) = ny; x = nx; y = ny; } } const int x0 = (int)npoints(0, 0), y0 = (int)npoints(0, 1); int ox = x0, oy = y0; for (unsigned int i = 1; i < nb_points; ++i) { const int _x = (int)npoints(i, 0), _y = (int)npoints(i, 1); draw_line(ox, oy, _x, _y, color, opacity, pattern, ninit_hatch); ninit_hatch = false; ox = _x; oy = _y; } draw_line(ox, oy, x0, y0, color, opacity, pattern, false); } } return *this; } //! Draw a filled 2D ellipse. /** \param x0 X-coordinate of the ellipse center. \param y0 Y-coordinate of the ellipse center. \param r1 First radius of the ellipse. \param r2 Second radius of the ellipse. \param angle Angle of the first radius. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. **/ template CImg& draw_ellipse(const int x0, const int y0, const float r1, const float r2, const float angle, const tc* const color, const float opacity = 1) { return _draw_ellipse(x0, y0, r1, r2, angle, color, opacity, 0U, true); } //! Draw a filled 2D ellipse \overloading. /** \param x0 X-coordinate of the ellipse center. \param y0 Y-coordinate of the ellipse center. \param tensor Diffusion tensor describing the ellipse. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. **/ template CImg& draw_ellipse(const int x0, const int y0, const CImg& tensor, const tc* const color, const float opacity = 1) { CImgList eig = tensor.get_symmetric_eigen(); const CImg&val = eig[0], &vec = eig[1]; return draw_ellipse(x0, y0, std::sqrt(val(0)), std::sqrt(val(1)), std::atan2(vec(0, 1), vec(0, 0)) * 180 / cimg::PI, color, opacity); } //! Draw an outlined 2D ellipse. /** \param x0 X-coordinate of the ellipse center. \param y0 Y-coordinate of the ellipse center. \param r1 First radius of the ellipse. \param r2 Second radius of the ellipse. \param angle Angle of the first radius. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. \param pattern An integer whose bits describe the outline pattern. **/ template CImg& draw_ellipse(const int x0, const int y0, const float r1, const float r2, const float angle, const tc* const color, const float opacity, const unsigned int pattern) { if (pattern) _draw_ellipse(x0, y0, r1, r2, angle, color, opacity, pattern, false); return *this; } //! Draw an outlined 2D ellipse \overloading. /** \param x0 X-coordinate of the ellipse center. \param y0 Y-coordinate of the ellipse center. \param tensor Diffusion tensor describing the ellipse. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. \param pattern An integer whose bits describe the outline pattern. **/ template CImg& draw_ellipse(const int x0, const int y0, const CImg& tensor, const tc* const color, const float opacity, const unsigned int pattern) { CImgList eig = tensor.get_symmetric_eigen(); const CImg&val = eig[0], &vec = eig[1]; return draw_ellipse(x0, y0, std::sqrt(val(0)), std::sqrt(val(1)), std::atan2(vec(0, 1), vec(0, 0)) * 180 / cimg::PI, color, opacity, pattern); } template CImg& _draw_ellipse(const int x0, const int y0, const float radius1, const float radius2, const float angle, const tc* const color, const float opacity, const unsigned int pattern, const bool is_filled) { if (is_empty() || (!is_filled && !pattern)) return *this; const float radiusM = std::max(radius1, radius2); if (radius1 < 0 || radius2 < 0 || x0 - radiusM >= width() || y0 + radiusM < 0 || y0 - radiusM >= height()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_ellipse(): Specified color is (null).", cimg_instance); const int iradius1 = (int)cimg::round(radius1), iradius2 = (int)cimg::round(radius2); if (!iradius1 && !iradius2) return draw_point(x0, y0, color, opacity); if (iradius1 == iradius2) { if (is_filled) return draw_circle(x0, y0, iradius1, color, opacity); else if (pattern == ~0U) return draw_circle(x0, y0, iradius1, color, opacity, pattern); } const float ang = (float)(angle * cimg::PI / 180); if (!is_filled) { // Outlined const float ca = std::cos(ang), sa = std::sin(ang); CImg points((unsigned int)cimg::round(6 * radiusM), 2); cimg_forX(points, k) { const float _ang = (float)(2 * cimg::PI * k / points._width), X = (float)(radius1 * std::cos(_ang)), Y = (float)(radius2 * std::sin(_ang)); points(k, 0) = (int)cimg::round(x0 + (X * ca - Y * sa)); points(k, 1) = (int)cimg::round(y0 + (X * sa + Y * ca)); } draw_polygon(points, color, opacity, pattern); } else { // Filled cimg_init_scanline(opacity); const float ca = std::cos(ang), sa = -std::sin(ang), ca2 = ca * ca, sa2 = sa * sa, casa = ca * sa, i1 = 1 / cimg::sqr(radius1), i2 = 1 / cimg::sqr(radius2), t1 = i1 * ca2 + i2 * sa2, t2 = (i2 - i1) * casa, t3 = i2 * ca2 + i1 * sa2, t12 = t1 * 2; const int _ymin = (int)std::floor(y0 - radiusM), _ymax = (int)std::ceil(y0 + radiusM), ymin = _ymin < 0 ? 0 : _ymin, ymax = _ymax >= height() ? height() - 1 : _ymax; for (int y = ymin; y <= ymax; ++y) { const float Y = y - y0 + 0.5f, B = 2 * t2 * Y, C = t3 * Y * Y - 1, D = B * B - 4 * t1 * C; if (D >= 0) { const float sD = std::sqrt(D); const int xmin = (int)(x0 + cimg::round((-B - sD) / t12)), xmax = (int)(x0 + cimg::round((-B + sD) / t12)); cimg_draw_scanline(xmin, xmax, y, color, opacity, 1); } } } return *this; } //! Draw a filled 2D circle. /** \param x0 X-coordinate of the circle center. \param y0 Y-coordinate of the circle center. \param radius Circle radius. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. \note - Circle version of the Bresenham's algorithm is used. **/ template CImg& draw_circle(const int x0, const int y0, int radius, const tc* const color, const float opacity = 1) { if (is_empty()) return *this; if (radius < 0 || x0 - radius >= width() || y0 + radius < 0 || y0 - radius >= height()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_circle(): Specified color is (null).", cimg_instance); if (!radius) return draw_point(x0, y0, color, opacity); cimg_init_scanline(opacity); if (y0 >= 0 && y0 < height()) cimg_draw_scanline(x0 - radius, x0 + radius, y0, color, opacity, 1); for (int f = 1 - radius, ddFx = 0, ddFy = -(radius << 1), x = 0, y = radius; x < y;) { if (f >= 0) { const int x1 = x0 - x, x2 = x0 + x, y1 = y0 - y, y2 = y0 + y; if (y1 >= 0 && y1 < height()) cimg_draw_scanline(x1, x2, y1, color, opacity, 1); if (y2 >= 0 && y2 < height()) cimg_draw_scanline(x1, x2, y2, color, opacity, 1); f += (ddFy += 2); --y; } const bool no_diag = y != (x++); ++(f += (ddFx += 2)); const int x1 = x0 - y, x2 = x0 + y, y1 = y0 - x, y2 = y0 + x; if (no_diag) { if (y1 >= 0 && y1 < height()) cimg_draw_scanline(x1, x2, y1, color, opacity, 1); if (y2 >= 0 && y2 < height()) cimg_draw_scanline(x1, x2, y2, color, opacity, 1); } } return *this; } //! Draw an outlined 2D circle. /** \param x0 X-coordinate of the circle center. \param y0 Y-coordinate of the circle center. \param radius Circle radius. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. \param pattern An integer whose bits describe the outline pattern. **/ template CImg& draw_circle(const int x0, const int y0, int radius, const tc* const color, const float opacity, const unsigned int pattern) { if (pattern != ~0U) return draw_ellipse(x0, y0, radius, radius, 0, color, opacity, pattern); if (is_empty()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_circle(): Specified color is (null).", cimg_instance); if (radius < 0 || x0 - radius >= width() || y0 + radius < 0 || y0 - radius >= height()) return *this; if (!radius) return draw_point(x0, y0, color, opacity); draw_point(x0 - radius, y0, color, opacity) .draw_point(x0 + radius, y0, color, opacity) .draw_point(x0, y0 - radius, color, opacity) .draw_point(x0, y0 + radius, color, opacity); if (radius == 1) return *this; for (int f = 1 - radius, ddFx = 0, ddFy = -(radius << 1), x = 0, y = radius; x < y;) { if (f >= 0) { f += (ddFy += 2); --y; } ++x; ++(f += (ddFx += 2)); if (x != y + 1) { const int x1 = x0 - y, x2 = x0 + y, y1 = y0 - x, y2 = y0 + x, x3 = x0 - x, x4 = x0 + x, y3 = y0 - y, y4 = y0 + y; draw_point(x1, y1, color, opacity) .draw_point(x1, y2, color, opacity) .draw_point(x2, y1, color, opacity) .draw_point(x2, y2, color, opacity); if (x != y) draw_point(x3, y3, color, opacity) .draw_point(x4, y4, color, opacity) .draw_point(x4, y3, color, opacity) .draw_point(x3, y4, color, opacity); } } return *this; } //! Draw an image. /** \param sprite Sprite image. \param x0 X-coordinate of the sprite position. \param y0 Y-coordinate of the sprite position. \param z0 Z-coordinate of the sprite position. \param c0 C-coordinate of the sprite position. \param opacity Drawing opacity. **/ template CImg& draw_image(const int x0, const int y0, const int z0, const int c0, const CImg& sprite, const float opacity = 1) { if (is_empty() || !sprite) return *this; if (is_overlapped(sprite)) return draw_image(x0, y0, z0, c0, +sprite, opacity); if (x0 == 0 && y0 == 0 && z0 == 0 && c0 == 0 && is_sameXYZC(sprite) && opacity >= 1 && !is_shared()) return assign(sprite, false); const bool bx = x0 < 0, by = y0 < 0, bz = z0 < 0, bc = c0 < 0; const int dx0 = bx ? 0 : x0, dy0 = by ? 0 : y0, dz0 = bz ? 0 : z0, dc0 = bc ? 0 : c0, sx0 = dx0 - x0, sy0 = dy0 - y0, sz0 = dz0 - z0, sc0 = dc0 - c0, lx = sprite.width() - sx0 - (x0 + sprite.width() > width() ? x0 + sprite.width() - width() : 0), ly = sprite.height() - sy0 - (y0 + sprite.height() > height() ? y0 + sprite.height() - height() : 0), lz = sprite.depth() - sz0 - (z0 + sprite.depth() > depth() ? z0 + sprite.depth() - depth() : 0), lc = sprite.spectrum() - sc0 - (c0 + sprite.spectrum() > spectrum() ? c0 + sprite.spectrum() - spectrum() : 0); const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity, 0.f); if (lx > 0 && ly > 0 && lz > 0 && lc > 0) { for (int c = 0; c < lc; ++c) for (int z = 0; z < lz; ++z) for (int y = 0; y < ly; ++y) { T* ptrd = data(dx0, dy0 + y, dz0 + z, dc0 + c); const t* ptrs = sprite.data(sx0, sy0 + y, sz0 + z, sc0 + c); if (opacity >= 1) for (int x = 0; x < lx; ++x) *(ptrd++) = (T) * (ptrs++); else for (int x = 0; x < lx; ++x) { *ptrd = (T)(nopacity * (*(ptrs++)) + *ptrd * copacity); ++ptrd; } } } return *this; } //! Draw an image \specialization. CImg& draw_image(const int x0, const int y0, const int z0, const int c0, const CImg& sprite, const float opacity = 1) { if (is_empty() || !sprite) return *this; if (is_overlapped(sprite)) return draw_image(x0, y0, z0, c0, +sprite, opacity); if (x0 == 0 && y0 == 0 && z0 == 0 && c0 == 0 && is_sameXYZC(sprite) && opacity >= 1 && !is_shared()) return assign(sprite, false); const bool bx = x0 < 0, by = y0 < 0, bz = z0 < 0, bc = c0 < 0; const int dx0 = bx ? 0 : x0, dy0 = by ? 0 : y0, dz0 = bz ? 0 : z0, dc0 = bc ? 0 : c0, sx0 = dx0 - x0, sy0 = dy0 - y0, sz0 = dz0 - z0, sc0 = dc0 - c0, lx = sprite.width() - sx0 - (x0 + sprite.width() > width() ? x0 + sprite.width() - width() : 0), ly = sprite.height() - sy0 - (y0 + sprite.height() > height() ? y0 + sprite.height() - height() : 0), lz = sprite.depth() - sz0 - (z0 + sprite.depth() > depth() ? z0 + sprite.depth() - depth() : 0), lc = sprite.spectrum() - sc0 - (c0 + sprite.spectrum() > spectrum() ? c0 + sprite.spectrum() - spectrum() : 0); const ulongT slx = lx * sizeof(T); const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity, 0.f); if (lx > 0 && ly > 0 && lz > 0 && lc > 0) { for (int c = 0; c < lc; ++c) for (int z = 0; z < lz; ++z) for (int y = 0; y < ly; ++y) { T* ptrd = data(dx0, dy0 + y, dz0 + z, dc0 + c); const T* ptrs = sprite.data(sx0, sy0 + y, sz0 + z, sc0 + c); if (opacity >= 1) std::memcpy(ptrd, ptrs, slx); else for (int x = 0; x < lx; ++x) { *ptrd = (T)(nopacity * (*(ptrs++)) + *ptrd * copacity); ++ptrd; } } } return *this; } //! Draw an image \overloading. template CImg& draw_image(const int x0, const int y0, const int z0, const CImg& sprite, const float opacity = 1) { return draw_image(x0, y0, z0, 0, sprite, opacity); } //! Draw an image \overloading. template CImg& draw_image(const int x0, const int y0, const CImg& sprite, const float opacity = 1) { return draw_image(x0, y0, 0, sprite, opacity); } //! Draw an image \overloading. template CImg& draw_image(const int x0, const CImg& sprite, const float opacity = 1) { return draw_image(x0, 0, sprite, opacity); } //! Draw an image \overloading. template CImg& draw_image(const CImg& sprite, const float opacity = 1) { return draw_image(0, sprite, opacity); } //! Draw a masked image. /** \param sprite Sprite image. \param mask Mask image. \param x0 X-coordinate of the sprite position in the image instance. \param y0 Y-coordinate of the sprite position in the image instance. \param z0 Z-coordinate of the sprite position in the image instance. \param c0 C-coordinate of the sprite position in the image instance. \param mask_max_value Maximum pixel value of the mask image \c mask. \param opacity Drawing opacity. \note - Pixel values of \c mask set the opacity of the corresponding pixels in \c sprite. - Dimensions along x,y and z of \p sprite and \p mask must be the same. **/ template CImg& draw_image(const int x0, const int y0, const int z0, const int c0, const CImg& sprite, const CImg& mask, const float opacity = 1, const float mask_max_value = 1) { if (is_empty() || !sprite || !mask) return *this; if (is_overlapped(sprite)) return draw_image(x0, y0, z0, c0, +sprite, mask, opacity, mask_max_value); if (is_overlapped(mask)) return draw_image(x0, y0, z0, c0, sprite, +mask, opacity, mask_max_value); if (mask._width != sprite._width || mask._height != sprite._height || mask._depth != sprite._depth) throw CImgArgumentException( _cimg_instance "draw_image(): Sprite (%u,%u,%u,%u,%p) and mask " "(%u,%u,%u,%u,%p) have " "incompatible dimensions.", cimg_instance, sprite._width, sprite._height, sprite._depth, sprite._spectrum, sprite._data, mask._width, mask._height, mask._depth, mask._spectrum, mask._data); const bool bx = x0 < 0, by = y0 < 0, bz = z0 < 0, bc = c0 < 0; const int dx0 = bx ? 0 : x0, dy0 = by ? 0 : y0, dz0 = bz ? 0 : z0, dc0 = bc ? 0 : c0, sx0 = dx0 - x0, sy0 = dy0 - y0, sz0 = dz0 - z0, sc0 = dc0 - c0, lx = sprite.width() - sx0 - (x0 + sprite.width() > width() ? x0 + sprite.width() - width() : 0), ly = sprite.height() - sy0 - (y0 + sprite.height() > height() ? y0 + sprite.height() - height() : 0), lz = sprite.depth() - sz0 - (z0 + sprite.depth() > depth() ? z0 + sprite.depth() - depth() : 0), lc = sprite.spectrum() - sc0 - (c0 + sprite.spectrum() > spectrum() ? c0 + sprite.spectrum() - spectrum() : 0); const ulongT msize = mask.size(); if (lx > 0 && ly > 0 && lz > 0 && lc > 0) { for (int c = 0; c < lc; ++c) for (int z = 0; z < lz; ++z) for (int y = 0; y < ly; ++y) { T* ptrd = data(dx0, dy0 + y, dz0 + z, dc0 + c); const ti* ptrs = sprite.data(sx0, sy0 + y, sz0 + z, sc0 + c); const tm* ptrm = mask._data + (mask.offset(sx0, sy0 + y, sz0 + z, sc0 + c) % msize); for (int x = 0; x < lx; ++x) { const float mopacity = (float)(*(ptrm++) * opacity), nopacity = cimg::abs(mopacity), copacity = mask_max_value - std::max(mopacity, 0.f); *ptrd = (T)( (nopacity * (*(ptrs++)) + *ptrd * copacity) / mask_max_value); ++ptrd; } } } return *this; } //! Draw a masked image \overloading. template CImg& draw_image(const int x0, const int y0, const int z0, const CImg& sprite, const CImg& mask, const float opacity = 1, const float mask_max_value = 1) { return draw_image(x0, y0, z0, 0, sprite, mask, opacity, mask_max_value); } //! Draw a image \overloading. template CImg& draw_image(const int x0, const int y0, const CImg& sprite, const CImg& mask, const float opacity = 1, const float mask_max_value = 1) { return draw_image(x0, y0, 0, sprite, mask, opacity, mask_max_value); } //! Draw a image \overloading. template CImg& draw_image(const int x0, const CImg& sprite, const CImg& mask, const float opacity = 1, const float mask_max_value = 1) { return draw_image(x0, 0, sprite, mask, opacity, mask_max_value); } //! Draw an image. template CImg& draw_image(const CImg& sprite, const CImg& mask, const float opacity = 1, const float mask_max_value = 1) { return draw_image(0, sprite, mask, opacity, mask_max_value); } //! Draw a text string. /** \param x0 X-coordinate of the text in the image instance. \param y0 Y-coordinate of the text in the image instance. \param text Format of the text ('printf'-style format string). \param foreground_color Pointer to \c spectrum() consecutive values, defining the foreground drawing color. \param background_color Pointer to \c spectrum() consecutive values, defining the background drawing color. \param opacity Drawing opacity. \param font Font used for drawing text. **/ template CImg& draw_text(const int x0, const int y0, const char* const text, const tc1* const foreground_color, const tc2* const background_color, const float opacity, const CImgList& font, ...) { if (!font) return *this; CImg tmp(2048); std::va_list ap; va_start(ap, font); cimg_vsnprintf(tmp, tmp._width, text, ap); va_end(ap); return _draw_text(x0, y0, tmp, foreground_color, background_color, opacity, font, false); } //! Draw a text string \overloading. /** \note A transparent background is used for the text. **/ template CImg& draw_text(const int x0, const int y0, const char* const text, const tc* const foreground_color, const int, const float opacity, const CImgList& font, ...) { if (!font) return *this; CImg tmp(2048); std::va_list ap; va_start(ap, font); cimg_vsnprintf(tmp, tmp._width, text, ap); va_end(ap); return _draw_text(x0, y0, tmp, foreground_color, (tc*)0, opacity, font, false); } //! Draw a text string \overloading. /** \note A transparent foreground is used for the text. **/ template CImg& draw_text(const int x0, const int y0, const char* const text, const int, const tc* const background_color, const float opacity, const CImgList& font, ...) { if (!font) return *this; CImg tmp(2048); std::va_list ap; va_start(ap, font); cimg_vsnprintf(tmp, tmp._width, text, ap); va_end(ap); return _draw_text(x0, y0, tmp, (tc*)0, background_color, opacity, font, false); } //! Draw a text string \overloading. /** \param x0 X-coordinate of the text in the image instance. \param y0 Y-coordinate of the text in the image instance. \param text Format of the text ('printf'-style format string). \param foreground_color Array of spectrum() values of type \c T, defining the foreground color (0 means 'transparent'). \param background_color Array of spectrum() values of type \c T, defining the background color (0 means 'transparent'). \param opacity Drawing opacity. \param font_height Height of the text font (exact match for 13,23,53,103, interpolated otherwise). **/ template CImg& draw_text(const int x0, const int y0, const char* const text, const tc1* const foreground_color, const tc2* const background_color, const float opacity = 1, const unsigned int font_height = 13, ...) { if (!font_height) return *this; CImg tmp(2048); std::va_list ap; va_start(ap, font_height); cimg_vsnprintf(tmp, tmp._width, text, ap); va_end(ap); const CImgList& font = CImgList::font(font_height, true); _draw_text(x0, y0, tmp, foreground_color, background_color, opacity, font, true); return *this; } //! Draw a text string \overloading. template CImg& draw_text(const int x0, const int y0, const char* const text, const tc* const foreground_color, const int background_color = 0, const float opacity = 1, const unsigned int font_height = 13, ...) { if (!font_height) return *this; cimg::unused(background_color); CImg tmp(2048); std::va_list ap; va_start(ap, font_height); cimg_vsnprintf(tmp, tmp._width, text, ap); va_end(ap); return draw_text(x0, y0, "%s", foreground_color, (const tc*)0, opacity, font_height, tmp._data); } //! Draw a text string \overloading. template CImg& draw_text(const int x0, const int y0, const char* const text, const int, const tc* const background_color, const float opacity = 1, const unsigned int font_height = 13, ...) { if (!font_height) return *this; CImg tmp(2048); std::va_list ap; va_start(ap, font_height); cimg_vsnprintf(tmp, tmp._width, text, ap); va_end(ap); return draw_text(x0, y0, "%s", (tc*)0, background_color, opacity, font_height, tmp._data); } template CImg& _draw_text(const int x0, const int y0, const char* const text, const tc1* const foreground_color, const tc2* const background_color, const float opacity, const CImgList& font, const bool is_native_font) { if (!text) return *this; if (!font) throw CImgArgumentException(_cimg_instance "draw_text(): Empty specified font.", cimg_instance); const unsigned int text_length = (unsigned int)std::strlen(text); if (is_empty()) { // If needed, pre-compute necessary size of the image int x = 0, y = 0, w = 0; unsigned char c = 0; for (unsigned int i = 0; i < text_length; ++i) { c = (unsigned char)text[i]; switch (c) { case '\n': y += font[0]._height; if (x > w) w = x; x = 0; break; case '\t': x += 4 * font[(int)' ']._width; break; default: if (c < font._width) x += font[c]._width; } } if (x != 0 || c == '\n') { if (x > w) w = x; y += font[0]._height; } assign(x0 + w, y0 + y, 1, is_native_font ? 1 : font[0]._spectrum, (T)0); } int x = x0, y = y0; for (unsigned int i = 0; i < text_length; ++i) { const unsigned char ch = (unsigned char)text[i]; switch (ch) { case '\n': y += font[0]._height; x = x0; break; case '\t': x += 4 * font[(int)' ']._width; break; default: if (ch < font._width) { CImg letter = font[ch]; if (letter) { if (is_native_font && _spectrum > letter._spectrum) letter.resize(-100, -100, 1, _spectrum, 0, 2); const unsigned int cmin = std::min(_spectrum, letter._spectrum); if (foreground_color) for (unsigned int c = 0; c < cmin; ++c) if (foreground_color[c] != 1) letter.get_shared_channel(c) *= foreground_color[c]; if (ch + 256 < font.width()) { // Letter has mask if (background_color) for (unsigned int c = 0; c < cmin; ++c) draw_rectangle( x, y, 0, c, x + letter._width - 1, y + letter._height - 1, 0, c, background_color[c], opacity); draw_image(x, y, letter, font[ch + 256], opacity, 255.f); } else draw_image(x, y, letter, opacity); // Letter has no mask x += letter._width; } } } } return *this; } // [internal] Version used to display text in interactive viewers. CImg& __draw_text(const char* const text, const int is_down, ...) { CImg tmp(2048); std::va_list ap; va_start(ap, is_down); cimg_vsnprintf(tmp, tmp._width, text, ap); va_end(ap); CImg a_label, a_labelmask; const unsigned char a_labelcolor = 255; const unsigned int fsize = 14; a_label.draw_text(0, 0, "%s", &a_labelcolor, 0, 1, fsize, tmp._data) .normalize(0, 255); if (a_label) { a_label += (255 - a_label.get_dilate(3)).normalize(0, 80); a_label.resize(-100, -100, 1, 3, 1); return draw_image(0, is_down ? height() - a_label.height() : 0, a_label, 0.85f); } return *this; } //! Draw a 2D vector field. /** \param flow Image of 2D vectors used as input data. \param color Image of spectrum()-D vectors corresponding to the color of each arrow. \param opacity Drawing opacity. \param sampling Length (in pixels) between each arrow. \param factor Length factor of each arrow (if <0, computed as a percentage of the maximum length). \param is_arrow Tells if arrows must be drawn, instead of oriented segments. \param pattern Used pattern to draw lines. \note Clipping is supported. **/ template CImg& draw_quiver(const CImg& flow, const t2* const color, const float opacity = 1, const unsigned int sampling = 25, const float factor = -20, const bool is_arrow = true, const unsigned int pattern = ~0U) { return draw_quiver(flow, CImg(color, _spectrum, 1, 1, 1, true), opacity, sampling, factor, is_arrow, pattern); } //! Draw a 2D vector field, using a field of colors. /** \param flow Image of 2D vectors used as input data. \param color Image of spectrum()-D vectors corresponding to the color of each arrow. \param opacity Opacity of the drawing. \param sampling Length (in pixels) between each arrow. \param factor Length factor of each arrow (if <0, computed as a percentage of the maximum length). \param is_arrow Tells if arrows must be drawn, instead of oriented segments. \param pattern Used pattern to draw lines. \note Clipping is supported. **/ template CImg& draw_quiver(const CImg& flow, const CImg& color, const float opacity = 1, const unsigned int sampling = 25, const float factor = -20, const bool is_arrow = true, const unsigned int pattern = ~0U) { if (is_empty()) return *this; if (!flow || flow._spectrum != 2) throw CImgArgumentException(_cimg_instance "draw_quiver(): Invalid dimensions of " "specified flow (%u,%u,%u,%u,%p).", cimg_instance, flow._width, flow._height, flow._depth, flow._spectrum, flow._data); if (sampling <= 0) throw CImgArgumentException( _cimg_instance "draw_quiver(): Invalid sampling value %g " "(should be >0)", cimg_instance, sampling); const bool colorfield = (color._width == flow._width && color._height == flow._height && color._depth == 1 && color._spectrum == _spectrum); if (is_overlapped(flow)) return draw_quiver(+flow, color, opacity, sampling, factor, is_arrow, pattern); float vmax, fact; if (factor <= 0) { float m, M = (float)flow.get_norm(2).max_min(m); vmax = (float)std::max(cimg::abs(m), cimg::abs(M)); if (!vmax) vmax = 1; fact = -factor; } else { fact = factor; vmax = 1; } for (unsigned int y = sampling / 2; y < _height; y += sampling) for (unsigned int x = sampling / 2; x < _width; x += sampling) { const unsigned int X = x * flow._width / _width, Y = y * flow._height / _height; float u = (float)flow(X, Y, 0, 0) * fact / vmax, v = (float)flow(X, Y, 0, 1) * fact / vmax; if (is_arrow) { const int xx = (int)(x + u), yy = (int)(y + v); if (colorfield) draw_arrow(x, y, xx, yy, color.get_vector_at(X, Y)._data, opacity, 45, sampling / 5.f, pattern); else draw_arrow(x, y, xx, yy, color._data, opacity, 45, sampling / 5.f, pattern); } else { if (colorfield) draw_line((int)(x - 0.5 * u), (int)(y - 0.5 * v), (int)(x + 0.5 * u), (int)(y + 0.5 * v), color.get_vector_at(X, Y)._data, opacity, pattern); else draw_line((int)(x - 0.5 * u), (int)(y - 0.5 * v), (int)(x + 0.5 * u), (int)(y + 0.5 * v), color._data, opacity, pattern); } } return *this; } //! Draw a labeled horizontal axis. /** \param values_x Values along the horizontal axis. \param y Y-coordinate of the horizontal axis in the image instance. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. \param pattern Drawing pattern. \param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise). \param allow_zero Enable/disable the drawing of label '0' if found. **/ template CImg& draw_axis(const CImg& values_x, const int y, const tc* const color, const float opacity = 1, const unsigned int pattern = ~0U, const unsigned int font_height = 13, const bool allow_zero = true, const float round_x = 0) { if (is_empty()) return *this; const int yt = (y + 3 + font_height) < _height ? y + 3 : y - 2 - (int)font_height; const int siz = (int)values_x.size() - 1; CImg txt(32); CImg a_label; if (siz <= 0) { // Degenerated case draw_line(0, y, _width - 1, y, color, opacity, pattern); if (!siz) { cimg_snprintf(txt, txt._width, "%g", round_x ? cimg::round((double)*values_x, round_x) : (double)*values_x); a_label.assign().draw_text(0, 0, txt, color, (tc*)0, opacity, font_height); const int _xt = (width() - a_label.width()) / 2, xt = _xt < 3 ? 3 : _xt + a_label.width() >= width() - 2 ? width() - 3 - a_label.width() : _xt; draw_point(width() / 2, y - 1, color, opacity) .draw_point(width() / 2, y + 1, color, opacity); if (allow_zero || *txt != '0' || txt[1] != 0) draw_text(xt, yt, txt, color, (tc*)0, opacity, font_height); } } else { // Regular case if (values_x[0] < values_x[siz]) draw_arrow(0, y, _width - 1, y, color, opacity, 30, 5, pattern); else draw_arrow(_width - 1, y, 0, y, color, opacity, 30, 5, pattern); cimg_foroff(values_x, x) { cimg_snprintf(txt, txt._width, "%g", round_x ? cimg::round((double)values_x(x), round_x) : (double)values_x(x)); a_label.assign().draw_text(0, 0, txt, color, (tc*)0, opacity, font_height); const int xi = (int)(x * (_width - 1) / siz), _xt = xi - a_label.width() / 2, xt = _xt < 3 ? 3 : _xt + a_label.width() >= width() - 2 ? width() - 3 - a_label.width() : _xt; draw_point(xi, y - 1, color, opacity) .draw_point(xi, y + 1, color, opacity); if (allow_zero || *txt != '0' || txt[1] != 0) draw_text(xt, yt, txt, color, (tc*)0, opacity, font_height); } } return *this; } //! Draw a labeled vertical axis. /** \param x X-coordinate of the vertical axis in the image instance. \param values_y Values along the Y-axis. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. \param pattern Drawing pattern. \param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise). \param allow_zero Enable/disable the drawing of label '0' if found. **/ template CImg& draw_axis(const int x, const CImg& values_y, const tc* const color, const float opacity = 1, const unsigned int pattern = ~0U, const unsigned int font_height = 13, const bool allow_zero = true, const float round_y = 0) { if (is_empty()) return *this; int siz = (int)values_y.size() - 1; CImg txt(32); CImg a_label; if (siz <= 0) { // Degenerated case draw_line(x, 0, x, _height - 1, color, opacity, pattern); if (!siz) { cimg_snprintf(txt, txt._width, "%g", round_y ? cimg::round((double)*values_y, round_y) : (double)*values_y); a_label.assign().draw_text(0, 0, txt, color, (tc*)0, opacity, font_height); const int _yt = (height() - a_label.height()) / 2, yt = _yt < 0 ? 0 : _yt + a_label.height() >= height() ? height() - 1 - a_label.height() : _yt, _xt = x - 2 - a_label.width(), xt = _xt >= 0 ? _xt : x + 3; draw_point(x - 1, height() / 2, color, opacity) .draw_point(x + 1, height() / 2, color, opacity); if (allow_zero || *txt != '0' || txt[1] != 0) draw_text(xt, yt, txt, color, (tc*)0, opacity, font_height); } } else { // Regular case if (values_y[0] < values_y[siz]) draw_arrow(x, 0, x, _height - 1, color, opacity, 30, 5, pattern); else draw_arrow(x, _height - 1, x, 0, color, opacity, 30, 5, pattern); cimg_foroff(values_y, y) { cimg_snprintf(txt, txt._width, "%g", round_y ? cimg::round((double)values_y(y), round_y) : (double)values_y(y)); a_label.assign().draw_text(0, 0, txt, color, (tc*)0, opacity, font_height); const int yi = (int)(y * (_height - 1) / siz), _yt = yi - a_label.height() / 2, yt = _yt < 0 ? 0 : _yt + a_label.height() >= height() ? height() - 1 - a_label.height() : _yt, _xt = x - 2 - a_label.width(), xt = _xt >= 0 ? _xt : x + 3; draw_point(x - 1, yi, color, opacity) .draw_point(x + 1, yi, color, opacity); if (allow_zero || *txt != '0' || txt[1] != 0) draw_text(xt, yt, txt, color, (tc*)0, opacity, font_height); } } return *this; } //! Draw labeled horizontal and vertical axes. /** \param values_x Values along the X-axis. \param values_y Values along the Y-axis. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. \param pattern_x Drawing pattern for the X-axis. \param pattern_y Drawing pattern for the Y-axis. \param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise). \param allow_zero Enable/disable the drawing of label '0' if found. **/ template CImg& draw_axes(const CImg& values_x, const CImg& values_y, const tc* const color, const float opacity = 1, const unsigned int pattern_x = ~0U, const unsigned int pattern_y = ~0U, const unsigned int font_height = 13, const bool allow_zero = true, const float round_x = 0, const float round_y = 0) { if (is_empty()) return *this; const CImg nvalues_x(values_x._data, values_x.size(), 1, 1, 1, true); const int sizx = (int)values_x.size() - 1, wm1 = width() - 1; if (sizx >= 0) { float ox = (float)*nvalues_x; for (unsigned int x = sizx ? 1U : 0U; x < _width; ++x) { const float nx = (float)nvalues_x._linear_atX((float)x * sizx / wm1); if (nx * ox <= 0) { draw_axis(nx == 0 ? x : x - 1, values_y, color, opacity, pattern_y, font_height, allow_zero, round_y); break; } ox = nx; } } const CImg nvalues_y(values_y._data, values_y.size(), 1, 1, 1, true); const int sizy = (int)values_y.size() - 1, hm1 = height() - 1; if (sizy > 0) { float oy = (float)nvalues_y[0]; for (unsigned int y = sizy ? 1U : 0U; y < _height; ++y) { const float ny = (float)nvalues_y._linear_atX((float)y * sizy / hm1); if (ny * oy <= 0) { draw_axis(values_x, ny == 0 ? y : y - 1, color, opacity, pattern_x, font_height, allow_zero, round_x); break; } oy = ny; } } return *this; } //! Draw labeled horizontal and vertical axes \overloading. template CImg& draw_axes(const float x0, const float x1, const float y0, const float y1, const tc* const color, const float opacity = 1, const int subdivisionx = -60, const int subdivisiony = -60, const float precisionx = 0, const float precisiony = 0, const unsigned int pattern_x = ~0U, const unsigned int pattern_y = ~0U, const unsigned int font_height = 13) { if (is_empty()) return *this; const bool allow_zero = (x0 * x1 > 0) || (y0 * y1 > 0); const float dx = cimg::abs(x1 - x0), dy = cimg::abs(y1 - y0), px = dx <= 0 ? 1 : precisionx == 0 ? (float)std::pow( 10., (int)std::log10(dx) - 2.) : precisionx, py = dy <= 0 ? 1 : precisiony == 0 ? (float)std::pow( 10., (int)std::log10(dy) - 2.) : precisiony; if (x0 != x1 && y0 != y1) draw_axes(CImg::sequence(subdivisionx > 0 ? subdivisionx : 1 - width() / subdivisionx, x0, x1), CImg::sequence(subdivisiony > 0 ? subdivisiony : 1 - height() / subdivisiony, y0, y1), color, opacity, pattern_x, pattern_y, font_height, allow_zero, px, py); else if (x0 == x1 && y0 != y1) draw_axis((int)x0, CImg::sequence(subdivisiony > 0 ? subdivisiony : 1 - height() / subdivisiony, y0, y1), color, opacity, pattern_y, font_height, py); else if (x0 != x1 && y0 == y1) draw_axis(CImg::sequence(subdivisionx > 0 ? subdivisionx : 1 - width() / subdivisionx, x0, x1), (int)y0, color, opacity, pattern_x, font_height, px); return *this; } //! Draw 2D grid. /** \param values_x X-coordinates of the vertical lines. \param values_y Y-coordinates of the horizontal lines. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. \param pattern_x Drawing pattern for vertical lines. \param pattern_y Drawing pattern for horizontal lines. **/ template CImg& draw_grid(const CImg& values_x, const CImg& values_y, const tc* const color, const float opacity = 1, const unsigned int pattern_x = ~0U, const unsigned int pattern_y = ~0U) { if (is_empty()) return *this; if (values_x) cimg_foroff(values_x, x) { const int xi = (int)values_x[x]; if (xi >= 0 && xi < width()) draw_line(xi, 0, xi, _height - 1, color, opacity, pattern_x); } if (values_y) cimg_foroff(values_y, y) { const int yi = (int)values_y[y]; if (yi >= 0 && yi < height()) draw_line(0, yi, _width - 1, yi, color, opacity, pattern_y); } return *this; } //! Draw 2D grid \simplification. template CImg& draw_grid(const float delta_x, const float delta_y, const float offsetx, const float offsety, const bool invertx, const bool inverty, const tc* const color, const float opacity = 1, const unsigned int pattern_x = ~0U, const unsigned int pattern_y = ~0U) { if (is_empty()) return *this; CImg seqx, seqy; if (delta_x != 0) { const float dx = delta_x > 0 ? delta_x : _width * -delta_x / 100; const unsigned int nx = (unsigned int)(_width / dx); seqx = CImg::sequence(1 + nx, 0, (unsigned int)(dx * nx)); if (offsetx) cimg_foroff(seqx, x) seqx(x) = (unsigned int)cimg::mod(seqx(x) + offsetx, (float)_width); if (invertx) cimg_foroff(seqx, x) seqx(x) = _width - 1 - seqx(x); } if (delta_y != 0) { const float dy = delta_y > 0 ? delta_y : _height * -delta_y / 100; const unsigned int ny = (unsigned int)(_height / dy); seqy = CImg::sequence(1 + ny, 0, (unsigned int)(dy * ny)); if (offsety) cimg_foroff(seqy, y) seqy(y) = (unsigned int)cimg::mod(seqy(y) + offsety, (float)_height); if (inverty) cimg_foroff(seqy, y) seqy(y) = _height - 1 - seqy(y); } return draw_grid(seqx, seqy, color, opacity, pattern_x, pattern_y); } //! Draw 1D graph. /** \param data Image containing the graph values I = f(x). \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. \param plot_type Define the type of the plot: - 0 = No plot. - 1 = Plot using segments. - 2 = Plot using cubic splines. - 3 = Plot with bars. \param vertex_type Define the type of points: - 0 = No points. - 1 = Point. - 2 = Straight cross. - 3 = Diagonal cross. - 4 = Filled circle. - 5 = Outlined circle. - 6 = Square. - 7 = Diamond. \param ymin Lower bound of the y-range. \param ymax Upper bound of the y-range. \param pattern Drawing pattern. \note - if \c ymin==ymax==0, the y-range is computed automatically from the input samples. **/ template CImg& draw_graph(const CImg& data, const tc* const color, const float opacity = 1, const unsigned int plot_type = 1, const int vertex_type = 1, const double ymin = 0, const double ymax = 0, const unsigned int pattern = ~0U) { if (is_empty() || _height <= 1) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_graph(): Specified color is (null).", cimg_instance); // Create shaded colors for displaying bar plots. CImg color1, color2; if (plot_type == 3) { color1.assign(_spectrum); color2.assign(_spectrum); cimg_forC(*this, c) { color1[c] = (tc)std::min((float)cimg::type::max(), (float)color[c] * 1.2f); color2[c] = (tc)(color[c] * 0.4f); } } // Compute min/max and normalization factors. const ulongT siz = data.size(), _siz1 = siz - (plot_type != 3), siz1 = _siz1 ? _siz1 : 1; const unsigned int _width1 = _width - (plot_type != 3), width1 = _width1 ? _width1 : 1; double m = ymin, M = ymax; if (ymin == ymax) m = (double)data.max_min(M); if (m == M) { --m; ++M; } const float ca = (float)(M - m) / (_height - 1); bool init_hatch = true; // Draw graph edges switch (plot_type % 4) { case 1: { // Segments int oX = 0, oY = (int)((data[0] - m) / ca); if (siz == 1) { const int Y = (int)((*data - m) / ca); draw_line(0, Y, width() - 1, Y, color, opacity, pattern); } else { const float fx = (float)_width / siz1; for (ulongT off = 1; off < siz; ++off) { const int X = (int)(off * fx) - 1, Y = (int)((data[off] - m) / ca); draw_line(oX, oY, X, Y, color, opacity, pattern, init_hatch); oX = X; oY = Y; init_hatch = false; } } } break; case 2: { // Spline const CImg ndata(data._data, siz, 1, 1, 1, true); int oY = (int)((data[0] - m) / ca); cimg_forX(*this, x) { const int Y = (int)((ndata._cubic_atX((float)x * siz1 / width1) - m) / ca); if (x > 0) draw_line(x, oY, x + 1, Y, color, opacity, pattern, init_hatch); init_hatch = false; oY = Y; } } break; case 3: { // Bars const int Y0 = (int)(-m / ca); const float fx = (float)_width / siz1; int oX = 0; cimg_foroff(data, off) { const int X = (int)((off + 1) * fx) - 1, Y = (int)((data[off] - m) / ca); draw_rectangle(oX, Y0, X, Y, color, opacity) .draw_line(oX, Y, oX, Y0, color2.data(), opacity) .draw_line(oX, Y0, X, Y0, Y <= Y0 ? color2.data() : color1.data(), opacity) .draw_line(X, Y, X, Y0, color1.data(), opacity) .draw_line(oX, Y, X, Y, Y <= Y0 ? color1.data() : color2.data(), opacity); oX = X + 1; } } break; default: break; // No edges } // Draw graph points const unsigned int wb2 = plot_type == 3 ? _width1 / (2 * siz) : 0; const float fx = (float)_width1 / siz1; switch (vertex_type % 8) { case 1: { // Point cimg_foroff(data, off) { const int X = (int)(off * fx + wb2), Y = (int)((data[off] - m) / ca); draw_point(X, Y, color, opacity); } } break; case 2: { // Straight Cross cimg_foroff(data, off) { const int X = (int)(off * fx + wb2), Y = (int)((data[off] - m) / ca); draw_line(X - 3, Y, X + 3, Y, color, opacity) .draw_line(X, Y - 3, X, Y + 3, color, opacity); } } break; case 3: { // Diagonal Cross cimg_foroff(data, off) { const int X = (int)(off * fx + wb2), Y = (int)((data[off] - m) / ca); draw_line(X - 3, Y - 3, X + 3, Y + 3, color, opacity) .draw_line(X - 3, Y + 3, X + 3, Y - 3, color, opacity); } } break; case 4: { // Filled Circle cimg_foroff(data, off) { const int X = (int)(off * fx + wb2), Y = (int)((data[off] - m) / ca); draw_circle(X, Y, 3, color, opacity); } } break; case 5: { // Outlined circle cimg_foroff(data, off) { const int X = (int)(off * fx + wb2), Y = (int)((data[off] - m) / ca); draw_circle(X, Y, 3, color, opacity, ~0U); } } break; case 6: { // Square cimg_foroff(data, off) { const int X = (int)(off * fx + wb2), Y = (int)((data[off] - m) / ca); draw_rectangle(X - 3, Y - 3, X + 3, Y + 3, color, opacity, ~0U); } } break; case 7: { // Diamond cimg_foroff(data, off) { const int X = (int)(off * fx + wb2), Y = (int)((data[off] - m) / ca); draw_line(X, Y - 4, X + 4, Y, color, opacity) .draw_line(X + 4, Y, X, Y + 4, color, opacity) .draw_line(X, Y + 4, X - 4, Y, color, opacity) .draw_line(X - 4, Y, X, Y - 4, color, opacity); } } break; default: break; // No points } return *this; } bool _draw_fill(const int x, const int y, const int z, const CImg& ref, const float tolerance2) const { const T *ptr1 = data(x, y, z), *ptr2 = ref._data; const unsigned long off = _width * _height * _depth; float diff = 0; cimg_forC(*this, c) { diff += cimg::sqr(*ptr1 - *(ptr2++)); ptr1 += off; } return diff <= tolerance2; } //! Draw filled 3D region with the flood fill algorithm. /** \param x0 X-coordinate of the starting point of the region to fill. \param y0 Y-coordinate of the starting point of the region to fill. \param z0 Z-coordinate of the starting point of the region to fill. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param[out] region Image that will contain the mask of the filled region mask, as an output. \param tolerance Tolerance concerning neighborhood values. \param opacity Opacity of the drawing. \param is_high_connectivity Tells if 8-connexity must be used. \return \c region is initialized with the binary mask of the filled region. **/ template CImg& draw_fill(const int x0, const int y0, const int z0, const tc* const color, const float opacity, CImg& region, const float tolerance = 0, const bool is_high_connectivity = false) { #define _draw_fill_push(x, y, z) \ if (N >= stack._width) stack.resize(2 * N + 1, 1, 1, 3, 0); \ stack[N] = x; \ stack(N, 1) = y; \ stack(N++, 2) = z #define _draw_fill_pop(x, y, z) \ x = stack[--N]; \ y = stack(N, 1); \ z = stack(N, 2) #define _draw_fill_is_inside(x, y, z) \ !_region(x, y, z) && _draw_fill(x, y, z, ref, tolerance2) if (!containsXYZC(x0, y0, z0, 0)) return *this; const float nopacity = cimg::abs((float)opacity), copacity = 1 - std::max((float)opacity, 0.f); const float tolerance2 = cimg::sqr(tolerance); const CImg ref = get_vector_at(x0, y0, z0); CImg stack(256, 1, 1, 3); CImg _region(_width, _height, _depth, 1, 0); unsigned int N = 0; int x, y, z; _draw_fill_push(x0, y0, z0); while (N > 0) { _draw_fill_pop(x, y, z); if (!_region(x, y, z)) { const int yp = y - 1, yn = y + 1, zp = z - 1, zn = z + 1; int xl = x, xr = x; // Using these booleans reduces the number of pushes // drastically. bool is_yp = false, is_yn = false, is_zp = false, is_zn = false; for (int step = -1; step < 2; step += 2) { while (x >= 0 && x < width() && _draw_fill_is_inside(x, y, z)) { if (yp >= 0 && _draw_fill_is_inside(x, yp, z)) { if (!is_yp) { _draw_fill_push(x, yp, z); is_yp = true; } } else is_yp = false; if (yn < height() && _draw_fill_is_inside(x, yn, z)) { if (!is_yn) { _draw_fill_push(x, yn, z); is_yn = true; } } else is_yn = false; if (depth() > 1) { if (zp >= 0 && _draw_fill_is_inside(x, y, zp)) { if (!is_zp) { _draw_fill_push(x, y, zp); is_zp = true; } } else is_zp = false; if (zn < depth() && _draw_fill_is_inside(x, y, zn)) { if (!is_zn) { _draw_fill_push(x, y, zn); is_zn = true; } } else is_zn = false; } if (is_high_connectivity) { const int xp = x - 1, xn = x + 1; if (yp >= 0 && !is_yp) { if (xp >= 0 && _draw_fill_is_inside(xp, yp, z)) { _draw_fill_push(xp, yp, z); if (step < 0) is_yp = true; } if (xn < width() && _draw_fill_is_inside(xn, yp, z)) { _draw_fill_push(xn, yp, z); if (step > 0) is_yp = true; } } if (yn < height() && !is_yn) { if (xp >= 0 && _draw_fill_is_inside(xp, yn, z)) { _draw_fill_push(xp, yn, z); if (step < 0) is_yn = true; } if (xn < width() && _draw_fill_is_inside(xn, yn, z)) { _draw_fill_push(xn, yn, z); if (step > 0) is_yn = true; } } if (depth() > 1) { if (zp >= 0 && !is_zp) { if (xp >= 0 && _draw_fill_is_inside(xp, y, zp)) { _draw_fill_push(xp, y, zp); if (step < 0) is_zp = true; } if (xn < width() && _draw_fill_is_inside(xn, y, zp)) { _draw_fill_push(xn, y, zp); if (step > 0) is_zp = true; } if (yp >= 0 && !is_yp) { if (_draw_fill_is_inside(x, yp, zp)) { _draw_fill_push(x, yp, zp); } if (xp >= 0 && _draw_fill_is_inside(xp, yp, zp)) { _draw_fill_push(xp, yp, zp); } if (xn < width() && _draw_fill_is_inside(xn, yp, zp)) { _draw_fill_push(xn, yp, zp); } } if (yn < height() && !is_yn) { if (_draw_fill_is_inside(x, yn, zp)) { _draw_fill_push(x, yn, zp); } if (xp >= 0 && _draw_fill_is_inside(xp, yn, zp)) { _draw_fill_push(xp, yn, zp); } if (xn < width() && _draw_fill_is_inside(xn, yn, zp)) { _draw_fill_push(xn, yn, zp); } } } if (zn < depth() && !is_zn) { if (xp >= 0 && _draw_fill_is_inside(xp, y, zn)) { _draw_fill_push(xp, y, zn); if (step < 0) is_zn = true; } if (xn < width() && _draw_fill_is_inside(xn, y, zn)) { _draw_fill_push(xn, y, zn); if (step > 0) is_zn = true; } if (yp >= 0 && !is_yp) { if (_draw_fill_is_inside(x, yp, zn)) { _draw_fill_push(x, yp, zn); } if (xp >= 0 && _draw_fill_is_inside(xp, yp, zn)) { _draw_fill_push(xp, yp, zn); } if (xn < width() && _draw_fill_is_inside(xn, yp, zn)) { _draw_fill_push(xn, yp, zn); } } if (yn < height() && !is_yn) { if (_draw_fill_is_inside(x, yn, zn)) { _draw_fill_push(x, yn, zn); } if (xp >= 0 && _draw_fill_is_inside(xp, yn, zn)) { _draw_fill_push(xp, yn, zn); } if (xn < width() && _draw_fill_is_inside(xn, yn, zn)) { _draw_fill_push(xn, yn, zn); } } } } } x += step; } if (step < 0) { xl = ++x; x = xr + 1; is_yp = is_yn = is_zp = is_zn = false; } else xr = --x; } std::memset(_region.data(xl, y, z), 1, xr - xl + 1); if (opacity == 1) { if (sizeof(T) == 1) { const int dx = xr - xl + 1; cimg_forC(*this, c) std::memset(data(xl, y, z, c), (int)color[c], dx); } else cimg_forC(*this, c) { const T val = (T)color[c]; T* ptri = data(xl, y, z, c); for (int k = xl; k <= xr; ++k) *(ptri++) = val; } } else cimg_forC(*this, c) { const T val = (T)(color[c] * nopacity); T* ptri = data(xl, y, z, c); for (int k = xl; k <= xr; ++k) { *ptri = (T)(val + *ptri * copacity); ++ptri; } } } } _region.move_to(region); return *this; } //! Draw filled 3D region with the flood fill algorithm \simplification. template CImg& draw_fill(const int x0, const int y0, const int z0, const tc* const color, const float opacity = 1, const float tolerance = 0, const bool is_high_connexity = false) { CImg tmp; return draw_fill(x0, y0, z0, color, opacity, tmp, tolerance, is_high_connexity); } //! Draw filled 2D region with the flood fill algorithm \simplification. template CImg& draw_fill(const int x0, const int y0, const tc* const color, const float opacity = 1, const float tolerance = 0, const bool is_high_connexity = false) { CImg tmp; return draw_fill(x0, y0, 0, color, opacity, tmp, tolerance, is_high_connexity); } //! Draw a random plasma texture. /** \param alpha Alpha-parameter. \param beta Beta-parameter. \param scale Scale-parameter. \note Use the mid-point algorithm to render. **/ CImg& draw_plasma(const float alpha = 1, const float beta = 0, const unsigned int scale = 8) { if (is_empty()) return *this; const int w = width(), h = height(); const Tfloat m = (Tfloat)cimg::type::min(), M = (Tfloat)cimg::type::max(); ulongT rng = (cimg::_rand(), cimg::rng()); cimg_forZC(*this, z, c) { CImg ref = get_shared_slice(z, c); for (int delta = 1 << std::min(scale, 31U); delta > 1; delta >>= 1) { const int delta2 = delta >> 1; const float r = alpha * delta + beta; // Square step. for (int y0 = 0; y0 < h; y0 += delta) for (int x0 = 0; x0 < w; x0 += delta) { const int x1 = (x0 + delta) % w, y1 = (y0 + delta) % h, xc = (x0 + delta2) % w, yc = (y0 + delta2) % h; const Tfloat val = (Tfloat)(0.25f * (ref(x0, y0) + ref(x0, y1) + ref(x0, y1) + ref(x1, y1)) + r * cimg::rand(-1, 1, &rng)); ref(xc, yc) = (T)(val < m ? m : val > M ? M : val); } // Diamond steps. for (int y = -delta2; y < h; y += delta) for (int x0 = 0; x0 < w; x0 += delta) { const int y0 = cimg::mod(y, h), x1 = (x0 + delta) % w, y1 = (y + delta) % h, xc = (x0 + delta2) % w, yc = (y + delta2) % h; const Tfloat val = (Tfloat)(0.25f * (ref(xc, y0) + ref(x0, yc) + ref(xc, y1) + ref(x1, yc)) + r * cimg::rand(-1, 1, &rng)); ref(xc, yc) = (T)(val < m ? m : val > M ? M : val); } for (int y0 = 0; y0 < h; y0 += delta) for (int x = -delta2; x < w; x += delta) { const int x0 = cimg::mod(x, w), x1 = (x + delta) % w, y1 = (y0 + delta) % h, xc = (x + delta2) % w, yc = (y0 + delta2) % h; const Tfloat val = (Tfloat)(0.25f * (ref(xc, y0) + ref(x0, yc) + ref(xc, y1) + ref(x1, yc)) + r * cimg::rand(-1, 1, &rng)); ref(xc, yc) = (T)(val < m ? m : val > M ? M : val); } for (int y = -delta2; y < h; y += delta) for (int x = -delta2; x < w; x += delta) { const int x0 = cimg::mod(x, w), y0 = cimg::mod(y, h), x1 = (x + delta) % w, y1 = (y + delta) % h, xc = (x + delta2) % w, yc = (y + delta2) % h; const Tfloat val = (Tfloat)(0.25f * (ref(xc, y0) + ref(x0, yc) + ref(xc, y1) + ref(x1, yc)) + r * cimg::rand(-1, 1, &rng)); ref(xc, yc) = (T)(val < m ? m : val > M ? M : val); } } } cimg::srand(rng); return *this; } //! Draw a quadratic Mandelbrot or Julia 2D fractal. /** \param x0 X-coordinate of the upper-left pixel. \param y0 Y-coordinate of the upper-left pixel. \param x1 X-coordinate of the lower-right pixel. \param y1 Y-coordinate of the lower-right pixel. \param colormap Colormap. \param opacity Drawing opacity. \param z0r Real part of the upper-left fractal vertex. \param z0i Imaginary part of the upper-left fractal vertex. \param z1r Real part of the lower-right fractal vertex. \param z1i Imaginary part of the lower-right fractal vertex. \param iteration_max Maximum number of iterations for each estimated point. \param is_normalized_iteration Tells if iterations are normalized. \param is_julia_set Tells if the Mandelbrot or Julia set is rendered. \param param_r Real part of the Julia set parameter. \param param_i Imaginary part of the Julia set parameter. \note Fractal rendering is done by the Escape Time Algorithm. **/ template CImg& draw_mandelbrot(const int x0, const int y0, const int x1, const int y1, const CImg& colormap, const float opacity = 1, const double z0r = -2, const double z0i = -2, const double z1r = 2, const double z1i = 2, const unsigned int iteration_max = 255, const bool is_normalized_iteration = false, const bool is_julia_set = false, const double param_r = 0, const double param_i = 0) { if (is_empty()) return *this; CImg palette; if (colormap) palette.assign(colormap._data, colormap.size() / colormap._spectrum, 1, 1, colormap._spectrum, true); if (palette && palette._spectrum != _spectrum) throw CImgArgumentException( _cimg_instance "draw_mandelbrot(): Instance and specified colormap " "(%u,%u,%u,%u,%p) have " "incompatible dimensions.", cimg_instance, colormap._width, colormap._height, colormap._depth, colormap._spectrum, colormap._data); const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity, 0.f), ln2 = (float)std::log(2.); const int _x0 = cimg::cut(x0, 0, width() - 1), _y0 = cimg::cut(y0, 0, height() - 1), _x1 = cimg::cut(x1, 0, width() - 1), _y1 = cimg::cut(y1, 0, height() - 1); cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if((1 + _x1 - _x0)*(1 + _y1 - _y0)>=(cimg_openmp_sizefactor)*2048)) for (int q = _y0; q<=_y1; ++q) for (int p = _x0; p<=_x1; ++p) { unsigned int iteration = 0; const double x = z0r + p * (z1r - z0r) / _width, y = z0i + q * (z1i - z0i) / _height; double zr, zi, cr, ci; if (is_julia_set) { zr = x; zi = y; cr = param_r; ci = param_i; } else { zr = param_r; zi = param_i; cr = x; ci = y; } for (iteration = 1; zr * zr + zi * zi <= 4 && iteration <= iteration_max; ++iteration) { const double temp = zr * zr - zi * zi + cr; zi = 2 * zr * zi + ci; zr = temp; } if (iteration > iteration_max) { if (palette) { if (opacity >= 1) cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)palette(0, c); else cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)(palette(0, c) * nopacity + (*this)(p, q, 0, c) * copacity); } else { if (opacity >= 1) cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)0; else cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)((*this)(p, q, 0, c) * copacity); } } else if (is_normalized_iteration) { const float normz = (float)cimg::abs(zr * zr + zi * zi), niteration = (float)(iteration + 1 - std::log(std::log(normz)) / ln2); if (palette) { if (opacity >= 1) cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)palette._linear_atX(niteration, c); else cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)(palette._linear_atX(niteration, c) * nopacity + (*this)(p, q, 0, c) * copacity); } else { if (opacity >= 1) cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)niteration; else cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)(niteration * nopacity + (*this)(p, q, 0, c) * copacity); } } else { if (palette) { if (opacity >= 1) cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)palette._atX(iteration, c); else cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)(palette(iteration, c) * nopacity + (*this)(p, q, 0, c) * copacity); } else { if (opacity >= 1) cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)iteration; else cimg_forC(*this, c) (*this)(p, q, 0, c) = (T)(iteration * nopacity + (*this)(p, q, 0, c) * copacity); } } } return *this; } //! Draw a quadratic Mandelbrot or Julia 2D fractal \overloading. template CImg& draw_mandelbrot(const CImg& colormap, const float opacity = 1, const double z0r = -2, const double z0i = -2, const double z1r = 2, const double z1i = 2, const unsigned int iteration_max = 255, const bool is_normalized_iteration = false, const bool is_julia_set = false, const double param_r = 0, const double param_i = 0) { return draw_mandelbrot(0, 0, _width - 1, _height - 1, colormap, opacity, z0r, z0i, z1r, z1i, iteration_max, is_normalized_iteration, is_julia_set, param_r, param_i); } //! Draw a 1D gaussian function. /** \param xc X-coordinate of the gaussian center. \param sigma Standard variation of the gaussian distribution. \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. **/ template CImg& draw_gaussian(const float xc, const float sigma, const tc* const color, const float opacity = 1) { if (is_empty()) return *this; if (!color) throw CImgArgumentException( _cimg_instance "draw_gaussian(): Specified color is (null).", cimg_instance); const float sigma2 = 2 * sigma * sigma, nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity, 0.f); const ulongT whd = (ulongT)_width * _height * _depth; const tc* col = color; cimg_forX(*this, x) { const float dx = (x - xc), val = (float)std::exp(-dx * dx / sigma2); T* ptrd = data(x, 0, 0, 0); if (opacity >= 1) cimg_forC(*this, c) { *ptrd = (T)(val * (*col++)); ptrd += whd; } else cimg_forC(*this, c) { *ptrd = (T)(nopacity * val * (*col++) + *ptrd * copacity); ptrd += whd; } col -= _spectrum; } return *this; } //! Draw a 2D gaussian function. /** \param xc X-coordinate of the gaussian center. \param yc Y-coordinate of the gaussian center. \param tensor Covariance matrix (must be 2x2). \param color Pointer to \c spectrum() consecutive values, defining the drawing color. \param opacity Drawing opacity. **/ template CImg& draw_gaussian(const float xc, const float yc, const CImg& tensor, const tc* const color, const float opacity = 1) { if (is_empty()) return *this; if (tensor._width != 2 || tensor._height != 2 || tensor._depth != 1 || tensor._spectrum != 1) throw CImgArgumentException(_cimg_instance "draw_gaussian(): Specified tensor " "(%u,%u,%u,%u,%p) is not a 2x2 matrix.", cimg_instance, tensor._width, tensor._height, tensor._depth, tensor._spectrum, tensor._data); if (!color) throw CImgArgumentException( _cimg_instance "draw_gaussian(): Specified color is (null).", cimg_instance); typedef typename CImg::Tfloat tfloat; const CImg invT = tensor.get_invert(), invT2 = (invT * invT) /= -2.; const tfloat a = invT2(0, 0), b = 2 * invT2(1, 0), c = invT2(1, 1); const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity, 0.f); const ulongT whd = (ulongT)_width * _height * _depth; const tc* col = color; float dy = -yc; cimg_forY(*this, y) { float dx = -xc; cimg_forX(*this, x) { const float val = (float)std::exp(a * dx * dx + b * dx * dy + c * dy * dy); T* ptrd = data(x, y, 0, 0); if (opacity >= 1) cimg_forC(*this, k) { *ptrd = (T)(val * (*col++)); ptrd += whd; } else cimg_forC(*this, k) { *ptrd = (T)(nopacity * val * (*col++) + *ptrd * copacity); ptrd += whd; } col -= _spectrum; ++dx; } ++dy; } return *this; } //! Draw a 2D gaussian function \overloading. template CImg& draw_gaussian(const int xc, const int yc, const float r1, const float r2, const float ru, const float rv, const tc* const color, const float opacity = 1) { const double a = r1 * ru * ru + r2 * rv * rv, b = (r1 - r2) * ru * rv, c = r1 * rv * rv + r2 * ru * ru; const CImg tensor(2, 2, 1, 1, a, b, b, c); return draw_gaussian(xc, yc, tensor, color, opacity); } //! Draw a 2D gaussian function \overloading. template CImg& draw_gaussian(const float xc, const float yc, const float sigma, const tc* const color, const float opacity = 1) { return draw_gaussian(xc, yc, CImg::diagonal(sigma, sigma), color, opacity); } //! Draw a 3D gaussian function \overloading. template CImg& draw_gaussian(const float xc, const float yc, const float zc, const CImg& tensor, const tc* const color, const float opacity = 1) { if (is_empty()) return *this; typedef typename CImg::Tfloat tfloat; if (tensor._width != 3 || tensor._height != 3 || tensor._depth != 1 || tensor._spectrum != 1) throw CImgArgumentException(_cimg_instance "draw_gaussian(): Specified tensor " "(%u,%u,%u,%u,%p) is not a 3x3 matrix.", cimg_instance, tensor._width, tensor._height, tensor._depth, tensor._spectrum, tensor._data); const CImg invT = tensor.get_invert(), invT2 = (invT * invT) /= -2.; const tfloat a = invT2(0, 0), b = 2 * invT2(1, 0), c = 2 * invT2(2, 0), d = invT2(1, 1), e = 2 * invT2(2, 1), f = invT2(2, 2); const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity, 0.f); const ulongT whd = (ulongT)_width * _height * _depth; const tc* col = color; cimg_forXYZ(*this, x, y, z) { const float dx = (x - xc), dy = (y - yc), dz = (z - zc), val = (float)std::exp(a * dx * dx + b * dx * dy + c * dx * dz + d * dy * dy + e * dy * dz + f * dz * dz); T* ptrd = data(x, y, z, 0); if (opacity >= 1) cimg_forC(*this, k) { *ptrd = (T)(val * (*col++)); ptrd += whd; } else cimg_forC(*this, k) { *ptrd = (T)(nopacity * val * (*col++) + *ptrd * copacity); ptrd += whd; } col -= _spectrum; } return *this; } //! Draw a 3D gaussian function \overloading. template CImg& draw_gaussian(const float xc, const float yc, const float zc, const float sigma, const tc* const color, const float opacity = 1) { return draw_gaussian(xc, yc, zc, CImg::diagonal(sigma, sigma, sigma), color, opacity); } //! Draw a 3D object. /** \param x0 X-coordinate of the 3D object position \param y0 Y-coordinate of the 3D object position \param z0 Z-coordinate of the 3D object position \param vertices Image Nx3 describing 3D point coordinates \param primitives List of P primitives \param colors List of P color (or textures) \param opacities Image or list of P opacities \param render_type d Render type (0=Points, 1=Lines, 2=Faces (no light), 3=Faces (flat), 4=Faces(Gouraud) \param is_double_sided Tells if object faces have two sides or are oriented. \param focale length of the focale (0 for parallel projection) \param lightx X-coordinate of the light \param lighty Y-coordinate of the light \param lightz Z-coordinate of the light \param specular_lightness Amount of specular light. \param specular_shininess Shininess of the object \param g_opacity Global opacity of the object. **/ template CImg& draw_object3d( const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const CImg& opacities, const unsigned int render_type = 4, const bool is_double_sided = false, const float focale = 700, const float lightx = 0, const float lighty = 0, const float lightz = -5e8, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const float g_opacity = 1) { return draw_object3d( x0, y0, z0, vertices, primitives, colors, opacities, render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, CImg::empty()); } //! Draw a 3D object \simplification. template CImg& draw_object3d(const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const CImg& opacities, const unsigned int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_lightness, const float specular_shininess, const float g_opacity, CImg& zbuffer) { return _draw_object3d( 0, zbuffer, x0, y0, z0, vertices, primitives, colors, opacities, render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, 1); } #ifdef cimg_use_board template CImg& draw_object3d( LibBoard::Board& board, const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const CImg& opacities, const unsigned int render_type = 4, const bool is_double_sided = false, const float focale = 700, const float lightx = 0, const float lighty = 0, const float lightz = -5e8, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const float g_opacity = 1) { return draw_object3d(board, x0, y0, z0, vertices, primitives, colors, opacities, render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, CImg::empty()); } template CImg& draw_object3d( LibBoard::Board& board, const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const CImg& opacities, const unsigned int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_lightness, const float specular_shininess, const float g_opacity, CImg& zbuffer) { return _draw_object3d( (void*)&board, zbuffer, x0, y0, z0, vertices, primitives, colors, opacities, render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, 1); } #endif //! Draw a 3D object \simplification. template CImg& draw_object3d( const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const CImgList& opacities, const unsigned int render_type = 4, const bool is_double_sided = false, const float focale = 700, const float lightx = 0, const float lighty = 0, const float lightz = -5e8, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const float g_opacity = 1) { return draw_object3d( x0, y0, z0, vertices, primitives, colors, opacities, render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, CImg::empty()); } //! Draw a 3D object \simplification. template CImg& draw_object3d(const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const CImgList& opacities, const unsigned int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_lightness, const float specular_shininess, const float g_opacity, CImg& zbuffer) { return _draw_object3d( 0, zbuffer, x0, y0, z0, vertices, primitives, colors, opacities, render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, 1); } #ifdef cimg_use_board template CImg& draw_object3d( LibBoard::Board& board, const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const CImgList& opacities, const unsigned int render_type = 4, const bool is_double_sided = false, const float focale = 700, const float lightx = 0, const float lighty = 0, const float lightz = -5e8, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const float g_opacity = 1) { return draw_object3d(board, x0, y0, z0, vertices, primitives, colors, opacities, render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, CImg::empty()); } template CImg& draw_object3d( LibBoard::Board& board, const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const CImgList& opacities, const unsigned int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_lightness, const float specular_shininess, const float g_opacity, CImg& zbuffer) { return _draw_object3d( (void*)&board, zbuffer, x0, y0, z0, vertices, primitives, colors, opacities, render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, 1); } #endif //! Draw a 3D object \simplification. template CImg& draw_object3d( const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const unsigned int render_type = 4, const bool is_double_sided = false, const float focale = 700, const float lightx = 0, const float lighty = 0, const float lightz = -5e8, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const float g_opacity = 1) { return draw_object3d(x0, y0, z0, vertices, primitives, colors, CImg::const_empty(), render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, CImg::empty()); } //! Draw a 3D object \simplification. template CImg& draw_object3d(const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const unsigned int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_lightness, const float specular_shininess, const float g_opacity, CImg& zbuffer) { return draw_object3d(x0, y0, z0, vertices, primitives, colors, CImg::const_empty(), render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, zbuffer); } #ifdef cimg_use_board template CImg& draw_object3d( LibBoard::Board& board, const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const unsigned int render_type = 4, const bool is_double_sided = false, const float focale = 700, const float lightx = 0, const float lighty = 0, const float lightz = -5e8, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const float g_opacity = 1) { return draw_object3d(x0, y0, z0, vertices, primitives, colors, CImg::const_empty(), render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, CImg::empty()); } template CImg& draw_object3d( LibBoard::Board& board, const float x0, const float y0, const float z0, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const unsigned int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_lightness, const float specular_shininess, const float g_opacity, CImg& zbuffer) { return draw_object3d(x0, y0, z0, vertices, primitives, colors, CImg::const_empty(), render_type, is_double_sided, focale, lightx, lighty, lightz, specular_lightness, specular_shininess, g_opacity, zbuffer); } #endif template static float __draw_object3d(const CImgList& opacities, const unsigned int n_primitive, CImg& opacity) { if (n_primitive >= opacities._width || opacities[n_primitive].is_empty()) { opacity.assign(); return 1; } if (opacities[n_primitive].size() == 1) { opacity.assign(); return opacities(n_primitive, 0); } opacity.assign(opacities[n_primitive], true); return 1.f; } template static float __draw_object3d(const CImg& opacities, const unsigned int n_primitive, CImg& opacity) { opacity.assign(); return n_primitive >= opacities._width ? 1.f : (float)opacities[n_primitive]; } template static float ___draw_object3d(const CImgList& opacities, const unsigned int n_primitive) { return n_primitive < opacities._width && opacities[n_primitive].size() == 1 ? (float)opacities(n_primitive, 0) : 1.f; } template static float ___draw_object3d(const CImg& opacities, const unsigned int n_primitive) { return n_primitive < opacities._width ? (float)opacities[n_primitive] : 1.f; } template CImg& _draw_object3d(void* const pboard, CImg& zbuffer, const float X, const float Y, const float Z, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const to& opacities, const unsigned int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_lightness, const float specular_shininess, const float g_opacity, const float sprite_scale) { typedef typename cimg::superset2::type tpfloat; typedef typename to::value_type _to; if (is_empty() || !vertices || !primitives) return *this; CImg error_message(1024); if (!vertices.is_object3d(primitives, colors, opacities, false, error_message)) throw CImgArgumentException( _cimg_instance "draw_object3d(): Invalid specified 3D object (%u,%u) (%s).", cimg_instance, vertices._width, primitives._width, error_message.data()); #ifndef cimg_use_board if (pboard) return *this; #endif if (render_type == 5) cimg::mutex( 10); // Static variable used in this case, breaks thread-safety const float nspec = 1 - (specular_lightness < 0.f ? 0.f : (specular_lightness > 1.f ? 1.f : specular_lightness)), nspec2 = 1 + (specular_shininess < 0.f ? 0.f : specular_shininess), nsl1 = (nspec2 - 1) / cimg::sqr(nspec - 1), nsl2 = 1 - 2 * nsl1 * nspec, nsl3 = nspec2 - nsl1 - nsl2; // Create light texture for phong-like rendering. CImg light_texture; if (render_type == 5) { if (colors._width > primitives._width) { static CImg default_light_texture; static const tc* lptr = 0; static tc ref_values[64] = {0}; const CImg& img = colors.back(); bool is_same_texture = (lptr == img._data); if (is_same_texture) for (unsigned int r = 0, j = 0; j < 8; ++j) for (unsigned int i = 0; i < 8; ++i) if (ref_values[r++] != img(i * img._width / 9, j * img._height / 9, 0, (i + j) % img._spectrum)) { is_same_texture = false; break; } if (!is_same_texture || default_light_texture._spectrum < _spectrum) { (default_light_texture.assign(img, false) /= 255) .resize(-100, -100, 1, _spectrum); lptr = colors.back().data(); for (unsigned int r = 0, j = 0; j < 8; ++j) for (unsigned int i = 0; i < 8; ++i) ref_values[r++] = img(i * img._width / 9, j * img._height / 9, 0, (i + j) % img._spectrum); } light_texture.assign(default_light_texture, true); } else { static CImg default_light_texture; static float olightx = 0, olighty = 0, olightz = 0, ospecular_shininess = 0; if (!default_light_texture || lightx != olightx || lighty != olighty || lightz != olightz || specular_shininess != ospecular_shininess || default_light_texture._spectrum < _spectrum) { default_light_texture.assign(512, 512); const float dlx = lightx - X, dly = lighty - Y, dlz = lightz - Z, nl = cimg::hypot(dlx, dly, dlz), nlx = (default_light_texture._width - 1) / 2 * (1 + dlx / nl), nly = (default_light_texture._height - 1) / 2 * (1 + dly / nl), white[] = {1}; default_light_texture.draw_gaussian( nlx, nly, default_light_texture._width / 3.f, white); cimg_forXY(default_light_texture, x, y) { const float factor = default_light_texture(x, y); if (factor > nspec) default_light_texture(x, y) = std::min(2.f, nsl1 * factor * factor + nsl2 * factor + nsl3); } default_light_texture.resize(-100, -100, 1, _spectrum); olightx = lightx; olighty = lighty; olightz = lightz; ospecular_shininess = specular_shininess; } light_texture.assign(default_light_texture, true); } } // Compute 3D to 2D projection. CImg projections(vertices._width, 2); tpfloat parallzmin = cimg::type::max(); const float absfocale = focale ? cimg::abs(focale) : 0; if (absfocale) { cimg_pragma_openmp(parallel for cimg_openmp_if_size(projections.size(),4096)) cimg_forX(projections,l) { // Perspective projection const tpfloat x = (tpfloat)vertices(l, 0), y = (tpfloat)vertices(l, 1), z = (tpfloat)vertices(l, 2); const tpfloat projectedz = z + Z + absfocale; projections(l, 1) = Y + absfocale * y / projectedz; projections(l, 0) = X + absfocale * x / projectedz; } } else { cimg_pragma_openmp(parallel for cimg_openmp_if_size(projections.size(),4096)) cimg_forX(projections,l) { // Parallel projection const tpfloat x = (tpfloat)vertices(l, 0), y = (tpfloat)vertices(l, 1), z = (tpfloat)vertices(l, 2); if (z < parallzmin) parallzmin = z; projections(l, 1) = Y + y; projections(l, 0) = X + x; } } const float _focale = absfocale ? absfocale : (1e5f - parallzmin); float zmax = 0; if (zbuffer) zmax = vertices.get_shared_row(2).max(); // Compute visible primitives. CImg visibles(primitives._width, 1, 1, 1, ~0U); CImg zrange(primitives._width); const tpfloat zmin = absfocale ? (tpfloat)(1.5f - absfocale) : cimg::type::min(); bool is_forward = zbuffer ? true : false; cimg_pragma_openmp(parallel for cimg_openmp_if_size(primitives.size(),4096)) cimglist_for(primitives,l) { const CImg& primitive = primitives[l]; switch (primitive.size()) { case 1: { // Point CImg<_to> _opacity; __draw_object3d(opacities, l, _opacity); if (l <= colors.width() && (colors[l].size() != _spectrum || _opacity)) is_forward = false; const unsigned int i0 = (unsigned int)primitive(0); const tpfloat z0 = Z + vertices(i0, 2); if (z0 > zmin) { visibles(l) = (unsigned int)l; zrange(l) = z0; } } break; case 5: { // Sphere const unsigned int i0 = (unsigned int)primitive(0), i1 = (unsigned int)primitive(1); const tpfloat Xc = 0.5f * ((float)vertices(i0, 0) + (float)vertices(i1, 0)), Yc = 0.5f * ((float)vertices(i0, 1) + (float)vertices(i1, 1)), Zc = 0.5f * ((float)vertices(i0, 2) + (float)vertices(i1, 2)), _zc = Z + Zc, zc = _zc + _focale, xc = X + Xc * (absfocale ? absfocale / zc : 1), yc = Y + Yc * (absfocale ? absfocale / zc : 1), radius = 0.5f * cimg::hypot( vertices(i1, 0) - vertices(i0, 0), vertices(i1, 1) - vertices(i0, 1), vertices(i1, 2) - vertices(i0, 2)) * (absfocale ? absfocale / zc : 1), xm = xc - radius, ym = yc - radius, xM = xc + radius, yM = yc + radius; if (xM >= 0 && xm < _width && yM >= 0 && ym < _height && _zc > zmin) { visibles(l) = (unsigned int)l; zrange(l) = _zc; } is_forward = false; } break; case 2: case 6: { // Segment const unsigned int i0 = (unsigned int)primitive(0), i1 = (unsigned int)primitive(1); const tpfloat x0 = projections(i0, 0), y0 = projections(i0, 1), z0 = Z + vertices(i0, 2), x1 = projections(i1, 0), y1 = projections(i1, 1), z1 = Z + vertices(i1, 2); tpfloat xm, xM, ym, yM; if (x0 < x1) { xm = x0; xM = x1; } else { xm = x1; xM = x0; } if (y0 < y1) { ym = y0; yM = y1; } else { ym = y1; yM = y0; } if (xM >= 0 && xm < _width && yM >= 0 && ym < _height && z0 > zmin && z1 > zmin) { visibles(l) = (unsigned int)l; zrange(l) = (z0 + z1) / 2; } } break; case 3: case 9: { // Triangle const unsigned int i0 = (unsigned int)primitive(0), i1 = (unsigned int)primitive(1), i2 = (unsigned int)primitive(2); const tpfloat x0 = projections(i0, 0), y0 = projections(i0, 1), z0 = Z + vertices(i0, 2), x1 = projections(i1, 0), y1 = projections(i1, 1), z1 = Z + vertices(i1, 2), x2 = projections(i2, 0), y2 = projections(i2, 1), z2 = Z + vertices(i2, 2); tpfloat xm, xM, ym, yM; if (x0 < x1) { xm = x0; xM = x1; } else { xm = x1; xM = x0; } if (x2 < xm) xm = x2; if (x2 > xM) xM = x2; if (y0 < y1) { ym = y0; yM = y1; } else { ym = y1; yM = y0; } if (y2 < ym) ym = y2; if (y2 > yM) yM = y2; if (xM >= 0 && xm < _width && yM >= 0 && ym < _height && z0 > zmin && z1 > zmin && z2 > zmin) { const tpfloat d = (x1 - x0) * (y2 - y0) - (x2 - x0) * (y1 - y0); if (is_double_sided || d < 0) { visibles(l) = (unsigned int)l; zrange(l) = (z0 + z1 + z2) / 3; } } } break; case 4: case 12: { // Quadrangle const unsigned int i0 = (unsigned int)primitive(0), i1 = (unsigned int)primitive(1), i2 = (unsigned int)primitive(2), i3 = (unsigned int)primitive(3); const tpfloat x0 = projections(i0, 0), y0 = projections(i0, 1), z0 = Z + vertices(i0, 2), x1 = projections(i1, 0), y1 = projections(i1, 1), z1 = Z + vertices(i1, 2), x2 = projections(i2, 0), y2 = projections(i2, 1), z2 = Z + vertices(i2, 2), x3 = projections(i3, 0), y3 = projections(i3, 1), z3 = Z + vertices(i3, 2); tpfloat xm, xM, ym, yM; if (x0 < x1) { xm = x0; xM = x1; } else { xm = x1; xM = x0; } if (x2 < xm) xm = x2; if (x2 > xM) xM = x2; if (x3 < xm) xm = x3; if (x3 > xM) xM = x3; if (y0 < y1) { ym = y0; yM = y1; } else { ym = y1; yM = y0; } if (y2 < ym) ym = y2; if (y2 > yM) yM = y2; if (y3 < ym) ym = y3; if (y3 > yM) yM = y3; if (xM >= 0 && xm < _width && yM >= 0 && ym < _height && z0 > zmin && z1 > zmin && z2 > zmin && z3 > zmin) { const float d = (x1 - x0) * (y2 - y0) - (x2 - x0) * (y1 - y0); if (is_double_sided || d < 0) { visibles(l) = (unsigned int)l; zrange(l) = (z0 + z1 + z2 + z3) / 4; } } } break; default: if (render_type == 5) cimg::mutex(10, 0); throw CImgArgumentException( _cimg_instance "draw_object3d(): Invalid primitive[%u] with size %u " "(should have size 1,2,3,4,5,6,9 or 12).", cimg_instance, l, primitive.size()); } } // Force transparent primitives to be drawn last when zbuffer is activated // (and if object contains no spheres or sprites). if (is_forward) cimglist_for(primitives, l) if (___draw_object3d(opacities, l) != 1) zrange(l) = 2 * zmax - zrange(l); // Sort only visibles primitives. unsigned int* p_visibles = visibles._data; tpfloat* p_zrange = zrange._data; const tpfloat* ptrz = p_zrange; cimg_for(visibles, ptr, unsigned int) { if (*ptr != ~0U) { *(p_visibles++) = *ptr; *(p_zrange++) = *ptrz; } ++ptrz; } const unsigned int nb_visibles = (unsigned int)(p_zrange - zrange._data); if (!nb_visibles) { if (render_type == 5) cimg::mutex(10, 0); return *this; } CImg permutations; CImg(zrange._data, nb_visibles, 1, 1, 1, true) .sort(permutations, is_forward); // Compute light properties CImg lightprops; switch (render_type) { case 3: { // Flat Shading lightprops.assign(nb_visibles); cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096)) cimg_forX(lightprops,l) { const CImg& primitive = primitives(visibles(permutations(l))); const unsigned int psize = (unsigned int)primitive.size(); if (psize == 3 || psize == 4 || psize == 9 || psize == 12) { const unsigned int i0 = (unsigned int)primitive(0), i1 = (unsigned int)primitive(1), i2 = (unsigned int)primitive(2); const tpfloat x0 = (tpfloat)vertices(i0, 0), y0 = (tpfloat)vertices(i0, 1), z0 = (tpfloat)vertices(i0, 2), x1 = (tpfloat)vertices(i1, 0), y1 = (tpfloat)vertices(i1, 1), z1 = (tpfloat)vertices(i1, 2), x2 = (tpfloat)vertices(i2, 0), y2 = (tpfloat)vertices(i2, 1), z2 = (tpfloat)vertices(i2, 2), dx1 = x1 - x0, dy1 = y1 - y0, dz1 = z1 - z0, dx2 = x2 - x0, dy2 = y2 - y0, dz2 = z2 - z0, nx = dy1 * dz2 - dz1 * dy2, ny = dz1 * dx2 - dx1 * dz2, nz = dx1 * dy2 - dy1 * dx2, norm = 1e-5f + cimg::hypot(nx, ny, nz), lx = X + (x0 + x1 + x2) / 3 - lightx, ly = Y + (y0 + y1 + y2) / 3 - lighty, lz = Z + (z0 + z1 + z2) / 3 - lightz, nl = 1e-5f + cimg::hypot(lx, ly, lz), factor = std::max( cimg::abs(-lx * nx - ly * ny - lz * nz) / (norm * nl), (tpfloat)0); lightprops[l] = factor <= nspec ? factor : (nsl1 * factor * factor + nsl2 * factor + nsl3); } else lightprops[l] = 1; } } break; case 4: // Gouraud Shading case 5: { // Phong-Shading CImg vertices_normals(vertices._width, 6, 1, 1, 0); cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096)) for (int l = 0; l<(int)nb_visibles; ++l) { const CImg& primitive = primitives[visibles(l)]; const unsigned int psize = (unsigned int)primitive.size(); const bool triangle_flag = (psize == 3) || (psize == 9), quadrangle_flag = (psize == 4) || (psize == 12); if (triangle_flag || quadrangle_flag) { const unsigned int i0 = (unsigned int)primitive(0), i1 = (unsigned int)primitive(1), i2 = (unsigned int)primitive(2), i3 = quadrangle_flag ? (unsigned int)primitive(3) : 0; const tpfloat x0 = (tpfloat)vertices(i0, 0), y0 = (tpfloat)vertices(i0, 1), z0 = (tpfloat)vertices(i0, 2), x1 = (tpfloat)vertices(i1, 0), y1 = (tpfloat)vertices(i1, 1), z1 = (tpfloat)vertices(i1, 2), x2 = (tpfloat)vertices(i2, 0), y2 = (tpfloat)vertices(i2, 1), z2 = (tpfloat)vertices(i2, 2), dx1 = x1 - x0, dy1 = y1 - y0, dz1 = z1 - z0, dx2 = x2 - x0, dy2 = y2 - y0, dz2 = z2 - z0, nnx = dy1 * dz2 - dz1 * dy2, nny = dz1 * dx2 - dx1 * dz2, nnz = dx1 * dy2 - dy1 * dx2, norm = 1e-5f + cimg::hypot(nnx, nny, nnz), nx = nnx / norm, ny = nny / norm, nz = nnz / norm; unsigned int ix = 0, iy = 1, iz = 2; if (is_double_sided && nz > 0) { ix = 3; iy = 4; iz = 5; } vertices_normals(i0, ix) += nx; vertices_normals(i0, iy) += ny; vertices_normals(i0, iz) += nz; vertices_normals(i1, ix) += nx; vertices_normals(i1, iy) += ny; vertices_normals(i1, iz) += nz; vertices_normals(i2, ix) += nx; vertices_normals(i2, iy) += ny; vertices_normals(i2, iz) += nz; if (quadrangle_flag) { vertices_normals(i3, ix) += nx; vertices_normals(i3, iy) += ny; vertices_normals(i3, iz) += nz; } } } if (is_double_sided) cimg_forX(vertices_normals, p) { const float nx0 = vertices_normals(p, 0), ny0 = vertices_normals(p, 1), nz0 = vertices_normals(p, 2), nx1 = vertices_normals(p, 3), ny1 = vertices_normals(p, 4), nz1 = vertices_normals(p, 5), n0 = nx0 * nx0 + ny0 * ny0 + nz0 * nz0, n1 = nx1 * nx1 + ny1 * ny1 + nz1 * nz1; if (n1 > n0) { vertices_normals(p, 0) = -nx1; vertices_normals(p, 1) = -ny1; vertices_normals(p, 2) = -nz1; } } if (render_type == 4) { lightprops.assign(vertices._width); cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096)) cimg_forX(lightprops,l) { const tpfloat nx = vertices_normals(l, 0), ny = vertices_normals(l, 1), nz = vertices_normals(l, 2), norm = 1e-5f + cimg::hypot(nx, ny, nz), lx = X + vertices(l, 0) - lightx, ly = Y + vertices(l, 1) - lighty, lz = Z + vertices(l, 2) - lightz, nl = 1e-5f + cimg::hypot(lx, ly, lz), factor = std::max( (-lx * nx - ly * ny - lz * nz) / (norm * nl), (tpfloat)0); lightprops[l] = factor <= nspec ? factor : (nsl1 * factor * factor + nsl2 * factor + nsl3); } } else { const unsigned int lw2 = light_texture._width / 2 - 1, lh2 = light_texture._height / 2 - 1; lightprops.assign(vertices._width, 2); cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096)) cimg_forX(lightprops,l) { const tpfloat nx = vertices_normals(l, 0), ny = vertices_normals(l, 1), nz = vertices_normals(l, 2), norm = 1e-5f + cimg::hypot(nx, ny, nz), nnx = nx / norm, nny = ny / norm; lightprops(l, 0) = lw2 * (1 + nnx); lightprops(l, 1) = lh2 * (1 + nny); } } } break; } // Draw visible primitives const CImg default_color(1, _spectrum, 1, 1, (tc)200); CImg<_to> _opacity; for (unsigned int l = 0; l < nb_visibles; ++l) { const unsigned int n_primitive = visibles(permutations(l)); const CImg& primitive = primitives[n_primitive]; const CImg&__color = n_primitive < colors._width ? colors[n_primitive] : CImg(), _color = (__color && __color.size() != _spectrum && __color._spectrum < _spectrum) ? __color.get_resize(-100, -100, -100, _spectrum, 0) : CImg(), &color = _color ? _color : (__color ? __color : default_color); const tc* const pcolor = color._data; float opacity = __draw_object3d(opacities, n_primitive, _opacity); if (_opacity.is_empty()) opacity *= g_opacity; #ifdef cimg_use_board LibBoard::Board& board = *(LibBoard::Board*)pboard; #endif switch (primitive.size()) { case 1: { // Colored point or sprite const unsigned int n0 = (unsigned int)primitive[0]; const int x0 = cimg::uiround(projections(n0, 0)), y0 = cimg::uiround(projections(n0, 1)); if (_opacity.is_empty()) { // Scalar opacity if (color.size() == _spectrum) { // Colored point draw_point(x0, y0, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.drawDot((float)x0, height() - (float)y0); } #endif } else { // Sprite const tpfloat z = Z + vertices(n0, 2); const float factor = focale < 0 ? 1 : sprite_scale * (absfocale ? absfocale / (z + absfocale) : 1); const unsigned int _sw = (unsigned int)(color._width * factor), _sh = (unsigned int)(color._height * factor), sw = _sw ? _sw : 1, sh = _sh ? _sh : 1; const int nx0 = x0 - (int)sw / 2, ny0 = y0 - (int)sh / 2; if (sw <= 3 * _width / 2 && sh <= 3 * _height / 2 && (nx0 + (int)sw / 2 >= 0 || nx0 - (int)sw / 2 < width() || ny0 + (int)sh / 2 >= 0 || ny0 - (int)sh / 2 < height())) { const CImg _sprite = (sw != color._width || sh != color._height) ? color.get_resize( sw, sh, 1, -100, render_type <= 3 ? 1 : 3) : CImg(), &sprite = _sprite ? _sprite : color; draw_image(nx0, ny0, sprite, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi(128, 128, 128); board.setFillColor(LibBoard::Color::Null); board.drawRectangle((float)nx0, height() - (float)ny0, sw, sh); } #endif } } } else { // Opacity mask const tpfloat z = Z + vertices(n0, 2); const float factor = focale < 0 ? 1 : sprite_scale * (absfocale ? absfocale / (z + absfocale) : 1); const unsigned int _sw = (unsigned int)(std::max(color._width, _opacity._width) * factor), _sh = (unsigned int)(std::max(color._height, _opacity._height) * factor), sw = _sw ? _sw : 1, sh = _sh ? _sh : 1; const int nx0 = x0 - (int)sw / 2, ny0 = y0 - (int)sh / 2; if (sw <= 3 * _width / 2 && sh <= 3 * _height / 2 && (nx0 + (int)sw / 2 >= 0 || nx0 - (int)sw / 2 < width() || ny0 + (int)sh / 2 >= 0 || ny0 - (int)sh / 2 < height())) { const CImg _sprite = (sw != color._width || sh != color._height) ? color.get_resize( sw, sh, 1, -100, render_type <= 3 ? 1 : 3) : CImg(), &sprite = _sprite ? _sprite : color; const CImg<_to> _nopacity = (sw != _opacity._width || sh != _opacity._height) ? _opacity.get_resize( sw, sh, 1, -100, render_type <= 3 ? 1 : 3) : CImg<_to>(), &nopacity = _nopacity ? _nopacity : _opacity; draw_image(nx0, ny0, sprite, nopacity, g_opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi(128, 128, 128); board.setFillColor(LibBoard::Color::Null); board.drawRectangle( (float)nx0, height() - (float)ny0, sw, sh); } #endif } } } break; case 2: { // Colored line const unsigned int n0 = (unsigned int)primitive[0], n1 = (unsigned int)primitive[1]; const int x0 = cimg::uiround(projections(n0, 0)), y0 = cimg::uiround(projections(n0, 1)), x1 = cimg::uiround(projections(n1, 0)), y1 = cimg::uiround(projections(n1, 1)); const float z0 = vertices(n0, 2) + Z + _focale, z1 = vertices(n1, 2) + Z + _focale; if (render_type) { if (zbuffer) draw_line(zbuffer, x0, y0, z0, x1, y1, z1, pcolor, opacity); else draw_line(x0, y0, x1, y1, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi(color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.drawLine((float)x0, height() - (float)y0, x1, height() - (float)y1); } #endif } else { draw_point(x0, y0, pcolor, opacity) .draw_point(x1, y1, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi(color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.drawDot((float)x0, height() - (float)y0); board.drawDot((float)x1, height() - (float)y1); } #endif } } break; case 5: { // Colored sphere const unsigned int n0 = (unsigned int)primitive[0], n1 = (unsigned int)primitive[1], is_wireframe = (unsigned int)primitive[2]; const float Xc = 0.5f * ((float)vertices(n0, 0) + (float)vertices(n1, 0)), Yc = 0.5f * ((float)vertices(n0, 1) + (float)vertices(n1, 1)), Zc = 0.5f * ((float)vertices(n0, 2) + (float)vertices(n1, 2)), zc = Z + Zc + _focale, xc = X + Xc * (absfocale ? absfocale / zc : 1), yc = Y + Yc * (absfocale ? absfocale / zc : 1), radius = 0.5f * cimg::hypot( vertices(n1, 0) - vertices(n0, 0), vertices(n1, 1) - vertices(n0, 1), vertices(n1, 2) - vertices(n0, 2)) * (absfocale ? absfocale / zc : 1); switch (render_type) { case 0: draw_point((int)xc, (int)yc, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.drawDot(xc, height() - yc); } #endif break; case 1: draw_circle((int)xc, (int)yc, (int)radius, pcolor, opacity, ~0U); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.setFillColor(LibBoard::Color::Null); board.drawCircle(xc, height() - yc, radius); } #endif break; default: if (is_wireframe) draw_circle((int)xc, (int)yc, (int)radius, pcolor, opacity, ~0U); else draw_circle((int)xc, (int)yc, (int)radius, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( color[0], color[1], color[2], (unsigned char)(opacity * 255)); if (!is_wireframe) board.fillCircle(xc, height() - yc, radius); else { board.setFillColor(LibBoard::Color::Null); board.drawCircle(xc, height() - yc, radius); } } #endif break; } } break; case 6: { // Textured line if (!__color) { if (render_type == 5) cimg::mutex(10, 0); throw CImgArgumentException( _cimg_instance "draw_object3d(): Undefined texture for line " "primitive [%u].", cimg_instance, n_primitive); } const unsigned int n0 = (unsigned int)primitive[0], n1 = (unsigned int)primitive[1]; const int tx0 = (int)primitive[2], ty0 = (int)primitive[3], tx1 = (int)primitive[4], ty1 = (int)primitive[5], x0 = cimg::uiround(projections(n0, 0)), y0 = cimg::uiround(projections(n0, 1)), x1 = cimg::uiround(projections(n1, 0)), y1 = cimg::uiround(projections(n1, 1)); const float z0 = vertices(n0, 2) + Z + _focale, z1 = vertices(n1, 2) + Z + _focale; if (render_type) { if (zbuffer) draw_line(zbuffer, x0, y0, z0, x1, y1, z1, color, tx0, ty0, tx1, ty1, opacity); else draw_line(x0, y0, z0, x1, y1, z1, color, tx0, ty0, tx1, ty1, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi(128, 128, 128, (unsigned char)(opacity * 255)); board.drawLine((float)x0, height() - (float)y0, (float)x1, height() - (float)y1); } #endif } else { draw_point( x0, y0, color .get_vector_at(tx0 <= 0 ? 0 : tx0 >= color.width() ? color.width() - 1 : tx0, ty0 <= 0 ? 0 : ty0 >= color.height() ? color.height() - 1 : ty0) ._data, opacity) .draw_point( x1, y1, color .get_vector_at( tx1 <= 0 ? 0 : tx1 >= color.width() ? color.width() - 1 : tx1, ty1 <= 0 ? 0 : ty1 >= color.height() ? color.height() - 1 : ty1) ._data, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi(128, 128, 128, (unsigned char)(opacity * 255)); board.drawDot((float)x0, height() - (float)y0); board.drawDot((float)x1, height() - (float)y1); } #endif } } break; case 3: { // Colored triangle const unsigned int n0 = (unsigned int)primitive[0], n1 = (unsigned int)primitive[1], n2 = (unsigned int)primitive[2]; const int x0 = cimg::uiround(projections(n0, 0)), y0 = cimg::uiround(projections(n0, 1)), x1 = cimg::uiround(projections(n1, 0)), y1 = cimg::uiround(projections(n1, 1)), x2 = cimg::uiround(projections(n2, 0)), y2 = cimg::uiround(projections(n2, 1)); const float z0 = vertices(n0, 2) + Z + _focale, z1 = vertices(n1, 2) + Z + _focale, z2 = vertices(n2, 2) + Z + _focale; switch (render_type) { case 0: draw_point(x0, y0, pcolor, opacity) .draw_point(x1, y1, pcolor, opacity) .draw_point(x2, y2, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.drawDot((float)x0, height() - (float)y0); board.drawDot((float)x1, height() - (float)y1); board.drawDot((float)x2, height() - (float)y2); } #endif break; case 1: if (zbuffer) draw_line(zbuffer, x0, y0, z0, x1, y1, z1, pcolor, opacity) .draw_line(zbuffer, x0, y0, z0, x2, y2, z2, pcolor, opacity) .draw_line(zbuffer, x1, y1, z1, x2, y2, z2, pcolor, opacity); else draw_line(x0, y0, x1, y1, pcolor, opacity) .draw_line(x0, y0, x2, y2, pcolor, opacity) .draw_line(x1, y1, x2, y2, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.drawLine((float)x0, height() - (float)y0, (float)x1, height() - (float)y1); board.drawLine((float)x0, height() - (float)y0, (float)x2, height() - (float)y2); board.drawLine((float)x1, height() - (float)y1, (float)x2, height() - (float)y2); } #endif break; case 2: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, pcolor, opacity); else draw_triangle(x0, y0, x1, y1, x2, y2, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.fillTriangle( (float)x0, height() - (float)y0, (float)x1, height() - (float)y1, (float)x2, height() - (float)y2); } #endif break; case 3: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, pcolor, opacity, lightprops(l)); else _draw_triangle(x0, y0, x1, y1, x2, y2, pcolor, opacity, lightprops(l)); #ifdef cimg_use_board if (pboard) { const float lp = std::min(lightprops(l), 1.f); board.setPenColorRGBi( (unsigned char)(color[0] * lp), (unsigned char)(color[1] * lp), (unsigned char)(color[2] * lp), (unsigned char)(opacity * 255)); board.fillTriangle( (float)x0, height() - (float)y0, (float)x1, height() - (float)y1, (float)x2, height() - (float)y2); } #endif break; case 4: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, pcolor, lightprops(n0), lightprops(n1), lightprops(n2), opacity); else draw_triangle(x0, y0, x1, y1, x2, y2, pcolor, lightprops(n0), lightprops(n1), lightprops(n2), opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( (unsigned char)(color[0]), (unsigned char)(color[1]), (unsigned char)(color[2]), (unsigned char)(opacity * 255)); board.fillGouraudTriangle( (float)x0, height() - (float)y0, lightprops(n0), (float)x1, height() - (float)y1, lightprops(n1), (float)x2, height() - (float)y2, lightprops(n2)); } #endif break; case 5: { const unsigned int lx0 = (unsigned int)cimg::uiround( lightprops(n0, 0)), ly0 = (unsigned int)cimg::uiround( lightprops(n0, 1)), lx1 = (unsigned int)cimg::uiround( lightprops(n1, 0)), ly1 = (unsigned int)cimg::uiround( lightprops(n1, 1)), lx2 = (unsigned int)cimg::uiround( lightprops(n2, 0)), ly2 = (unsigned int)cimg::uiround( lightprops(n2, 1)); if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, pcolor, light_texture, lx0, ly0, lx1, ly1, lx2, ly2, opacity); else draw_triangle(x0, y0, x1, y1, x2, y2, pcolor, light_texture, lx0, ly0, lx1, ly1, lx2, ly2, opacity); #ifdef cimg_use_board if (pboard) { const float l0 = light_texture( (int)(light_texture.width() / 2 * (1 + lightprops(n0, 0))), (int)(light_texture.height() / 2 * (1 + lightprops(n0, 1)))), l1 = light_texture( (int)(light_texture.width() / 2 * (1 + lightprops(n1, 0))), (int)(light_texture.height() / 2 * (1 + lightprops(n1, 1)))), l2 = light_texture( (int)(light_texture.width() / 2 * (1 + lightprops(n2, 0))), (int)(light_texture.height() / 2 * (1 + lightprops(n2, 1)))); board.setPenColorRGBi( (unsigned char)(color[0]), (unsigned char)(color[1]), (unsigned char)(color[2]), (unsigned char)(opacity * 255)); board.fillGouraudTriangle( (float)x0, height() - (float)y0, l0, (float)x1, height() - (float)y1, l1, (float)x2, height() - (float)y2, l2); } #endif } break; } } break; case 4: { // Colored quadrangle const unsigned int n0 = (unsigned int)primitive[0], n1 = (unsigned int)primitive[1], n2 = (unsigned int)primitive[2], n3 = (unsigned int)primitive[3]; const int x0 = cimg::uiround(projections(n0, 0)), y0 = cimg::uiround(projections(n0, 1)), x1 = cimg::uiround(projections(n1, 0)), y1 = cimg::uiround(projections(n1, 1)), x2 = cimg::uiround(projections(n2, 0)), y2 = cimg::uiround(projections(n2, 1)), x3 = cimg::uiround(projections(n3, 0)), y3 = cimg::uiround(projections(n3, 1)), xc = (x0 + x1 + x2 + x3) / 4, yc = (y0 + y1 + y2 + y3) / 4; const float z0 = vertices(n0, 2) + Z + _focale, z1 = vertices(n1, 2) + Z + _focale, z2 = vertices(n2, 2) + Z + _focale, z3 = vertices(n3, 2) + Z + _focale, zc = (z0 + z1 + z2 + z3) / 4; switch (render_type) { case 0: draw_point(x0, y0, pcolor, opacity) .draw_point(x1, y1, pcolor, opacity) .draw_point(x2, y2, pcolor, opacity) .draw_point(x3, y3, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.drawDot((float)x0, height() - (float)y0); board.drawDot((float)x1, height() - (float)y1); board.drawDot((float)x2, height() - (float)y2); board.drawDot((float)x3, height() - (float)y3); } #endif break; case 1: if (zbuffer) draw_line(zbuffer, x0, y0, z0, x1, y1, z1, pcolor, opacity) .draw_line(zbuffer, x1, y1, z1, x2, y2, z2, pcolor, opacity) .draw_line(zbuffer, x2, y2, z2, x3, y3, z3, pcolor, opacity) .draw_line(zbuffer, x3, y3, z3, x0, y0, z0, pcolor, opacity); else draw_line(x0, y0, x1, y1, pcolor, opacity) .draw_line(x1, y1, x2, y2, pcolor, opacity) .draw_line(x2, y2, x3, y3, pcolor, opacity) .draw_line(x3, y3, x0, y0, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.drawLine((float)x0, height() - (float)y0, (float)x1, height() - (float)y1); board.drawLine((float)x1, height() - (float)y1, (float)x2, height() - (float)y2); board.drawLine((float)x2, height() - (float)y2, (float)x3, height() - (float)y3); board.drawLine((float)x3, height() - (float)y3, (float)x0, height() - (float)y0); } #endif break; case 2: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, pcolor, opacity) .draw_triangle(zbuffer, x0, y0, z0, x2, y2, z2, x3, y3, z3, pcolor, opacity); else draw_triangle(x0, y0, x1, y1, x2, y2, pcolor, opacity) .draw_triangle(x0, y0, x2, y2, x3, y3, pcolor, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( color[0], color[1], color[2], (unsigned char)(opacity * 255)); board.fillTriangle( (float)x0, height() - (float)y0, (float)x1, height() - (float)y1, (float)x2, height() - (float)y2); board.fillTriangle( (float)x0, height() - (float)y0, (float)x2, height() - (float)y2, (float)x3, height() - (float)y3); } #endif break; case 3: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, pcolor, opacity, lightprops(l)) .draw_triangle(zbuffer, x0, y0, z0, x2, y2, z2, x3, y3, z3, pcolor, opacity, lightprops(l)); else _draw_triangle(x0, y0, x1, y1, x2, y2, pcolor, opacity, lightprops(l)) ._draw_triangle(x0, y0, x2, y2, x3, y3, pcolor, opacity, lightprops(l)); #ifdef cimg_use_board if (pboard) { const float lp = std::min(lightprops(l), 1.f); board.setPenColorRGBi( (unsigned char)(color[0] * lp), (unsigned char)(color[1] * lp), (unsigned char)(color[2] * lp), (unsigned char)(opacity * 255)); board.fillTriangle( (float)x0, height() - (float)y0, (float)x1, height() - (float)y1, (float)x2, height() - (float)y2); board.fillTriangle( (float)x0, height() - (float)y0, (float)x2, height() - (float)y2, (float)x3, height() - (float)y3); } #endif break; case 4: { const float lightprop0 = lightprops(n0), lightprop1 = lightprops(n1), lightprop2 = lightprops(n2), lightprop3 = lightprops(n3), lightpropc = (lightprop0 + lightprop1 + lightprop2 + lightprop2) / 4; if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, xc, yc, zc, pcolor, lightprop0, lightprop1, lightpropc, opacity) .draw_triangle(zbuffer, x1, y1, z1, x2, y2, z2, xc, yc, zc, pcolor, lightprop1, lightprop2, lightpropc, opacity) .draw_triangle(zbuffer, x2, y2, z2, x3, y3, z3, xc, yc, zc, pcolor, lightprop2, lightprop3, lightpropc, opacity) .draw_triangle(zbuffer, x3, y3, z3, x0, y0, z0, xc, yc, zc, pcolor, lightprop3, lightprop0, lightpropc, opacity); else draw_triangle(x0, y0, x1, y1, xc, yc, pcolor, lightprop0, lightprop1, lightpropc, opacity) .draw_triangle(x1, y1, x2, y2, xc, yc, pcolor, lightprop1, lightprop2, lightpropc, opacity) .draw_triangle(x2, y2, x3, y3, xc, yc, pcolor, lightprop2, lightprop3, lightpropc, opacity) .draw_triangle(x3, y3, x0, y0, xc, yc, pcolor, lightprop3, lightprop0, lightpropc, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( (unsigned char)(color[0]), (unsigned char)(color[1]), (unsigned char)(color[2]), (unsigned char)(opacity * 255)); board.fillGouraudTriangle( (float)x0, height() - (float)y0, lightprop0, (float)x1, height() - (float)y1, lightprop1, (float)x2, height() - (float)y2, lightprop2); board.fillGouraudTriangle( (float)x0, height() - (float)y0, lightprop0, (float)x2, height() - (float)y2, lightprop2, (float)x3, height() - (float)y3, lightprop3); } #endif } break; case 5: { const unsigned int lx0 = (unsigned int)cimg::uiround( lightprops(n0, 0)), ly0 = (unsigned int)cimg::uiround( lightprops(n0, 1)), lx1 = (unsigned int)cimg::uiround( lightprops(n1, 0)), ly1 = (unsigned int)cimg::uiround( lightprops(n1, 1)), lx2 = (unsigned int)cimg::uiround( lightprops(n2, 0)), ly2 = (unsigned int)cimg::uiround( lightprops(n2, 1)), lx3 = (unsigned int)cimg::uiround( lightprops(n3, 0)), ly3 = (unsigned int)cimg::uiround( lightprops(n3, 1)), lxc = (lx0 + lx1 + lx2 + lx3) / 4, lyc = (ly0 + ly1 + ly2 + ly3) / 4; if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, xc, yc, zc, pcolor, light_texture, lx0, ly0, lx1, ly1, lxc, lyc, opacity) .draw_triangle(zbuffer, x1, y1, z1, x2, y2, z2, xc, yc, zc, pcolor, light_texture, lx1, ly1, lx2, ly2, lxc, lyc, opacity) .draw_triangle(zbuffer, x2, y2, z2, x3, y3, z3, xc, yc, zc, pcolor, light_texture, lx2, ly2, lx3, ly3, lxc, lyc, opacity) .draw_triangle(zbuffer, x3, y3, z3, x0, y0, z0, xc, yc, zc, pcolor, light_texture, lx3, ly3, lx0, ly0, lxc, lyc, opacity); else draw_triangle(x0, y0, x1, y1, xc, yc, pcolor, light_texture, lx0, ly0, lx1, ly1, lxc, lyc, opacity) .draw_triangle(x1, y1, x2, y2, xc, yc, pcolor, light_texture, lx1, ly1, lx2, ly2, lxc, lyc, opacity) .draw_triangle(x2, y2, x3, y3, xc, yc, pcolor, light_texture, lx2, ly2, lx3, ly3, lxc, lyc, opacity) .draw_triangle(x3, y3, x0, y0, xc, yc, pcolor, light_texture, lx3, ly3, lx0, ly0, lxc, lyc, opacity); #ifdef cimg_use_board if (pboard) { const float l0 = light_texture( (int)(light_texture.width() / 2 * (1 + lx0)), (int)(light_texture.height() / 2 * (1 + ly0))), l1 = light_texture( (int)(light_texture.width() / 2 * (1 + lx1)), (int)(light_texture.height() / 2 * (1 + ly1))), l2 = light_texture( (int)(light_texture.width() / 2 * (1 + lx2)), (int)(light_texture.height() / 2 * (1 + ly2))), l3 = light_texture( (int)(light_texture.width() / 2 * (1 + lx3)), (int)(light_texture.height() / 2 * (1 + ly3))); board.setPenColorRGBi( (unsigned char)(color[0]), (unsigned char)(color[1]), (unsigned char)(color[2]), (unsigned char)(opacity * 255)); board.fillGouraudTriangle( (float)x0, height() - (float)y0, l0, (float)x1, height() - (float)y1, l1, (float)x2, height() - (float)y2, l2); board.fillGouraudTriangle( (float)x0, height() - (float)y0, l0, (float)x2, height() - (float)y2, l2, (float)x3, height() - (float)y3, l3); } #endif } break; } } break; case 9: { // Textured triangle if (!__color) { if (render_type == 5) cimg::mutex(10, 0); throw CImgArgumentException( _cimg_instance "draw_object3d(): Undefined texture for triangle " "primitive [%u].", cimg_instance, n_primitive); } const unsigned int n0 = (unsigned int)primitive[0], n1 = (unsigned int)primitive[1], n2 = (unsigned int)primitive[2]; const int tx0 = (int)primitive[3], ty0 = (int)primitive[4], tx1 = (int)primitive[5], ty1 = (int)primitive[6], tx2 = (int)primitive[7], ty2 = (int)primitive[8], x0 = cimg::uiround(projections(n0, 0)), y0 = cimg::uiround(projections(n0, 1)), x1 = cimg::uiround(projections(n1, 0)), y1 = cimg::uiround(projections(n1, 1)), x2 = cimg::uiround(projections(n2, 0)), y2 = cimg::uiround(projections(n2, 1)); const float z0 = vertices(n0, 2) + Z + _focale, z1 = vertices(n1, 2) + Z + _focale, z2 = vertices(n2, 2) + Z + _focale; switch (render_type) { case 0: draw_point(x0, y0, color .get_vector_at( tx0 <= 0 ? 0 : tx0 >= color.width() ? color.width() - 1 : tx0, ty0 <= 0 ? 0 : ty0 >= color.height() ? color.height() - 1 : ty0) ._data, opacity) .draw_point( x1, y1, color .get_vector_at( tx1 <= 0 ? 0 : tx1 >= color.width() ? color.width() - 1 : tx1, ty1 <= 0 ? 0 : ty1 >= color.height() ? color.height() - 1 : ty1) ._data, opacity) .draw_point( x2, y2, color .get_vector_at( tx2 <= 0 ? 0 : tx2 >= color.width() ? color.width() - 1 : tx2, ty2 <= 0 ? 0 : ty2 >= color.height() ? color.height() - 1 : ty2) ._data, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( 128, 128, 128, (unsigned char)(opacity * 255)); board.drawDot((float)x0, height() - (float)y0); board.drawDot((float)x1, height() - (float)y1); board.drawDot((float)x2, height() - (float)y2); } #endif break; case 1: if (zbuffer) draw_line(zbuffer, x0, y0, z0, x1, y1, z1, color, tx0, ty0, tx1, ty1, opacity) .draw_line(zbuffer, x0, y0, z0, x2, y2, z2, color, tx0, ty0, tx2, ty2, opacity) .draw_line(zbuffer, x1, y1, z1, x2, y2, z2, color, tx1, ty1, tx2, ty2, opacity); else draw_line(x0, y0, z0, x1, y1, z1, color, tx0, ty0, tx1, ty1, opacity) .draw_line(x0, y0, z0, x2, y2, z2, color, tx0, ty0, tx2, ty2, opacity) .draw_line(x1, y1, z1, x2, y2, z2, color, tx1, ty1, tx2, ty2, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( 128, 128, 128, (unsigned char)(opacity * 255)); board.drawLine((float)x0, height() - (float)y0, (float)x1, height() - (float)y1); board.drawLine((float)x0, height() - (float)y0, (float)x2, height() - (float)y2); board.drawLine((float)x1, height() - (float)y1, (float)x2, height() - (float)y2); } #endif break; case 2: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, opacity); else draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( 128, 128, 128, (unsigned char)(opacity * 255)); board.fillTriangle( (float)x0, height() - (float)y0, (float)x1, height() - (float)y1, (float)x2, height() - (float)y2); } #endif break; case 3: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, opacity, lightprops(l)); else draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, opacity, lightprops(l)); #ifdef cimg_use_board if (pboard) { const float lp = std::min(lightprops(l), 1.f); board.setPenColorRGBi( (unsigned char)(128 * lp), (unsigned char)(128 * lp), (unsigned char)(128 * lp), (unsigned char)(opacity * 255)); board.fillTriangle( (float)x0, height() - (float)y0, (float)x1, height() - (float)y1, (float)x2, height() - (float)y2); } #endif break; case 4: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, lightprops(n0), lightprops(n1), lightprops(n2), opacity); else draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, lightprops(n0), lightprops(n1), lightprops(n2), opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( 128, 128, 128, (unsigned char)(opacity * 255)); board.fillGouraudTriangle( (float)x0, height() - (float)y0, lightprops(n0), (float)x1, height() - (float)y1, lightprops(n1), (float)x2, height() - (float)y2, lightprops(n2)); } #endif break; case 5: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, light_texture, (unsigned int)lightprops(n0, 0), (unsigned int)lightprops(n0, 1), (unsigned int)lightprops(n1, 0), (unsigned int)lightprops(n1, 1), (unsigned int)lightprops(n2, 0), (unsigned int)lightprops(n2, 1), opacity); else draw_triangle( x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, light_texture, (unsigned int)lightprops(n0, 0), (unsigned int)lightprops(n0, 1), (unsigned int)lightprops(n1, 0), (unsigned int)lightprops(n1, 1), (unsigned int)lightprops(n2, 0), (unsigned int)lightprops(n2, 1), opacity); #ifdef cimg_use_board if (pboard) { const float l0 = light_texture( (int)(light_texture.width() / 2 * (1 + lightprops(n0, 0))), (int)(light_texture.height() / 2 * (1 + lightprops(n0, 1)))), l1 = light_texture( (int)(light_texture.width() / 2 * (1 + lightprops(n1, 0))), (int)(light_texture.height() / 2 * (1 + lightprops(n1, 1)))), l2 = light_texture( (int)(light_texture.width() / 2 * (1 + lightprops(n2, 0))), (int)(light_texture.height() / 2 * (1 + lightprops(n2, 1)))); board.setPenColorRGBi( 128, 128, 128, (unsigned char)(opacity * 255)); board.fillGouraudTriangle( (float)x0, height() - (float)y0, l0, (float)x1, height() - (float)y1, l1, (float)x2, height() - (float)y2, l2); } #endif break; } } break; case 12: { // Textured quadrangle if (!__color) { if (render_type == 5) cimg::mutex(10, 0); throw CImgArgumentException( _cimg_instance "draw_object3d(): Undefined texture for quadrangle " "primitive [%u].", cimg_instance, n_primitive); } const unsigned int n0 = (unsigned int)primitive[0], n1 = (unsigned int)primitive[1], n2 = (unsigned int)primitive[2], n3 = (unsigned int)primitive[3]; const int tx0 = (int)primitive[4], ty0 = (int)primitive[5], tx1 = (int)primitive[6], ty1 = (int)primitive[7], tx2 = (int)primitive[8], ty2 = (int)primitive[9], tx3 = (int)primitive[10], ty3 = (int)primitive[11], x0 = cimg::uiround(projections(n0, 0)), y0 = cimg::uiround(projections(n0, 1)), x1 = cimg::uiround(projections(n1, 0)), y1 = cimg::uiround(projections(n1, 1)), x2 = cimg::uiround(projections(n2, 0)), y2 = cimg::uiround(projections(n2, 1)), x3 = cimg::uiround(projections(n3, 0)), y3 = cimg::uiround(projections(n3, 1)); const float z0 = vertices(n0, 2) + Z + _focale, z1 = vertices(n1, 2) + Z + _focale, z2 = vertices(n2, 2) + Z + _focale, z3 = vertices(n3, 2) + Z + _focale; switch (render_type) { case 0: draw_point(x0, y0, color .get_vector_at( tx0 <= 0 ? 0 : tx0 >= color.width() ? color.width() - 1 : tx0, ty0 <= 0 ? 0 : ty0 >= color.height() ? color.height() - 1 : ty0) ._data, opacity) .draw_point( x1, y1, color .get_vector_at( tx1 <= 0 ? 0 : tx1 >= color.width() ? color.width() - 1 : tx1, ty1 <= 0 ? 0 : ty1 >= color.height() ? color.height() - 1 : ty1) ._data, opacity) .draw_point( x2, y2, color .get_vector_at( tx2 <= 0 ? 0 : tx2 >= color.width() ? color.width() - 1 : tx2, ty2 <= 0 ? 0 : ty2 >= color.height() ? color.height() - 1 : ty2) ._data, opacity) .draw_point( x3, y3, color .get_vector_at( tx3 <= 0 ? 0 : tx3 >= color.width() ? color.width() - 1 : tx3, ty3 <= 0 ? 0 : ty3 >= color.height() ? color.height() - 1 : ty3) ._data, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( 128, 128, 128, (unsigned char)(opacity * 255)); board.drawDot((float)x0, height() - (float)y0); board.drawDot((float)x1, height() - (float)y1); board.drawDot((float)x2, height() - (float)y2); board.drawDot((float)x3, height() - (float)y3); } #endif break; case 1: if (zbuffer) draw_line(zbuffer, x0, y0, z0, x1, y1, z1, color, tx0, ty0, tx1, ty1, opacity) .draw_line(zbuffer, x1, y1, z1, x2, y2, z2, color, tx1, ty1, tx2, ty2, opacity) .draw_line(zbuffer, x2, y2, z2, x3, y3, z3, color, tx2, ty2, tx3, ty3, opacity) .draw_line(zbuffer, x3, y3, z3, x0, y0, z0, color, tx3, ty3, tx0, ty0, opacity); else draw_line(x0, y0, z0, x1, y1, z1, color, tx0, ty0, tx1, ty1, opacity) .draw_line(x1, y1, z1, x2, y2, z2, color, tx1, ty1, tx2, ty2, opacity) .draw_line(x2, y2, z2, x3, y3, z3, color, tx2, ty2, tx3, ty3, opacity) .draw_line(x3, y3, z3, x0, y0, z0, color, tx3, ty3, tx0, ty0, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( 128, 128, 128, (unsigned char)(opacity * 255)); board.drawLine((float)x0, height() - (float)y0, (float)x1, height() - (float)y1); board.drawLine((float)x1, height() - (float)y1, (float)x2, height() - (float)y2); board.drawLine((float)x2, height() - (float)y2, (float)x3, height() - (float)y3); board.drawLine((float)x3, height() - (float)y3, (float)x0, height() - (float)y0); } #endif break; case 2: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, opacity) .draw_triangle(zbuffer, x0, y0, z0, x2, y2, z2, x3, y3, z3, color, tx0, ty0, tx2, ty2, tx3, ty3, opacity); else draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, opacity) .draw_triangle(x0, y0, z0, x2, y2, z2, x3, y3, z3, color, tx0, ty0, tx2, ty2, tx3, ty3, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( 128, 128, 128, (unsigned char)(opacity * 255)); board.fillTriangle( (float)x0, height() - (float)y0, (float)x1, height() - (float)y1, (float)x2, height() - (float)y2); board.fillTriangle( (float)x0, height() - (float)y0, (float)x2, height() - (float)y2, (float)x3, height() - (float)y3); } #endif break; case 3: if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, opacity, lightprops(l)) .draw_triangle(zbuffer, x0, y0, z0, x2, y2, z2, x3, y3, z3, color, tx0, ty0, tx2, ty2, tx3, ty3, opacity, lightprops(l)); else draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, opacity, lightprops(l)) .draw_triangle(x0, y0, z0, x2, y2, z2, x3, y3, z3, color, tx0, ty0, tx2, ty2, tx3, ty3, opacity, lightprops(l)); #ifdef cimg_use_board if (pboard) { const float lp = std::min(lightprops(l), 1.f); board.setPenColorRGBi( (unsigned char)(128 * lp), (unsigned char)(128 * lp), (unsigned char)(128 * lp), (unsigned char)(opacity * 255)); board.fillTriangle( (float)x0, height() - (float)y0, (float)x1, height() - (float)y1, (float)x2, height() - (float)y2); board.fillTriangle( (float)x0, height() - (float)y0, (float)x2, height() - (float)y2, (float)x3, height() - (float)y3); } #endif break; case 4: { const float lightprop0 = lightprops(n0), lightprop1 = lightprops(n1), lightprop2 = lightprops(n2), lightprop3 = lightprops(n3); if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, lightprop0, lightprop1, lightprop2, opacity) .draw_triangle(zbuffer, x0, y0, z0, x2, y2, z2, x3, y3, z3, color, tx0, ty0, tx2, ty2, tx3, ty3, lightprop0, lightprop2, lightprop3, opacity); else draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, lightprop0, lightprop1, lightprop2, opacity) .draw_triangle( x0, y0, z0, x2, y2, z2, x3, y3, z3, color, tx0, ty0, tx2, ty2, tx3, ty3, lightprop0, lightprop2, lightprop3, opacity); #ifdef cimg_use_board if (pboard) { board.setPenColorRGBi( 128, 128, 128, (unsigned char)(opacity * 255)); board.fillGouraudTriangle( (float)x0, height() - (float)y0, lightprop0, (float)x1, height() - (float)y1, lightprop1, (float)x2, height() - (float)y2, lightprop2); board.fillGouraudTriangle( (float)x0, height() - (float)y0, lightprop0, (float)x2, height() - (float)y2, lightprop2, (float)x3, height() - (float)y3, lightprop3); } #endif } break; case 5: { const unsigned int lx0 = (unsigned int)cimg::uiround( lightprops(n0, 0)), ly0 = (unsigned int)cimg::uiround( lightprops(n0, 1)), lx1 = (unsigned int)cimg::uiround( lightprops(n1, 0)), ly1 = (unsigned int)cimg::uiround( lightprops(n1, 1)), lx2 = (unsigned int)cimg::uiround( lightprops(n2, 0)), ly2 = (unsigned int)cimg::uiround( lightprops(n2, 1)), lx3 = (unsigned int)cimg::uiround( lightprops(n3, 0)), ly3 = (unsigned int)cimg::uiround( lightprops(n3, 1)); if (zbuffer) draw_triangle(zbuffer, x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, light_texture, lx0, ly0, lx1, ly1, lx2, ly2, opacity) .draw_triangle(zbuffer, x0, y0, z0, x2, y2, z2, x3, y3, z3, color, tx0, ty0, tx2, ty2, tx3, ty3, light_texture, lx0, ly0, lx2, ly2, lx3, ly3, opacity); else draw_triangle(x0, y0, z0, x1, y1, z1, x2, y2, z2, color, tx0, ty0, tx1, ty1, tx2, ty2, light_texture, lx0, ly0, lx1, ly1, lx2, ly2, opacity) .draw_triangle(x0, y0, z0, x2, y2, z2, x3, y3, z3, color, tx0, ty0, tx2, ty2, tx3, ty3, light_texture, lx0, ly0, lx2, ly2, lx3, ly3, opacity); #ifdef cimg_use_board if (pboard) { const float l0 = light_texture( (int)(light_texture.width() / 2 * (1 + lx0)), (int)(light_texture.height() / 2 * (1 + ly0))), l1 = light_texture( (int)(light_texture.width() / 2 * (1 + lx1)), (int)(light_texture.height() / 2 * (1 + ly1))), l2 = light_texture( (int)(light_texture.width() / 2 * (1 + lx2)), (int)(light_texture.height() / 2 * (1 + ly2))), l3 = light_texture( (int)(light_texture.width() / 2 * (1 + lx3)), (int)(light_texture.height() / 2 * (1 + ly3))); board.setPenColorRGBi( 128, 128, 128, (unsigned char)(opacity * 255)); board.fillGouraudTriangle( (float)x0, height() - (float)y0, l0, (float)x1, height() - (float)y1, l1, (float)x2, height() - (float)y2, l2); board.fillGouraudTriangle( (float)x0, height() - (float)y0, l0, (float)x2, height() - (float)y2, l2, (float)x3, height() - (float)y3, l3); } #endif } break; } } break; } } if (render_type == 5) cimg::mutex(10, 0); return *this; } //@} //--------------------------- // //! \name Data Input //@{ //--------------------------- //! Launch simple interface to select a shape from an image. /** \param disp Display window to use. \param feature_type Type of feature to select. Can be { 0=point | 1=line | 2=rectangle | 3=ellipse }. \param XYZ Pointer to 3 values X,Y,Z which tells about the projection point coordinates, for volumetric images. \param exit_on_anykey Exit function when any key is pressed. **/ CImg& select(CImgDisplay& disp, const unsigned int feature_type = 2, unsigned int* const XYZ = 0, const bool exit_on_anykey = false, const bool is_deep_selection_default = false) { return get_select(disp, feature_type, XYZ, exit_on_anykey, is_deep_selection_default) .move_to(*this); } //! Simple interface to select a shape from an image \overloading. CImg& select(const char* const title, const unsigned int feature_type = 2, unsigned int* const XYZ = 0, const bool exit_on_anykey = false, const bool is_deep_selection_default = false) { return get_select(title, feature_type, XYZ, exit_on_anykey, is_deep_selection_default) .move_to(*this); } //! Simple interface to select a shape from an image \newinstance. CImg get_select(CImgDisplay& disp, const unsigned int feature_type = 2, unsigned int* const XYZ = 0, const bool exit_on_anykey = false, const bool is_deep_selection_default = false) const { return _select(disp, 0, feature_type, XYZ, 0, 0, 0, exit_on_anykey, true, false, is_deep_selection_default); } //! Simple interface to select a shape from an image \newinstance. CImg get_select(const char* const title, const unsigned int feature_type = 2, unsigned int* const XYZ = 0, const bool exit_on_anykey = false, const bool is_deep_selection_default = false) const { CImgDisplay disp; return _select(disp, title, feature_type, XYZ, 0, 0, 0, exit_on_anykey, true, false, is_deep_selection_default); } CImg _select(CImgDisplay& disp, const char* const title, const unsigned int feature_type, unsigned int* const XYZ, const int origX, const int origY, const int origZ, const bool exit_on_anykey, const bool reset_view3d, const bool force_display_z_coord, const bool is_deep_selection_default) const { if (is_empty()) return CImg(1, feature_type == 0 ? 3 : 6, 1, 1, -1); if (!disp) { disp.assign(cimg_fitscreen(_width, _height, _depth), title ? title : 0, 1); if (!title) disp.set_title("CImg<%s> (%ux%ux%ux%u)", pixel_type(), _width, _height, _depth, _spectrum); } else { if (title) disp.set_title("%s", title); disp.move_inside_screen(); } CImg thumb; if (width() > disp.screen_width() || height() > disp.screen_height()) get_resize(cimg_fitscreen(width(), height(), depth()), depth(), -100) .move_to(thumb); const unsigned int old_normalization = disp.normalization(); bool old_is_resized = disp.is_resized(); disp._normalization = 0; disp.show().set_key(0).set_wheel().show_mouse(); static const unsigned char foreground_color[] = {255, 255, 255}, background_color[] = {0, 0, 0}; int area = 0, area_started = 0, area_clicked = 0, phase = 0, X0 = (int)((XYZ ? XYZ[0] : _width / 2) % _width), Y0 = (int)((XYZ ? XYZ[1] : _height / 2) % _height), Z0 = (int)((XYZ ? XYZ[2] : _depth / 2) % _depth), X1 = -1, Y1 = -1, Z1 = -1, X3d = -1, Y3d = -1, oX3d = X3d, oY3d = -1, omx = -1, omy = -1; float X = -1, Y = -1, Z = -1; unsigned int key = 0; bool is_deep_selection = is_deep_selection_default, shape_selected = false, text_down = false, visible_cursor = true; static CImg pose3d; static bool is_view3d = false, is_axes = true; if (reset_view3d) { pose3d.assign(); is_view3d = false; } CImg points3d, opacities3d, sel_opacities3d; CImgList primitives3d, sel_primitives3d; CImgList colors3d, sel_colors3d; CImg visu, visu0, view3d; CImg text(1024); *text = 0; while (!key && !disp.is_closed() && !shape_selected) { // Handle mouse motion and selection int mx = disp.mouse_x(), my = disp.mouse_y(); const float mX = mx < 0 ? -1.f : (float)mx * (width() + (depth() > 1 ? depth() : 0)) / disp.width(), mY = my < 0 ? -1.f : (float)my * (height() + (depth() > 1 ? depth() : 0)) / disp.height(); area = 0; if (mX >= 0 && mY >= 0 && mX < width() && mY < height()) { area = 1; X = mX; Y = mY; Z = (float)(phase ? Z1 : Z0); } if (mX >= 0 && mX < width() && mY >= height()) { area = 2; X = mX; Z = mY - _height; Y = (float)(phase ? Y1 : Y0); } if (mY >= 0 && mX >= width() && mY < height()) { area = 3; Y = mY; Z = mX - _width; X = (float)(phase ? X1 : X0); } if (mX >= width() && mY >= height()) area = 4; if (disp.button()) { if (!area_clicked) area_clicked = area; } else area_clicked = 0; CImg filename(32); switch (key = disp.key()) { #if cimg_OS != 2 case cimg::keyCTRLRIGHT: #endif case 0: case cimg::keyCTRLLEFT: key = 0; break; case cimg::keyPAGEUP: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_wheel(1); key = 0; } break; case cimg::keyPAGEDOWN: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_wheel(-1); key = 0; } break; case cimg::keyX: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { is_axes = !is_axes; disp.set_key(key, false); key = 0; visu0.assign(); } break; case cimg::keyD: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize( CImgDisplay::_fitscreen(3 * disp.width() / 2, 3 * disp.height() / 2, 1, 128, -100, false), CImgDisplay::_fitscreen(3 * disp.width() / 2, 3 * disp.height() / 2, 1, 128, -100, true), false) ._is_resized = true; disp.set_key(key, false); key = 0; visu0.assign(); } break; case cimg::keyC: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize(cimg_fitscreen(2 * disp.width() / 3, 2 * disp.height() / 3, 1), false) ._is_resized = true; disp.set_key(key, false); key = 0; visu0.assign(); } break; case cimg::keyR: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize(cimg_fitscreen(_width, _height, _depth), false) ._is_resized = true; disp.set_key(key, false); key = 0; visu0.assign(); } break; case cimg::keyF: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.resize(disp.screen_width(), disp.screen_height(), false) .toggle_fullscreen() ._is_resized = true; disp.set_key(key, false); key = 0; visu0.assign(); } break; case cimg::keyV: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { is_view3d = !is_view3d; disp.set_key(key, false); key = 0; visu0.assign(); } break; case cimg::keyS: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { static unsigned int snap_number = 0; std::FILE* file; do { cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.bmp", snap_number++); if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); if (visu0) { (+visu0) .__draw_text(" Saving snapshot...", (int)text_down) .display(disp); visu0.save(filename); (+visu0) .__draw_text(" Snapshot '%s' saved. ", (int)text_down, filename._data) .display(disp); } disp.set_key(key, false); key = 0; } break; case cimg::keyO: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { static unsigned int snap_number = 0; std::FILE* file; do { #ifdef cimg_use_zlib cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.cimgz", snap_number++); #else cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.cimg", snap_number++); #endif if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); (+visu0) .__draw_text(" Saving instance... ", (int)text_down) .display(disp); save(filename); (+visu0) .__draw_text(" Instance '%s' saved. ", (int)text_down, filename._data) .display(disp); disp.set_key(key, false); key = 0; } break; } switch (area) { case 0: // When mouse is out of image range mx = my = -1; X = Y = Z = -1; break; case 1: case 2: case 3: { // When mouse is over the XY,XZ or YZ projections const unsigned int but = disp.button(); const bool b1 = (bool)(but & 1), b2 = (bool)(but & 2), b3 = (bool)(but & 4); if (b1 && phase == 1 && area_clicked == area) { // When selection has been // started (1st step) if (_depth > 1 && (X1 != (int)X || Y1 != (int)Y || Z1 != (int)Z)) visu0.assign(); X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z; } if (!b1 && phase == 2 && area_clicked != area) { // When selection is at 2nd // step (for volumes) switch (area_started) { case 1: if (Z1 != (int)Z) visu0.assign(); Z1 = (int)Z; break; case 2: if (Y1 != (int)Y) visu0.assign(); Y1 = (int)Y; break; case 3: if (X1 != (int)X) visu0.assign(); X1 = (int)X; break; } } if (b2 && area_clicked == area) { // When moving through the image/volume if (phase) { if (_depth > 1 && (X1 != (int)X || Y1 != (int)Y || Z1 != (int)Z)) visu0.assign(); X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z; } else { if (_depth > 1 && (X0 != (int)X || Y0 != (int)Y || Z0 != (int)Z)) visu0.assign(); X0 = (int)X; Y0 = (int)Y; Z0 = (int)Z; } } if (b3) { // Reset selection X = (float)X0; Y = (float)Y0; Z = (float)Z0; phase = area = area_clicked = area_started = 0; visu0.assign(); } if (disp.wheel()) { // When moving through the slices of // the volume (with mouse wheel) if (_depth > 1 && !disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT() && !disp.is_keySHIFTLEFT() && !disp.is_keySHIFTRIGHT()) { switch (area) { case 1: if (phase) Z = (float)(Z1 += disp.wheel()); else Z = (float)(Z0 += disp.wheel()); visu0.assign(); break; case 2: if (phase) Y = (float)(Y1 += disp.wheel()); else Y = (float)(Y0 += disp.wheel()); visu0.assign(); break; case 3: if (phase) X = (float)(X1 += disp.wheel()); else X = (float)(X0 += disp.wheel()); visu0.assign(); break; } disp.set_wheel(); } else key = ~0U; } if ((phase == 0 && b1) || (phase == 1 && !b1) || (phase == 2 && b1)) switch (phase) { // Detect change of phase case 0: if (area == area_clicked) { X0 = X1 = (int)X; Y0 = Y1 = (int)Y; Z0 = Z1 = (int)Z; area_started = area; ++phase; } break; case 1: if (area == area_started) { X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z; ++phase; if (_depth > 1) { if (disp.is_keyCTRLLEFT()) is_deep_selection = !is_deep_selection_default; if (is_deep_selection) ++phase; } } else if (!b1) { X = (float)X0; Y = (float)Y0; Z = (float)Z0; phase = 0; visu0.assign(); } break; case 2: ++phase; break; } } break; case 4: // When mouse is over the 3D view if (is_view3d && points3d) { X3d = mx - width() * disp.width() / (width() + (depth() > 1 ? depth() : 0)); Y3d = my - height() * disp.height() / (height() + (depth() > 1 ? depth() : 0)); if (oX3d < 0) { oX3d = X3d; oY3d = Y3d; } // Left + right buttons: reset. if ((disp.button() & 3) == 3) { pose3d.assign(); view3d.assign(); oX3d = oY3d = X3d = Y3d = -1; } else if (disp.button() & 1 && pose3d && (oX3d != X3d || oY3d != Y3d)) { // Left button: rotate const float R = 0.45f * std::min(view3d._width, view3d._height), R2 = R * R, u0 = (float)(oX3d - view3d.width() / 2), v0 = (float)(oY3d - view3d.height() / 2), u1 = (float)(X3d - view3d.width() / 2), v1 = (float)(Y3d - view3d.height() / 2), n0 = cimg::hypot(u0, v0), n1 = cimg::hypot(u1, v1), nu0 = n0 > R ? (u0 * R / n0) : u0, nv0 = n0 > R ? (v0 * R / n0) : v0, nw0 = (float)std::sqrt(std::max( 0.f, R2 - nu0 * nu0 - nv0 * nv0)), nu1 = n1 > R ? (u1 * R / n1) : u1, nv1 = n1 > R ? (v1 * R / n1) : v1, nw1 = (float)std::sqrt(std::max( 0.f, R2 - nu1 * nu1 - nv1 * nv1)), u = nv0 * nw1 - nw0 * nv1, v = nw0 * nu1 - nu0 * nw1, w = nv0 * nu1 - nu0 * nv1, n = cimg::hypot(u, v, w), alpha = (float)std::asin(n / R2) * 180 / cimg::PI; pose3d.draw_image( CImg::rotation_matrix(u, v, w, -alpha) * pose3d.get_crop(0, 0, 2, 2)); view3d.assign(); } else if (disp.button() & 2 && pose3d && oY3d != Y3d) { // Right button: zoom pose3d(3, 2) += (Y3d - oY3d) * 1.5f; view3d.assign(); } if (disp.wheel()) { // Wheel: zoom pose3d(3, 2) -= disp.wheel() * 15; view3d.assign(); disp.set_wheel(); } if (disp.button() & 4 && pose3d && (oX3d != X3d || oY3d != Y3d)) { // Middle button: shift pose3d(3, 0) -= oX3d - X3d; pose3d(3, 1) -= oY3d - Y3d; view3d.assign(); } oX3d = X3d; oY3d = Y3d; } mx = my = -1; X = Y = Z = -1; break; } if (phase) { if (!feature_type) shape_selected = phase ? true : false; else { if (_depth > 1) shape_selected = (phase == 3) ? true : false; else shape_selected = (phase == 2) ? true : false; } } if (X0 < 0) X0 = 0; if (X0 >= width()) X0 = width() - 1; if (Y0 < 0) Y0 = 0; if (Y0 >= height()) Y0 = height() - 1; if (Z0 < 0) Z0 = 0; if (Z0 >= depth()) Z0 = depth() - 1; if (X1 < 1) X1 = 0; if (X1 >= width()) X1 = width() - 1; if (Y1 < 0) Y1 = 0; if (Y1 >= height()) Y1 = height() - 1; if (Z1 < 0) Z1 = 0; if (Z1 >= depth()) Z1 = depth() - 1; // Draw visualization image on the display if (mx != omx || my != omy || !visu0 || (_depth > 1 && !view3d)) { if (!visu0) { // Create image of projected planes if (thumb) thumb ._get_select(disp, old_normalization, phase ? X1 : X0, phase ? Y1 : Y0, phase ? Z1 : Z0) .move_to(visu0); else _get_select(disp, old_normalization, phase ? X1 : X0, phase ? Y1 : Y0, phase ? Z1 : Z0) .move_to(visu0); visu0.resize(disp); view3d.assign(); points3d.assign(); } if (is_view3d && _depth > 1 && !view3d) { // Create 3D view for volumetric images const unsigned int _x3d = (unsigned int)cimg::round( (float)_width * visu0._width / (_width + _depth), 1, 1), _y3d = (unsigned int)cimg::round( (float)_height * visu0._height / (_height + _depth), 1, 1), x3d = _x3d >= visu0._width ? visu0._width - 1 : _x3d, y3d = _y3d >= visu0._height ? visu0._height - 1 : _y3d; CImg(1, 2, 1, 1, 64, 128) .resize(visu0._width - x3d, visu0._height - y3d, 1, visu0._spectrum, 3) .move_to(view3d); if (!points3d) { get_projections3d(primitives3d, colors3d, phase ? X1 : X0, phase ? Y1 : Y0, phase ? Z1 : Z0, true) .move_to(points3d); points3d.append( CImg(8, 3, 1, 1, 0, _width - 1, _width - 1, 0, 0, _width - 1, _width - 1, 0, 0, 0, _height - 1, _height - 1, 0, 0, _height - 1, _height - 1, 0, 0, 0, 0, _depth - 1, _depth - 1, _depth - 1, _depth - 1), 'x'); CImg::vector(12, 13).move_to(primitives3d); CImg::vector(13, 14).move_to(primitives3d); CImg::vector(14, 15).move_to(primitives3d); CImg::vector(15, 12).move_to(primitives3d); CImg::vector(16, 17).move_to(primitives3d); CImg::vector(17, 18).move_to(primitives3d); CImg::vector(18, 19).move_to(primitives3d); CImg::vector(19, 16).move_to(primitives3d); CImg::vector(12, 16).move_to(primitives3d); CImg::vector(13, 17).move_to(primitives3d); CImg::vector(14, 18).move_to(primitives3d); CImg::vector(15, 19).move_to(primitives3d); colors3d.insert(12, CImg::vector(255, 255, 255)); opacities3d.assign(primitives3d.width(), 1, 1, 1, 0.5f); if (!phase) { opacities3d[0] = opacities3d[1] = opacities3d[2] = 0.8f; sel_primitives3d.assign(); sel_colors3d.assign(); sel_opacities3d.assign(); } else { if (feature_type == 2) { points3d.append( CImg(8, 3, 1, 1, X0, X1, X1, X0, X0, X1, X1, X0, Y0, Y0, Y1, Y1, Y0, Y0, Y1, Y1, Z0, Z0, Z0, Z0, Z1, Z1, Z1, Z1), 'x'); sel_primitives3d.assign(); CImg::vector(20, 21).move_to( sel_primitives3d); CImg::vector(21, 22).move_to( sel_primitives3d); CImg::vector(22, 23).move_to( sel_primitives3d); CImg::vector(23, 20).move_to( sel_primitives3d); CImg::vector(24, 25).move_to( sel_primitives3d); CImg::vector(25, 26).move_to( sel_primitives3d); CImg::vector(26, 27).move_to( sel_primitives3d); CImg::vector(27, 24).move_to( sel_primitives3d); CImg::vector(20, 24).move_to( sel_primitives3d); CImg::vector(21, 25).move_to( sel_primitives3d); CImg::vector(22, 26).move_to( sel_primitives3d); CImg::vector(23, 27).move_to( sel_primitives3d); } else { points3d.append(CImg(2, 3, 1, 1, X0, X1, Y0, Y1, Z0, Z1), 'x'); sel_primitives3d.assign( CImg::vector(20, 21)); } sel_colors3d.assign( sel_primitives3d._width, CImg::vector(255, 255, 255)); sel_opacities3d.assign(sel_primitives3d._width, 1, 1, 1, 0.8f); } points3d .shift_object3d(-0.5f * (_width - 1), -0.5f * (_height - 1), -0.5f * (_depth - 1)) .resize_object3d(); points3d *= 0.75f * std::min(view3d._width, view3d._height); } if (!pose3d) CImg(4, 3, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0) .move_to(pose3d); CImg zbuffer3d(view3d._width, view3d._height, 1, 1, 0); const CImg rotated_points3d = pose3d.get_crop(0, 0, 2, 2) * points3d; if (sel_primitives3d) view3d.draw_object3d( pose3d(3, 0) + 0.5f * view3d._width, pose3d(3, 1) + 0.5f * view3d._height, pose3d(3, 2), rotated_points3d, sel_primitives3d, sel_colors3d, sel_opacities3d, 2, true, 500, 0, 0, 0, 0, 0, 1, zbuffer3d); view3d.draw_object3d( pose3d(3, 0) + 0.5f * view3d._width, pose3d(3, 1) + 0.5f * view3d._height, pose3d(3, 2), rotated_points3d, primitives3d, colors3d, opacities3d, 2, true, 500, 0, 0, 0, 0, 0, 1, zbuffer3d); visu0.draw_image(x3d, y3d, view3d); } visu = visu0; if (X < 0 || Y < 0 || Z < 0) { if (!visible_cursor) { disp.show_mouse(); visible_cursor = true; } } else { if (is_axes) { if (visible_cursor) { disp.hide_mouse(); visible_cursor = false; } } else { if (!visible_cursor) { disp.show_mouse(); visible_cursor = true; } } const int d = (depth() > 1) ? depth() : 0; int _vX = (int)X, _vY = (int)Y, _vZ = (int)Z; if (phase >= 2) { _vX = X1; _vY = Y1; _vZ = Z1; } int w = disp.width(), W = width() + d, h = disp.height(), H = height() + d, _xp = (int)(_vX * (float)w / W), xp = _xp + ((int)(_xp * (float)W / w) != _vX), _yp = (int)(_vY * (float)h / H), yp = _yp + ((int)(_yp * (float)H / h) != _vY), _xn = (int)((_vX + 1.f) * w / W - 1), xn = _xn + ((int)((_xn + 1.f) * W / w) != _vX + 1), _yn = (int)((_vY + 1.f) * h / H - 1), yn = _yn + ((int)((_yn + 1.f) * H / h) != _vY + 1), _zxp = (int)((_vZ + width()) * (float)w / W), zxp = _zxp + ((int)(_zxp * (float)W / w) != _vZ + width()), _zyp = (int)((_vZ + height()) * (float)h / H), zyp = _zyp + ((int)(_zyp * (float)H / h) != _vZ + height()), _zxn = (int)((_vZ + width() + 1.f) * w / W - 1), zxn = _zxn + ((int)((_zxn + 1.f) * W / w) != _vZ + width() + 1), _zyn = (int)((_vZ + height() + 1.f) * h / H - 1), zyn = _zyn + ((int)((_zyn + 1.f) * H / h) != _vZ + height() + 1), _xM = (int)(width() * (float)w / W - 1), xM = _xM + ((int)((_xM + 1.f) * W / w) != width()), _yM = (int)(height() * (float)h / H - 1), yM = _yM + ((int)((_yM + 1.f) * H / h) != height()), xc = (xp + xn) / 2, yc = (yp + yn) / 2, zxc = (zxp + zxn) / 2, zyc = (zyp + zyn) / 2, xf = (int)(X * w / W), yf = (int)(Y * h / H), zxf = (int)((Z + width()) * w / W), zyf = (int)((Z + height()) * h / H); if (is_axes) { // Draw axes visu.draw_line(0, yf, visu.width() - 1, yf, foreground_color, 0.7f, 0xFF00FF00) .draw_line(0, yf, visu.width() - 1, yf, background_color, 0.7f, 0x00FF00FF) .draw_line(xf, 0, xf, visu.height() - 1, foreground_color, 0.7f, 0xFF00FF00) .draw_line(xf, 0, xf, visu.height() - 1, background_color, 0.7f, 0x00FF00FF); if (_depth > 1) visu.draw_line(zxf, 0, zxf, yM, foreground_color, 0.7f, 0xFF00FF00) .draw_line(zxf, 0, zxf, yM, background_color, 0.7f, 0x00FF00FF) .draw_line(0, zyf, xM, zyf, foreground_color, 0.7f, 0xFF00FF00) .draw_line(0, zyf, xM, zyf, background_color, 0.7f, 0x00FF00FF); } // Draw box cursor. if (xn - xp >= 4 && yn - yp >= 4) visu.draw_rectangle(xp, yp, xn, yn, foreground_color, 0.2f) .draw_rectangle(xp, yp, xn, yn, foreground_color, 1, 0xAAAAAAAA) .draw_rectangle(xp, yp, xn, yn, background_color, 1, 0x55555555); if (_depth > 1) { if (yn - yp >= 4 && zxn - zxp >= 4) visu.draw_rectangle(zxp, yp, zxn, yn, background_color, 0.2f) .draw_rectangle(zxp, yp, zxn, yn, foreground_color, 1, 0xAAAAAAAA) .draw_rectangle(zxp, yp, zxn, yn, background_color, 1, 0x55555555); if (xn - xp >= 4 && zyn - zyp >= 4) visu.draw_rectangle(xp, zyp, xn, zyn, background_color, 0.2f) .draw_rectangle(xp, zyp, xn, zyn, foreground_color, 1, 0xAAAAAAAA) .draw_rectangle(xp, zyp, xn, zyn, background_color, 1, 0x55555555); } // Draw selection. if (phase && (phase != 1 || area_started == area)) { const int _xp0 = (int)(X0 * (float)w / W), xp0 = _xp0 + ((int)(_xp0 * (float)W / w) != X0), _yp0 = (int)(Y0 * (float)h / H), yp0 = _yp0 + ((int)(_yp0 * (float)H / h) != Y0), _xn0 = (int)((X0 + 1.f) * w / W - 1), xn0 = _xn0 + ((int)((_xn0 + 1.f) * W / w) != X0 + 1), _yn0 = (int)((Y0 + 1.f) * h / H - 1), yn0 = _yn0 + ((int)((_yn0 + 1.f) * H / h) != Y0 + 1), _zxp0 = (int)((Z0 + width()) * (float)w / W), zxp0 = _zxp0 + ((int)(_zxp0 * (float)W / w) != Z0 + width()), _zyp0 = (int)((Z0 + height()) * (float)h / H), zyp0 = _zyp0 + ((int)(_zyp0 * (float)H / h) != Z0 + height()), _zxn0 = (int)((Z0 + width() + 1.f) * w / W - 1), zxn0 = _zxn0 + ((int)((_zxn0 + 1.f) * W / w) != Z0 + width() + 1), _zyn0 = (int)((Z0 + height() + 1.f) * h / H - 1), zyn0 = _zyn0 + ((int)((_zyn0 + 1.f) * H / h) != Z0 + height() + 1), xc0 = (xp0 + xn0) / 2, yc0 = (yp0 + yn0) / 2, zxc0 = (zxp0 + zxn0) / 2, zyc0 = (zyp0 + zyn0) / 2; switch (feature_type) { case 1: { // Vector visu.draw_arrow(xc0, yc0, xc, yc, background_color, 0.9f, 30, 5, 0x33333333) .draw_arrow(xc0, yc0, xc, yc, foreground_color, 0.9f, 30, 5, 0xCCCCCCCC); if (d) { visu.draw_arrow(zxc0, yc0, zxc, yc, background_color, 0.9f, 30, 5, 0x33333333) .draw_arrow(zxc0, yc0, zxc, yc, foreground_color, 0.9f, 30, 5, 0xCCCCCCCC) .draw_arrow(xc0, zyc0, xc, zyc, background_color, 0.9f, 30, 5, 0x33333333) .draw_arrow(xc0, zyc0, xc, zyc, foreground_color, 0.9f, 30, 5, 0xCCCCCCCC); } } break; case 2: { // Box visu.draw_rectangle( X0 < X1 ? xp0 : xp, Y0 < Y1 ? yp0 : yp, X0 < X1 ? xn : xn0, Y0 < Y1 ? yn : yn0, background_color, 0.2f) .draw_rectangle( X0 < X1 ? xp0 : xp, Y0 < Y1 ? yp0 : yp, X0 < X1 ? xn : xn0, Y0 < Y1 ? yn : yn0, background_color, 0.9f, 0x55555555) .draw_rectangle( X0 < X1 ? xp0 : xp, Y0 < Y1 ? yp0 : yp, X0 < X1 ? xn : xn0, Y0 < Y1 ? yn : yn0, foreground_color, 0.9f, 0xAAAAAAAA); if (xc0 != xc && yc0 != yc) visu.draw_line(xc0, yc0, xc, yc, background_color, 0.9f, 0x33333333) .draw_line(xc0, yc0, xc, yc, foreground_color, 0.9f, 0xCCCCCCCC); if (d) { visu.draw_rectangle(Z0 < Z1 ? zxp0 : zxp, Y0 < Y1 ? yp0 : yp, Z0 < Z1 ? zxn : zxn0, Y0 < Y1 ? yn : yn0, background_color, 0.2f) .draw_rectangle(Z0 < Z1 ? zxp0 : zxp, Y0 < Y1 ? yp0 : yp, Z0 < Z1 ? zxn : zxn0, Y0 < Y1 ? yn : yn0, background_color, 0.9f, 0x55555555) .draw_rectangle(Z0 < Z1 ? zxp0 : zxp, Y0 < Y1 ? yp0 : yp, Z0 < Z1 ? zxn : zxn0, Y0 < Y1 ? yn : yn0, foreground_color, 0.9f, 0xAAAAAAAA); if (zxc0 != zxc && yc0 != yc) visu.draw_line(zxc0, yc0, zxc, yc, background_color, 0.9f, 0x33333333) .draw_line(zxc0, yc0, zxc, yc, foreground_color, 0.9f, 0xCCCCCCCC); visu.draw_rectangle(X0 < X1 ? xp0 : xp, Z0 < Z1 ? zyp0 : zyp, X0 < X1 ? xn : xn0, Z0 < Z1 ? zyn : zyn0, background_color, 0.2f) .draw_rectangle(X0 < X1 ? xp0 : xp, Z0 < Z1 ? zyp0 : zyp, X0 < X1 ? xn : xn0, Z0 < Z1 ? zyn : zyn0, background_color, 0.9f, 0x55555555) .draw_rectangle(X0 < X1 ? xp0 : xp, Z0 < Z1 ? zyp0 : zyp, X0 < X1 ? xn : xn0, Z0 < Z1 ? zyn : zyn0, foreground_color, 0.9f, 0xAAAAAAAA); if (xp0 != xn && zyp0 != zyn) visu.draw_line(xp0, zyp0, xn, zyn, background_color, 0.9f, 0x33333333) .draw_line(xp0, zyp0, xn, zyn, foreground_color, 0.9f, 0xCCCCCCCC); } } break; case 3: { // Ellipse visu.draw_ellipse(xc0, yc0, (float)cimg::abs(xc - xc0), (float)cimg::abs(yc - yc0), 0, background_color, 0.2f) .draw_ellipse(xc0, yc0, (float)cimg::abs(xc - xc0), (float)cimg::abs(yc - yc0), 0, foreground_color, 0.9f, ~0U) .draw_point(xc0, yc0, foreground_color, 0.9f); if (d) { visu.draw_ellipse( zxc0, yc0, (float)cimg::abs(zxc - zxc0), (float)cimg::abs(yc - yc0), 0, background_color, 0.2f) .draw_ellipse( zxc0, yc0, (float)cimg::abs(zxc - zxc0), (float)cimg::abs(yc - yc0), 0, foreground_color, 0.9f, ~0U) .draw_point(zxc0, yc0, foreground_color, 0.9f) .draw_ellipse( xc0, zyc0, (float)cimg::abs(xc - xc0), (float)cimg::abs(zyc - zyc0), 0, background_color, 0.2f) .draw_ellipse( xc0, zyc0, (float)cimg::abs(xc - xc0), (float)cimg::abs(zyc - zyc0), 0, foreground_color, 0.9f, ~0U) .draw_point(xc0, zyc0, foreground_color, 0.9f); } } break; } } // Draw text info. if (my >= 0 && my < 13) text_down = true; else if (my >= visu.height() - 13) text_down = false; if (!feature_type || !phase) { if (X >= 0 && Y >= 0 && Z >= 0 && X < width() && Y < height() && Z < depth()) { if (_depth > 1 || force_display_z_coord) cimg_snprintf(text, text._width, " Point (%d,%d,%d) = [ ", origX + (int)X, origY + (int)Y, origZ + (int)Z); else cimg_snprintf(text, text._width, " Point (%d,%d) = [ ", origX + (int)X, origY + (int)Y); CImg values = get_vector_at((int)X, (int)Y, (int)Z); const bool is_large_spectrum = values._height > 8; if (is_large_spectrum) values .draw_image( 0, 4, values.get_rows(values._height - 4, values._height - 1)) .resize(1, 8, 1, 1, 0); char *ctext = text._data + std::strlen(text), *const ltext = text._data + 512; for (unsigned int c = 0; c < values._height && ctext < ltext; ++c) { cimg_snprintf(ctext, 24, cimg::type::format_s(), cimg::type::format(values[c])); ctext += std::strlen(ctext); if (c == 3 && is_large_spectrum) { cimg_snprintf(ctext, 24, " ..."); ctext += std::strlen(ctext); } *(ctext++) = ' '; *ctext = 0; } std::strcpy(text._data + std::strlen(text), "] "); } } else switch (feature_type) { case 1: { const double dX = (double)(X0 - X1), dY = (double)(Y0 - Y1), dZ = (double)(Z0 - Z1), length = cimg::round( cimg::hypot(dX, dY, dZ), 0.1); if (_depth > 1 || force_display_z_coord) cimg_snprintf( text, text._width, " Vect (%d,%d,%d)-(%d,%d,%d), Length = " "%g ", origX + X0, origY + Y0, origZ + Z0, origX + X1, origY + Y1, origZ + Z1, length); else if (_width != 1 && _height != 1) cimg_snprintf( text, text._width, " Vect (%d,%d)-(%d,%d), Length = %g, " "Angle = %g\260 ", origX + X0, origY + Y0, origX + X1, origY + Y1, length, cimg::round( cimg::mod(180 * std::atan2(-dY, -dX) / cimg::PI, 360.), 0.1)); else cimg_snprintf( text, text._width, " Vect (%d,%d)-(%d,%d), Length = %g ", origX + X0, origY + Y0, origX + X1, origY + Y1, length); } break; case 2: { const double dX = (double)(X0 - X1), dY = (double)(Y0 - Y1), dZ = (double)(Z0 - Z1), length = cimg::round( cimg::hypot(dX, dY, dZ), 0.1); if (_depth > 1 || force_display_z_coord) cimg_snprintf( text, text._width, " Box ( %d,%d,%d ) - ( %d,%d,%d )\n " "Size = ( %d,%d,%d ), Length = %g ", origX + (X0 < X1 ? X0 : X1), origY + (Y0 < Y1 ? Y0 : Y1), origZ + (Z0 < Z1 ? Z0 : Z1), origX + (X0 < X1 ? X1 : X0), origY + (Y0 < Y1 ? Y1 : Y0), origZ + (Z0 < Z1 ? Z1 : Z0), 1 + cimg::abs(X0 - X1), 1 + cimg::abs(Y0 - Y1), 1 + cimg::abs(Z0 - Z1), length); else if (_width != 1 && _height != 1) cimg_snprintf( text, text._width, " Box ( %d,%d ) - ( %d,%d )\n Size = ( " "%d,%d ), Length = %g \n Angle = " "%g\260 ", origX + (X0 < X1 ? X0 : X1), origY + (Y0 < Y1 ? Y0 : Y1), origX + (X0 < X1 ? X1 : X0), origY + (Y0 < Y1 ? Y1 : Y0), 1 + cimg::abs(X0 - X1), 1 + cimg::abs(Y0 - Y1), length, cimg::round( cimg::mod(180 * std::atan2(-dY, -dX) / cimg::PI, 360.), 0.1)); else cimg_snprintf( text, text._width, " Box ( %d,%d ) - ( %d,%d )\n Size = " "(%d,%d), Length = %g ", origX + (X0 < X1 ? X0 : X1), origY + (Y0 < Y1 ? Y0 : Y1), origX + (X0 < X1 ? X1 : X0), origY + (Y0 < Y1 ? Y1 : Y0), 1 + cimg::abs(X0 - X1), 1 + cimg::abs(Y0 - Y1), length); } break; default: if (_depth > 1 || force_display_z_coord) cimg_snprintf( text, text._width, " Ellipse ( %d,%d,%d ) - ( %d,%d,%d ), " "Radii = ( %d,%d,%d ) ", origX + X0, origY + Y0, origZ + Z0, origX + X1, origY + Y1, origZ + Z1, 1 + cimg::abs(X0 - X1), 1 + cimg::abs(Y0 - Y1), 1 + cimg::abs(Z0 - Z1)); else cimg_snprintf(text, text._width, " Ellipse ( %d,%d ) - ( " "%d,%d ), Radii = ( %d,%d ) ", origX + X0, origY + Y0, origX + X1, origY + Y1, 1 + cimg::abs(X0 - X1), 1 + cimg::abs(Y0 - Y1)); } if (phase || (mx >= 0 && my >= 0)) visu.__draw_text("%s", (int)text_down, text._data); } disp.display(visu); } if (!shape_selected) disp.wait(); if (disp.is_resized()) { disp.resize(false)._is_resized = false; old_is_resized = true; visu0.assign(); } omx = mx; omy = my; if (!exit_on_anykey && key && key != cimg::keyESC && (key != cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { key = 0; } } // Return result. CImg res(1, feature_type == 0 ? 3 : 6, 1, 1, -1); if (XYZ) { XYZ[0] = (unsigned int)X0; XYZ[1] = (unsigned int)Y0; XYZ[2] = (unsigned int)Z0; } if (shape_selected) { if (feature_type == 2) { if (is_deep_selection) switch (area_started) { case 1: Z0 = 0; Z1 = _depth - 1; break; case 2: Y0 = 0; Y1 = _height - 1; break; case 3: X0 = 0; X1 = _width - 1; break; } if (X0 > X1) cimg::swap(X0, X1); if (Y0 > Y1) cimg::swap(Y0, Y1); if (Z0 > Z1) cimg::swap(Z0, Z1); } if (X1 < 0 || Y1 < 0 || Z1 < 0) X0 = Y0 = Z0 = X1 = Y1 = Z1 = -1; switch (feature_type) { case 1: case 2: res[0] = X0; res[1] = Y0; res[2] = Z0; res[3] = X1; res[4] = Y1; res[5] = Z1; break; case 3: res[3] = cimg::abs(X1 - X0); res[4] = cimg::abs(Y1 - Y0); res[5] = cimg::abs(Z1 - Z0); res[0] = X0; res[1] = Y0; res[2] = Z0; break; default: res[0] = X0; res[1] = Y0; res[2] = Z0; } } if (!exit_on_anykey || !(disp.button() & 4)) disp.set_button(); if (!visible_cursor) disp.show_mouse(); disp._normalization = old_normalization; disp._is_resized = old_is_resized; if (key != ~0U) disp.set_key(key); return res; } // Return a visualizable uchar8 image for display routines. CImg _get_select(const CImgDisplay& disp, const int normalization, const int x, const int y, const int z) const { if (is_empty()) return CImg(1, 1, 1, 1, 0); const CImg crop = get_shared_channels(0, std::min(2, spectrum() - 1)); CImg img2d; if (_depth > 1) { const int mdisp = std::min(disp.screen_width(), disp.screen_height()); if (depth() > mdisp) { crop.get_resize(-100, -100, mdisp, -100, 0).move_to(img2d); img2d.projections2d(x, y, z * img2d._depth / _depth); } else crop.get_projections2d(x, y, z).move_to(img2d); } else CImg(crop, false).move_to(img2d); // Check for inf and NaN values. if (cimg::type::is_float() && normalization) { bool is_inf = false, is_nan = false; cimg_for(img2d, ptr, Tuchar) if (cimg::type::is_inf(*ptr)) { is_inf = true; break; } else if (cimg::type::is_nan(*ptr)) { is_nan = true; break; } if (is_inf || is_nan) { Tint m0 = (Tint)cimg::type::max(), M0 = (Tint)cimg::type::min(); if (!normalization) { m0 = 0; M0 = 255; } else if (normalization == 2) { m0 = (Tint)disp._min; M0 = (Tint)disp._max; } else cimg_for(img2d, ptr, Tuchar) if (!cimg::type::is_inf(*ptr) && !cimg::type::is_nan(*ptr)) { if (*ptr < (Tuchar)m0) m0 = *ptr; if (*ptr > (Tuchar)M0) M0 = *ptr; } const T val_minf = (T)(normalization == 1 || normalization == 3 ? m0 - (M0 - m0) * 20 - 1 : m0), val_pinf = (T)(normalization == 1 || normalization == 3 ? M0 + (M0 - m0) * 20 + 1 : M0); if (is_nan) cimg_for(img2d, ptr, Tuchar) if (cimg::type::is_nan(*ptr))* ptr = val_minf; // Replace NaN values if (is_inf) cimg_for(img2d, ptr, Tuchar) if (cimg::type::is_inf(*ptr))* ptr = (float)*ptr < 0 ? val_minf : val_pinf; // Replace +-inf values } } switch (normalization) { case 1: img2d.normalize((ucharT)0, (ucharT)255); break; case 2: { const float m = disp._min, M = disp._max; (img2d -= m) *= 255.f / (M - m > 0 ? M - m : 1); } break; case 3: if (cimg::type::is_float()) img2d.normalize((ucharT)0, (ucharT)255); else { const float m = (float)cimg::type::min(), M = (float)cimg::type::max(); (img2d -= m) *= 255.f / (M - m > 0 ? M - m : 1); } break; } if (img2d.spectrum() == 2) img2d.channels(0, 2); return img2d; } //! Select sub-graph in a graph. CImg get_select_graph(CImgDisplay& disp, const unsigned int plot_type = 1, const unsigned int vertex_type = 1, const char* const labelx = 0, const double xmin = 0, const double xmax = 0, const char* const labely = 0, const double ymin = 0, const double ymax = 0, const bool exit_on_anykey = false) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "select_graph(): Empty instance.", cimg_instance); if (!disp) disp.assign(cimg_fitscreen(CImgDisplay::screen_width() / 2, CImgDisplay::screen_height() / 2, 1), 0, 0) .set_title("CImg<%s>", pixel_type()); const ulongT siz = (ulongT)_width * _height * _depth; const unsigned int old_normalization = disp.normalization(); disp.show().set_button().set_wheel()._normalization = 0; double nymin = ymin, nymax = ymax, nxmin = xmin, nxmax = xmax; if (nymin == nymax) { nymin = (Tfloat)min_max(nymax); const double dy = nymax - nymin; nymin -= dy / 20; nymax += dy / 20; } if (nymin == nymax) { --nymin; ++nymax; } if (nxmin == nxmax && nxmin == 0) { nxmin = 0; nxmax = siz - 1.; } static const unsigned char black[] = {0, 0, 0}, white[] = {255, 255, 255}, gray[] = {220, 220, 220}; static const unsigned char gray2[] = {110, 110, 110}, ngray[] = {35, 35, 35}; CImg colormap(3, _spectrum); if (_spectrum == 1) { colormap[0] = colormap[1] = 120; colormap[2] = 200; } else { colormap(0, 0) = 220; colormap(1, 0) = 10; colormap(2, 0) = 10; if (_spectrum > 1) { colormap(0, 1) = 10; colormap(1, 1) = 220; colormap(2, 1) = 10; } if (_spectrum > 2) { colormap(0, 2) = 10; colormap(1, 2) = 10; colormap(2, 2) = 220; } if (_spectrum > 3) { colormap(0, 3) = 220; colormap(1, 3) = 220; colormap(2, 3) = 10; } if (_spectrum > 4) { colormap(0, 4) = 220; colormap(1, 4) = 10; colormap(2, 4) = 220; } if (_spectrum > 5) { colormap(0, 5) = 10; colormap(1, 5) = 220; colormap(2, 5) = 220; } if (_spectrum > 6) { ulongT rng = 10; cimg_for_inY(colormap, 6, colormap.height() - 1, k) { colormap(0, k) = (unsigned char)(120 + cimg::rand(-100.f, 100.f, &rng)); colormap(1, k) = (unsigned char)(120 + cimg::rand(-100.f, 100.f, &rng)); colormap(2, k) = (unsigned char)(120 + cimg::rand(-100.f, 100.f, &rng)); } } } CImg visu0, visu, graph, text, axes; int x0 = -1, x1 = -1, y0 = -1, y1 = -1, omouse_x = -2, omouse_y = -2; const unsigned int one = plot_type == 3 ? 0U : 1U; unsigned int okey = 0, obutton = 0; CImg message(1024); CImg_3x3(I, unsigned char); for (bool selected = false; !selected && !disp.is_closed() && !okey && !disp.wheel();) { const int mouse_x = disp.mouse_x(), mouse_y = disp.mouse_y(); const unsigned int key = disp.key(), button = disp.button(); // Generate graph representation. if (!visu0) { visu0.assign(disp.width(), disp.height(), 1, 3, 220); const int gdimx = disp.width() - 32, gdimy = disp.height() - 32; if (gdimx > 0 && gdimy > 0) { graph.assign(gdimx, gdimy, 1, 3, 255); if (siz < 32) { if (siz > 1) graph.draw_grid(gdimx / (float)(siz - one), gdimy / (float)(siz - one), 0, 0, false, true, black, 0.2f, 0x33333333, 0x33333333); } else graph.draw_grid(-10, -10, 0, 0, false, true, black, 0.2f, 0x33333333, 0x33333333); cimg_forC(*this, c) graph.draw_graph( get_shared_channel(c), &colormap(0, c), (plot_type != 3 || _spectrum == 1) ? 1 : 0.6f, plot_type, vertex_type, nymax, nymin); axes.assign(gdimx, gdimy, 1, 1, 0); const float dx = (float)cimg::abs(nxmax - nxmin), dy = (float)cimg::abs(nymax - nymin), px = (float)std::pow( 10., (int)std::log10(dx ? dx : 1) - 2.), py = (float)std::pow( 10., (int)std::log10(dy ? dy : 1) - 2.); const CImg seqx = dx <= 0 ? CImg::vector(nxmin) : CImg::sequence( 1 + gdimx / 60, nxmin, one ? nxmax : nxmin + (nxmax - nxmin) * (siz + 1) / siz), seqy = CImg::sequence(1 + gdimy / 60, nymax, nymin); const bool allow_zero = (nxmin * nxmax > 0) || (nymin * nymax > 0); axes.draw_axes(seqx, seqy, white, 1, ~0U, ~0U, 13, allow_zero, px, py); if (nymin > 0) axes.draw_axis(seqx, gdimy - 1, gray, 1, ~0U, 13, allow_zero, px); if (nymax < 0) axes.draw_axis(seqx, 0, gray, 1, ~0U, 13, allow_zero, px); if (nxmin > 0) axes.draw_axis(0, seqy, gray, 1, ~0U, 13, allow_zero, py); if (nxmax < 0) axes.draw_axis(gdimx - 1, seqy, gray, 1, ~0U, 13, allow_zero, py); cimg_for3x3(axes, x, y, 0, 0, I, unsigned char) if (Icc) { if (Icc == 255) cimg_forC(graph, c) graph(x, y, c) = 0; else cimg_forC(graph, c) graph(x, y, c) = (unsigned char)(2 * graph(x, y, c) / 3); } else if (Ipc || Inc || Icp || Icn || Ipp || Inn || Ipn || Inp) cimg_forC(graph, c) graph(x, y, c) = (unsigned char)((graph(x, y, c) + 511) / 3); visu0.draw_image(16, 16, graph); visu0.draw_line(15, 15, 16 + gdimx, 15, gray2) .draw_line(16 + gdimx, 15, 16 + gdimx, 16 + gdimy, gray2) .draw_line(16 + gdimx, 16 + gdimy, 15, 16 + gdimy, white) .draw_line(15, 16 + gdimy, 15, 15, white); } else graph.assign(); text.assign() .draw_text(0, 0, labelx ? labelx : "X-axis", white, ngray, 1, 13) .resize(-100, -100, 1, 3); visu0.draw_image((visu0.width() - text.width()) / 2, visu0.height() - 14, ~text); text.assign() .draw_text(0, 0, labely ? labely : "Y-axis", white, ngray, 1, 13) .rotate(-90) .resize(-100, -100, 1, 3); visu0.draw_image(1, (visu0.height() - text.height()) / 2, ~text); visu.assign(); } // Generate and display current view. if (!visu) { visu.assign(visu0); if (graph && x0 >= 0 && x1 >= 0) { const int nx0 = x0 <= x1 ? x0 : x1, nx1 = x0 <= x1 ? x1 : x0, ny0 = y0 <= y1 ? y0 : y1, ny1 = y0 <= y1 ? y1 : y0, sx0 = (int)(16 + nx0 * (visu.width() - 32) / std::max((ulongT)1, siz - one)), sx1 = (int)(15 + (nx1 + 1) * (visu.width() - 32) / std::max((ulongT)1, siz - one)), sy0 = 16 + ny0, sy1 = 16 + ny1; if (y0 >= 0 && y1 >= 0) visu.draw_rectangle(sx0, sy0, sx1, sy1, gray, 0.5f) .draw_rectangle(sx0, sy0, sx1, sy1, black, 0.5f, 0xCCCCCCCCU); else visu.draw_rectangle(sx0, 0, sx1, visu.height() - 17, gray, 0.5f) .draw_line(sx0, 16, sx0, visu.height() - 17, black, 0.5f, 0xCCCCCCCCU) .draw_line(sx1, 16, sx1, visu.height() - 17, black, 0.5f, 0xCCCCCCCCU); } if (mouse_x >= 16 && mouse_y >= 16 && mouse_x < visu.width() - 16 && mouse_y < visu.height() - 16) { if (graph) visu.draw_line(mouse_x, 16, mouse_x, visu.height() - 17, black, 0.5f, 0x55555555U); const unsigned int x = (unsigned int)cimg::round( (mouse_x - 16.f) * (siz - one) / (disp.width() - 32), 1, one ? 0 : -1); const double cx = nxmin + x * (nxmax - nxmin) / std::max((ulongT)1, siz - 1); if (_spectrum >= 7) cimg_snprintf( message, message._width, "Value[%u:%g] = ( %g %g %g ... %g %g %g )", x, cx, (double)(*this)(x, 0, 0, 0), (double)(*this)(x, 0, 0, 1), (double)(*this)(x, 0, 0, 2), (double)(*this)(x, 0, 0, _spectrum - 4), (double)(*this)(x, 0, 0, _spectrum - 3), (double)(*this)(x, 0, 0, _spectrum - 1)); else { cimg_snprintf(message, message._width, "Value[%u:%g] = ( ", x, cx); cimg_forC(*this, c) cimg_sprintf(message._data + std::strlen(message), "%g ", (double)(*this)(x, 0, 0, c)); cimg_sprintf(message._data + std::strlen(message), ")"); } if (x0 >= 0 && x1 >= 0) { const unsigned int nx0 = (unsigned int)(x0 <= x1 ? x0 : x1), nx1 = (unsigned int)(x0 <= x1 ? x1 : x0), ny0 = (unsigned int)(y0 <= y1 ? y0 : y1), ny1 = (unsigned int)(y0 <= y1 ? y1 : y0); const double cx0 = nxmin + nx0 * (nxmax - nxmin) / std::max((ulongT)1, siz - 1), cx1 = nxmin + (nx1 + one) * (nxmax - nxmin) / std::max((ulongT)1, siz - 1), cy0 = nymax - ny0 * (nymax - nymin) / (visu._height - 32), cy1 = nymax - ny1 * (nymax - nymin) / (visu._height - 32); if (y0 >= 0 && y1 >= 0) cimg_sprintf( message._data + std::strlen(message), " - Range ( %u:%g, %g ) - ( %u:%g, %g )", x0, cx0, cy0, x1 + one, cx1, cy1); else cimg_sprintf(message._data + std::strlen(message), " - Range [ %u:%g - %u:%g ]", x0, cx0, x1 + one, cx1); } text.assign() .draw_text(0, 0, message, white, ngray, 1, 13) .resize(-100, -100, 1, 3); visu.draw_image((visu.width() - text.width()) / 2, 1, ~text); } visu.display(disp); } // Test keys. CImg filename(32); switch (okey = key) { #if cimg_OS != 2 case cimg::keyCTRLRIGHT: case cimg::keySHIFTRIGHT: #endif case cimg::keyCTRLLEFT: case cimg::keySHIFTLEFT: okey = 0; break; case cimg::keyD: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize( CImgDisplay::_fitscreen(3 * disp.width() / 2, 3 * disp.height() / 2, 1, 128, -100, false), CImgDisplay::_fitscreen(3 * disp.width() / 2, 3 * disp.height() / 2, 1, 128, -100, true), false) ._is_resized = true; disp.set_key(key, false); okey = 0; } break; case cimg::keyC: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize(cimg_fitscreen(2 * disp.width() / 3, 2 * disp.height() / 3, 1), false) ._is_resized = true; disp.set_key(key, false); okey = 0; } break; case cimg::keyR: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize(cimg_fitscreen( CImgDisplay::screen_width() / 2, CImgDisplay::screen_height() / 2, 1), false) ._is_resized = true; disp.set_key(key, false); okey = 0; } break; case cimg::keyF: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.resize(disp.screen_width(), disp.screen_height(), false) .toggle_fullscreen() ._is_resized = true; disp.set_key(key, false); okey = 0; } break; case cimg::keyS: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { static unsigned int snap_number = 0; if (visu || visu0) { CImg& screen = visu ? visu : visu0; std::FILE* file; do { cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.bmp", snap_number++); if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); (+screen) .__draw_text(" Saving snapshot... ", 0) .display(disp); screen.save(filename); (+screen) .__draw_text(" Snapshot '%s' saved. ", 0, filename._data) .display(disp); } disp.set_key(key, false); okey = 0; } break; case cimg::keyO: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { static unsigned int snap_number = 0; if (visu || visu0) { CImg& screen = visu ? visu : visu0; std::FILE* file; do { #ifdef cimg_use_zlib cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.cimgz", snap_number++); #else cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.cimg", snap_number++); #endif if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); (+screen) .__draw_text(" Saving instance... ", 0) .display(disp); save(filename); (+screen) .__draw_text(" Instance '%s' saved. ", 0, filename._data) .display(disp); } disp.set_key(key, false); okey = 0; } break; } // Handle mouse motion and mouse buttons. if (obutton != button || omouse_x != mouse_x || omouse_y != mouse_y) { visu.assign(); if (disp.mouse_x() >= 0 && disp.mouse_y() >= 0) { const int mx = (mouse_x - 16) * (int)(siz - one) / (disp.width() - 32), cx = cimg::cut(mx, 0, (int)(siz - 1 - one)), my = mouse_y - 16, cy = cimg::cut(my, 0, disp.height() - 32); if (button & 1) { if (!obutton) { x0 = cx; y0 = -1; } else { x1 = cx; y1 = -1; } } else if (button & 2) { if (!obutton) { x0 = cx; y0 = cy; } else { x1 = cx; y1 = cy; } } else if (obutton) { x1 = x1 >= 0 ? cx : -1; y1 = y1 >= 0 ? cy : -1; selected = true; } } else if (!button && obutton) selected = true; obutton = button; omouse_x = mouse_x; omouse_y = mouse_y; } if (disp.is_resized()) { disp.resize(false); visu0.assign(); } if (visu && visu0) disp.wait(); if (!exit_on_anykey && okey && okey != cimg::keyESC && (okey != cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { disp.set_key(key, false); okey = 0; } } disp._normalization = old_normalization; if (x1 >= 0 && x1 < x0) cimg::swap(x0, x1); if (y1 < y0) cimg::swap(y0, y1); disp.set_key(okey); return CImg(4, 1, 1, 1, x0, y0, x1 >= 0 ? x1 + (int)one : -1, y1); } //! Load image from a file. /** \param filename Filename, as a C-string. \note The extension of \c filename defines the file format. If no filename extension is provided, CImg::get_load() will try to load the file as a .cimg or .cimgz file. **/ CImg& load(const char* const filename) { if (!filename) throw CImgArgumentException(_cimg_instance "load(): Specified filename is (null).", cimg_instance); if (!cimg::strncasecmp(filename, "http://", 7) || !cimg::strncasecmp(filename, "https://", 8)) { CImg filename_local(256); load(cimg::load_network(filename, filename_local)); std::remove(filename_local); return *this; } const char* const ext = cimg::split_filename(filename); const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); bool is_loaded = true; try { #ifdef cimg_load_plugin cimg_load_plugin(filename); #endif #ifdef cimg_load_plugin1 cimg_load_plugin1(filename); #endif #ifdef cimg_load_plugin2 cimg_load_plugin2(filename); #endif #ifdef cimg_load_plugin3 cimg_load_plugin3(filename); #endif #ifdef cimg_load_plugin4 cimg_load_plugin4(filename); #endif #ifdef cimg_load_plugin5 cimg_load_plugin5(filename); #endif #ifdef cimg_load_plugin6 cimg_load_plugin6(filename); #endif #ifdef cimg_load_plugin7 cimg_load_plugin7(filename); #endif #ifdef cimg_load_plugin8 cimg_load_plugin8(filename); #endif // Ascii formats if (!cimg::strcasecmp(ext, "asc")) load_ascii(filename); else if (!cimg::strcasecmp(ext, "dlm") || !cimg::strcasecmp(ext, "txt")) load_dlm(filename); // 2D binary formats else if (!cimg::strcasecmp(ext, "bmp")) load_bmp(filename); else if (!cimg::strcasecmp(ext, "jpg") || !cimg::strcasecmp(ext, "jpeg") || !cimg::strcasecmp(ext, "jpe") || !cimg::strcasecmp(ext, "jfif") || !cimg::strcasecmp(ext, "jif")) load_jpeg(filename); else if (!cimg::strcasecmp(ext, "png")) load_png(filename); else if (!cimg::strcasecmp(ext, "ppm") || !cimg::strcasecmp(ext, "pgm") || !cimg::strcasecmp(ext, "pnm") || !cimg::strcasecmp(ext, "pbm") || !cimg::strcasecmp(ext, "pnk")) load_pnm(filename); else if (!cimg::strcasecmp(ext, "pfm")) load_pfm(filename); else if (!cimg::strcasecmp(ext, "tif") || !cimg::strcasecmp(ext, "tiff")) load_tiff(filename); else if (!cimg::strcasecmp(ext, "exr")) load_exr(filename); else if (!cimg::strcasecmp(ext, "cr2") || !cimg::strcasecmp(ext, "crw") || !cimg::strcasecmp(ext, "dcr") || !cimg::strcasecmp(ext, "mrw") || !cimg::strcasecmp(ext, "nef") || !cimg::strcasecmp(ext, "orf") || !cimg::strcasecmp(ext, "pix") || !cimg::strcasecmp(ext, "ptx") || !cimg::strcasecmp(ext, "raf") || !cimg::strcasecmp(ext, "srf")) load_dcraw_external(filename); else if (!cimg::strcasecmp(ext, "gif")) load_gif_external(filename); // 3D binary formats else if (!cimg::strcasecmp(ext, "dcm") || !cimg::strcasecmp(ext, "dicom")) load_medcon_external(filename); else if (!cimg::strcasecmp(ext, "hdr") || !cimg::strcasecmp(ext, "nii")) load_analyze(filename); else if (!cimg::strcasecmp(ext, "par") || !cimg::strcasecmp(ext, "rec")) load_parrec(filename); else if (!cimg::strcasecmp(ext, "mnc")) load_minc2(filename); else if (!cimg::strcasecmp(ext, "inr")) load_inr(filename); else if (!cimg::strcasecmp(ext, "pan")) load_pandore(filename); else if (!cimg::strcasecmp(ext, "cimg") || !cimg::strcasecmp(ext, "cimgz") || !*ext) return load_cimg(filename); // Archive files else if (!cimg::strcasecmp(ext, "gz")) load_gzip_external(filename); // Image sequences else if (!cimg::strcasecmp(ext, "avi") || !cimg::strcasecmp(ext, "mov") || !cimg::strcasecmp(ext, "asf") || !cimg::strcasecmp(ext, "divx") || !cimg::strcasecmp(ext, "flv") || !cimg::strcasecmp(ext, "mpg") || !cimg::strcasecmp(ext, "m1v") || !cimg::strcasecmp(ext, "m2v") || !cimg::strcasecmp(ext, "m4v") || !cimg::strcasecmp(ext, "mjp") || !cimg::strcasecmp(ext, "mp4") || !cimg::strcasecmp(ext, "mkv") || !cimg::strcasecmp(ext, "mpe") || !cimg::strcasecmp(ext, "movie") || !cimg::strcasecmp(ext, "ogm") || !cimg::strcasecmp(ext, "ogg") || !cimg::strcasecmp(ext, "ogv") || !cimg::strcasecmp(ext, "qt") || !cimg::strcasecmp(ext, "rm") || !cimg::strcasecmp(ext, "vob") || !cimg::strcasecmp(ext, "wmv") || !cimg::strcasecmp(ext, "xvid") || !cimg::strcasecmp(ext, "mpeg")) load_video(filename); else is_loaded = false; } catch (CImgIOException&) { is_loaded = false; } // If nothing loaded, try to guess file format from magic number in // file. if (!is_loaded) { std::FILE* file = cimg::std_fopen(filename, "rb"); if (!file) { cimg::exception_mode(omode); throw CImgIOException(_cimg_instance "load(): Failed to open file '%s'.", cimg_instance, filename); } const char* const f_type = cimg::ftype(file, filename); cimg::fclose(file); is_loaded = true; try { if (!cimg::strcasecmp(f_type, "pnm")) load_pnm(filename); else if (!cimg::strcasecmp(f_type, "pfm")) load_pfm(filename); else if (!cimg::strcasecmp(f_type, "bmp")) load_bmp(filename); else if (!cimg::strcasecmp(f_type, "inr")) load_inr(filename); else if (!cimg::strcasecmp(f_type, "jpg")) load_jpeg(filename); else if (!cimg::strcasecmp(f_type, "pan")) load_pandore(filename); else if (!cimg::strcasecmp(f_type, "png")) load_png(filename); else if (!cimg::strcasecmp(f_type, "tif")) load_tiff(filename); else if (!cimg::strcasecmp(f_type, "gif")) load_gif_external(filename); else if (!cimg::strcasecmp(f_type, "dcm")) load_medcon_external(filename); else is_loaded = false; } catch (CImgIOException&) { is_loaded = false; } } // If nothing loaded, try to load file with other means. if (!is_loaded) { try { load_other(filename); } catch (CImgIOException&) { cimg::exception_mode(omode); throw CImgIOException( _cimg_instance "load(): Failed to recognize format of file '%s'.", cimg_instance, filename); } } cimg::exception_mode(omode); return *this; } //! Load image from a file \newinstance. static CImg get_load(const char* const filename) { return CImg().load(filename); } //! Load image from an Ascii file. /** \param filename Filename, as a C -string. **/ CImg& load_ascii(const char* const filename) { return _load_ascii(0, filename); } //! Load image from an Ascii file \inplace. static CImg get_load_ascii(const char* const filename) { return CImg().load_ascii(filename); } //! Load image from an Ascii file \overloading. CImg& load_ascii(std::FILE* const file) { return _load_ascii(file, 0); } //! Loadimage from an Ascii file \newinstance. static CImg get_load_ascii(std::FILE* const file) { return CImg().load_ascii(file); } CImg& _load_ascii(std::FILE* const file, const char* const filename) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_ascii(): Specified filename is (null).", cimg_instance); std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); CImg line(256); *line = 0; int err = std::fscanf(nfile, "%255[^\n]", line._data); unsigned int dx = 0, dy = 1, dz = 1, dc = 1; cimg_sscanf(line, "%u%*c%u%*c%u%*c%u", &dx, &dy, &dz, &dc); err = std::fscanf(nfile, "%*[^0-9.eEinfa+-]"); if (!dx || !dy || !dz || !dc) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_ascii(): Invalid Ascii header in file '%s', image " "dimensions are set " "to (%u,%u,%u,%u).", cimg_instance, filename ? filename : "(FILE*)", dx, dy, dz, dc); } assign(dx, dy, dz, dc); const ulongT siz = size(); ulongT off = 0; double val; T* ptr = _data; for (err = 1, off = 0; off < siz && err == 1; ++off) { err = std::fscanf(nfile, "%lf%*[^0-9.eEinfa+-]", &val); *(ptr++) = (T)val; } if (err != 1) cimg::warn(_cimg_instance "load_ascii(): Only %lu/%lu values read from file '%s'.", cimg_instance, off - 1, siz, filename ? filename : "(FILE*)"); if (!file) cimg::fclose(nfile); return *this; } //! Load image from a DLM file. /** \param filename Filename, as a C-string. **/ CImg& load_dlm(const char* const filename) { return _load_dlm(0, filename); } //! Load image from a DLM file \newinstance. static CImg get_load_dlm(const char* const filename) { return CImg().load_dlm(filename); } //! Load image from a DLM file \overloading. CImg& load_dlm(std::FILE* const file) { return _load_dlm(file, 0); } //! Load image from a DLM file \newinstance. static CImg get_load_dlm(std::FILE* const file) { return CImg().load_dlm(file); } CImg& _load_dlm(std::FILE* const file, const char* const filename) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_dlm(): Specified filename is (null).", cimg_instance); std::FILE* const nfile = file ? file : cimg::fopen(filename, "r"); CImg delimiter(256), tmp(256); *delimiter = *tmp = 0; unsigned int cdx = 0, dx = 0, dy = 0; int err = 0; double val; assign(256, 256, 1, 1, (T)0); while ((err = std::fscanf(nfile, "%lf%255[^0-9eEinfa.+-]", &val, delimiter._data)) > 0) { if (err > 0) (*this)(cdx++, dy) = (T)val; if (cdx >= _width) resize(3 * _width / 2, _height, 1, 1, 0); char c = 0; if (!cimg_sscanf(delimiter, "%255[^\n]%c", tmp._data, &c) || c == '\n') { dx = std::max(cdx, dx); if (++dy >= _height) resize(_width, 3 * _height / 2, 1, 1, 0); cdx = 0; } } if (cdx && err == 1) { dx = cdx; ++dy; } if (!dx || !dy) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_dlm(): Invalid DLM file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } resize(dx, dy, 1, 1, 0); if (!file) cimg::fclose(nfile); return *this; } //! Load image from a BMP file. /** \param filename Filename, as a C-string. **/ CImg& load_bmp(const char* const filename) { return _load_bmp(0, filename); } //! Load image from a BMP file \newinstance. static CImg get_load_bmp(const char* const filename) { return CImg().load_bmp(filename); } //! Load image from a BMP file \overloading. CImg& load_bmp(std::FILE* const file) { return _load_bmp(file, 0); } //! Load image from a BMP file \newinstance. static CImg get_load_bmp(std::FILE* const file) { return CImg().load_bmp(file); } CImg& _load_bmp(std::FILE* const file, const char* const filename) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_bmp(): Specified filename is (null).", cimg_instance); std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); CImg header(54); cimg::fread(header._data, 54, nfile); if (*header != 'B' || header[1] != 'M') { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_bmp(): Invalid BMP file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } // Read header and pixel buffer int file_size = header[0x02] + (header[0x03] << 8) + (header[0x04] << 16) + (header[0x05] << 24), offset = header[0x0A] + (header[0x0B] << 8) + (header[0x0C] << 16) + (header[0x0D] << 24), header_size = header[0x0E] + (header[0x0F] << 8) + (header[0x10] << 16) + (header[0x11] << 24), dx = header[0x12] + (header[0x13] << 8) + (header[0x14] << 16) + (header[0x15] << 24), dy = header[0x16] + (header[0x17] << 8) + (header[0x18] << 16) + (header[0x19] << 24), compression = header[0x1E] + (header[0x1F] << 8) + (header[0x20] << 16) + (header[0x21] << 24), nb_colors = header[0x2E] + (header[0x2F] << 8) + (header[0x30] << 16) + (header[0x31] << 24), bpp = header[0x1C] + (header[0x1D] << 8); if (!file_size || file_size == offset) { cimg::fseek(nfile, 0, SEEK_END); file_size = (int)cimg::ftell(nfile); cimg::fseek(nfile, 54, SEEK_SET); } if (header_size > 40) cimg::fseek(nfile, header_size - 40, SEEK_CUR); const int dx_bytes = (bpp == 1) ? (dx / 8 + (dx % 8 ? 1 : 0)) : ((bpp == 4) ? (dx / 2 + (dx % 2)) : (int)((longT)dx * bpp / 8)), align_bytes = (4 - dx_bytes % 4) % 4; const ulongT cimg_iobuffer = (ulongT)24 * 1024 * 1024, buf_size = std::min( (ulongT)cimg::abs(dy) * (dx_bytes + align_bytes), (ulongT)file_size - offset); CImg colormap; if (bpp < 16) { if (!nb_colors) nb_colors = 1 << bpp; } else nb_colors = 0; if (nb_colors) { colormap.assign(nb_colors); cimg::fread(colormap._data, nb_colors, nfile); } const int xoffset = offset - 14 - header_size - 4 * nb_colors; if (xoffset > 0) cimg::fseek(nfile, xoffset, SEEK_CUR); CImg buffer; if (buf_size < cimg_iobuffer) { buffer.assign(buf_size, 1, 1, 1, 0); cimg::fread(buffer._data, buf_size, nfile); } else buffer.assign(dx_bytes + align_bytes); unsigned char* ptrs = buffer; // Decompress buffer (if necessary) if (compression) { if (file) throw CImgIOException(_cimg_instance "load_bmp(): Unable to load compressed " "data from '(*FILE)' inputs.", cimg_instance); else { if (!file) cimg::fclose(nfile); return load_other(filename); } } // Read pixel data assign(dx, cimg::abs(dy), 1, 3, 0); switch (bpp) { case 1: { // Monochrome if (colormap._width >= 2) for (int y = height() - 1; y >= 0; --y) { if (buf_size >= cimg_iobuffer) { if (!cimg::fread(ptrs = buffer._data, dx_bytes, nfile)) break; cimg::fseek(nfile, align_bytes, SEEK_CUR); } unsigned char mask = 0x80, val = 0; cimg_forX(*this, x) { if (mask == 0x80) val = *(ptrs++); const unsigned char* col = (unsigned char*)(colormap._data + (val & mask ? 1 : 0)); (*this)(x, y, 2) = (T) * (col++); (*this)(x, y, 1) = (T) * (col++); (*this)(x, y, 0) = (T) * (col++); mask = cimg::ror(mask); } ptrs += align_bytes; } } break; case 4: { // 16 colors if (colormap._width >= 16) for (int y = height() - 1; y >= 0; --y) { if (buf_size >= cimg_iobuffer) { if (!cimg::fread(ptrs = buffer._data, dx_bytes, nfile)) break; cimg::fseek(nfile, align_bytes, SEEK_CUR); } unsigned char mask = 0xF0, val = 0; cimg_forX(*this, x) { if (mask == 0xF0) val = *(ptrs++); const unsigned char color = (unsigned char)((mask < 16) ? (val & mask) : ((val & mask) >> 4)); const unsigned char* col = (unsigned char*)(colormap._data + color); (*this)(x, y, 2) = (T) * (col++); (*this)(x, y, 1) = (T) * (col++); (*this)(x, y, 0) = (T) * (col++); mask = cimg::ror(mask, 4); } ptrs += align_bytes; } } break; case 8: { // 256 colors if (colormap._width >= 256) for (int y = height() - 1; y >= 0; --y) { if (buf_size >= cimg_iobuffer) { if (!cimg::fread(ptrs = buffer._data, dx_bytes, nfile)) break; cimg::fseek(nfile, align_bytes, SEEK_CUR); } cimg_forX(*this, x) { const unsigned char* col = (unsigned char*)(colormap._data + *(ptrs++)); (*this)(x, y, 2) = (T) * (col++); (*this)(x, y, 1) = (T) * (col++); (*this)(x, y, 0) = (T) * (col++); } ptrs += align_bytes; } } break; case 16: { // 16 bits colors for (int y = height() - 1; y >= 0; --y) { if (buf_size >= cimg_iobuffer) { if (!cimg::fread(ptrs = buffer._data, dx_bytes, nfile)) break; cimg::fseek(nfile, align_bytes, SEEK_CUR); } cimg_forX(*this, x) { const unsigned char c1 = *(ptrs++), c2 = *(ptrs++); const unsigned short col = (unsigned short)(c1 | (c2 << 8)); (*this)(x, y, 2) = (T)(col & 0x1F); (*this)(x, y, 1) = (T)((col >> 5) & 0x1F); (*this)(x, y, 0) = (T)((col >> 10) & 0x1F); } ptrs += align_bytes; } } break; case 24: { // 24 bits colors for (int y = height() - 1; y >= 0; --y) { if (buf_size >= cimg_iobuffer) { if (!cimg::fread(ptrs = buffer._data, dx_bytes, nfile)) break; cimg::fseek(nfile, align_bytes, SEEK_CUR); } cimg_forX(*this, x) { (*this)(x, y, 2) = (T) * (ptrs++); (*this)(x, y, 1) = (T) * (ptrs++); (*this)(x, y, 0) = (T) * (ptrs++); } ptrs += align_bytes; } } break; case 32: { // 32 bits colors for (int y = height() - 1; y >= 0; --y) { if (buf_size >= cimg_iobuffer) { if (!cimg::fread(ptrs = buffer._data, dx_bytes, nfile)) break; cimg::fseek(nfile, align_bytes, SEEK_CUR); } cimg_forX(*this, x) { (*this)(x, y, 2) = (T) * (ptrs++); (*this)(x, y, 1) = (T) * (ptrs++); (*this)(x, y, 0) = (T) * (ptrs++); ++ptrs; } ptrs += align_bytes; } } break; } if (dy < 0) mirror('y'); if (!file) cimg::fclose(nfile); return *this; } //! Load image from a JPEG file. /** \param filename Filename, as a C-string. **/ CImg& load_jpeg(const char* const filename) { return _load_jpeg(0, filename); } //! Load image from a JPEG file \newinstance. static CImg get_load_jpeg(const char* const filename) { return CImg().load_jpeg(filename); } //! Load image from a JPEG file \overloading. CImg& load_jpeg(std::FILE* const file) { return _load_jpeg(file, 0); } //! Load image from a JPEG file \newinstance. static CImg get_load_jpeg(std::FILE* const file) { return CImg().load_jpeg(file); } // Custom error handler for libjpeg. #ifdef cimg_use_jpeg struct _cimg_error_mgr { struct jpeg_error_mgr original; jmp_buf setjmp_buffer; char message[JMSG_LENGTH_MAX]; }; typedef struct _cimg_error_mgr* _cimg_error_ptr; METHODDEF(void) _cimg_jpeg_error_exit(j_common_ptr cinfo) { _cimg_error_ptr c_err = (_cimg_error_ptr)cinfo->err; // Return control to the setjmp point (*cinfo->err->format_message)(cinfo, c_err->message); jpeg_destroy(cinfo); // Clean memory and temp files longjmp(c_err->setjmp_buffer, 1); } #endif CImg& _load_jpeg(std::FILE* const file, const char* const filename) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_jpeg(): Specified filename is (null).", cimg_instance); #ifndef cimg_use_jpeg if (file) throw CImgIOException(_cimg_instance "load_jpeg(): Unable to load data from " "'(FILE*)' unless libjpeg is enabled.", cimg_instance); else return load_other(filename); #else std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); struct jpeg_decompress_struct cinfo; struct _cimg_error_mgr jerr; cinfo.err = jpeg_std_error(&jerr.original); jerr.original.error_exit = _cimg_jpeg_error_exit; if (setjmp(jerr.setjmp_buffer)) { // JPEG error if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_jpeg(): Error message returned by libjpeg: %s.", cimg_instance, jerr.message); } jpeg_create_decompress(&cinfo); jpeg_stdio_src(&cinfo, nfile); jpeg_read_header(&cinfo, TRUE); jpeg_start_decompress(&cinfo); if (cinfo.output_components != 1 && cinfo.output_components != 3 && cinfo.output_components != 4) { if (!file) { cimg::fclose(nfile); return load_other(filename); } else throw CImgIOException( _cimg_instance "load_jpeg(): Failed to load JPEG data from file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } CImg buffer(cinfo.output_width * cinfo.output_components); JSAMPROW row_pointer[1]; try { assign(cinfo.output_width, cinfo.output_height, 1, cinfo.output_components); } catch (...) { if (!file) cimg::fclose(nfile); throw; } T *ptr_r = _data, *ptr_g = _data + 1UL * _width * _height, *ptr_b = _data + 2UL * _width * _height, *ptr_a = _data + 3UL * _width * _height; while (cinfo.output_scanline < cinfo.output_height) { *row_pointer = buffer._data; if (jpeg_read_scanlines(&cinfo, row_pointer, 1) != 1) { cimg::warn(_cimg_instance "load_jpeg(): Incomplete data in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); break; } const unsigned char* ptrs = buffer._data; switch (_spectrum) { case 1: { cimg_forX(*this, x) * (ptr_r++) = (T) * (ptrs++); } break; case 3: { cimg_forX(*this, x) { *(ptr_r++) = (T) * (ptrs++); *(ptr_g++) = (T) * (ptrs++); *(ptr_b++) = (T) * (ptrs++); } } break; case 4: { cimg_forX(*this, x) { *(ptr_r++) = (T) * (ptrs++); *(ptr_g++) = (T) * (ptrs++); *(ptr_b++) = (T) * (ptrs++); *(ptr_a++) = (T) * (ptrs++); } } break; } } jpeg_finish_decompress(&cinfo); jpeg_destroy_decompress(&cinfo); if (!file) cimg::fclose(nfile); return *this; #endif } //! Load image from a file, using Magick++ library. /** \param filename Filename, as a C-string. **/ // Added April/may 2006 by Christoph Hormann // This is experimental code, not much tested, use with care. CImg& load_magick(const char* const filename) { if (!filename) throw CImgArgumentException( _cimg_instance "load_magick(): Specified filename is (null).", cimg_instance); #ifdef cimg_use_magick Magick::Image image(filename); const unsigned int W = image.size().width(), H = image.size().height(); switch (image.type()) { case Magick::PaletteMatteType: case Magick::TrueColorMatteType: case Magick::ColorSeparationType: { assign(W, H, 1, 4); T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2), *ptr_a = data(0, 0, 0, 3); Magick::PixelPacket* pixels = image.getPixels(0, 0, W, H); for (ulongT off = (ulongT)W * H; off; --off) { *(ptr_r++) = (T)(pixels->red); *(ptr_g++) = (T)(pixels->green); *(ptr_b++) = (T)(pixels->blue); *(ptr_a++) = (T)(pixels->opacity); ++pixels; } } break; case Magick::PaletteType: case Magick::TrueColorType: { assign(W, H, 1, 3); T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2); Magick::PixelPacket* pixels = image.getPixels(0, 0, W, H); for (ulongT off = (ulongT)W * H; off; --off) { *(ptr_r++) = (T)(pixels->red); *(ptr_g++) = (T)(pixels->green); *(ptr_b++) = (T)(pixels->blue); ++pixels; } } break; case Magick::GrayscaleMatteType: { assign(W, H, 1, 2); T *ptr_r = data(0, 0, 0, 0), *ptr_a = data(0, 0, 0, 1); Magick::PixelPacket* pixels = image.getPixels(0, 0, W, H); for (ulongT off = (ulongT)W * H; off; --off) { *(ptr_r++) = (T)(pixels->red); *(ptr_a++) = (T)(pixels->opacity); ++pixels; } } break; default: { assign(W, H, 1, 1); T* ptr_r = data(0, 0, 0, 0); Magick::PixelPacket* pixels = image.getPixels(0, 0, W, H); for (ulongT off = (ulongT)W * H; off; --off) { *(ptr_r++) = (T)(pixels->red); ++pixels; } } } return *this; #else throw CImgIOException(_cimg_instance "load_magick(): Unable to load file '%s' unless " "libMagick++ is enabled.", cimg_instance, filename); #endif } //! Load image from a file, using Magick++ library \newinstance. static CImg get_load_magick(const char* const filename) { return CImg().load_magick(filename); } //! Load image from a PNG file. /** \param filename Filename, as a C-string. \param[out] bits_per_pixel Number of bits per pixels used to store pixel values in the image file. **/ CImg& load_png(const char* const filename, unsigned int* const bits_per_pixel = 0) { return _load_png(0, filename, bits_per_pixel); } //! Load image from a PNG file \newinstance. static CImg get_load_png(const char* const filename, unsigned int* const bits_per_pixel = 0) { return CImg().load_png(filename, bits_per_pixel); } //! Load image from a PNG file \overloading. CImg& load_png(std::FILE* const file, unsigned int* const bits_per_pixel = 0) { return _load_png(file, 0, bits_per_pixel); } //! Load image from a PNG file \newinstance. static CImg get_load_png(std::FILE* const file, unsigned int* const bits_per_pixel = 0) { return CImg().load_png(file, bits_per_pixel); } // (Note: Most of this function has been written by Eric Fausett) CImg& _load_png(std::FILE* const file, const char* const filename, unsigned int* const bits_per_pixel) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_png(): Specified filename is (null).", cimg_instance); #ifndef cimg_use_png cimg::unused(bits_per_pixel); if (file) throw CImgIOException(_cimg_instance "load_png(): Unable to load data from " "'(FILE*)' unless libpng is enabled.", cimg_instance); else return load_other(filename); #else // Open file and check for PNG validity #if defined __GNUC__ const char* volatile nfilename = filename; // Use 'volatile' to avoid (wrong) g++ warning std::FILE* volatile nfile = file ? file : cimg::fopen(nfilename, "rb"); #else const char* nfilename = filename; std::FILE* nfile = file ? file : cimg::fopen(nfilename, "rb"); #endif unsigned char pngCheck[8] = {0}; cimg::fread(pngCheck, 8, (std::FILE*)nfile); if (png_sig_cmp(pngCheck, 0, 8)) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_png(): Invalid PNG file '%s'.", cimg_instance, nfilename ? nfilename : "(FILE*)"); } // Setup PNG structures for read png_voidp user_error_ptr = 0; png_error_ptr user_error_fn = 0, user_warning_fn = 0; png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, user_error_ptr, user_error_fn, user_warning_fn); if (!png_ptr) { if (!file) cimg::fclose(nfile); throw CImgIOException(_cimg_instance "load_png(): Failed to initialize 'png_ptr' " "structure for file '%s'.", cimg_instance, nfilename ? nfilename : "(FILE*)"); } png_infop info_ptr = png_create_info_struct(png_ptr); if (!info_ptr) { if (!file) cimg::fclose(nfile); png_destroy_read_struct(&png_ptr, (png_infopp)0, (png_infopp)0); throw CImgIOException(_cimg_instance "load_png(): Failed to initialize 'info_ptr' " "structure for file '%s'.", cimg_instance, nfilename ? nfilename : "(FILE*)"); } png_infop end_info = png_create_info_struct(png_ptr); if (!end_info) { if (!file) cimg::fclose(nfile); png_destroy_read_struct(&png_ptr, &info_ptr, (png_infopp)0); throw CImgIOException(_cimg_instance "load_png(): Failed to initialize 'end_info' " "structure for file '%s'.", cimg_instance, nfilename ? nfilename : "(FILE*)"); } // Error handling callback for png file reading if (setjmp(png_jmpbuf(png_ptr))) { if (!file) cimg::fclose((std::FILE*)nfile); png_destroy_read_struct(&png_ptr, &end_info, (png_infopp)0); throw CImgIOException(_cimg_instance "load_png(): Encountered unknown fatal error " "in libpng for file '%s'.", cimg_instance, nfilename ? nfilename : "(FILE*)"); } png_init_io(png_ptr, nfile); png_set_sig_bytes(png_ptr, 8); // Get PNG Header Info up to data block png_read_info(png_ptr, info_ptr); png_uint_32 W, H; int bit_depth, color_type, interlace_type; bool is_gray = false; png_get_IHDR(png_ptr, info_ptr, &W, &H, &bit_depth, &color_type, &interlace_type, (int*)0, (int*)0); if (bits_per_pixel) *bits_per_pixel = (unsigned int)bit_depth; // Transforms to unify image data if (color_type == PNG_COLOR_TYPE_PALETTE) { png_set_palette_to_rgb(png_ptr); color_type = PNG_COLOR_TYPE_RGB; bit_depth = 8; } if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) { png_set_expand_gray_1_2_4_to_8(png_ptr); is_gray = true; bit_depth = 8; } if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) { png_set_tRNS_to_alpha(png_ptr); color_type |= PNG_COLOR_MASK_ALPHA; } if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { png_set_gray_to_rgb(png_ptr); color_type |= PNG_COLOR_MASK_COLOR; is_gray = true; } if (color_type == PNG_COLOR_TYPE_RGB) png_set_filler(png_ptr, 0xffffU, PNG_FILLER_AFTER); png_read_update_info(png_ptr, info_ptr); if (bit_depth != 8 && bit_depth != 16) { if (!file) cimg::fclose(nfile); png_destroy_read_struct(&png_ptr, &end_info, (png_infopp)0); throw CImgIOException( _cimg_instance "load_png(): Invalid bit depth %u in file '%s'.", cimg_instance, bit_depth, nfilename ? nfilename : "(FILE*)"); } const int byte_depth = bit_depth >> 3; // Allocate memory for image reading png_bytep* const imgData = new png_bytep[H]; for (unsigned int row = 0; row < H; ++row) imgData[row] = new png_byte[(size_t)byte_depth * 4 * W]; png_read_image(png_ptr, imgData); png_read_end(png_ptr, end_info); // Read pixel data if (color_type != PNG_COLOR_TYPE_RGB && color_type != PNG_COLOR_TYPE_RGB_ALPHA) { if (!file) cimg::fclose(nfile); png_destroy_read_struct(&png_ptr, &end_info, (png_infopp)0); throw CImgIOException( _cimg_instance "load_png(): Invalid color coding type %u in file '%s'.", cimg_instance, color_type, nfilename ? nfilename : "(FILE*)"); } const bool is_alpha = (color_type == PNG_COLOR_TYPE_RGBA); try { assign(W, H, 1, (is_gray ? 1 : 3) + (is_alpha ? 1 : 0)); } catch (...) { if (!file) cimg::fclose(nfile); throw; } T *ptr_r = data(0, 0, 0, 0), *ptr_g = is_gray ? 0 : data(0, 0, 0, 1), *ptr_b = is_gray ? 0 : data(0, 0, 0, 2), *ptr_a = !is_alpha ? 0 : data(0, 0, 0, is_gray ? 1 : 3); switch (bit_depth) { case 8: { cimg_forY(*this, y) { const unsigned char* ptrs = (unsigned char*)imgData[y]; cimg_forX(*this, x) { *(ptr_r++) = (T) * (ptrs++); if (ptr_g) *(ptr_g++) = (T) * (ptrs++); else ++ptrs; if (ptr_b) *(ptr_b++) = (T) * (ptrs++); else ++ptrs; if (ptr_a) *(ptr_a++) = (T) * (ptrs++); else ++ptrs; } } } break; case 16: { cimg_forY(*this, y) { const unsigned short* ptrs = (unsigned short*)(imgData[y]); if (!cimg::endianness()) cimg::invert_endianness(ptrs, 4 * _width); cimg_forX(*this, x) { *(ptr_r++) = (T) * (ptrs++); if (ptr_g) *(ptr_g++) = (T) * (ptrs++); else ++ptrs; if (ptr_b) *(ptr_b++) = (T) * (ptrs++); else ++ptrs; if (ptr_a) *(ptr_a++) = (T) * (ptrs++); else ++ptrs; } } } break; } png_destroy_read_struct(&png_ptr, &info_ptr, &end_info); // Deallocate image read memory cimg_forY(*this, n) delete[] imgData[n]; delete[] imgData; if (!file) cimg::fclose(nfile); return *this; #endif } //! Load image from a PNM file. /** \param filename Filename, as a C-string. **/ CImg& load_pnm(const char* const filename) { return _load_pnm(0, filename); } //! Load image from a PNM file \newinstance. static CImg get_load_pnm(const char* const filename) { return CImg().load_pnm(filename); } //! Load image from a PNM file \overloading. CImg& load_pnm(std::FILE* const file) { return _load_pnm(file, 0); } //! Load image from a PNM file \newinstance. static CImg get_load_pnm(std::FILE* const file) { return CImg().load_pnm(file); } CImg& _load_pnm(std::FILE* const file, const char* const filename) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_pnm(): Specified filename is (null).", cimg_instance); std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); unsigned int ppm_type, W, H, D = 1, colormax = 255; CImg item(16384, 1, 1, 1, 0); int err, rval, gval, bval; const longT cimg_iobuffer = (longT)24 * 1024 * 1024; while ((err = std::fscanf(nfile, "%16383[^\n]", item.data())) != EOF && (*item == '#' || !err)) std::fgetc(nfile); if (cimg_sscanf(item, " P%u", &ppm_type) != 1) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_pnm(): PNM header not found in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } while ((err = std::fscanf(nfile, " %16383[^\n]", item.data())) != EOF && (*item == '#' || !err)) std::fgetc(nfile); if ((err = cimg_sscanf(item, " %u %u %u %u", &W, &H, &D, &colormax)) < 2) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_pnm(): WIDTH and HEIGHT fields undefined in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } if (ppm_type != 1 && ppm_type != 4) { if (err == 2 || (err == 3 && (ppm_type == 5 || ppm_type == 7 || ppm_type == 8 || ppm_type == 9))) { while ((err = std::fscanf(nfile, " %16383[^\n]", item.data())) != EOF && (*item == '#' || !err)) std::fgetc(nfile); if (cimg_sscanf(item, "%u", &colormax) != 1) cimg::warn( _cimg_instance "load_pnm(): COLORMAX field is undefined in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } else { colormax = D; D = 1; } } std::fgetc(nfile); switch (ppm_type) { case 1: { // 2D b&w Ascii assign(W, H, 1, 1); T* ptrd = _data; cimg_foroff(*this, off) { if (std::fscanf(nfile, "%d", &rval) > 0) *(ptrd++) = (T)(rval ? 0 : 255); else break; } } break; case 2: { // 2D grey Ascii assign(W, H, 1, 1); T* ptrd = _data; cimg_foroff(*this, off) { if (std::fscanf(nfile, "%d", &rval) > 0) *(ptrd++) = (T)rval; else break; } } break; case 3: { // 2D color Ascii assign(W, H, 1, 3); T *ptrd = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2); cimg_forXY(*this, x, y) { if (std::fscanf(nfile, "%d %d %d", &rval, &gval, &bval) == 3) { *(ptrd++) = (T)rval; *(ptr_g++) = (T)gval; *(ptr_b++) = (T)bval; } else break; } } break; case 4: { // 2D b&w binary (support 3D PINK extension) CImg raw; assign(W, H, D, 1); T* ptrd = data(0, 0, 0, 0); unsigned int w = 0, h = 0, d = 0; for (longT to_read = (longT)((W / 8 + (W % 8 ? 1 : 0)) * H * D); to_read > 0;) { raw.assign(std::min(to_read, cimg_iobuffer)); cimg::fread(raw._data, raw._width, nfile); to_read -= raw._width; const unsigned char* ptrs = raw._data; unsigned char mask = 0, val = 0; for (ulongT off = (ulongT)raw._width; off || mask; mask >>= 1) { if (!mask) { if (off--) val = *(ptrs++); mask = 128; } *(ptrd++) = (T)((val & mask) ? 0 : 255); if (++w == W) { w = 0; mask = 0; if (++h == H) { h = 0; if (++d == D) break; } } } } } break; case 5: case 7: { // 2D/3D grey binary (support 3D PINK extension) if (colormax < 256) { // 8 bits CImg raw; assign(W, H, D, 1); T* ptrd = data(0, 0, 0, 0); for (longT to_read = (longT)size(); to_read > 0;) { raw.assign(std::min(to_read, cimg_iobuffer)); cimg::fread(raw._data, raw._width, nfile); to_read -= raw._width; const unsigned char* ptrs = raw._data; for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T) * (ptrs++); } } else { // 16 bits CImg raw; assign(W, H, D, 1); T* ptrd = data(0, 0, 0, 0); for (longT to_read = (longT)size(); to_read > 0;) { raw.assign(std::min(to_read, cimg_iobuffer / 2)); cimg::fread(raw._data, raw._width, nfile); if (!cimg::endianness()) cimg::invert_endianness(raw._data, raw._width); to_read -= raw._width; const unsigned short* ptrs = raw._data; for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T) * (ptrs++); } } } break; case 6: { // 2D color binary if (colormax < 256) { // 8 bits CImg raw; assign(W, H, 1, 3); T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2); for (longT to_read = (longT)size(); to_read > 0;) { raw.assign(std::min(to_read, cimg_iobuffer)); cimg::fread(raw._data, raw._width, nfile); to_read -= raw._width; const unsigned char* ptrs = raw._data; for (ulongT off = (ulongT)raw._width / 3; off; --off) { *(ptr_r++) = (T) * (ptrs++); *(ptr_g++) = (T) * (ptrs++); *(ptr_b++) = (T) * (ptrs++); } } } else { // 16 bits CImg raw; assign(W, H, 1, 3); T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2); for (longT to_read = (longT)size(); to_read > 0;) { raw.assign(std::min(to_read, cimg_iobuffer / 2)); cimg::fread(raw._data, raw._width, nfile); if (!cimg::endianness()) cimg::invert_endianness(raw._data, raw._width); to_read -= raw._width; const unsigned short* ptrs = raw._data; for (ulongT off = (ulongT)raw._width / 3; off; --off) { *(ptr_r++) = (T) * (ptrs++); *(ptr_g++) = (T) * (ptrs++); *(ptr_b++) = (T) * (ptrs++); } } } } break; case 8: { // 2D/3D grey binary with int32 integers (PINK extension) CImg raw; assign(W, H, D, 1); T* ptrd = data(0, 0, 0, 0); for (longT to_read = (longT)size(); to_read > 0;) { raw.assign(std::min(to_read, cimg_iobuffer)); cimg::fread(raw._data, raw._width, nfile); to_read -= raw._width; const int* ptrs = raw._data; for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T) * (ptrs++); } } break; case 9: { // 2D/3D grey binary with float values (PINK extension) CImg raw; assign(W, H, D, 1); T* ptrd = data(0, 0, 0, 0); for (longT to_read = (longT)size(); to_read > 0;) { raw.assign(std::min(to_read, cimg_iobuffer)); cimg::fread(raw._data, raw._width, nfile); to_read -= raw._width; const float* ptrs = raw._data; for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T) * (ptrs++); } } break; default: assign(); if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_pnm(): PNM type 'P%d' found, but type is not " "supported.", cimg_instance, filename ? filename : "(FILE*)", ppm_type); } if (!file) cimg::fclose(nfile); return *this; } //! Load image from a PFM file. /** \param filename Filename, as a C-string. **/ CImg& load_pfm(const char* const filename) { return _load_pfm(0, filename); } //! Load image from a PFM file \newinstance. static CImg get_load_pfm(const char* const filename) { return CImg().load_pfm(filename); } //! Load image from a PFM file \overloading. CImg& load_pfm(std::FILE* const file) { return _load_pfm(file, 0); } //! Load image from a PFM file \newinstance. static CImg get_load_pfm(std::FILE* const file) { return CImg().load_pfm(file); } CImg& _load_pfm(std::FILE* const file, const char* const filename) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_pfm(): Specified filename is (null).", cimg_instance); std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); char pfm_type; CImg item(16384, 1, 1, 1, 0); int W = 0, H = 0, err = 0; double scale = 0; while ((err = std::fscanf(nfile, "%16383[^\n]", item.data())) != EOF && (*item == '#' || !err)) std::fgetc(nfile); if (cimg_sscanf(item, " P%c", &pfm_type) != 1) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_pfm(): PFM header not found in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } while ((err = std::fscanf(nfile, " %16383[^\n]", item.data())) != EOF && (*item == '#' || !err)) std::fgetc(nfile); if ((err = cimg_sscanf(item, " %d %d", &W, &H)) < 2) { if (!file) cimg::fclose(nfile); throw CImgIOException(_cimg_instance "load_pfm(): WIDTH and HEIGHT fields are " "undefined in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } else if (W <= 0 || H <= 0) { if (!file) cimg::fclose(nfile); throw CImgIOException(_cimg_instance "load_pfm(): WIDTH (%d) and HEIGHT (%d) " "fields are invalid in file '%s'.", cimg_instance, W, H, filename ? filename : "(FILE*)"); } if (err == 2) { while ((err = std::fscanf(nfile, " %16383[^\n]", item.data())) != EOF && (*item == '#' || !err)) std::fgetc(nfile); if (cimg_sscanf(item, "%lf", &scale) != 1) cimg::warn(_cimg_instance "load_pfm(): SCALE field is undefined in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } std::fgetc(nfile); const bool is_color = (pfm_type == 'F'), is_inverted = (scale > 0) != cimg::endianness(); if (is_color) { assign(W, H, 1, 3, (T)0); CImg buf(3 * W); T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2); cimg_forY(*this, y) { cimg::fread(buf._data, 3 * W, nfile); if (is_inverted) cimg::invert_endianness(buf._data, 3 * W); const float* ptrs = buf._data; cimg_forX(*this, x) { *(ptr_r++) = (T) * (ptrs++); *(ptr_g++) = (T) * (ptrs++); *(ptr_b++) = (T) * (ptrs++); } } } else { assign(W, H, 1, 1, (T)0); CImg buf(W); T* ptrd = data(0, 0, 0, 0); cimg_forY(*this, y) { cimg::fread(buf._data, W, nfile); if (is_inverted) cimg::invert_endianness(buf._data, W); const float* ptrs = buf._data; cimg_forX(*this, x) * (ptrd++) = (T) * (ptrs++); } } if (!file) cimg::fclose(nfile); return mirror( 'y'); // Most of the .pfm files are flipped along the y-axis } //! Load image from a RGB file. /** \param filename Filename, as a C-string. \param dimw Width of the image buffer. \param dimh Height of the image buffer. **/ CImg& load_rgb(const char* const filename, const unsigned int dimw, const unsigned int dimh = 1) { return _load_rgb(0, filename, dimw, dimh); } //! Load image from a RGB file \newinstance. static CImg get_load_rgb(const char* const filename, const unsigned int dimw, const unsigned int dimh = 1) { return CImg().load_rgb(filename, dimw, dimh); } //! Load image from a RGB file \overloading. CImg& load_rgb(std::FILE* const file, const unsigned int dimw, const unsigned int dimh = 1) { return _load_rgb(file, 0, dimw, dimh); } //! Load image from a RGB file \newinstance. static CImg get_load_rgb(std::FILE* const file, const unsigned int dimw, const unsigned int dimh = 1) { return CImg().load_rgb(file, dimw, dimh); } CImg& _load_rgb(std::FILE* const file, const char* const filename, const unsigned int dimw, const unsigned int dimh) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_rgb(): Specified filename is (null).", cimg_instance); if (!dimw || !dimh) return assign(); const longT cimg_iobuffer = (longT)24 * 1024 * 1024; std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); CImg raw; assign(dimw, dimh, 1, 3); T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2); for (longT to_read = (longT)size(); to_read > 0;) { raw.assign(std::min(to_read, cimg_iobuffer)); cimg::fread(raw._data, raw._width, nfile); to_read -= raw._width; const unsigned char* ptrs = raw._data; for (ulongT off = raw._width / 3UL; off; --off) { *(ptr_r++) = (T) * (ptrs++); *(ptr_g++) = (T) * (ptrs++); *(ptr_b++) = (T) * (ptrs++); } } if (!file) cimg::fclose(nfile); return *this; } //! Load image from a RGBA file. /** \param filename Filename, as a C-string. \param dimw Width of the image buffer. \param dimh Height of the image buffer. **/ CImg& load_rgba(const char* const filename, const unsigned int dimw, const unsigned int dimh = 1) { return _load_rgba(0, filename, dimw, dimh); } //! Load image from a RGBA file \newinstance. static CImg get_load_rgba(const char* const filename, const unsigned int dimw, const unsigned int dimh = 1) { return CImg().load_rgba(filename, dimw, dimh); } //! Load image from a RGBA file \overloading. CImg& load_rgba(std::FILE* const file, const unsigned int dimw, const unsigned int dimh = 1) { return _load_rgba(file, 0, dimw, dimh); } //! Load image from a RGBA file \newinstance. static CImg get_load_rgba(std::FILE* const file, const unsigned int dimw, const unsigned int dimh = 1) { return CImg().load_rgba(file, dimw, dimh); } CImg& _load_rgba(std::FILE* const file, const char* const filename, const unsigned int dimw, const unsigned int dimh) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_rgba(): Specified filename is (null).", cimg_instance); if (!dimw || !dimh) return assign(); const longT cimg_iobuffer = (longT)24 * 1024 * 1024; std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); CImg raw; assign(dimw, dimh, 1, 4); T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2), *ptr_a = data(0, 0, 0, 3); for (longT to_read = (longT)size(); to_read > 0;) { raw.assign(std::min(to_read, cimg_iobuffer)); cimg::fread(raw._data, raw._width, nfile); to_read -= raw._width; const unsigned char* ptrs = raw._data; for (ulongT off = raw._width / 4UL; off; --off) { *(ptr_r++) = (T) * (ptrs++); *(ptr_g++) = (T) * (ptrs++); *(ptr_b++) = (T) * (ptrs++); *(ptr_a++) = (T) * (ptrs++); } } if (!file) cimg::fclose(nfile); return *this; } //! Load image from a TIFF file. /** \param filename Filename, as a C-string. \param first_frame First frame to read (for multi-pages tiff). \param last_frame Last frame to read (for multi-pages tiff). \param step_frame Step value of frame reading. \param[out] voxel_size Voxel size, as stored in the filename. \param[out] description Description, as stored in the filename. \note - libtiff support is enabled by defining the precompilation directive \c cimg_use_tif. - When libtiff is enabled, 2D and 3D (multipage) several channel per pixel are supported for char,uchar,short,ushort,float and \c double pixel types. - If \c cimg_use_tif is not defined at compile time the function uses CImg& load_other(const char*). **/ CImg& load_tiff(const char* const filename, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, float* const voxel_size = 0, CImg* const description = 0) { if (!filename) throw CImgArgumentException( _cimg_instance "load_tiff(): Specified filename is (null).", cimg_instance); const unsigned int nfirst_frame = first_frame < last_frame ? first_frame : last_frame, nstep_frame = step_frame ? step_frame : 1; unsigned int nlast_frame = first_frame < last_frame ? last_frame : first_frame; #ifndef cimg_use_tiff cimg::unused(voxel_size, description); if (nfirst_frame || nlast_frame != ~0U || nstep_frame > 1) throw CImgArgumentException( _cimg_instance "load_tiff(): Unable to read sub-images from file '%s' unless " "libtiff is enabled.", cimg_instance, filename); return load_other(filename); #else #if cimg_verbosity < 3 TIFFSetWarningHandler(0); TIFFSetErrorHandler(0); #endif TIFF* tif = TIFFOpen(filename, "r"); if (tif) { unsigned int nb_images = 0; do ++nb_images; while (TIFFReadDirectory(tif)); if (nfirst_frame >= nb_images || (nlast_frame != ~0U && nlast_frame >= nb_images)) cimg::warn(_cimg_instance "load_tiff(): File '%s' contains %u image(s) while " "specified frame range is [%u,%u] (step %u).", cimg_instance, filename, nb_images, nfirst_frame, nlast_frame, nstep_frame); if (nfirst_frame >= nb_images) return assign(); if (nlast_frame >= nb_images) nlast_frame = nb_images - 1; TIFFSetDirectory(tif, 0); CImg frame; for (unsigned int l = nfirst_frame; l <= nlast_frame; l += nstep_frame) { frame._load_tiff(tif, l, voxel_size, description); if (l == nfirst_frame) assign(frame._width, frame._height, 1 + (nlast_frame - nfirst_frame) / nstep_frame, frame._spectrum); if (frame._width > _width || frame._height > _height || frame._spectrum > _spectrum) resize(std::max(frame._width, _width), std::max(frame._height, _height), -100, std::max(frame._spectrum, _spectrum), 0); draw_image(0, 0, (l - nfirst_frame) / nstep_frame, frame); } TIFFClose(tif); } else throw CImgIOException(_cimg_instance "load_tiff(): Failed to open file '%s'.", cimg_instance, filename); return *this; #endif } //! Load image from a TIFF file \newinstance. static CImg get_load_tiff(const char* const filename, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, float* const voxel_size = 0, CImg* const description = 0) { return CImg().load_tiff(filename, first_frame, last_frame, step_frame, voxel_size, description); } // (Original contribution by Jerome Boulanger). #ifdef cimg_use_tiff template void _load_tiff_tiled_contig(TIFF* const tif, const uint16 samplesperpixel, const uint32 nx, const uint32 ny, const uint32 tw, const uint32 th) { t* const buf = (t*)_TIFFmalloc(TIFFTileSize(tif)); if (buf) { for (unsigned int row = 0; row < ny; row += th) for (unsigned int col = 0; col < nx; col += tw) { if (TIFFReadTile(tif, buf, col, row, 0, 0) < 0) { _TIFFfree(buf); TIFFClose(tif); throw CImgIOException( _cimg_instance "load_tiff(): Invalid tile in file '%s'.", cimg_instance, TIFFFileName(tif)); } const t* ptr = buf; for (unsigned int rr = row; rr < std::min((unsigned int)(row + th), (unsigned int)ny); ++rr) for (unsigned int cc = col; cc < std::min((unsigned int)(col + tw), (unsigned int)nx); ++cc) for (unsigned int vv = 0; vv < samplesperpixel; ++vv) (*this)(cc, rr, vv) = (T)(ptr[(rr - row) * th * samplesperpixel + (cc - col) * samplesperpixel + vv]); } _TIFFfree(buf); } } template void _load_tiff_tiled_separate(TIFF* const tif, const uint16 samplesperpixel, const uint32 nx, const uint32 ny, const uint32 tw, const uint32 th) { t* const buf = (t*)_TIFFmalloc(TIFFTileSize(tif)); if (buf) { for (unsigned int vv = 0; vv < samplesperpixel; ++vv) for (unsigned int row = 0; row < ny; row += th) for (unsigned int col = 0; col < nx; col += tw) { if (TIFFReadTile(tif, buf, col, row, 0, vv) < 0) { _TIFFfree(buf); TIFFClose(tif); throw CImgIOException( _cimg_instance "load_tiff(): Invalid tile in file '%s'.", cimg_instance, TIFFFileName(tif)); } const t* ptr = buf; for (unsigned int rr = row; rr < std::min((unsigned int)(row + th), (unsigned int)ny); ++rr) for (unsigned int cc = col; cc < std::min((unsigned int)(col + tw), (unsigned int)nx); ++cc) (*this)(cc, rr, vv) = (T) * (ptr++); } _TIFFfree(buf); } } template void _load_tiff_contig(TIFF* const tif, const uint16 samplesperpixel, const uint32 nx, const uint32 ny) { t* const buf = (t*)_TIFFmalloc(TIFFStripSize(tif)); if (buf) { uint32 row, rowsperstrip = (uint32)-1; TIFFGetField(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); for (row = 0; row < ny; row += rowsperstrip) { uint32 nrow = (row + rowsperstrip > ny ? ny - row : rowsperstrip); tstrip_t strip = TIFFComputeStrip(tif, row, 0); if ((TIFFReadEncodedStrip(tif, strip, buf, -1)) < 0) { _TIFFfree(buf); TIFFClose(tif); throw CImgIOException( _cimg_instance "load_tiff(): Invalid strip in file '%s'.", cimg_instance, TIFFFileName(tif)); } const t* ptr = buf; for (unsigned int rr = 0; rr < nrow; ++rr) for (unsigned int cc = 0; cc < nx; ++cc) for (unsigned int vv = 0; vv < samplesperpixel; ++vv) (*this)(cc, row + rr, vv) = (T) * (ptr++); } _TIFFfree(buf); } } template void _load_tiff_separate(TIFF* const tif, const uint16 samplesperpixel, const uint32 nx, const uint32 ny) { t* buf = (t*)_TIFFmalloc(TIFFStripSize(tif)); if (buf) { uint32 row, rowsperstrip = (uint32)-1; TIFFGetField(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); for (unsigned int vv = 0; vv < samplesperpixel; ++vv) for (row = 0; row < ny; row += rowsperstrip) { uint32 nrow = (row + rowsperstrip > ny ? ny - row : rowsperstrip); tstrip_t strip = TIFFComputeStrip(tif, row, vv); if ((TIFFReadEncodedStrip(tif, strip, buf, -1)) < 0) { _TIFFfree(buf); TIFFClose(tif); throw CImgIOException( _cimg_instance "load_tiff(): Invalid strip in file '%s'.", cimg_instance, TIFFFileName(tif)); } const t* ptr = buf; for (unsigned int rr = 0; rr < nrow; ++rr) for (unsigned int cc = 0; cc < nx; ++cc) (*this)(cc, row + rr, vv) = (T) * (ptr++); } _TIFFfree(buf); } } CImg& _load_tiff(TIFF* const tif, const unsigned int directory, float* const voxel_size, CImg* const description) { if (!TIFFSetDirectory(tif, directory)) return assign(); uint16 samplesperpixel = 1, bitspersample = 8, photo = 0; uint16 sampleformat = 1; uint32 nx = 1, ny = 1; const char* const filename = TIFFFileName(tif); const bool is_spp = (bool)TIFFGetField(tif, TIFFTAG_SAMPLESPERPIXEL, &samplesperpixel); TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &nx); TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &ny); TIFFGetField(tif, TIFFTAG_SAMPLEFORMAT, &sampleformat); TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &bitspersample); TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photo); if (voxel_size) { const char* s_description = 0; float vx = 0, vy = 0, vz = 0; if (TIFFGetField(tif, TIFFTAG_IMAGEDESCRIPTION, &s_description) && s_description) { const char* s_desc = std::strstr(s_description, "VX="); if (s_desc && cimg_sscanf(s_desc, "VX=%f VY=%f VZ=%f", &vx, &vy, &vz) == 3) { // CImg format voxel_size[0] = vx; voxel_size[1] = vy; voxel_size[2] = vz; } s_desc = std::strstr(s_description, "spacing="); if (s_desc && cimg_sscanf(s_desc, "spacing=%f", &vz) == 1) { // Fiji format voxel_size[2] = vz; } } TIFFGetField(tif, TIFFTAG_XRESOLUTION, voxel_size); TIFFGetField(tif, TIFFTAG_YRESOLUTION, voxel_size + 1); voxel_size[0] = 1.f / voxel_size[0]; voxel_size[1] = 1.f / voxel_size[1]; } if (description) { const char* s_description = 0; if (TIFFGetField(tif, TIFFTAG_IMAGEDESCRIPTION, &s_description) && s_description) CImg::string(s_description).move_to(*description); } const unsigned int spectrum = !is_spp || photo >= 3 ? (photo > 1 ? 3 : 1) : samplesperpixel; assign(nx, ny, 1, spectrum); if ((photo >= 3 && sampleformat == 1 && (bitspersample == 4 || bitspersample == 8) && (samplesperpixel == 1 || samplesperpixel == 3 || samplesperpixel == 4)) || (bitspersample == 1 && samplesperpixel == 1)) { // Special case for unsigned color images. uint32* const raster = (uint32*)_TIFFmalloc(nx * ny * sizeof(uint32)); if (!raster) { _TIFFfree(raster); TIFFClose(tif); throw CImgException( _cimg_instance "load_tiff(): Failed to allocate memory (%s) for file " "'%s'.", cimg_instance, cimg::strbuffersize(nx * ny * sizeof(uint32)), filename); } TIFFReadRGBAImage(tif, nx, ny, raster, 0); switch (spectrum) { case 1: cimg_forXY(*this, x, y) (*this)(x, y, 0) = (T)(float)TIFFGetR(raster[nx * (ny - 1 - y) + x]); break; case 3: cimg_forXY(*this, x, y) { (*this)(x, y, 0) = (T)(float)TIFFGetR(raster[nx * (ny - 1 - y) + x]); (*this)(x, y, 1) = (T)(float)TIFFGetG(raster[nx * (ny - 1 - y) + x]); (*this)(x, y, 2) = (T)(float)TIFFGetB(raster[nx * (ny - 1 - y) + x]); } break; case 4: cimg_forXY(*this, x, y) { (*this)(x, y, 0) = (T)(float)TIFFGetR(raster[nx * (ny - 1 - y) + x]); (*this)(x, y, 1) = (T)(float)TIFFGetG(raster[nx * (ny - 1 - y) + x]); (*this)(x, y, 2) = (T)(float)TIFFGetB(raster[nx * (ny - 1 - y) + x]); (*this)(x, y, 3) = (T)(float)TIFFGetA(raster[nx * (ny - 1 - y) + x]); } break; } _TIFFfree(raster); } else { // Other cases uint16 config; TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &config); if (TIFFIsTiled(tif)) { uint32 tw = 1, th = 1; TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); if (config == PLANARCONFIG_CONTIG) switch (bitspersample) { case 8: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_tiled_contig( tif, samplesperpixel, nx, ny, tw, th); else _load_tiff_tiled_contig( tif, samplesperpixel, nx, ny, tw, th); break; case 16: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_tiled_contig( tif, samplesperpixel, nx, ny, tw, th); else _load_tiff_tiled_contig( tif, samplesperpixel, nx, ny, tw, th); break; case 32: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_tiled_contig( tif, samplesperpixel, nx, ny, tw, th); else if (sampleformat == SAMPLEFORMAT_INT) _load_tiff_tiled_contig( tif, samplesperpixel, nx, ny, tw, th); else _load_tiff_tiled_contig( tif, samplesperpixel, nx, ny, tw, th); break; case 64: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_tiled_contig( tif, samplesperpixel, nx, ny, tw, th); else if (sampleformat == SAMPLEFORMAT_INT) _load_tiff_tiled_contig( tif, samplesperpixel, nx, ny, tw, th); else _load_tiff_tiled_contig( tif, samplesperpixel, nx, ny, tw, th); break; } else switch (bitspersample) { case 8: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_tiled_separate( tif, samplesperpixel, nx, ny, tw, th); else _load_tiff_tiled_separate( tif, samplesperpixel, nx, ny, tw, th); break; case 16: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_tiled_separate( tif, samplesperpixel, nx, ny, tw, th); else _load_tiff_tiled_separate( tif, samplesperpixel, nx, ny, tw, th); break; case 32: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_tiled_separate( tif, samplesperpixel, nx, ny, tw, th); else if (sampleformat == SAMPLEFORMAT_INT) _load_tiff_tiled_separate( tif, samplesperpixel, nx, ny, tw, th); else _load_tiff_tiled_separate( tif, samplesperpixel, nx, ny, tw, th); break; case 64: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_tiled_separate( tif, samplesperpixel, nx, ny, tw, th); else if (sampleformat == SAMPLEFORMAT_INT) _load_tiff_tiled_separate( tif, samplesperpixel, nx, ny, tw, th); else _load_tiff_tiled_separate( tif, samplesperpixel, nx, ny, tw, th); break; } } else { if (config == PLANARCONFIG_CONTIG) switch (bitspersample) { case 8: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_contig( tif, samplesperpixel, nx, ny); else _load_tiff_contig( tif, samplesperpixel, nx, ny); break; case 16: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_contig( tif, samplesperpixel, nx, ny); else _load_tiff_contig(tif, samplesperpixel, nx, ny); break; case 32: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_contig( tif, samplesperpixel, nx, ny); else if (sampleformat == SAMPLEFORMAT_INT) _load_tiff_contig(tif, samplesperpixel, nx, ny); else _load_tiff_contig(tif, samplesperpixel, nx, ny); break; case 64: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_contig(tif, samplesperpixel, nx, ny); else if (sampleformat == SAMPLEFORMAT_INT) _load_tiff_contig(tif, samplesperpixel, nx, ny); else _load_tiff_contig(tif, samplesperpixel, nx, ny); break; } else switch (bitspersample) { case 8: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_separate( tif, samplesperpixel, nx, ny); else _load_tiff_separate( tif, samplesperpixel, nx, ny); break; case 16: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_separate( tif, samplesperpixel, nx, ny); else _load_tiff_separate(tif, samplesperpixel, nx, ny); break; case 32: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_separate( tif, samplesperpixel, nx, ny); else if (sampleformat == SAMPLEFORMAT_INT) _load_tiff_separate(tif, samplesperpixel, nx, ny); else _load_tiff_separate(tif, samplesperpixel, nx, ny); break; case 64: if (sampleformat == SAMPLEFORMAT_UINT) _load_tiff_separate( tif, samplesperpixel, nx, ny); else if (sampleformat == SAMPLEFORMAT_INT) _load_tiff_separate( tif, samplesperpixel, nx, ny); else _load_tiff_separate( tif, samplesperpixel, nx, ny); break; } } } return *this; } #endif //! Load image from a MINC2 file. /** \param filename Filename, as a C-string. **/ // (Original code by Haz-Edine Assemlal). CImg& load_minc2(const char* const filename) { if (!filename) throw CImgArgumentException( _cimg_instance "load_minc2(): Specified filename is (null).", cimg_instance); #ifndef cimg_use_minc2 return load_other(filename); #else minc::minc_1_reader rdr; rdr.open(filename); assign(rdr.ndim(1) ? rdr.ndim(1) : 1, rdr.ndim(2) ? rdr.ndim(2) : 1, rdr.ndim(3) ? rdr.ndim(3) : 1, rdr.ndim(4) ? rdr.ndim(4) : 1); if (cimg::type::string() == cimg::type::string()) rdr.setup_read_byte(); else if (cimg::type::string() == cimg::type::string()) rdr.setup_read_int(); else if (cimg::type::string() == cimg::type::string()) rdr.setup_read_double(); else rdr.setup_read_float(); minc::load_standard_volume(rdr, this->_data); return *this; #endif } //! Load image from a MINC2 file \newinstance. static CImg get_load_minc2(const char* const filename) { return CImg().load_analyze(filename); } //! Load image from an ANALYZE7.5/NIFTI file. /** \param filename Filename, as a C-string. \param[out] voxel_size Pointer to the three voxel sizes read from the file. **/ CImg& load_analyze(const char* const filename, float* const voxel_size = 0) { return _load_analyze(0, filename, voxel_size); } //! Load image from an ANALYZE7.5/NIFTI file \newinstance. static CImg get_load_analyze(const char* const filename, float* const voxel_size = 0) { return CImg().load_analyze(filename, voxel_size); } //! Load image from an ANALYZE7.5/NIFTI file \overloading. CImg& load_analyze(std::FILE* const file, float* const voxel_size = 0) { return _load_analyze(file, 0, voxel_size); } //! Load image from an ANALYZE7.5/NIFTI file \newinstance. static CImg get_load_analyze(std::FILE* const file, float* const voxel_size = 0) { return CImg().load_analyze(file, voxel_size); } CImg& _load_analyze(std::FILE* const file, const char* const filename, float* const voxel_size = 0) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_analyze(): Specified filename is (null).", cimg_instance); std::FILE *nfile_header = 0, *nfile = 0; if (!file) { CImg body(1024); const char* const ext = cimg::split_filename(filename, body); if (!cimg::strcasecmp(ext, "hdr")) { // File is an Analyze header file nfile_header = cimg::fopen(filename, "rb"); cimg_sprintf(body._data + std::strlen(body), ".img"); nfile = cimg::fopen(body, "rb"); } else if (!cimg::strcasecmp( ext, "img")) { // File is an Analyze data file nfile = cimg::fopen(filename, "rb"); cimg_sprintf(body._data + std::strlen(body), ".hdr"); nfile_header = cimg::fopen(body, "rb"); } else nfile_header = nfile = cimg::fopen(filename, "rb"); // File is a Niftii file } else nfile_header = nfile = file; // File is a Niftii file if (!nfile || !nfile_header) throw CImgIOException(_cimg_instance "load_analyze(): Invalid Analyze7.5 or NIFTI " "header in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); // Read header. bool endian = false; unsigned int header_size; cimg::fread(&header_size, 1, nfile_header); if (!header_size) throw CImgIOException( _cimg_instance "load_analyze(): Invalid zero-size header in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); if (header_size >= 4096) { endian = true; cimg::invert_endianness(header_size); } unsigned char* const header = new unsigned char[header_size]; cimg::fread(header + 4, header_size - 4, nfile_header); if (!file && nfile_header != nfile) cimg::fclose(nfile_header); if (endian) { cimg::invert_endianness((short*)(header + 40), 5); cimg::invert_endianness((short*)(header + 70), 1); cimg::invert_endianness((short*)(header + 72), 1); cimg::invert_endianness((float*)(header + 76), 4); cimg::invert_endianness((float*)(header + 108), 1); cimg::invert_endianness((float*)(header + 112), 1); } if (nfile_header == nfile) { const unsigned int vox_offset = (unsigned int)*(float*)(header + 108); std::fseek(nfile, vox_offset, SEEK_SET); } unsigned short *dim = (unsigned short*)(header + 40), dimx = 1, dimy = 1, dimz = 1, dimv = 1; if (!dim[0]) cimg::warn(_cimg_instance "load_analyze(): File '%s' defines an image with zero " "dimensions.", cimg_instance, filename ? filename : "(FILE*)"); if (dim[0] > 4) cimg::warn(_cimg_instance "load_analyze(): File '%s' defines an image with %u " "dimensions, reading only the 4 first.", cimg_instance, filename ? filename : "(FILE*)", dim[0]); if (dim[0] >= 1) dimx = dim[1]; if (dim[0] >= 2) dimy = dim[2]; if (dim[0] >= 3) dimz = dim[3]; if (dim[0] >= 4) dimv = dim[4]; float scalefactor = *(float*)(header + 112); if (scalefactor == 0) scalefactor = 1; const unsigned short datatype = *(unsigned short*)(header + 70); if (voxel_size) { const float* vsize = (float*)(header + 76); voxel_size[0] = vsize[1]; voxel_size[1] = vsize[2]; voxel_size[2] = vsize[3]; } delete[] header; // Read pixel data. assign(dimx, dimy, dimz, dimv); const size_t pdim = (size_t)dimx * dimy * dimz * dimv; switch (datatype) { case 2: { unsigned char* const buffer = new unsigned char[pdim]; cimg::fread(buffer, pdim, nfile); cimg_foroff(*this, off) _data[off] = (T)(buffer[off] * scalefactor); delete[] buffer; } break; case 4: { short* const buffer = new short[pdim]; cimg::fread(buffer, pdim, nfile); if (endian) cimg::invert_endianness(buffer, pdim); cimg_foroff(*this, off) _data[off] = (T)(buffer[off] * scalefactor); delete[] buffer; } break; case 8: { int* const buffer = new int[pdim]; cimg::fread(buffer, pdim, nfile); if (endian) cimg::invert_endianness(buffer, pdim); cimg_foroff(*this, off) _data[off] = (T)(buffer[off] * scalefactor); delete[] buffer; } break; case 16: { float* const buffer = new float[pdim]; cimg::fread(buffer, pdim, nfile); if (endian) cimg::invert_endianness(buffer, pdim); cimg_foroff(*this, off) _data[off] = (T)(buffer[off] * scalefactor); delete[] buffer; } break; case 64: { double* const buffer = new double[pdim]; cimg::fread(buffer, pdim, nfile); if (endian) cimg::invert_endianness(buffer, pdim); cimg_foroff(*this, off) _data[off] = (T)(buffer[off] * scalefactor); delete[] buffer; } break; default: if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_analyze(): Unable to load datatype %d in file '%s'", cimg_instance, datatype, filename ? filename : "(FILE*)"); } if (!file) cimg::fclose(nfile); return *this; } //! Load image from a .cimg[z] file. /** \param filename Filename, as a C-string. \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. \param align Appending alignment. **/ CImg& load_cimg(const char* const filename, const char axis = 'z', const float align = 0) { CImgList list; list.load_cimg(filename); if (list._width == 1) return list[0].move_to(*this); return assign(list.get_append(axis, align)); } //! Load image from a .cimg[z] file \newinstance static CImg get_load_cimg(const char* const filename, const char axis = 'z', const float align = 0) { return CImg().load_cimg(filename, axis, align); } //! Load image from a .cimg[z] file \overloading. CImg& load_cimg(std::FILE* const file, const char axis = 'z', const float align = 0) { CImgList list; list.load_cimg(file); if (list._width == 1) return list[0].move_to(*this); return assign(list.get_append(axis, align)); } //! Load image from a .cimg[z] file \newinstance static CImg get_load_cimg(std::FILE* const file, const char axis = 'z', const float align = 0) { return CImg().load_cimg(file, axis, align); } //! Load sub-images of a .cimg file. /** \param filename Filename, as a C-string. \param n0 Starting frame. \param n1 Ending frame (~0U for max). \param x0 X-coordinate of the starting sub-image vertex. \param y0 Y-coordinate of the starting sub-image vertex. \param z0 Z-coordinate of the starting sub-image vertex. \param c0 C-coordinate of the starting sub-image vertex. \param x1 X-coordinate of the ending sub-image vertex (~0U for max). \param y1 Y-coordinate of the ending sub-image vertex (~0U for max). \param z1 Z-coordinate of the ending sub-image vertex (~0U for max). \param c1 C-coordinate of the ending sub-image vertex (~0U for max). \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. \param align Appending alignment. **/ CImg& load_cimg(const char* const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis = 'z', const float align = 0) { CImgList list; list.load_cimg(filename, n0, n1, x0, y0, z0, c0, x1, y1, z1, c1); if (list._width == 1) return list[0].move_to(*this); return assign(list.get_append(axis, align)); } //! Load sub-images of a .cimg file \newinstance. static CImg get_load_cimg(const char* const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis = 'z', const float align = 0) { return CImg().load_cimg(filename, n0, n1, x0, y0, z0, c0, x1, y1, z1, c1, axis, align); } //! Load sub-images of a .cimg file \overloading. CImg& load_cimg(std::FILE* const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis = 'z', const float align = 0) { CImgList list; list.load_cimg(file, n0, n1, x0, y0, z0, c0, x1, y1, z1, c1); if (list._width == 1) return list[0].move_to(*this); return assign(list.get_append(axis, align)); } //! Load sub-images of a .cimg file \newinstance. static CImg get_load_cimg(std::FILE* const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis = 'z', const float align = 0) { return CImg().load_cimg(file, n0, n1, x0, y0, z0, c0, x1, y1, z1, c1, axis, align); } //! Load image from an INRIMAGE-4 file. /** \param filename Filename, as a C-string. \param[out] voxel_size Pointer to the three voxel sizes read from the file. **/ CImg& load_inr(const char* const filename, float* const voxel_size = 0) { return _load_inr(0, filename, voxel_size); } //! Load image from an INRIMAGE-4 file \newinstance. static CImg get_load_inr(const char* const filename, float* const voxel_size = 0) { return CImg().load_inr(filename, voxel_size); } //! Load image from an INRIMAGE-4 file \overloading. CImg& load_inr(std::FILE* const file, float* const voxel_size = 0) { return _load_inr(file, 0, voxel_size); } //! Load image from an INRIMAGE-4 file \newinstance. static CImg get_load_inr(std::FILE* const file, float* voxel_size = 0) { return CImg().load_inr(file, voxel_size); } static void _load_inr_header(std::FILE* file, int out[8], float* const voxel_size) { CImg item(1024), tmp1(64), tmp2(64); *item = *tmp1 = *tmp2 = 0; out[0] = std::fscanf(file, "%63s", item._data); out[0] = out[1] = out[2] = out[3] = out[5] = 1; out[4] = out[6] = out[7] = -1; if (cimg::strncasecmp(item, "#INRIMAGE-4#{", 13) != 0) throw CImgIOException( "CImg<%s>::load_inr(): INRIMAGE-4 header not found.", pixel_type()); while (std::fscanf(file, " %63[^\n]%*c", item._data) != EOF && std::strncmp(item, "##}", 3)) { cimg_sscanf(item, " XDIM%*[^0-9]%d", out); cimg_sscanf(item, " YDIM%*[^0-9]%d", out + 1); cimg_sscanf(item, " ZDIM%*[^0-9]%d", out + 2); cimg_sscanf(item, " VDIM%*[^0-9]%d", out + 3); cimg_sscanf(item, " PIXSIZE%*[^0-9]%d", out + 6); if (voxel_size) { cimg_sscanf(item, " VX%*[^0-9.+-]%f", voxel_size); cimg_sscanf(item, " VY%*[^0-9.+-]%f", voxel_size + 1); cimg_sscanf(item, " VZ%*[^0-9.+-]%f", voxel_size + 2); } if (cimg_sscanf(item, " CPU%*[ =]%s", tmp1._data)) out[7] = cimg::strncasecmp(tmp1, "sun", 3) ? 0 : 1; switch ( cimg_sscanf(item, " TYPE%*[ =]%s %s", tmp1._data, tmp2._data)) { case 0: break; case 2: out[5] = cimg::strncasecmp(tmp1, "unsigned", 8) ? 1 : 0; std::strncpy(tmp1, tmp2, tmp1._width - 1); // fallthrough case 1: if (!cimg::strncasecmp(tmp1, "int", 3) || !cimg::strncasecmp(tmp1, "fixed", 5)) out[4] = 0; if (!cimg::strncasecmp(tmp1, "float", 5) || !cimg::strncasecmp(tmp1, "double", 6)) out[4] = 1; if (!cimg::strncasecmp(tmp1, "packed", 6)) out[4] = 2; if (out[4] >= 0) break; // fallthrough default: throw CImgIOException( "CImg<%s>::load_inr(): Invalid pixel type '%s' defined " "in header.", pixel_type(), tmp2._data); } } if (out[0] < 0 || out[1] < 0 || out[2] < 0 || out[3] < 0) throw CImgIOException( "CImg<%s>::load_inr(): Invalid dimensions (%d,%d,%d,%d) " "defined in header.", pixel_type(), out[0], out[1], out[2], out[3]); if (out[4] < 0 || out[5] < 0) throw CImgIOException( "CImg<%s>::load_inr(): Incomplete pixel type defined in " "header.", pixel_type()); if (out[6] < 0) throw CImgIOException( "CImg<%s>::load_inr(): Incomplete PIXSIZE field defined in " "header.", pixel_type()); if (out[7] < 0) throw CImgIOException( "CImg<%s>::load_inr(): Big/Little Endian coding type undefined " "in header.", pixel_type()); } CImg& _load_inr(std::FILE* const file, const char* const filename, float* const voxel_size) { #define _cimg_load_inr_case(Tf, sign, pixsize, Ts) \ if (!loaded && fopt[6] == pixsize && fopt[4] == Tf && fopt[5] == sign) { \ Ts *xval, *const val = new Ts[(size_t)fopt[0] * fopt[3]]; \ cimg_forYZ(*this, y, z) { \ cimg::fread(val, fopt[0] * fopt[3], nfile); \ if (fopt[7] != endian) \ cimg::invert_endianness(val, fopt[0] * fopt[3]); \ xval = val; \ cimg_forX(*this, x) cimg_forC(*this, c) (*this)(x, y, z, c) = \ (T) * (xval++); \ } \ delete[] val; \ loaded = true; \ } if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_inr(): Specified filename is (null).", cimg_instance); std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); int fopt[8], endian = cimg::endianness() ? 1 : 0; bool loaded = false; if (voxel_size) voxel_size[0] = voxel_size[1] = voxel_size[2] = 1; _load_inr_header(nfile, fopt, voxel_size); assign(fopt[0], fopt[1], fopt[2], fopt[3]); _cimg_load_inr_case(0, 0, 8, unsigned char); _cimg_load_inr_case(0, 1, 8, char); _cimg_load_inr_case(0, 0, 16, unsigned short); _cimg_load_inr_case(0, 1, 16, short); _cimg_load_inr_case(0, 0, 32, unsigned int); _cimg_load_inr_case(0, 1, 32, int); _cimg_load_inr_case(1, 0, 32, float); _cimg_load_inr_case(1, 1, 32, float); _cimg_load_inr_case(1, 0, 64, double); _cimg_load_inr_case(1, 1, 64, double); if (!loaded) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_inr(): Unknown pixel type defined in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } if (!file) cimg::fclose(nfile); return *this; } //! Load image from a EXR file. /** \param filename Filename, as a C-string. **/ CImg& load_exr(const char* const filename) { if (!filename) throw CImgArgumentException( _cimg_instance "load_exr(): Specified filename is (null).", cimg_instance); #if defined(cimg_use_openexr) Imf::RgbaInputFile file(filename); Imath::Box2i dw = file.dataWindow(); const int inwidth = dw.max.x - dw.min.x + 1, inheight = dw.max.y - dw.min.y + 1; Imf::Array2D pixels; pixels.resizeErase(inheight, inwidth); file.setFrameBuffer(&pixels[0][0] - dw.min.x - dw.min.y * inwidth, 1, inwidth); file.readPixels(dw.min.y, dw.max.y); assign(inwidth, inheight, 1, 4); T *ptr_r = data(0, 0, 0, 0), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2), *ptr_a = data(0, 0, 0, 3); cimg_forXY(*this, x, y) { *(ptr_r++) = (T)pixels[y][x].r; *(ptr_g++) = (T)pixels[y][x].g; *(ptr_b++) = (T)pixels[y][x].b; *(ptr_a++) = (T)pixels[y][x].a; } #elif defined(cimg_use_tinyexr) float* res; const char* err = 0; int width = 0, height = 0; const int ret = LoadEXR(&res, &width, &height, filename, &err); if (ret) throw CImgIOException(_cimg_instance "load_exr(): Unable to load EXR file '%s'.", cimg_instance, filename); CImg(res, 4, width, height, 1, true) .get_permute_axes("yzcx") .move_to(*this); std::free(res); #else return load_other(filename); #endif return *this; } //! Load image from a EXR file \newinstance. static CImg get_load_exr(const char* const filename) { return CImg().load_exr(filename); } //! Load image from a PANDORE-5 file. /** \param filename Filename, as a C-string. **/ CImg& load_pandore(const char* const filename) { return _load_pandore(0, filename); } //! Load image from a PANDORE-5 file \newinstance. static CImg get_load_pandore(const char* const filename) { return CImg().load_pandore(filename); } //! Load image from a PANDORE-5 file \overloading. CImg& load_pandore(std::FILE* const file) { return _load_pandore(file, 0); } //! Load image from a PANDORE-5 file \newinstance. static CImg get_load_pandore(std::FILE* const file) { return CImg().load_pandore(file); } CImg& _load_pandore(std::FILE* const file, const char* const filename) { #define __cimg_load_pandore_case(nbdim, nwidth, nheight, ndepth, ndim, stype) \ cimg::fread(dims, nbdim, nfile); \ if (endian) cimg::invert_endianness(dims, nbdim); \ assign(nwidth, nheight, ndepth, ndim); \ const size_t siz = size(); \ stype* buffer = new stype[siz]; \ cimg::fread(buffer, siz, nfile); \ if (endian) cimg::invert_endianness(buffer, siz); \ T* ptrd = _data; \ cimg_foroff(*this, off) * (ptrd++) = (T) * (buffer++); \ buffer -= siz; \ delete[] buffer #define _cimg_load_pandore_case(nbdim, nwidth, nheight, ndepth, dim, stype1, \ stype2, stype3, ltype) \ { \ if (sizeof(stype1) == ltype) { \ __cimg_load_pandore_case(nbdim, nwidth, nheight, ndepth, dim, \ stype1); \ } else if (sizeof(stype2) == ltype) { \ __cimg_load_pandore_case(nbdim, nwidth, nheight, ndepth, dim, \ stype2); \ } else if (sizeof(stype3) == ltype) { \ __cimg_load_pandore_case(nbdim, nwidth, nheight, ndepth, dim, \ stype3); \ } else \ throw CImgIOException( \ _cimg_instance \ "load_pandore(): Unknown pixel datatype in file '%s'.", \ cimg_instance, filename ? filename : "(FILE*)"); \ } if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_pandore(): Specified filename is (null).", cimg_instance); std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); CImg header(32); cimg::fread(header._data, 12, nfile); if (cimg::strncasecmp("PANDORE", header, 7)) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_pandore(): PANDORE header not found in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } unsigned int imageid, dims[8] = {0}; int ptbuf[4] = {0}; cimg::fread(&imageid, 1, nfile); const bool endian = imageid > 255; if (endian) cimg::invert_endianness(imageid); cimg::fread(header._data, 20, nfile); switch (imageid) { case 2: _cimg_load_pandore_case(2, dims[1], 1, 1, 1, unsigned char, unsigned char, unsigned char, 1); break; case 3: _cimg_load_pandore_case(2, dims[1], 1, 1, 1, long, int, short, 4); break; case 4: _cimg_load_pandore_case(2, dims[1], 1, 1, 1, double, float, float, 4); break; case 5: _cimg_load_pandore_case(3, dims[2], dims[1], 1, 1, unsigned char, unsigned char, unsigned char, 1); break; case 6: _cimg_load_pandore_case(3, dims[2], dims[1], 1, 1, long, int, short, 4); break; case 7: _cimg_load_pandore_case(3, dims[2], dims[1], 1, 1, double, float, float, 4); break; case 8: _cimg_load_pandore_case(4, dims[3], dims[2], dims[1], 1, unsigned char, unsigned char, unsigned char, 1); break; case 9: _cimg_load_pandore_case(4, dims[3], dims[2], dims[1], 1, long, int, short, 4); break; case 10: _cimg_load_pandore_case(4, dims[3], dims[2], dims[1], 1, double, float, float, 4); break; case 11: { // Region 1D cimg::fread(dims, 3, nfile); if (endian) cimg::invert_endianness(dims, 3); assign(dims[1], 1, 1, 1); const unsigned siz = size(); if (dims[2] < 256) { unsigned char* buffer = new unsigned char[siz]; cimg::fread(buffer, siz, nfile); T* ptrd = _data; cimg_foroff(*this, off) * (ptrd++) = (T) * (buffer++); buffer -= siz; delete[] buffer; } else { if (dims[2] < 65536) { unsigned short* buffer = new unsigned short[siz]; cimg::fread(buffer, siz, nfile); if (endian) cimg::invert_endianness(buffer, siz); T* ptrd = _data; cimg_foroff(*this, off) * (ptrd++) = (T) * (buffer++); buffer -= siz; delete[] buffer; } else { unsigned int* buffer = new unsigned int[siz]; cimg::fread(buffer, siz, nfile); if (endian) cimg::invert_endianness(buffer, siz); T* ptrd = _data; cimg_foroff(*this, off) * (ptrd++) = (T) * (buffer++); buffer -= siz; delete[] buffer; } } } break; case 12: { // Region 2D cimg::fread(dims, 4, nfile); if (endian) cimg::invert_endianness(dims, 4); assign(dims[2], dims[1], 1, 1); const size_t siz = size(); if (dims[3] < 256) { unsigned char* buffer = new unsigned char[siz]; cimg::fread(buffer, siz, nfile); T* ptrd = _data; cimg_foroff(*this, off) * (ptrd++) = (T) * (buffer++); buffer -= siz; delete[] buffer; } else { if (dims[3] < 65536) { unsigned short* buffer = new unsigned short[siz]; cimg::fread(buffer, siz, nfile); if (endian) cimg::invert_endianness(buffer, siz); T* ptrd = _data; cimg_foroff(*this, off) * (ptrd++) = (T) * (buffer++); buffer -= siz; delete[] buffer; } else { unsigned int* buffer = new unsigned int[siz]; cimg::fread(buffer, siz, nfile); if (endian) cimg::invert_endianness(buffer, siz); T* ptrd = _data; cimg_foroff(*this, off) * (ptrd++) = (T) * (buffer++); buffer -= siz; delete[] buffer; } } } break; case 13: { // Region 3D cimg::fread(dims, 5, nfile); if (endian) cimg::invert_endianness(dims, 5); assign(dims[3], dims[2], dims[1], 1); const size_t siz = size(); if (dims[4] < 256) { unsigned char* buffer = new unsigned char[siz]; cimg::fread(buffer, siz, nfile); T* ptrd = _data; cimg_foroff(*this, off) * (ptrd++) = (T) * (buffer++); buffer -= siz; delete[] buffer; } else { if (dims[4] < 65536) { unsigned short* buffer = new unsigned short[siz]; cimg::fread(buffer, siz, nfile); if (endian) cimg::invert_endianness(buffer, siz); T* ptrd = _data; cimg_foroff(*this, off) * (ptrd++) = (T) * (buffer++); buffer -= siz; delete[] buffer; } else { unsigned int* buffer = new unsigned int[siz]; cimg::fread(buffer, siz, nfile); if (endian) cimg::invert_endianness(buffer, siz); T* ptrd = _data; cimg_foroff(*this, off) * (ptrd++) = (T) * (buffer++); buffer -= siz; delete[] buffer; } } } break; case 16: _cimg_load_pandore_case(4, dims[2], dims[1], 1, 3, unsigned char, unsigned char, unsigned char, 1); break; case 17: _cimg_load_pandore_case(4, dims[2], dims[1], 1, 3, long, int, short, 4); break; case 18: _cimg_load_pandore_case(4, dims[2], dims[1], 1, 3, double, float, float, 4); break; case 19: _cimg_load_pandore_case(5, dims[3], dims[2], dims[1], 3, unsigned char, unsigned char, unsigned char, 1); break; case 20: _cimg_load_pandore_case(5, dims[3], dims[2], dims[1], 3, long, int, short, 4); break; case 21: _cimg_load_pandore_case(5, dims[3], dims[2], dims[1], 3, double, float, float, 4); break; case 22: _cimg_load_pandore_case(2, dims[1], 1, 1, dims[0], unsigned char, unsigned char, unsigned char, 1); break; case 23: _cimg_load_pandore_case(2, dims[1], 1, 1, dims[0], long, int, short, 4); break; case 24: _cimg_load_pandore_case(2, dims[1], 1, 1, dims[0], unsigned long, unsigned int, unsigned short, 4); break; case 25: _cimg_load_pandore_case(2, dims[1], 1, 1, dims[0], double, float, float, 4); break; case 26: _cimg_load_pandore_case(3, dims[2], dims[1], 1, dims[0], unsigned char, unsigned char, unsigned char, 1); break; case 27: _cimg_load_pandore_case(3, dims[2], dims[1], 1, dims[0], long, int, short, 4); break; case 28: _cimg_load_pandore_case(3, dims[2], dims[1], 1, dims[0], unsigned long, unsigned int, unsigned short, 4); break; case 29: _cimg_load_pandore_case(3, dims[2], dims[1], 1, dims[0], double, float, float, 4); break; case 30: _cimg_load_pandore_case(4, dims[3], dims[2], dims[1], dims[0], unsigned char, unsigned char, unsigned char, 1); break; case 31: _cimg_load_pandore_case(4, dims[3], dims[2], dims[1], dims[0], long, int, short, 4); break; case 32: _cimg_load_pandore_case(4, dims[3], dims[2], dims[1], dims[0], unsigned long, unsigned int, unsigned short, 4); break; case 33: _cimg_load_pandore_case(4, dims[3], dims[2], dims[1], dims[0], double, float, float, 4); break; case 34: { // Points 1D cimg::fread(ptbuf, 1, nfile); if (endian) cimg::invert_endianness(ptbuf, 1); assign(1); (*this)(0) = (T)ptbuf[0]; } break; case 35: { // Points 2D cimg::fread(ptbuf, 2, nfile); if (endian) cimg::invert_endianness(ptbuf, 2); assign(2); (*this)(0) = (T)ptbuf[1]; (*this)(1) = (T)ptbuf[0]; } break; case 36: { // Points 3D cimg::fread(ptbuf, 3, nfile); if (endian) cimg::invert_endianness(ptbuf, 3); assign(3); (*this)(0) = (T)ptbuf[2]; (*this)(1) = (T)ptbuf[1]; (*this)(2) = (T)ptbuf[0]; } break; default: if (!file) cimg::fclose(nfile); throw CImgIOException(_cimg_instance "load_pandore(): Unable to load data " "with ID_type %u in file '%s'.", cimg_instance, imageid, filename ? filename : "(FILE*)"); } if (!file) cimg::fclose(nfile); return *this; } //! Load image from a PAR-REC (Philips) file. /** \param filename Filename, as a C-string. \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. \param align Appending alignment. **/ CImg& load_parrec(const char* const filename, const char axis = 'c', const float align = 0) { CImgList list; list.load_parrec(filename); if (list._width == 1) return list[0].move_to(*this); return assign(list.get_append(axis, align)); } //! Load image from a PAR-REC (Philips) file \newinstance. static CImg get_load_parrec(const char* const filename, const char axis = 'c', const float align = 0) { return CImg().load_parrec(filename, axis, align); } //! Load image from a raw binary file. /** \param filename Filename, as a C-string. \param size_x Width of the image buffer. \param size_y Height of the image buffer. \param size_z Depth of the image buffer. \param size_c Spectrum of the image buffer. \param is_multiplexed Tells if the image values are multiplexed along the C-axis. \param invert_endianness Tells if the endianness of the image buffer must be inverted. \param offset Starting offset of the read in the specified file. **/ CImg& load_raw(const char* const filename, const unsigned int size_x = 0, const unsigned int size_y = 1, const unsigned int size_z = 1, const unsigned int size_c = 1, const bool is_multiplexed = false, const bool invert_endianness = false, const ulongT offset = 0) { return _load_raw(0, filename, size_x, size_y, size_z, size_c, is_multiplexed, invert_endianness, offset); } //! Load image from a raw binary file \newinstance. static CImg get_load_raw( const char* const filename, const unsigned int size_x = 0, const unsigned int size_y = 1, const unsigned int size_z = 1, const unsigned int size_c = 1, const bool is_multiplexed = false, const bool invert_endianness = false, const ulongT offset = 0) { return CImg().load_raw(filename, size_x, size_y, size_z, size_c, is_multiplexed, invert_endianness, offset); } //! Load image from a raw binary file \overloading. CImg& load_raw(std::FILE* const file, const unsigned int size_x = 0, const unsigned int size_y = 1, const unsigned int size_z = 1, const unsigned int size_c = 1, const bool is_multiplexed = false, const bool invert_endianness = false, const ulongT offset = 0) { return _load_raw(file, 0, size_x, size_y, size_z, size_c, is_multiplexed, invert_endianness, offset); } //! Load image from a raw binary file \newinstance. static CImg get_load_raw( std::FILE* const file, const unsigned int size_x = 0, const unsigned int size_y = 1, const unsigned int size_z = 1, const unsigned int size_c = 1, const bool is_multiplexed = false, const bool invert_endianness = false, const ulongT offset = 0) { return CImg().load_raw(file, size_x, size_y, size_z, size_c, is_multiplexed, invert_endianness, offset); } CImg& _load_raw(std::FILE* const file, const char* const filename, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const bool is_multiplexed, const bool invert_endianness, const ulongT offset) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_raw(): Specified filename is (null).", cimg_instance); if (cimg::is_directory(filename)) throw CImgArgumentException( _cimg_instance "load_raw(): Specified filename '%s' is a directory.", cimg_instance, filename); ulongT siz = (ulongT)size_x * size_y * size_z * size_c; unsigned int _size_x = size_x, _size_y = size_y, _size_z = size_z, _size_c = size_c; std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); if (!siz) { // Retrieve file size const longT fpos = cimg::ftell(nfile); if (fpos < 0) throw CImgArgumentException( _cimg_instance "load_raw(): Cannot determine size of input file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); cimg::fseek(nfile, 0, SEEK_END); siz = cimg::ftell(nfile) / sizeof(T); _size_y = (unsigned int)siz; _size_x = _size_z = _size_c = 1; cimg::fseek(nfile, fpos, SEEK_SET); } cimg::fseek(nfile, offset, SEEK_SET); assign(_size_x, _size_y, _size_z, _size_c, 0); if (siz && (!is_multiplexed || size_c == 1)) { cimg::fread(_data, siz, nfile); if (invert_endianness) cimg::invert_endianness(_data, siz); } else if (siz) { CImg buf(1, 1, 1, _size_c); cimg_forXYZ(*this, x, y, z) { cimg::fread(buf._data, _size_c, nfile); if (invert_endianness) cimg::invert_endianness(buf._data, _size_c); set_vector_at(buf, x, y, z); } } if (!file) cimg::fclose(nfile); return *this; } //! Load image sequence from a YUV file. /** \param filename Filename, as a C-string. \param size_x Width of the frames. \param size_y Height of the frames. \param chroma_subsampling Type of chroma subsampling. Can be { 420 | 422 | 444 }. \param first_frame Index of the first frame to read. \param last_frame Index of the last frame to read. \param step_frame Step value for frame reading. \param yuv2rgb Tells if the YUV to RGB transform must be applied. \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. **/ CImg& load_yuv(const char* const filename, const unsigned int size_x, const unsigned int size_y = 1, const unsigned int chroma_subsampling = 444, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, const bool yuv2rgb = true, const char axis = 'z') { return get_load_yuv(filename, size_x, size_y, chroma_subsampling, first_frame, last_frame, step_frame, yuv2rgb, axis) .move_to(*this); } //! Load image sequence from a YUV file \newinstance. static CImg get_load_yuv(const char* const filename, const unsigned int size_x, const unsigned int size_y = 1, const unsigned int chroma_subsampling = 444, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, const bool yuv2rgb = true, const char axis = 'z') { return CImgList() .load_yuv(filename, size_x, size_y, chroma_subsampling, first_frame, last_frame, step_frame, yuv2rgb) .get_append(axis); } //! Load image sequence from a YUV file \overloading. CImg& load_yuv(std::FILE* const file, const unsigned int size_x, const unsigned int size_y = 1, const unsigned int chroma_subsampling = 444, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, const bool yuv2rgb = true, const char axis = 'z') { return get_load_yuv(file, size_x, size_y, chroma_subsampling, first_frame, last_frame, step_frame, yuv2rgb, axis) .move_to(*this); } //! Load image sequence from a YUV file \newinstance. static CImg get_load_yuv(std::FILE* const file, const unsigned int size_x, const unsigned int size_y = 1, const unsigned int chroma_subsampling = 444, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, const bool yuv2rgb = true, const char axis = 'z') { return CImgList() .load_yuv(file, size_x, size_y, chroma_subsampling, first_frame, last_frame, step_frame, yuv2rgb) .get_append(axis); } //! Load 3D object from a .OFF file. /** \param[out] primitives Primitives data of the 3D object. \param[out] colors Colors data of the 3D object. \param filename Filename, as a C-string. **/ template CImg& load_off(CImgList& primitives, CImgList& colors, const char* const filename) { return _load_off(primitives, colors, 0, filename); } //! Load 3D object from a .OFF file \newinstance. template static CImg get_load_off(CImgList& primitives, CImgList& colors, const char* const filename) { return CImg().load_off(primitives, colors, filename); } //! Load 3D object from a .OFF file \overloading. template CImg& load_off(CImgList& primitives, CImgList& colors, std::FILE* const file) { return _load_off(primitives, colors, file, 0); } //! Load 3D object from a .OFF file \newinstance. template static CImg get_load_off(CImgList& primitives, CImgList& colors, std::FILE* const file) { return CImg().load_off(primitives, colors, file); } template CImg& _load_off(CImgList& primitives, CImgList& colors, std::FILE* const file, const char* const filename) { if (!file && !filename) throw CImgArgumentException( _cimg_instance "load_off(): Specified filename is (null).", cimg_instance); std::FILE* const nfile = file ? file : cimg::fopen(filename, "r"); unsigned int nb_points = 0, nb_primitives = 0, nb_read = 0; CImg line(256); *line = 0; int err; // Skip comments, and read magic string OFF do { err = std::fscanf(nfile, "%255[^\n] ", line._data); } while (!err || (err == 1 && *line == '#')); if (cimg::strncasecmp(line, "OFF", 3) && cimg::strncasecmp(line, "COFF", 4)) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_off(): OFF header not found in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } do { err = std::fscanf(nfile, "%255[^\n] ", line._data); } while (!err || (err == 1 && *line == '#')); if ((err = cimg_sscanf(line, "%u%u%*[^\n] ", &nb_points, &nb_primitives)) != 2) { if (!file) cimg::fclose(nfile); throw CImgIOException(_cimg_instance "load_off(): Invalid number of vertices or " "primitives specified in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } // Read points data assign(nb_points, 3); float X = 0, Y = 0, Z = 0; cimg_forX(*this, l) { do { err = std::fscanf(nfile, "%255[^\n] ", line._data); } while (!err || (err == 1 && *line == '#')); if ((err = cimg_sscanf(line, "%f%f%f%*[^\n] ", &X, &Y, &Z)) != 3) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimg_instance "load_off(): Failed to read vertex %u/%u in file '%s'.", cimg_instance, l + 1, nb_points, filename ? filename : "(FILE*)"); } (*this)(l, 0) = (T)X; (*this)(l, 1) = (T)Y; (*this)(l, 2) = (T)Z; } // Read primitive data primitives.assign(); colors.assign(); bool stop_flag = false; while (!stop_flag) { float c0 = 0.7f, c1 = 0.7f, c2 = 0.7f; unsigned int prim = 0, i0 = 0, i1 = 0, i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0, i7 = 0; *line = 0; if ((err = std::fscanf(nfile, "%u", &prim)) != 1) stop_flag = true; else { ++nb_read; switch (prim) { case 1: { if ((err = std::fscanf(nfile, "%u%255[^\n] ", &i0, line._data)) < 2) { cimg::warn(_cimg_instance "load_off(): Failed to read primitive " "%u/%u from file '%s'.", cimg_instance, nb_read, nb_primitives, filename ? filename : "(FILE*)"); err = std::fscanf(nfile, "%*[^\n] "); } else { err = cimg_sscanf(line, "%f%f%f", &c0, &c1, &c2); CImg::vector(i0).move_to(primitives); CImg::vector((tc)(c0 * 255), (tc)(c1 * 255), (tc)(c2 * 255)) .move_to(colors); } } break; case 2: { if ((err = std::fscanf(nfile, "%u%u%255[^\n] ", &i0, &i1, line._data)) < 2) { cimg::warn(_cimg_instance "load_off(): Failed to read primitive " "%u/%u from file '%s'.", cimg_instance, nb_read, nb_primitives, filename ? filename : "(FILE*)"); err = std::fscanf(nfile, "%*[^\n] "); } else { err = cimg_sscanf(line, "%f%f%f", &c0, &c1, &c2); CImg::vector(i0, i1).move_to(primitives); CImg::vector((tc)(c0 * 255), (tc)(c1 * 255), (tc)(c2 * 255)) .move_to(colors); } } break; case 3: { if ((err = std::fscanf(nfile, "%u%u%u%255[^\n] ", &i0, &i1, &i2, line._data)) < 3) { cimg::warn(_cimg_instance "load_off(): Failed to read primitive " "%u/%u from file '%s'.", cimg_instance, nb_read, nb_primitives, filename ? filename : "(FILE*)"); err = std::fscanf(nfile, "%*[^\n] "); } else { err = cimg_sscanf(line, "%f%f%f", &c0, &c1, &c2); CImg::vector(i0, i2, i1).move_to(primitives); CImg::vector((tc)(c0 * 255), (tc)(c1 * 255), (tc)(c2 * 255)) .move_to(colors); } } break; case 4: { if ((err = std::fscanf(nfile, "%u%u%u%u%255[^\n] ", &i0, &i1, &i2, &i3, line._data)) < 4) { cimg::warn(_cimg_instance "load_off(): Failed to read primitive " "%u/%u from file '%s'.", cimg_instance, nb_read, nb_primitives, filename ? filename : "(FILE*)"); err = std::fscanf(nfile, "%*[^\n] "); } else { err = cimg_sscanf(line, "%f%f%f", &c0, &c1, &c2); CImg::vector(i0, i3, i2, i1) .move_to(primitives); CImg::vector((tc)(c0 * 255), (tc)(c1 * 255), (tc)(c2 * 255)) .move_to(colors); } } break; case 5: { if ((err = std::fscanf(nfile, "%u%u%u%u%u%255[^\n] ", &i0, &i1, &i2, &i3, &i4, line._data)) < 5) { cimg::warn(_cimg_instance "load_off(): Failed to read primitive " "%u/%u from file '%s'.", cimg_instance, nb_read, nb_primitives, filename ? filename : "(FILE*)"); err = std::fscanf(nfile, "%*[^\n] "); } else { err = cimg_sscanf(line, "%f%f%f", &c0, &c1, &c2); CImg::vector(i0, i3, i2, i1) .move_to(primitives); CImg::vector(i0, i4, i3).move_to(primitives); colors.insert(2, CImg::vector((tc)(c0 * 255), (tc)(c1 * 255), (tc)(c2 * 255))); ++nb_primitives; } } break; case 6: { if ((err = std::fscanf(nfile, "%u%u%u%u%u%u%255[^\n] ", &i0, &i1, &i2, &i3, &i4, &i5, line._data)) < 6) { cimg::warn(_cimg_instance "load_off(): Failed to read primitive " "%u/%u from file '%s'.", cimg_instance, nb_read, nb_primitives, filename ? filename : "(FILE*)"); err = std::fscanf(nfile, "%*[^\n] "); } else { err = cimg_sscanf(line, "%f%f%f", &c0, &c1, &c2); CImg::vector(i0, i3, i2, i1) .move_to(primitives); CImg::vector(i0, i5, i4, i3) .move_to(primitives); colors.insert(2, CImg::vector((tc)(c0 * 255), (tc)(c1 * 255), (tc)(c2 * 255))); ++nb_primitives; } } break; case 7: { if ((err = std::fscanf( nfile, "%u%u%u%u%u%u%u%255[^\n] ", &i0, &i1, &i2, &i3, &i4, &i5, &i6, line._data)) < 7) { cimg::warn(_cimg_instance "load_off(): Failed to read primitive " "%u/%u from file '%s'.", cimg_instance, nb_read, nb_primitives, filename ? filename : "(FILE*)"); err = std::fscanf(nfile, "%*[^\n] "); } else { err = cimg_sscanf(line, "%f%f%f", &c0, &c1, &c2); CImg::vector(i0, i4, i3, i1) .move_to(primitives); CImg::vector(i0, i6, i5, i4) .move_to(primitives); CImg::vector(i3, i2, i1).move_to(primitives); colors.insert(3, CImg::vector((tc)(c0 * 255), (tc)(c1 * 255), (tc)(c2 * 255))); ++(++nb_primitives); } } break; case 8: { if ((err = std::fscanf( nfile, "%u%u%u%u%u%u%u%u%255[^\n] ", &i0, &i1, &i2, &i3, &i4, &i5, &i6, &i7, line._data)) < 7) { cimg::warn(_cimg_instance "load_off(): Failed to read primitive " "%u/%u from file '%s'.", cimg_instance, nb_read, nb_primitives, filename ? filename : "(FILE*)"); err = std::fscanf(nfile, "%*[^\n] "); } else { err = cimg_sscanf(line, "%f%f%f", &c0, &c1, &c2); CImg::vector(i0, i3, i2, i1) .move_to(primitives); CImg::vector(i0, i5, i4, i3) .move_to(primitives); CImg::vector(i0, i7, i6, i5) .move_to(primitives); colors.insert(3, CImg::vector((tc)(c0 * 255), (tc)(c1 * 255), (tc)(c2 * 255))); ++(++nb_primitives); } } break; default: cimg::warn(_cimg_instance "load_off(): Failed to read primitive %u/%u " "(%u vertices) from file '%s'.", cimg_instance, nb_read, nb_primitives, prim, filename ? filename : "(FILE*)"); err = std::fscanf(nfile, "%*[^\n] "); } } } if (!file) cimg::fclose(nfile); if (primitives._width != nb_primitives) cimg::warn(_cimg_instance "load_off(): Only %u/%u primitives read from file '%s'.", cimg_instance, primitives._width, nb_primitives, filename ? filename : "(FILE*)"); return *this; } //! Load image sequence from a video file, using OpenCV library. /** \param filename Filename, as a C-string. \param first_frame Index of the first frame to read. \param last_frame Index of the last frame to read. \param step_frame Step value for frame reading. \param axis Alignment axis. \param align Apending alignment. **/ CImg& load_video(const char* const filename, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, const char axis = 'z', const float align = 0) { return get_load_video(filename, first_frame, last_frame, step_frame, axis, align) .move_to(*this); } //! Load image sequence from a video file, using OpenCV library //! \newinstance. static CImg get_load_video(const char* const filename, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, const char axis = 'z', const float align = 0) { return CImgList() .load_video(filename, first_frame, last_frame, step_frame) .get_append(axis, align); } //! Load image sequence using FFMPEG's external tool 'ffmpeg'. /** \param filename Filename, as a C-string. \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. \param align Appending alignment. **/ CImg& load_ffmpeg_external(const char* const filename, const char axis = 'z', const float align = 0) { return get_load_ffmpeg_external(filename, axis, align).move_to(*this); } //! Load image sequence using FFMPEG's external tool 'ffmpeg' \newinstance. static CImg get_load_ffmpeg_external(const char* const filename, const char axis = 'z', const float align = 0) { return CImgList().load_ffmpeg_external(filename).get_append(axis, align); } //! Load gif file, using Imagemagick or GraphicsMagicks's external tools. /** \param filename Filename, as a C-string. \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. \param align Appending alignment. **/ CImg& load_gif_external(const char* const filename, const char axis = 'z', const float align = 0) { return get_load_gif_external(filename, axis, align).move_to(*this); } //! Load gif file, using ImageMagick or GraphicsMagick's external tool //! 'convert' \newinstance. static CImg get_load_gif_external(const char* const filename, const char axis = 'z', const float align = 0) { return CImgList().load_gif_external(filename).get_append(axis, align); } //! Load image using GraphicsMagick's external tool 'gm'. /** \param filename Filename, as a C-string. **/ CImg& load_graphicsmagick_external(const char* const filename) { if (!filename) throw CImgArgumentException( _cimg_instance "load_graphicsmagick_external(): Specified filename is (null).", cimg_instance); cimg::fclose(cimg::fopen(filename, "rb")); // Check if file exists CImg command(1024), filename_tmp(256); std::FILE* file = 0; const CImg s_filename = CImg::string(filename)._system_strescape(); #if cimg_OS == 1 if (!cimg::system("which gm")) { cimg_snprintf(command, command._width, "%s convert \"%s\" pnm:-", cimg::graphicsmagick_path(), s_filename.data()); file = popen(command, "r"); if (file) { const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); try { load_pnm(file); } catch (...) { pclose(file); cimg::exception_mode(omode); throw CImgIOException(_cimg_instance "load_graphicsmagick_external(): " "Failed to load file '%s' " "with external command 'gm'.", cimg_instance, filename); } pclose(file); return *this; } } #endif do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.pnm", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); cimg_snprintf( command, command._width, "%s convert \"%s\" \"%s\"", cimg::graphicsmagick_path(), s_filename.data(), CImg::string(filename_tmp)._system_strescape().data()); cimg::system(command, cimg::graphicsmagick_path()); if (!(file = cimg::std_fopen(filename_tmp, "rb"))) { cimg::fclose(cimg::fopen(filename, "r")); throw CImgIOException(_cimg_instance "load_graphicsmagick_external(): Failed to " "load file '%s' with external command 'gm'.", cimg_instance, filename); } else cimg::fclose(file); load_pnm(filename_tmp); std::remove(filename_tmp); return *this; } //! Load image using GraphicsMagick's external tool 'gm' \newinstance. static CImg get_load_graphicsmagick_external( const char* const filename) { return CImg().load_graphicsmagick_external(filename); } //! Load gzipped image file, using external tool 'gunzip'. /** \param filename Filename, as a C-string. **/ CImg& load_gzip_external(const char* const filename) { if (!filename) throw CImgIOException( _cimg_instance "load_gzip_external(): Specified filename is (null).", cimg_instance); cimg::fclose(cimg::fopen(filename, "rb")); // Check if file exists CImg command(1024), filename_tmp(256), body(256); const char *const ext = cimg::split_filename(filename, body), *const ext2 = cimg::split_filename(body, 0); std::FILE* file = 0; do { if (!cimg::strcasecmp(ext, "gz")) { if (*ext2) cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), ext2); else cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); } else { if (*ext) cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), ext); else cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); } if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); cimg_snprintf( command, command._width, "%s -c \"%s\" > \"%s\"", cimg::gunzip_path(), CImg::string(filename)._system_strescape().data(), CImg::string(filename_tmp)._system_strescape().data()); cimg::system(command); if (!(file = cimg::std_fopen(filename_tmp, "rb"))) { cimg::fclose(cimg::fopen(filename, "r")); throw CImgIOException(_cimg_instance "load_gzip_external(): Failed to load file " "'%s' with external command 'gunzip'.", cimg_instance, filename); } else cimg::fclose(file); load(filename_tmp); std::remove(filename_tmp); return *this; } //! Load gzipped image file, using external tool 'gunzip' \newinstance. static CImg get_load_gzip_external(const char* const filename) { return CImg().load_gzip_external(filename); } //! Load image using ImageMagick's external tool 'convert'. /** \param filename Filename, as a C-string. **/ CImg& load_imagemagick_external(const char* const filename) { if (!filename) throw CImgArgumentException( _cimg_instance "load_imagemagick_external(): Specified filename is (null).", cimg_instance); cimg::fclose(cimg::fopen(filename, "rb")); // Check if file exists CImg command(1024), filename_tmp(256); std::FILE* file = 0; const CImg s_filename = CImg::string(filename)._system_strescape(); #if cimg_OS == 1 if (!cimg::system("which convert")) { cimg_snprintf( command, command._width, "%s%s \"%s\" pnm:-", cimg::imagemagick_path(), !cimg::strcasecmp(cimg::split_filename(filename), "pdf") ? " -density 400x400" : "", s_filename.data()); file = popen(command, "r"); if (file) { const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); try { load_pnm(file); } catch (...) { pclose(file); cimg::exception_mode(omode); throw CImgIOException(_cimg_instance "load_imagemagick_external(): Failed " "to load file '%s' with " "external command 'magick/convert'.", cimg_instance, filename); } pclose(file); return *this; } } #endif do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.pnm", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); cimg_snprintf( command, command._width, "%s%s \"%s\" \"%s\"", cimg::imagemagick_path(), !cimg::strcasecmp(cimg::split_filename(filename), "pdf") ? " -density 400x400" : "", s_filename.data(), CImg::string(filename_tmp)._system_strescape().data()); cimg::system(command, cimg::imagemagick_path()); if (!(file = cimg::std_fopen(filename_tmp, "rb"))) { cimg::fclose(cimg::fopen(filename, "r")); throw CImgIOException( _cimg_instance "load_imagemagick_external(): Failed to load file '%s' with " "external command 'magick/convert'.", cimg_instance, filename); } else cimg::fclose(file); load_pnm(filename_tmp); std::remove(filename_tmp); return *this; } //! Load image using ImageMagick's external tool 'convert' \newinstance. static CImg get_load_imagemagick_external(const char* const filename) { return CImg().load_imagemagick_external(filename); } //! Load image from a DICOM file, using XMedcon's external tool 'medcon'. /** \param filename Filename, as a C-string. **/ CImg& load_medcon_external(const char* const filename) { if (!filename) throw CImgArgumentException( _cimg_instance "load_medcon_external(): Specified filename is (null).", cimg_instance); cimg::fclose(cimg::fopen(filename, "rb")); // Check if file exists CImg command(1024), filename_tmp(256), body(256); cimg::fclose(cimg::fopen(filename, "r")); std::FILE* file = 0; do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s.hdr", cimg::filenamerand()); if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); cimg_snprintf( command, command._width, "%s -w -c anlz -o \"%s\" -f \"%s\"", cimg::medcon_path(), CImg::string(filename_tmp)._system_strescape().data(), CImg::string(filename)._system_strescape().data()); cimg::system(command); cimg::split_filename(filename_tmp, body); cimg_snprintf(command, command._width, "%s.hdr", body._data); file = cimg::std_fopen(command, "rb"); if (!file) { cimg_snprintf(command, command._width, "m000-%s.hdr", body._data); file = cimg::std_fopen(command, "rb"); if (!file) { throw CImgIOException( _cimg_instance "load_medcon_external(): Failed to load file '%s' with " "external command 'medcon'.", cimg_instance, filename); } } cimg::fclose(file); load_analyze(command); std::remove(command); cimg::split_filename(command, body); cimg_snprintf(command, command._width, "%s.img", body._data); std::remove(command); return *this; } //! Load image from a DICOM file, using XMedcon's external tool 'medcon' //! \newinstance. static CImg get_load_medcon_external(const char* const filename) { return CImg().load_medcon_external(filename); } //! Load image from a RAW Color Camera file, using external tool 'dcraw'. /** \param filename Filename, as a C-string. **/ CImg& load_dcraw_external(const char* const filename) { if (!filename) throw CImgArgumentException( _cimg_instance "load_dcraw_external(): Specified filename is (null).", cimg_instance); cimg::fclose(cimg::fopen(filename, "rb")); // Check if file exists CImg command(1024), filename_tmp(256); std::FILE* file = 0; const CImg s_filename = CImg::string(filename)._system_strescape(); #if cimg_OS == 1 cimg_snprintf(command, command._width, "%s -w -4 -c \"%s\"", cimg::dcraw_path(), s_filename.data()); file = popen(command, "r"); if (file) { const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); try { load_pnm(file); } catch (...) { pclose(file); cimg::exception_mode(omode); throw CImgIOException( _cimg_instance "load_dcraw_external(): Failed to load file '%s' with " "external command 'dcraw'.", cimg_instance, filename); } pclose(file); return *this; } #endif do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.ppm", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); cimg_snprintf( command, command._width, "%s -w -4 -c \"%s\" > \"%s\"", cimg::dcraw_path(), s_filename.data(), CImg::string(filename_tmp)._system_strescape().data()); cimg::system(command, cimg::dcraw_path()); if (!(file = cimg::std_fopen(filename_tmp, "rb"))) { cimg::fclose(cimg::fopen(filename, "r")); throw CImgIOException(_cimg_instance "load_dcraw_external(): Failed to load file " "'%s' with external command 'dcraw'.", cimg_instance, filename); } else cimg::fclose(file); load_pnm(filename_tmp); std::remove(filename_tmp); return *this; } //! Load image from a RAW Color Camera file, using external tool 'dcraw' //! \newinstance. static CImg get_load_dcraw_external(const char* const filename) { return CImg().load_dcraw_external(filename); } #ifdef cimg_use_opencv // Convert a continuous cv::Mat to a CImg. static CImg _cvmat2cimg(const cv::Mat& src) { if (src.channels() == 1) return CImg(src.ptr(), src.cols, src.rows, 1, 1); else if (src.channels() == 3) { // BGR CImg res(src.cols, src.rows, 1, src.channels()); const unsigned char* ptrs = src.ptr(); unsigned char *pR = res.data(), *pG = res.data(0, 0, 0, 1), *pB = res.data(0, 0, 0, 2); cimg_forXY(res, x, y) { *(pB++) = *(ptrs++); *(pG++) = *(ptrs++); *(pR++) = *(ptrs++); } return res; } return CImg(src.ptr(), src.channels(), src.cols, src.rows, 1, true) .get_permute_axes("yzcx"); } // Convert a CImg to a cv::Mat. cv::Mat _cimg2cvmat() const { if (is_empty()) throw CImgInstanceException( _cimg_instance "_cimg2cvmat() : Instance image is empty.", cimg_instance); if (_spectrum == 2) throw CImgInstanceException(_cimg_instance "_cimg2cvmat() : Invalid number of " "channels (should be '1' or '3+').", cimg_instance); if (_depth != 1) throw CImgInstanceException( _cimg_instance "_cimg2cvmat() : Invalid number of slices (should be '1').", cimg_instance); int mat_type = -1; if (cimg::type::string() == cimg::type::string()) mat_type = CV_8UC1; if (cimg::type::string() == cimg::type::string()) mat_type = CV_8SC1; if (cimg::type::string() == cimg::type::string()) mat_type = CV_16UC1; if (cimg::type::string() == cimg::type::string()) mat_type = CV_16SC1; if (cimg::type::string() == cimg::type::string()) mat_type = CV_32SC1; if (cimg::type::string() == cimg::type::string()) mat_type = CV_32FC1; if (cimg::type::string() == cimg::type::string()) mat_type = CV_64FC1; if (mat_type < 0) throw CImgInstanceException( _cimg_instance "_cvmat2cimg() : pixel type '%s' is not supported.", cimg_instance, pixel_type()); cv::Mat res; std::vector channels(_spectrum); if (_spectrum > 1) { cimg_forC(*this, c) channels[c] = cv::Mat(_height, _width, mat_type, _data + _width * _height * (_spectrum - 1 - c)); cv::merge(channels, res); } else res = cv::Mat(_height, _width, mat_type, _data).clone(); return res; } #endif //! Load image from a camera stream, using OpenCV. /** \param index Index of the camera to capture images from (from 0 to 63). \param capture_width Width of the desired image ('0' stands for default value). \param capture_height Height of the desired image ('0' stands for default value). \param skip_frames Number of frames to skip before the capture. \param release_camera Tells if the camera ressource must be released at the end of the method. **/ CImg& load_camera(const unsigned int camera_index = 0, const unsigned int capture_width = 0, const unsigned int capture_height = 0, const unsigned int skip_frames = 0, const bool release_camera = true) { #ifdef cimg_use_opencv if (camera_index >= 64) throw CImgArgumentException( _cimg_instance "load_camera(): Invalid request for camera #%u " "(no more than 100 cameras can be managed simultaneously).", cimg_instance, camera_index); static cv::VideoCapture* captures[64] = {0}; static unsigned int captures_w[64], captures_h[64]; if (release_camera) { cimg::mutex(9); if (captures[camera_index]) captures[camera_index]->release(); delete captures[camera_index]; captures[camera_index] = 0; captures_w[camera_index] = captures_h[camera_index] = 0; cimg::mutex(9, 0); return *this; } if (!captures[camera_index]) { cimg::mutex(9); captures[camera_index] = new cv::VideoCapture(camera_index); captures_w[camera_index] = captures_h[camera_index] = 0; if (!captures[camera_index]->isOpened()) { delete captures[camera_index]; captures[camera_index] = 0; cimg::mutex(9, 0); throw CImgIOException( _cimg_instance "load_camera(): Failed to initialize camera #%u.", cimg_instance, camera_index); } cimg::mutex(9, 0); } cimg::mutex(9); if (capture_width != captures_w[camera_index]) { captures[camera_index]->set(_cimg_cap_prop_frame_width, capture_width); captures_w[camera_index] = capture_width; } if (capture_height != captures_h[camera_index]) { captures[camera_index]->set(_cimg_cap_prop_frame_height, capture_height); captures_h[camera_index] = capture_height; } for (unsigned int i = 0; i < skip_frames; ++i) captures[camera_index]->grab(); cv::Mat cvimg; captures[camera_index]->read(cvimg); if (cvimg.empty()) assign(); else _cvmat2cimg(cvimg).move_to(*this); cimg::mutex(9, 0); return *this; #else cimg::unused(camera_index, skip_frames, release_camera, capture_width, capture_height); throw CImgIOException( _cimg_instance "load_camera(): This function requires the OpenCV library to run " "(macro 'cimg_use_opencv' must be defined).", cimg_instance); #endif } //! Load image from a camera stream, using OpenCV \newinstance. static CImg get_load_camera(const unsigned int camera_index = 0, const unsigned int capture_width = 0, const unsigned int capture_height = 0, const unsigned int skip_frames = 0, const bool release_camera = true) { return CImg().load_camera(camera_index, capture_width, capture_height, skip_frames, release_camera); } //! Load image using various non-native ways. /** \param filename Filename, as a C-string. **/ CImg& load_other(const char* const filename) { if (!filename) throw CImgArgumentException( _cimg_instance "load_other(): Specified filename is (null).", cimg_instance); const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); try { load_magick(filename); } catch (CImgException&) { try { load_imagemagick_external(filename); } catch (CImgException&) { try { load_graphicsmagick_external(filename); } catch (CImgException&) { try { load_cimg(filename); } catch (CImgException&) { try { cimg::fclose(cimg::fopen(filename, "rb")); } catch (CImgException&) { cimg::exception_mode(omode); throw CImgIOException( _cimg_instance "load_other(): Failed to open file '%s'.", cimg_instance, filename); } cimg::exception_mode(omode); throw CImgIOException(_cimg_instance "load_other(): Failed to " "recognize format of file '%s'.", cimg_instance, filename); } } } } cimg::exception_mode(omode); return *this; } //! Load image using various non-native ways \newinstance. static CImg get_load_other(const char* const filename) { return CImg().load_other(filename); } //@} //--------------------------- // //! \name Data Output //@{ //--------------------------- //! Display information about the image data. /** \param title Name for the considered image. \param display_stats Tells to compute and display image statistics. **/ const CImg& print(const char* const title = 0, const bool display_stats = true) const { int xm = 0, ym = 0, zm = 0, vm = 0, xM = 0, yM = 0, zM = 0, vM = 0; CImg st; if (!is_empty() && display_stats) { st = get_stats(); xm = (int)st[4]; ym = (int)st[5], zm = (int)st[6], vm = (int)st[7]; xM = (int)st[8]; yM = (int)st[9], zM = (int)st[10], vM = (int)st[11]; } const ulongT siz = size(), msiz = siz * sizeof(T), siz1 = siz - 1, mdisp = msiz < 8 * 1024 ? 0U : msiz < 8 * 1024 * 1024 ? 1U : 2U, width1 = _width - 1; CImg _title(64); if (!title) cimg_snprintf(_title, _title._width, "CImg<%s>", pixel_type()); std::fprintf( cimg::output(), "%s%s%s%s: %sthis%s = %p, %ssize%s = (%u,%u,%u,%u) [%lu %s], " "%sdata%s = (%s*)%p", cimg::t_magenta, cimg::t_bold, title ? title : _title._data, cimg::t_normal, cimg::t_bold, cimg::t_normal, (void*)this, cimg::t_bold, cimg::t_normal, _width, _height, _depth, _spectrum, (unsigned long)(mdisp == 0 ? msiz : (mdisp == 1 ? (msiz >> 10) : (msiz >> 20))), mdisp == 0 ? "b" : (mdisp == 1 ? "Kio" : "Mio"), cimg::t_bold, cimg::t_normal, pixel_type(), (void*)begin()); if (_data) std::fprintf(cimg::output(), "..%p (%s) = [ ", (void*)((char*)end() - 1), _is_shared ? "shared" : "non-shared"); else std::fprintf(cimg::output(), " (%s) = [ ", _is_shared ? "shared" : "non-shared"); if (!is_empty()) cimg_foroff(*this, off) { std::fprintf(cimg::output(), "%g", (double)_data[off]); if (off != siz1) std::fprintf(cimg::output(), "%s", off % _width == width1 ? " ; " : " "); if (off == 7 && siz > 16) { off = siz1 - 8; std::fprintf(cimg::output(), "... "); } } if (!is_empty() && display_stats) std::fprintf(cimg::output(), " ], %smin%s = %g, %smax%s = %g, %smean%s = %g, " "%sstd%s = %g, %scoords_min%s = (%u,%u,%u,%u), " "%scoords_max%s = (%u,%u,%u,%u).\n", cimg::t_bold, cimg::t_normal, st[0], cimg::t_bold, cimg::t_normal, st[1], cimg::t_bold, cimg::t_normal, st[2], cimg::t_bold, cimg::t_normal, std::sqrt(st[3]), cimg::t_bold, cimg::t_normal, xm, ym, zm, vm, cimg::t_bold, cimg::t_normal, xM, yM, zM, vM); else std::fprintf(cimg::output(), "%s].\n", is_empty() ? "" : " "); std::fflush(cimg::output()); return *this; } //! Display image into a CImgDisplay window. /** \param disp Display window. **/ const CImg& display(CImgDisplay& disp) const { disp.display(*this); return *this; } //! Display image into a CImgDisplay window, in an interactive way. /** \param disp Display window. \param display_info Tells if image information are displayed on the standard output. \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. \param exit_on_anykey Exit function when any key is pressed. **/ const CImg& display(CImgDisplay& disp, const bool display_info, unsigned int* const XYZ = 0, const bool exit_on_anykey = false) const { return _display(disp, 0, display_info, XYZ, exit_on_anykey, false); } //! Display image into an interactive window. /** \param title Window title \param display_info Tells if image information are displayed on the standard output. \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. \param exit_on_anykey Exit function when any key is pressed. **/ const CImg& display(const char* const title = 0, const bool display_info = true, unsigned int* const XYZ = 0, const bool exit_on_anykey = false) const { CImgDisplay disp; return _display(disp, title, display_info, XYZ, exit_on_anykey, false); } const CImg& _display(CImgDisplay& disp, const char* const title, const bool display_info, unsigned int* const XYZ, const bool exit_on_anykey, const bool exit_on_singleclick) const { unsigned int oldw = 0, oldh = 0, _XYZ[3] = {0}, key = 0; int x0 = 0, y0 = 0, z0 = 0, x1 = width() - 1, y1 = height() - 1, z1 = depth() - 1, old_mouse_x = -1, old_mouse_y = -1; if (!disp) { disp.assign(cimg_fitscreen(_width, _height, _depth), title ? title : 0, 1); if (!title) disp.set_title("CImg<%s> (%ux%ux%ux%u)", pixel_type(), _width, _height, _depth, _spectrum); else disp.set_title("%s", title); } else if (title) disp.set_title("%s", title); disp.show().flush(); const CImg dtitle = CImg::string(disp.title()); if (display_info) print(dtitle); CImg zoom; for (bool reset_view = true, resize_disp = false, is_first_select = true; !key && !disp.is_closed();) { if (reset_view) { if (XYZ) { _XYZ[0] = XYZ[0]; _XYZ[1] = XYZ[1]; _XYZ[2] = XYZ[2]; } else { _XYZ[0] = (unsigned int)(x0 + x1 + 1) / 2; _XYZ[1] = (unsigned int)(y0 + y1 + 1) / 2; _XYZ[2] = (unsigned int)(z0 + z1 + 1) / 2; } x0 = 0; y0 = 0; z0 = 0; x1 = width() - 1; y1 = height() - 1; z1 = depth() - 1; disp.resize(cimg_fitscreen(_width, _height, _depth), false); oldw = disp._width; oldh = disp._height; resize_disp = true; reset_view = false; } if (!x0 && !y0 && !z0 && x1 == width() - 1 && y1 == height() - 1 && z1 == depth() - 1) { if (is_empty()) zoom.assign(1, 1, 1, 1, (T)0); else zoom.assign(); } else zoom = get_crop(x0, y0, z0, x1, y1, z1); const CImg& visu = zoom ? zoom : *this; const unsigned int dx = 1U + x1 - x0, dy = 1U + y1 - y0, dz = 1U + z1 - z0, tw = dx + (dz > 1 ? dz : 0U), th = dy + (dz > 1 ? dz : 0U); if (!is_empty() && !disp.is_fullscreen() && resize_disp) { const float ttw = (float)tw * disp.width() / oldw, tth = (float)th * disp.height() / oldh, dM = std::max(ttw, tth), diM = (float)std::max(disp.width(), disp.height()); const unsigned int imgw = (unsigned int)(ttw * diM / dM), imgh = (unsigned int)(tth * diM / dM); disp.set_fullscreen(false).resize(cimg_fitscreen(imgw, imgh, 1), false); resize_disp = false; } oldw = tw; oldh = th; bool go_up = false, go_down = false, go_left = false, go_right = false, go_inc = false, go_dec = false, go_in = false, go_out = false, go_in_center = false; disp.set_title("%s", dtitle._data); if (_width > 1 && visu._width == 1) disp.set_title("%s | x=%u", disp._title, x0); if (_height > 1 && visu._height == 1) disp.set_title("%s | y=%u", disp._title, y0); if (_depth > 1 && visu._depth == 1) disp.set_title("%s | z=%u", disp._title, z0); disp._mouse_x = old_mouse_x; disp._mouse_y = old_mouse_y; CImg selection = visu._select(disp, 0, 2, _XYZ, x0, y0, z0, true, is_first_select, _depth > 1, true); old_mouse_x = disp._mouse_x; old_mouse_y = disp._mouse_y; is_first_select = false; if (disp.wheel()) { if ((disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) && (disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT())) { go_left = !(go_right = disp.wheel() > 0); } else if (disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT()) { go_down = !(go_up = disp.wheel() > 0); } else if (depth() == 1 || disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { go_out = !(go_in = disp.wheel() > 0); go_in_center = false; } disp.set_wheel(); } const int sx0 = selection(0), sy0 = selection(1), sz0 = selection(2), sx1 = selection(3), sy1 = selection(4), sz1 = selection(5); if (sx0 >= 0 && sy0 >= 0 && sz0 >= 0 && sx1 >= 0 && sy1 >= 0 && sz1 >= 0) { x1 = x0 + sx1; y1 = y0 + sy1; z1 = z0 + sz1; x0 += sx0; y0 += sy0; z0 += sz0; if ((sx0 == sx1 && sy0 == sy1) || (_depth > 1 && sx0 == sx1 && sz0 == sz1) || (_depth > 1 && sy0 == sy1 && sz0 == sz1)) { if (exit_on_singleclick && (!zoom || is_empty())) break; else reset_view = true; } resize_disp = true; } else switch (key = disp.key()) { #if cimg_OS != 2 case cimg::keyCTRLRIGHT: case cimg::keySHIFTRIGHT: #endif case 0: case cimg::keyCTRLLEFT: case cimg::keySHIFTLEFT: key = 0; break; case cimg::keyP: if (visu._depth > 1 && (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT())) { // Special mode: play stack of frames const unsigned int w1 = visu._width * disp.width() / (visu._width + (visu._depth > 1 ? visu._depth : 0)), h1 = visu._height * disp.height() / (visu._height + (visu._depth > 1 ? visu._depth : 0)); float frame_timing = 5; bool is_stopped = false; disp.set_key(key, false) .set_wheel() .resize(cimg_fitscreen(w1, h1, 1), false); key = 0; for (unsigned int timer = 0; !key && !disp.is_closed() && !disp.button();) { if (disp.is_resized()) disp.resize(false); if (!timer) { visu.get_slice((int)_XYZ[2]) .display(disp.set_title("%s | z=%d", dtitle.data(), _XYZ[2])); (++_XYZ[2]) %= visu._depth; } if (!is_stopped) { if (++timer > (unsigned int)frame_timing) timer = 0; } else timer = ~0U; if (disp.wheel()) { frame_timing -= disp.wheel() / 3.f; disp.set_wheel(); } switch (key = disp.key()) { #if cimg_OS != 2 case cimg::keyCTRLRIGHT: #endif case cimg::keyCTRLLEFT: key = 0; break; case cimg::keyPAGEUP: frame_timing -= 0.3f; key = 0; break; case cimg::keyPAGEDOWN: frame_timing += 0.3f; key = 0; break; case cimg::keySPACE: is_stopped = !is_stopped; disp.set_key(key, false); key = 0; break; case cimg::keyARROWLEFT: case cimg::keyARROWUP: is_stopped = true; timer = 0; key = 0; break; case cimg::keyARROWRIGHT: case cimg::keyARROWDOWN: is_stopped = true; (_XYZ[2] += visu._depth - 2) %= visu._depth; timer = 0; key = 0; break; case cimg::keyD: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false).resize( CImgDisplay::_fitscreen( 3 * disp.width() / 2, 3 * disp.height() / 2, 1, 128, -100, false), CImgDisplay::_fitscreen( 3 * disp.width() / 2, 3 * disp.height() / 2, 1, 128, -100, true), false); disp.set_key(key, false); key = 0; } break; case cimg::keyC: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize( cimg_fitscreen( 2 * disp.width() / 3, 2 * disp.height() / 3, 1), false) .set_key(key, false); key = 0; } break; case cimg::keyR: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize(cimg_fitscreen(_width, _height, _depth), false) .set_key(key, false); key = 0; } break; case cimg::keyF: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.resize(disp.screen_width(), disp.screen_height(), false) .toggle_fullscreen() .set_key(key, false); key = 0; } break; } frame_timing = frame_timing < 1 ? 1 : (frame_timing > 39 ? 39 : frame_timing); disp.wait(20); } const unsigned int w2 = (visu._width + (visu._depth > 1 ? visu._depth : 0)) * disp.width() / visu._width, h2 = (visu._height + (visu._depth > 1 ? visu._depth : 0)) * disp.height() / visu._height; disp.resize(cimg_fitscreen(w2, h2, 1), false) .set_title(dtitle.data()) .set_key() .set_button() .set_wheel(); key = 0; } break; case cimg::keyHOME: reset_view = resize_disp = true; key = 0; break; case cimg::keyPADADD: go_in = true; go_in_center = true; key = 0; break; case cimg::keyPADSUB: go_out = true; key = 0; break; case cimg::keyARROWLEFT: case cimg::keyPAD4: go_left = true; key = 0; break; case cimg::keyARROWRIGHT: case cimg::keyPAD6: go_right = true; key = 0; break; case cimg::keyARROWUP: case cimg::keyPAD8: go_up = true; key = 0; break; case cimg::keyARROWDOWN: case cimg::keyPAD2: go_down = true; key = 0; break; case cimg::keyPAD7: go_up = go_left = true; key = 0; break; case cimg::keyPAD9: go_up = go_right = true; key = 0; break; case cimg::keyPAD1: go_down = go_left = true; key = 0; break; case cimg::keyPAD3: go_down = go_right = true; key = 0; break; case cimg::keyPAGEUP: go_inc = true; key = 0; break; case cimg::keyPAGEDOWN: go_dec = true; key = 0; break; } if (go_in) { const int mx = go_in_center ? disp.width() / 2 : disp.mouse_x(), my = go_in_center ? disp.height() / 2 : disp.mouse_y(), mX = mx * (width() + (depth() > 1 ? depth() : 0)) / disp.width(), mY = my * (height() + (depth() > 1 ? depth() : 0)) / disp.height(); int X = (int)_XYZ[0], Y = (int)_XYZ[1], Z = (int)_XYZ[2]; if (mX < width() && mY < height()) { X = x0 + mX * (1 + x1 - x0) / width(); Y = y0 + mY * (1 + y1 - y0) / height(); } if (mX < width() && mY >= height()) { X = x0 + mX * (1 + x1 - x0) / width(); Z = z0 + (mY - height()) * (1 + z1 - z0) / depth(); } if (mX >= width() && mY < height()) { Y = y0 + mY * (1 + y1 - y0) / height(); Z = z0 + (mX - width()) * (1 + z1 - z0) / depth(); } if (x1 - x0 > 4) { x0 = X - 3 * (X - x0) / 4; x1 = X + 3 * (x1 - X) / 4; } if (y1 - y0 > 4) { y0 = Y - 3 * (Y - y0) / 4; y1 = Y + 3 * (y1 - Y) / 4; } if (z1 - z0 > 4) { z0 = Z - 3 * (Z - z0) / 4; z1 = Z + 3 * (z1 - Z) / 4; } } if (go_out) { const int delta_x = (x1 - x0) / 8, delta_y = (y1 - y0) / 8, delta_z = (z1 - z0) / 8, ndelta_x = delta_x ? delta_x : (_width > 1), ndelta_y = delta_y ? delta_y : (_height > 1), ndelta_z = delta_z ? delta_z : (_depth > 1); x0 -= ndelta_x; y0 -= ndelta_y; z0 -= ndelta_z; x1 += ndelta_x; y1 += ndelta_y; z1 += ndelta_z; if (x0 < 0) { x1 -= x0; x0 = 0; if (x1 >= width()) x1 = width() - 1; } if (y0 < 0) { y1 -= y0; y0 = 0; if (y1 >= height()) y1 = height() - 1; } if (z0 < 0) { z1 -= z0; z0 = 0; if (z1 >= depth()) z1 = depth() - 1; } if (x1 >= width()) { x0 -= (x1 - width() + 1); x1 = width() - 1; if (x0 < 0) x0 = 0; } if (y1 >= height()) { y0 -= (y1 - height() + 1); y1 = height() - 1; if (y0 < 0) y0 = 0; } if (z1 >= depth()) { z0 -= (z1 - depth() + 1); z1 = depth() - 1; if (z0 < 0) z0 = 0; } const float ratio = (float)(x1 - x0) / (y1 - y0), ratiow = (float)disp._width / disp._height, sub = std::min(cimg::abs(ratio - ratiow), cimg::abs(1 / ratio - 1 / ratiow)); if (sub > 0.01) resize_disp = true; } if (go_left) { const int delta = (x1 - x0) / 4, ndelta = delta ? delta : (_width > 1); if (x0 - ndelta >= 0) { x0 -= ndelta; x1 -= ndelta; } else { x1 -= x0; x0 = 0; } } if (go_right) { const int delta = (x1 - x0) / 4, ndelta = delta ? delta : (_width > 1); if (x1 + ndelta < width()) { x0 += ndelta; x1 += ndelta; } else { x0 += (width() - 1 - x1); x1 = width() - 1; } } if (go_up) { const int delta = (y1 - y0) / 4, ndelta = delta ? delta : (_height > 1); if (y0 - ndelta >= 0) { y0 -= ndelta; y1 -= ndelta; } else { y1 -= y0; y0 = 0; } } if (go_down) { const int delta = (y1 - y0) / 4, ndelta = delta ? delta : (_height > 1); if (y1 + ndelta < height()) { y0 += ndelta; y1 += ndelta; } else { y0 += (height() - 1 - y1); y1 = height() - 1; } } if (go_inc) { const int delta = (z1 - z0) / 4, ndelta = delta ? delta : (_depth > 1); if (z0 - ndelta >= 0) { z0 -= ndelta; z1 -= ndelta; } else { z1 -= z0; z0 = 0; } } if (go_dec) { const int delta = (z1 - z0) / 4, ndelta = delta ? delta : (_depth > 1); if (z1 + ndelta < depth()) { z0 += ndelta; z1 += ndelta; } else { z0 += (depth() - 1 - z1); z1 = depth() - 1; } } disp.wait(100); if (!exit_on_anykey && key && key != cimg::keyESC && (key != cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { key = 0; } } disp.set_key(key); if (XYZ) { XYZ[0] = _XYZ[0]; XYZ[1] = _XYZ[1]; XYZ[2] = _XYZ[2]; } return *this; } //! Display object 3D in an interactive window. /** \param disp Display window. \param vertices Vertices data of the 3D object. \param primitives Primitives data of the 3D object. \param colors Colors data of the 3D object. \param opacities Opacities data of the 3D object. \param centering Tells if the 3D object must be centered for the display. \param render_static Rendering mode. \param render_motion Rendering mode, when the 3D object is moved. \param is_double_sided Tells if the object primitives are double-sided. \param focale Focale \param light_x X-coordinate of the light source. \param light_y Y-coordinate of the light source. \param light_z Z-coordinate of the light source. \param specular_lightness Amount of specular light. \param specular_shininess Shininess of the object material. \param display_axes Tells if the 3D axes are displayed. \param pose_matrix Pointer to 12 values, defining a 3D pose (as a 4x3 matrix). \param exit_on_anykey Exit function when any key is pressed. **/ template const CImg& display_object3d( CImgDisplay& disp, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const to& opacities, const bool centering = true, const int render_static = 4, const int render_motion = 1, const bool is_double_sided = true, const float focale = 700, const float light_x = 0, const float light_y = 0, const float light_z = -5e8f, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const bool display_axes = true, float* const pose_matrix = 0, const bool exit_on_anykey = false) const { return _display_object3d( disp, 0, vertices, primitives, colors, opacities, centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); } //! Display object 3D in an interactive window \simplification. template const CImg& display_object3d( const char* const title, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const to& opacities, const bool centering = true, const int render_static = 4, const int render_motion = 1, const bool is_double_sided = true, const float focale = 700, const float light_x = 0, const float light_y = 0, const float light_z = -5e8f, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const bool display_axes = true, float* const pose_matrix = 0, const bool exit_on_anykey = false) const { CImgDisplay disp; return _display_object3d( disp, title, vertices, primitives, colors, opacities, centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); } //! Display object 3D in an interactive window \simplification. template const CImg& display_object3d( CImgDisplay& disp, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const bool centering = true, const int render_static = 4, const int render_motion = 1, const bool is_double_sided = true, const float focale = 700, const float light_x = 0, const float light_y = 0, const float light_z = -5e8f, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const bool display_axes = true, float* const pose_matrix = 0, const bool exit_on_anykey = false) const { return display_object3d( disp, vertices, primitives, colors, CImgList(), centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); } //! Display object 3D in an interactive window \simplification. template const CImg& display_object3d( const char* const title, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const bool centering = true, const int render_static = 4, const int render_motion = 1, const bool is_double_sided = true, const float focale = 700, const float light_x = 0, const float light_y = 0, const float light_z = -5e8f, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const bool display_axes = true, float* const pose_matrix = 0, const bool exit_on_anykey = false) const { return display_object3d( title, vertices, primitives, colors, CImgList(), centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); } //! Display object 3D in an interactive window \simplification. template const CImg& display_object3d( CImgDisplay& disp, const CImg& vertices, const CImgList& primitives, const bool centering = true, const int render_static = 4, const int render_motion = 1, const bool is_double_sided = true, const float focale = 700, const float light_x = 0, const float light_y = 0, const float light_z = -5e8f, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const bool display_axes = true, float* const pose_matrix = 0, const bool exit_on_anykey = false) const { return display_object3d(disp, vertices, primitives, CImgList(), centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); } //! Display object 3D in an interactive window \simplification. template const CImg& display_object3d( const char* const title, const CImg& vertices, const CImgList& primitives, const bool centering = true, const int render_static = 4, const int render_motion = 1, const bool is_double_sided = true, const float focale = 700, const float light_x = 0, const float light_y = 0, const float light_z = -5e8f, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const bool display_axes = true, float* const pose_matrix = 0, const bool exit_on_anykey = false) const { return display_object3d(title, vertices, primitives, CImgList(), centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); } //! Display object 3D in an interactive window \simplification. template const CImg& display_object3d( CImgDisplay& disp, const CImg& vertices, const bool centering = true, const int render_static = 4, const int render_motion = 1, const bool is_double_sided = true, const float focale = 700, const float light_x = 0, const float light_y = 0, const float light_z = -5e8f, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const bool display_axes = true, float* const pose_matrix = 0, const bool exit_on_anykey = false) const { return display_object3d(disp, vertices, CImgList(), centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); } //! Display object 3D in an interactive window \simplification. template const CImg& display_object3d( const char* const title, const CImg& vertices, const bool centering = true, const int render_static = 4, const int render_motion = 1, const bool is_double_sided = true, const float focale = 700, const float light_x = 0, const float light_y = 0, const float light_z = -5e8f, const float specular_lightness = 0.2f, const float specular_shininess = 0.1f, const bool display_axes = true, float* const pose_matrix = 0, const bool exit_on_anykey = false) const { return display_object3d(title, vertices, CImgList(), centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); } template const CImg& _display_object3d( CImgDisplay& disp, const char* const title, const CImg& vertices, const CImgList& primitives, const CImgList& colors, const to& opacities, const bool centering, const int render_static, const int render_motion, const bool is_double_sided, const float focale, const float light_x, const float light_y, const float light_z, const float specular_lightness, const float specular_shininess, const bool display_axes, float* const pose_matrix, const bool exit_on_anykey) const { typedef typename cimg::superset::type tpfloat; // Check input arguments if (is_empty()) { if (disp) return CImg(disp.width(), disp.height(), 1, (colors && colors[0].size() == 1) ? 1 : 3, 0) ._display_object3d( disp, title, vertices, primitives, colors, opacities, centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); else return CImg(1, 2, 1, 1, 64, 128) .resize(cimg_fitscreen(CImgDisplay::screen_width() / 2, CImgDisplay::screen_height() / 2, 1), 1, (colors && colors[0].size() == 1) ? 1 : 3, 3) ._display_object3d( disp, title, vertices, primitives, colors, opacities, centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); } else { if (disp) disp.resize(*this, false); } CImg error_message(1024); if (!vertices.is_object3d(primitives, colors, opacities, true, error_message)) throw CImgArgumentException( _cimg_instance "display_object3d(): Invalid specified 3D object (%u,%u) (%s).", cimg_instance, vertices._width, primitives._width, error_message.data()); if (vertices._width && !primitives) { CImgList nprimitives(vertices._width, 1, 1, 1, 1); cimglist_for(nprimitives, l) nprimitives(l, 0) = (tf)l; return _display_object3d( disp, title, vertices, nprimitives, colors, opacities, centering, render_static, render_motion, is_double_sided, focale, light_x, light_y, light_z, specular_lightness, specular_shininess, display_axes, pose_matrix, exit_on_anykey); } if (!disp) { disp.assign(cimg_fitscreen(_width, _height, _depth), title ? title : 0, 3); if (!title) disp.set_title("CImg<%s> (%u vertices, %u primitives)", pixel_type(), vertices._width, primitives._width); } else if (title) disp.set_title("%s", title); // Init 3D objects and compute object statistics CImg pose, rotated_vertices(vertices._width, 3), bbox_vertices, rotated_bbox_vertices, axes_vertices, rotated_axes_vertices, bbox_opacities, axes_opacities; CImgList bbox_primitives, axes_primitives; CImgList reverse_primitives; CImgList bbox_colors, bbox_colors2, axes_colors; unsigned int ns_width = 0, ns_height = 0; int _is_double_sided = (int)is_double_sided; bool ndisplay_axes = display_axes; const CImg background_color(1, 1, 1, _spectrum, 0), foreground_color(1, 1, 1, _spectrum, (T)std::min((int)cimg::type::max(), 255)); float Xoff = 0, Yoff = 0, Zoff = 0, sprite_scale = 1, xm = 0, xM = vertices ? vertices.get_shared_row(0).max_min(xm) : 0, ym = 0, yM = vertices ? vertices.get_shared_row(1).max_min(ym) : 0, zm = 0, zM = vertices ? vertices.get_shared_row(2).max_min(zm) : 0; const float delta = cimg::max(xM - xm, yM - ym, zM - zm); rotated_bbox_vertices = bbox_vertices.assign( 8, 3, 1, 1, xm, xM, xM, xm, xm, xM, xM, xm, ym, ym, yM, yM, ym, ym, yM, yM, zm, zm, zm, zm, zM, zM, zM, zM); bbox_primitives.assign(6, 1, 4, 1, 1, 0, 3, 2, 1, 4, 5, 6, 7, 1, 2, 6, 5, 0, 4, 7, 3, 0, 1, 5, 4, 2, 3, 7, 6); bbox_colors.assign(6, _spectrum, 1, 1, 1, background_color[0]); bbox_colors2.assign(6, _spectrum, 1, 1, 1, foreground_color[0]); bbox_opacities.assign(bbox_colors._width, 1, 1, 1, 0.3f); rotated_axes_vertices = axes_vertices.assign(7, 3, 1, 1, 0, 20, 0, 0, 22, -6, -6, 0, 0, 20, 0, -6, 22, -6, 0, 0, 0, 20, 0, 0, 22); axes_opacities.assign(3, 1, 1, 1, 1); axes_colors.assign(3, _spectrum, 1, 1, 1, foreground_color[0]); axes_primitives.assign(3, 1, 2, 1, 1, 0, 1, 0, 2, 0, 3); // Begin user interaction loop CImg visu0(*this, false), visu; CImg zbuffer(visu0.width(), visu0.height(), 1, 1, 0); bool init_pose = true, clicked = false, redraw = true; unsigned int key = 0; int x0 = 0, y0 = 0, x1 = 0, y1 = 0, nrender_static = render_static, nrender_motion = render_motion; disp.show().flush(); while (!disp.is_closed() && !key) { // Init object pose if (init_pose) { const float ratio = delta > 0 ? (2.f * std::min(disp.width(), disp.height()) / (3.f * delta)) : 1, dx = (xM + xm) / 2, dy = (yM + ym) / 2, dz = (zM + zm) / 2; if (centering) CImg(4, 3, 1, 1, ratio, 0., 0., -ratio * dx, 0., ratio, 0., -ratio * dy, 0., 0., ratio, -ratio * dz) .move_to(pose); else CImg(4, 3, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0) .move_to(pose); if (pose_matrix) { CImg pose0(pose_matrix, 4, 3, 1, 1, false); pose0.resize(4, 4, 1, 1, 0); pose.resize(4, 4, 1, 1, 0); pose0(3, 3) = pose(3, 3) = 1; (pose0 * pose).get_crop(0, 0, 3, 2).move_to(pose); Xoff = pose_matrix[12]; Yoff = pose_matrix[13]; Zoff = pose_matrix[14]; sprite_scale = pose_matrix[15]; } else { Xoff = Yoff = Zoff = 0; sprite_scale = 1; } init_pose = false; redraw = true; } // Rotate and draw 3D object if (redraw) { const float r00 = pose(0, 0), r10 = pose(1, 0), r20 = pose(2, 0), r30 = pose(3, 0), r01 = pose(0, 1), r11 = pose(1, 1), r21 = pose(2, 1), r31 = pose(3, 1), r02 = pose(0, 2), r12 = pose(1, 2), r22 = pose(2, 2), r32 = pose(3, 2); if ((clicked && nrender_motion >= 0) || (!clicked && nrender_static >= 0)) cimg_forX(vertices, l) { const float x = (float)vertices(l, 0), y = (float)vertices(l, 1), z = (float)vertices(l, 2); rotated_vertices(l, 0) = r00 * x + r10 * y + r20 * z + r30; rotated_vertices(l, 1) = r01 * x + r11 * y + r21 * z + r31; rotated_vertices(l, 2) = r02 * x + r12 * y + r22 * z + r32; } else cimg_forX(bbox_vertices, l) { const float x = bbox_vertices(l, 0), y = bbox_vertices(l, 1), z = bbox_vertices(l, 2); rotated_bbox_vertices(l, 0) = r00 * x + r10 * y + r20 * z + r30; rotated_bbox_vertices(l, 1) = r01 * x + r11 * y + r21 * z + r31; rotated_bbox_vertices(l, 2) = r02 * x + r12 * y + r22 * z + r32; } // Draw objects const bool render_with_zbuffer = !clicked && nrender_static > 0; visu = visu0; if ((clicked && nrender_motion < 0) || (!clicked && nrender_static < 0)) visu.draw_object3d( Xoff + visu._width / 2.f, Yoff + visu._height / 2.f, Zoff, rotated_bbox_vertices, bbox_primitives, bbox_colors, bbox_opacities, 2, false, focale) .draw_object3d(Xoff + visu._width / 2.f, Yoff + visu._height / 2.f, Zoff, rotated_bbox_vertices, bbox_primitives, bbox_colors2, 1, false, focale); else visu._draw_object3d( (void*)0, render_with_zbuffer ? zbuffer.fill(0) : CImg::empty(), Xoff + visu._width / 2.f, Yoff + visu._height / 2.f, Zoff, rotated_vertices, reverse_primitives ? reverse_primitives : primitives, colors, opacities, clicked ? nrender_motion : nrender_static, _is_double_sided == 1, focale, width() / 2.f + light_x, height() / 2.f + light_y, light_z + Zoff, specular_lightness, specular_shininess, 1, sprite_scale); // Draw axes if (ndisplay_axes) { const float n = 1e-8f + cimg::hypot(r00, r01, r02), _r00 = r00 / n, _r10 = r10 / n, _r20 = r20 / n, _r01 = r01 / n, _r11 = r11 / n, _r21 = r21 / n, _r02 = r01 / n, _r12 = r12 / n, _r22 = r22 / n, Xaxes = 25, Yaxes = visu._height - 38.f; cimg_forX(axes_vertices, l) { const float x = axes_vertices(l, 0), y = axes_vertices(l, 1), z = axes_vertices(l, 2); rotated_axes_vertices(l, 0) = _r00 * x + _r10 * y + _r20 * z; rotated_axes_vertices(l, 1) = _r01 * x + _r11 * y + _r21 * z; rotated_axes_vertices(l, 2) = _r02 * x + _r12 * y + _r22 * z; } axes_opacities(0, 0) = (rotated_axes_vertices(1, 2) > 0) ? 0.5f : 1.f; axes_opacities(1, 0) = (rotated_axes_vertices(2, 2) > 0) ? 0.5f : 1.f; axes_opacities(2, 0) = (rotated_axes_vertices(3, 2) > 0) ? 0.5f : 1.f; visu.draw_object3d(Xaxes, Yaxes, 0, rotated_axes_vertices, axes_primitives, axes_colors, axes_opacities, 1, false, focale) .draw_text((int)(Xaxes + rotated_axes_vertices(4, 0)), (int)(Yaxes + rotated_axes_vertices(4, 1)), "X", axes_colors[0]._data, 0, axes_opacities(0, 0), 13) .draw_text((int)(Xaxes + rotated_axes_vertices(5, 0)), (int)(Yaxes + rotated_axes_vertices(5, 1)), "Y", axes_colors[1]._data, 0, axes_opacities(1, 0), 13) .draw_text((int)(Xaxes + rotated_axes_vertices(6, 0)), (int)(Yaxes + rotated_axes_vertices(6, 1)), "Z", axes_colors[2]._data, 0, axes_opacities(2, 0), 13); } visu.display(disp); if (!clicked || nrender_motion == nrender_static) redraw = false; } // Handle user interaction disp.wait(); if ((disp.button() || disp.wheel()) && disp.mouse_x() >= 0 && disp.mouse_y() >= 0) { redraw = true; if (!clicked) { x0 = x1 = disp.mouse_x(); y0 = y1 = disp.mouse_y(); if (!disp.wheel()) clicked = true; } else { x1 = disp.mouse_x(); y1 = disp.mouse_y(); } if (disp.button() & 1) { const float R = 0.45f * std::min(disp.width(), disp.height()), R2 = R * R, u0 = (float)(x0 - disp.width() / 2), v0 = (float)(y0 - disp.height() / 2), u1 = (float)(x1 - disp.width() / 2), v1 = (float)(y1 - disp.height() / 2), n0 = cimg::hypot(u0, v0), n1 = cimg::hypot(u1, v1), nu0 = n0 > R ? (u0 * R / n0) : u0, nv0 = n0 > R ? (v0 * R / n0) : v0, nw0 = (float)std::sqrt( std::max(0.f, R2 - nu0 * nu0 - nv0 * nv0)), nu1 = n1 > R ? (u1 * R / n1) : u1, nv1 = n1 > R ? (v1 * R / n1) : v1, nw1 = (float)std::sqrt( std::max(0.f, R2 - nu1 * nu1 - nv1 * nv1)), u = nv0 * nw1 - nw0 * nv1, v = nw0 * nu1 - nu0 * nw1, w = nv0 * nu1 - nu0 * nv1, n = cimg::hypot(u, v, w), alpha = (float)std::asin(n / R2) * 180 / cimg::PI; (CImg::rotation_matrix(u, v, w, -alpha) * pose) .move_to(pose); x0 = x1; y0 = y1; } if (disp.button() & 2) { if (focale > 0) Zoff -= (y0 - y1) * focale / 400; else { const float s = std::exp((y0 - y1) / 400.f); pose *= s; sprite_scale *= s; } x0 = x1; y0 = y1; } if (disp.wheel()) { if (focale > 0) Zoff -= disp.wheel() * focale / 20; else { const float s = std::exp(disp.wheel() / 20.f); pose *= s; sprite_scale *= s; } disp.set_wheel(); } if (disp.button() & 4) { Xoff += (x1 - x0); Yoff += (y1 - y0); x0 = x1; y0 = y1; } if ((disp.button() & 1) && (disp.button() & 2)) { init_pose = true; disp.set_button(); x0 = x1; y0 = y1; pose = CImg(4, 3, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0); } } else if (clicked) { x0 = x1; y0 = y1; clicked = false; redraw = true; } CImg filename(32); switch (key = disp.key()) { #if cimg_OS != 2 case cimg::keyCTRLRIGHT: #endif case 0: case cimg::keyCTRLLEFT: key = 0; break; case cimg::keyD: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize( CImgDisplay::_fitscreen(3 * disp.width() / 2, 3 * disp.height() / 2, 1, 128, -100, false), CImgDisplay::_fitscreen(3 * disp.width() / 2, 3 * disp.height() / 2, 1, 128, -100, true), false) ._is_resized = true; disp.set_key(key, false); key = 0; } break; case cimg::keyC: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize(cimg_fitscreen(2 * disp.width() / 3, 2 * disp.height() / 3, 1), false) ._is_resized = true; disp.set_key(key, false); key = 0; } break; case cimg::keyR: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize(cimg_fitscreen(_width, _height, _depth), false) ._is_resized = true; disp.set_key(key, false); key = 0; } break; case cimg::keyF: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { if (!ns_width || !ns_height || ns_width > (unsigned int)disp.screen_width() || ns_height > (unsigned int)disp.screen_height()) { ns_width = disp.screen_width() * 3U / 4; ns_height = disp.screen_height() * 3U / 4; } if (disp.is_fullscreen()) disp.resize(ns_width, ns_height, false); else { ns_width = disp._width; ns_height = disp._height; disp.resize(disp.screen_width(), disp.screen_height(), false); } disp.toggle_fullscreen()._is_resized = true; disp.set_key(key, false); key = 0; } break; case cimg::keyT: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Switch single/double-sided primitives. if (--_is_double_sided == -2) _is_double_sided = 1; if (_is_double_sided >= 0) reverse_primitives.assign(); else primitives.get_reverse_object3d().move_to( reverse_primitives); disp.set_key(key, false); key = 0; redraw = true; } break; case cimg::keyZ: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Enable/disable Z-buffer if (zbuffer) zbuffer.assign(); else zbuffer.assign(visu0.width(), visu0.height(), 1, 1, 0); disp.set_key(key, false); key = 0; redraw = true; } break; case cimg::keyX: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Show/hide 3D axes ndisplay_axes = !ndisplay_axes; disp.set_key(key, false); key = 0; redraw = true; } break; case cimg::keyF1: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to // points nrender_motion = (nrender_static == 0 && nrender_motion != 0) ? 0 : -1; nrender_static = 0; disp.set_key(key, false); key = 0; redraw = true; } break; case cimg::keyF2: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to // lines nrender_motion = (nrender_static == 1 && nrender_motion != 1) ? 1 : -1; nrender_static = 1; disp.set_key(key, false); key = 0; redraw = true; } break; case cimg::keyF3: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to flat nrender_motion = (nrender_static == 2 && nrender_motion != 2) ? 2 : -1; nrender_static = 2; disp.set_key(key, false); key = 0; redraw = true; } break; case cimg::keyF4: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to // flat-shaded nrender_motion = (nrender_static == 3 && nrender_motion != 3) ? 3 : -1; nrender_static = 3; disp.set_key(key, false); key = 0; redraw = true; } break; case cimg::keyF5: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to gouraud-shaded. nrender_motion = (nrender_static == 4 && nrender_motion != 4) ? 4 : -1; nrender_static = 4; disp.set_key(key, false); key = 0; redraw = true; } break; case cimg::keyF6: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to // phong-shaded nrender_motion = (nrender_static == 5 && nrender_motion != 5) ? 5 : -1; nrender_static = 5; disp.set_key(key, false); key = 0; redraw = true; } break; case cimg::keyS: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save snapshot static unsigned int snap_number = 0; std::FILE* file; do { cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.bmp", snap_number++); if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); (+visu) .__draw_text(" Saving snapshot... ", 0) .display(disp); visu.save(filename); (+visu) .__draw_text(" Snapshot '%s' saved. ", 0, filename._data) .display(disp); disp.set_key(key, false); key = 0; } break; case cimg::keyG: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .off file static unsigned int snap_number = 0; std::FILE* file; do { cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.off", snap_number++); if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); (+visu) .__draw_text(" Saving object... ", 0) .display(disp); vertices.save_off(reverse_primitives ? reverse_primitives : primitives, colors, filename); (+visu) .__draw_text(" Object '%s' saved. ", 0, filename._data) .display(disp); disp.set_key(key, false); key = 0; } break; case cimg::keyO: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .cimg // file static unsigned int snap_number = 0; std::FILE* file; do { #ifdef cimg_use_zlib cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.cimgz", snap_number++); #else cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.cimg", snap_number++); #endif if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); (+visu) .__draw_text(" Saving object... ", 0) .display(disp); vertices .get_object3dtoCImg3d(reverse_primitives ? reverse_primitives : primitives, colors, opacities) .save(filename); (+visu) .__draw_text(" Object '%s' saved. ", 0, filename._data) .display(disp); disp.set_key(key, false); key = 0; } break; #ifdef cimg_use_board case cimg::keyP: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .EPS file static unsigned int snap_number = 0; std::FILE* file; do { cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.eps", snap_number++); if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); (+visu) .__draw_text(" Saving EPS snapshot... ", 0) .display(disp); LibBoard::Board board; (+visu)._draw_object3d( &board, zbuffer.fill(0), Xoff + visu._width / 2.f, Yoff + visu._height / 2.f, Zoff, rotated_vertices, reverse_primitives ? reverse_primitives : primitives, colors, opacities, clicked ? nrender_motion : nrender_static, _is_double_sided == 1, focale, visu.width() / 2.f + light_x, visu.height() / 2.f + light_y, light_z + Zoff, specular_lightness, specular_shininess, 1, sprite_scale); board.saveEPS(filename); (+visu) .__draw_text(" Object '%s' saved. ", 0, filename._data) .display(disp); disp.set_key(key, false); key = 0; } break; case cimg::keyV: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .SVG file static unsigned int snap_number = 0; std::FILE* file; do { cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.svg", snap_number++); if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); (+visu) .__draw_text(" Saving SVG snapshot... ", 0, 13) .display(disp); LibBoard::Board board; (+visu)._draw_object3d( &board, zbuffer.fill(0), Xoff + visu._width / 2.f, Yoff + visu._height / 2.f, Zoff, rotated_vertices, reverse_primitives ? reverse_primitives : primitives, colors, opacities, clicked ? nrender_motion : nrender_static, _is_double_sided == 1, focale, visu.width() / 2.f + light_x, visu.height() / 2.f + light_y, light_z + Zoff, specular_lightness, specular_shininess, 1, sprite_scale); board.saveSVG(filename); (+visu) .__draw_text(" Object '%s' saved. ", 0, filename._data) .display(disp); disp.set_key(key, false); key = 0; } break; #endif } if (disp.is_resized()) { disp.resize(false); visu0 = get_resize(disp, 1); if (zbuffer) zbuffer.assign(disp.width(), disp.height()); redraw = true; } if (!exit_on_anykey && key && key != cimg::keyESC && (key != cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { key = 0; } } if (pose_matrix) { std::memcpy(pose_matrix, pose._data, 12 * sizeof(float)); pose_matrix[12] = Xoff; pose_matrix[13] = Yoff; pose_matrix[14] = Zoff; pose_matrix[15] = sprite_scale; } disp.set_button().set_key(key); return *this; } //! Display 1D graph in an interactive window. /** \param disp Display window. \param plot_type Plot type. Can be { 0=points | 1=segments | 2=splines | 3=bars }. \param vertex_type Vertex type. \param labelx Title for the horizontal axis, as a C-string. \param xmin Minimum value along the X-axis. \param xmax Maximum value along the X-axis. \param labely Title for the vertical axis, as a C-string. \param ymin Minimum value along the X-axis. \param ymax Maximum value along the X-axis. \param exit_on_anykey Exit function when any key is pressed. **/ const CImg& display_graph(CImgDisplay& disp, const unsigned int plot_type = 1, const unsigned int vertex_type = 1, const char* const labelx = 0, const double xmin = 0, const double xmax = 0, const char* const labely = 0, const double ymin = 0, const double ymax = 0, const bool exit_on_anykey = false) const { return _display_graph(disp, 0, plot_type, vertex_type, labelx, xmin, xmax, labely, ymin, ymax, exit_on_anykey); } //! Display 1D graph in an interactive window \overloading. const CImg& display_graph(const char* const title = 0, const unsigned int plot_type = 1, const unsigned int vertex_type = 1, const char* const labelx = 0, const double xmin = 0, const double xmax = 0, const char* const labely = 0, const double ymin = 0, const double ymax = 0, const bool exit_on_anykey = false) const { CImgDisplay disp; return _display_graph(disp, title, plot_type, vertex_type, labelx, xmin, xmax, labely, ymin, ymax, exit_on_anykey); } const CImg& _display_graph(CImgDisplay& disp, const char* const title = 0, const unsigned int plot_type = 1, const unsigned int vertex_type = 1, const char* const labelx = 0, const double xmin = 0, const double xmax = 0, const char* const labely = 0, const double ymin = 0, const double ymax = 0, const bool exit_on_anykey = false) const { if (is_empty()) throw CImgInstanceException(_cimg_instance "display_graph(): Empty instance.", cimg_instance); if (!disp) disp.assign(cimg_fitscreen(CImgDisplay::screen_width() / 2, CImgDisplay::screen_height() / 2, 1), 0, 0) .set_title(title ? "%s" : "CImg<%s>", title ? title : pixel_type()); const ulongT siz = (ulongT)_width * _height * _depth, siz1 = std::max((ulongT)1, siz - 1); const unsigned int old_normalization = disp.normalization(); disp.show().flush()._normalization = 0; double y0 = ymin, y1 = ymax, nxmin = xmin, nxmax = xmax; if (nxmin == nxmax) { nxmin = 0; nxmax = siz1; } int x0 = 0, x1 = width() * height() * depth() - 1, key = 0; for (bool reset_view = true; !key && !disp.is_closed();) { if (reset_view) { x0 = 0; x1 = width() * height() * depth() - 1; y0 = ymin; y1 = ymax; reset_view = false; } CImg zoom(x1 - x0 + 1, 1, 1, spectrum()); cimg_forC(*this, c) zoom.get_shared_channel(c) = CImg(data(x0, 0, 0, c), x1 - x0 + 1, 1, 1, 1, true); if (y0 == y1) { y0 = zoom.min_max(y1); const double dy = y1 - y0; y0 -= dy / 20; y1 += dy / 20; } if (y0 == y1) { --y0; ++y1; } const CImg selection = zoom.get_select_graph( disp, plot_type, vertex_type, labelx, nxmin + x0 * (nxmax - nxmin) / siz1, nxmin + x1 * (nxmax - nxmin) / siz1, labely, y0, y1, true); const int mouse_x = disp.mouse_x(), mouse_y = disp.mouse_y(); if (selection[0] >= 0) { if (selection[2] < 0) reset_view = true; else { x1 = x0 + selection[2]; x0 += selection[0]; if (selection[1] >= 0 && selection[3] >= 0) { y0 = y1 - selection[3] * (y1 - y0) / (disp.height() - 32); y1 -= selection[1] * (y1 - y0) / (disp.height() - 32); } } } else { bool go_in = false, go_out = false, go_left = false, go_right = false, go_up = false, go_down = false; switch (key = (int)disp.key()) { case cimg::keyHOME: reset_view = true; key = 0; disp.set_key(); break; case cimg::keyPADADD: go_in = true; go_out = false; key = 0; disp.set_key(); break; case cimg::keyPADSUB: go_out = true; go_in = false; key = 0; disp.set_key(); break; case cimg::keyARROWLEFT: case cimg::keyPAD4: go_left = true; go_right = false; key = 0; disp.set_key(); break; case cimg::keyARROWRIGHT: case cimg::keyPAD6: go_right = true; go_left = false; key = 0; disp.set_key(); break; case cimg::keyARROWUP: case cimg::keyPAD8: go_up = true; go_down = false; key = 0; disp.set_key(); break; case cimg::keyARROWDOWN: case cimg::keyPAD2: go_down = true; go_up = false; key = 0; disp.set_key(); break; case cimg::keyPAD7: go_left = true; go_up = true; key = 0; disp.set_key(); break; case cimg::keyPAD9: go_right = true; go_up = true; key = 0; disp.set_key(); break; case cimg::keyPAD1: go_left = true; go_down = true; key = 0; disp.set_key(); break; case cimg::keyPAD3: go_right = true; go_down = true; key = 0; disp.set_key(); break; } if (disp.wheel()) { if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) go_up = !(go_down = disp.wheel() < 0); else if (disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT()) go_left = !(go_right = disp.wheel() > 0); else go_out = !(go_in = disp.wheel() > 0); key = 0; } if (go_in) { const int xsiz = x1 - x0, mx = (mouse_x - 16) * xsiz / (disp.width() - 32), cx = x0 + cimg::cut(mx, 0, xsiz); if (x1 - x0 > 4) { x0 = cx - 7 * (cx - x0) / 8; x1 = cx + 7 * (x1 - cx) / 8; if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { const double ysiz = y1 - y0, my = (mouse_y - 16) * ysiz / (disp.height() - 32), cy = y1 - cimg::cut(my, 0., ysiz); y0 = cy - 7 * (cy - y0) / 8; y1 = cy + 7 * (y1 - cy) / 8; } else y0 = y1 = 0; } } if (go_out) { if (x0 > 0 || x1 < (int)siz1) { const int delta_x = (x1 - x0) / 8, ndelta_x = delta_x ? delta_x : (siz > 1); const double ndelta_y = (y1 - y0) / 8; x0 -= ndelta_x; x1 += ndelta_x; y0 -= ndelta_y; y1 += ndelta_y; if (x0 < 0) { x1 -= x0; x0 = 0; if (x1 >= (int)siz) x1 = (int)siz1; } if (x1 >= (int)siz) { x0 -= (x1 - siz1); x1 = (int)siz1; if (x0 < 0) x0 = 0; } } } if (go_left) { const int delta = (x1 - x0) / 5, ndelta = delta ? delta : 1; if (x0 - ndelta >= 0) { x0 -= ndelta; x1 -= ndelta; } else { x1 -= x0; x0 = 0; } go_left = false; } if (go_right) { const int delta = (x1 - x0) / 5, ndelta = delta ? delta : 1; if (x1 + ndelta < (int)siz) { x0 += ndelta; x1 += ndelta; } else { x0 += (siz1 - x1); x1 = (int)siz1; } go_right = false; } if (go_up) { const double delta = (y1 - y0) / 10, ndelta = delta ? delta : 1; y0 += ndelta; y1 += ndelta; go_up = false; } if (go_down) { const double delta = (y1 - y0) / 10, ndelta = delta ? delta : 1; y0 -= ndelta; y1 -= ndelta; go_down = false; } } if (!exit_on_anykey && key && key != (int)cimg::keyESC && (key != (int)cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { disp.set_key(key, false); key = 0; } } disp._normalization = old_normalization; return *this; } //! Save image as a file. /** \param filename Filename, as a C-string. \param number When positive, represents an index added to the filename. Otherwise, no number is added. \param digits Number of digits used for adding the number to the filename. \note - The used file format is defined by the file extension in the filename \p filename. - Parameter \p number can be used to add a 6-digit number to the filename before saving. **/ const CImg& save(const char* const filename, const int number = -1, const unsigned int digits = 6) const { if (!filename) throw CImgArgumentException(_cimg_instance "save(): Specified filename is (null).", cimg_instance); // Do not test for empty instances, since .cimg format is able to manage // empty instances. const bool is_stdout = *filename == '-' && (!filename[1] || filename[1] == '.'); const char* const ext = cimg::split_filename(filename); CImg nfilename(1024); const char* const fn = is_stdout ? filename : (number >= 0) ? cimg::number_filename(filename, number, digits, nfilename) : filename; #ifdef cimg_save_plugin cimg_save_plugin(fn); #endif #ifdef cimg_save_plugin1 cimg_save_plugin1(fn); #endif #ifdef cimg_save_plugin2 cimg_save_plugin2(fn); #endif #ifdef cimg_save_plugin3 cimg_save_plugin3(fn); #endif #ifdef cimg_save_plugin4 cimg_save_plugin4(fn); #endif #ifdef cimg_save_plugin5 cimg_save_plugin5(fn); #endif #ifdef cimg_save_plugin6 cimg_save_plugin6(fn); #endif #ifdef cimg_save_plugin7 cimg_save_plugin7(fn); #endif #ifdef cimg_save_plugin8 cimg_save_plugin8(fn); #endif // Ascii formats if (!cimg::strcasecmp(ext, "asc")) return save_ascii(fn); else if (!cimg::strcasecmp(ext, "dlm") || !cimg::strcasecmp(ext, "txt")) return save_dlm(fn); else if (!cimg::strcasecmp(ext, "cpp") || !cimg::strcasecmp(ext, "hpp") || !cimg::strcasecmp(ext, "h") || !cimg::strcasecmp(ext, "c")) return save_cpp(fn); // 2D binary formats else if (!cimg::strcasecmp(ext, "bmp")) return save_bmp(fn); else if (!cimg::strcasecmp(ext, "jpg") || !cimg::strcasecmp(ext, "jpeg") || !cimg::strcasecmp(ext, "jpe") || !cimg::strcasecmp(ext, "jfif") || !cimg::strcasecmp(ext, "jif")) return save_jpeg(fn); else if (!cimg::strcasecmp(ext, "rgb")) return save_rgb(fn); else if (!cimg::strcasecmp(ext, "rgba")) return save_rgba(fn); else if (!cimg::strcasecmp(ext, "png")) return save_png(fn); else if (!cimg::strcasecmp(ext, "pgm") || !cimg::strcasecmp(ext, "ppm") || !cimg::strcasecmp(ext, "pnm")) return save_pnm(fn); else if (!cimg::strcasecmp(ext, "pnk")) return save_pnk(fn); else if (!cimg::strcasecmp(ext, "pfm")) return save_pfm(fn); else if (!cimg::strcasecmp(ext, "exr")) return save_exr(fn); else if (!cimg::strcasecmp(ext, "tif") || !cimg::strcasecmp(ext, "tiff")) return save_tiff(fn); // 3D binary formats else if (!*ext) { #ifdef cimg_use_zlib return save_cimg(fn, true); #else return save_cimg(fn, false); #endif } else if (!cimg::strcasecmp(ext, "cimgz")) return save_cimg(fn, true); else if (!cimg::strcasecmp(ext, "cimg")) return save_cimg(fn, false); else if (!cimg::strcasecmp(ext, "dcm")) return save_medcon_external(fn); else if (!cimg::strcasecmp(ext, "hdr") || !cimg::strcasecmp(ext, "nii")) return save_analyze(fn); else if (!cimg::strcasecmp(ext, "inr")) return save_inr(fn); else if (!cimg::strcasecmp(ext, "mnc")) return save_minc2(fn); else if (!cimg::strcasecmp(ext, "pan")) return save_pandore(fn); else if (!cimg::strcasecmp(ext, "raw")) return save_raw(fn); // Archive files else if (!cimg::strcasecmp(ext, "gz")) return save_gzip_external(fn); // Image sequences else if (!cimg::strcasecmp(ext, "yuv")) return save_yuv(fn, 444, true); else if (!cimg::strcasecmp(ext, "avi") || !cimg::strcasecmp(ext, "mov") || !cimg::strcasecmp(ext, "asf") || !cimg::strcasecmp(ext, "divx") || !cimg::strcasecmp(ext, "flv") || !cimg::strcasecmp(ext, "mpg") || !cimg::strcasecmp(ext, "m1v") || !cimg::strcasecmp(ext, "m2v") || !cimg::strcasecmp(ext, "m4v") || !cimg::strcasecmp(ext, "mjp") || !cimg::strcasecmp(ext, "mp4") || !cimg::strcasecmp(ext, "mkv") || !cimg::strcasecmp(ext, "mpe") || !cimg::strcasecmp(ext, "movie") || !cimg::strcasecmp(ext, "ogm") || !cimg::strcasecmp(ext, "ogg") || !cimg::strcasecmp(ext, "ogv") || !cimg::strcasecmp(ext, "qt") || !cimg::strcasecmp(ext, "rm") || !cimg::strcasecmp(ext, "vob") || !cimg::strcasecmp(ext, "wmv") || !cimg::strcasecmp(ext, "xvid") || !cimg::strcasecmp(ext, "mpeg")) return save_video(fn); return save_other(fn); } //! Save image as an Ascii file. /** \param filename Filename, as a C-string. **/ const CImg& save_ascii(const char* const filename) const { return _save_ascii(0, filename); } //! Save image as an Ascii file \overloading. const CImg& save_ascii(std::FILE* const file) const { return _save_ascii(file, 0); } const CImg& _save_ascii(std::FILE* const file, const char* const filename) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_ascii(): Specified filename is (null).", cimg_instance); std::FILE* const nfile = file ? file : cimg::fopen(filename, "w"); std::fprintf(nfile, "%u %u %u %u\n", _width, _height, _depth, _spectrum); const T* ptrs = _data; cimg_forYZC(*this, y, z, c) { cimg_forX(*this, x) std::fprintf(nfile, "%.17g ", (double)*(ptrs++)); std::fputc('\n', nfile); } if (!file) cimg::fclose(nfile); return *this; } //! Save image as a .cpp source file. /** \param filename Filename, as a C-string. **/ const CImg& save_cpp(const char* const filename) const { return _save_cpp(0, filename); } //! Save image as a .cpp source file \overloading. const CImg& save_cpp(std::FILE* const file) const { return _save_cpp(file, 0); } const CImg& _save_cpp(std::FILE* const file, const char* const filename) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_cpp(): Specified filename is (null).", cimg_instance); std::FILE* const nfile = file ? file : cimg::fopen(filename, "w"); CImg varname(1024); *varname = 0; if (filename) cimg_sscanf(cimg::basename(filename), "%1023[a-zA-Z0-9_]", varname._data); if (!*varname) cimg_snprintf(varname, varname._width, "unnamed"); std::fprintf( nfile, "/* Define image '%s' of size %ux%ux%ux%u and type '%s' */\n" "%s data_%s[] = { %s\n ", varname._data, _width, _height, _depth, _spectrum, pixel_type(), pixel_type(), varname._data, is_empty() ? "};" : ""); if (!is_empty()) for (ulongT off = 0, siz = size() - 1; off <= siz; ++off) { std::fprintf(nfile, cimg::type::format(), cimg::type::format((*this)[off])); if (off == siz) std::fprintf(nfile, " };\n"); else if (!((off + 1) % 16)) std::fprintf(nfile, ",\n "); else std::fprintf(nfile, ", "); } if (!file) cimg::fclose(nfile); return *this; } //! Save image as a DLM file. /** \param filename Filename, as a C-string. **/ const CImg& save_dlm(const char* const filename) const { return _save_dlm(0, filename); } //! Save image as a DLM file \overloading. const CImg& save_dlm(std::FILE* const file) const { return _save_dlm(file, 0); } const CImg& _save_dlm(std::FILE* const file, const char* const filename) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_dlm(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } if (_depth > 1) cimg::warn(_cimg_instance "save_dlm(): Instance is volumetric, values along Z " "will be unrolled in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); if (_spectrum > 1) cimg::warn(_cimg_instance "save_dlm(): Instance is multispectral, values along C " "will be unrolled in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); std::FILE* const nfile = file ? file : cimg::fopen(filename, "w"); const T* ptrs = _data; cimg_forYZC(*this, y, z, c) { cimg_forX(*this, x) std::fprintf(nfile, "%.17g%s", (double)*(ptrs++), (x == width() - 1) ? "" : ","); std::fputc('\n', nfile); } if (!file) cimg::fclose(nfile); return *this; } //! Save image as a BMP file. /** \param filename Filename, as a C-string. **/ const CImg& save_bmp(const char* const filename) const { return _save_bmp(0, filename); } //! Save image as a BMP file \overloading. const CImg& save_bmp(std::FILE* const file) const { return _save_bmp(file, 0); } const CImg& _save_bmp(std::FILE* const file, const char* const filename) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_bmp(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } if (_depth > 1) cimg::warn(_cimg_instance "save_bmp(): Instance is volumetric, only the first " "slice will be saved in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); if (_spectrum > 3) cimg::warn(_cimg_instance "save_bmp(): Instance is multispectral, only the three " "first channels will be saved in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); CImg header(54, 1, 1, 1, 0); unsigned char align_buf[4] = {0}; const unsigned int align = (4 - (3 * _width) % 4) % 4, buf_size = (3 * _width + align) * height(), file_size = 54 + buf_size; header[0] = 'B'; header[1] = 'M'; header[0x02] = file_size & 0xFF; header[0x03] = (file_size >> 8) & 0xFF; header[0x04] = (file_size >> 16) & 0xFF; header[0x05] = (file_size >> 24) & 0xFF; header[0x0A] = 0x36; header[0x0E] = 0x28; header[0x12] = _width & 0xFF; header[0x13] = (_width >> 8) & 0xFF; header[0x14] = (_width >> 16) & 0xFF; header[0x15] = (_width >> 24) & 0xFF; header[0x16] = _height & 0xFF; header[0x17] = (_height >> 8) & 0xFF; header[0x18] = (_height >> 16) & 0xFF; header[0x19] = (_height >> 24) & 0xFF; header[0x1A] = 1; header[0x1B] = 0; header[0x1C] = 24; header[0x1D] = 0; header[0x22] = buf_size & 0xFF; header[0x23] = (buf_size >> 8) & 0xFF; header[0x24] = (buf_size >> 16) & 0xFF; header[0x25] = (buf_size >> 24) & 0xFF; header[0x27] = 0x1; header[0x2B] = 0x1; cimg::fwrite(header._data, 54, nfile); const T *ptr_r = data(0, _height - 1, 0, 0), *ptr_g = (_spectrum >= 2) ? data(0, _height - 1, 0, 1) : 0, *ptr_b = (_spectrum >= 3) ? data(0, _height - 1, 0, 2) : 0; switch (_spectrum) { case 1: { cimg_forY(*this, y) { cimg_forX(*this, x) { const unsigned char val = (unsigned char)*(ptr_r++); std::fputc(val, nfile); std::fputc(val, nfile); std::fputc(val, nfile); } cimg::fwrite(align_buf, align, nfile); ptr_r -= 2 * _width; } } break; case 2: { cimg_forY(*this, y) { cimg_forX(*this, x) { std::fputc(0, nfile); std::fputc((unsigned char)(*(ptr_g++)), nfile); std::fputc((unsigned char)(*(ptr_r++)), nfile); } cimg::fwrite(align_buf, align, nfile); ptr_r -= 2 * _width; ptr_g -= 2 * _width; } } break; default: { cimg_forY(*this, y) { cimg_forX(*this, x) { std::fputc((unsigned char)(*(ptr_b++)), nfile); std::fputc((unsigned char)(*(ptr_g++)), nfile); std::fputc((unsigned char)(*(ptr_r++)), nfile); } cimg::fwrite(align_buf, align, nfile); ptr_r -= 2 * _width; ptr_g -= 2 * _width; ptr_b -= 2 * _width; } } } if (!file) cimg::fclose(nfile); return *this; } //! Save image as a JPEG file. /** \param filename Filename, as a C-string. \param quality Image quality (in %) **/ const CImg& save_jpeg(const char* const filename, const unsigned int quality = 100) const { return _save_jpeg(0, filename, quality); } //! Save image as a JPEG file \overloading. const CImg& save_jpeg(std::FILE* const file, const unsigned int quality = 100) const { return _save_jpeg(file, 0, quality); } const CImg& _save_jpeg(std::FILE* const file, const char* const filename, const unsigned int quality) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_jpeg(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } if (_depth > 1) cimg::warn(_cimg_instance "save_jpeg(): Instance is volumetric, only the first " "slice will be saved in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); #ifndef cimg_use_jpeg if (!file) return save_other(filename, quality); else throw CImgIOException(_cimg_instance "save_jpeg(): Unable to save data in " "'(*FILE)' unless libjpeg is enabled.", cimg_instance); #else unsigned int dimbuf = 0; J_COLOR_SPACE colortype = JCS_RGB; switch (_spectrum) { case 1: dimbuf = 1; colortype = JCS_GRAYSCALE; break; case 2: dimbuf = 3; colortype = JCS_RGB; break; case 3: dimbuf = 3; colortype = JCS_RGB; break; default: dimbuf = 4; colortype = JCS_CMYK; break; } // Call libjpeg functions struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; cinfo.err = jpeg_std_error(&jerr); jpeg_create_compress(&cinfo); std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); jpeg_stdio_dest(&cinfo, nfile); cinfo.image_width = _width; cinfo.image_height = _height; cinfo.input_components = dimbuf; cinfo.in_color_space = colortype; jpeg_set_defaults(&cinfo); jpeg_set_quality(&cinfo, quality < 100 ? quality : 100, TRUE); jpeg_start_compress(&cinfo, TRUE); JSAMPROW row_pointer[1]; CImg buffer(_width * dimbuf); while (cinfo.next_scanline < cinfo.image_height) { unsigned char* ptrd = buffer._data; // Fill pixel buffer switch (_spectrum) { case 1: { // Greyscale images const T* ptr_g = data(0, cinfo.next_scanline); for (unsigned int b = 0; b < cinfo.image_width; b++) *(ptrd++) = (unsigned char)*(ptr_g++); } break; case 2: { // RG images const T *ptr_r = data(0, cinfo.next_scanline, 0, 0), *ptr_g = data(0, cinfo.next_scanline, 0, 1); for (unsigned int b = 0; b < cinfo.image_width; ++b) { *(ptrd++) = (unsigned char)*(ptr_r++); *(ptrd++) = (unsigned char)*(ptr_g++); *(ptrd++) = 0; } } break; case 3: { // RGB images const T *ptr_r = data(0, cinfo.next_scanline, 0, 0), *ptr_g = data(0, cinfo.next_scanline, 0, 1), *ptr_b = data(0, cinfo.next_scanline, 0, 2); for (unsigned int b = 0; b < cinfo.image_width; ++b) { *(ptrd++) = (unsigned char)*(ptr_r++); *(ptrd++) = (unsigned char)*(ptr_g++); *(ptrd++) = (unsigned char)*(ptr_b++); } } break; default: { // CMYK images const T *ptr_r = data(0, cinfo.next_scanline, 0, 0), *ptr_g = data(0, cinfo.next_scanline, 0, 1), *ptr_b = data(0, cinfo.next_scanline, 0, 2), *ptr_a = data(0, cinfo.next_scanline, 0, 3); for (unsigned int b = 0; b < cinfo.image_width; ++b) { *(ptrd++) = (unsigned char)*(ptr_r++); *(ptrd++) = (unsigned char)*(ptr_g++); *(ptrd++) = (unsigned char)*(ptr_b++); *(ptrd++) = (unsigned char)*(ptr_a++); } } } *row_pointer = buffer._data; jpeg_write_scanlines(&cinfo, row_pointer, 1); } jpeg_finish_compress(&cinfo); if (!file) cimg::fclose(nfile); jpeg_destroy_compress(&cinfo); return *this; #endif } //! Save image, using built-in ImageMagick++ library. /** \param filename Filename, as a C-string. \param bytes_per_pixel Force the number of bytes per pixel for the saving, when possible. **/ const CImg& save_magick(const char* const filename, const unsigned int bytes_per_pixel = 0) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_magick(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } #ifdef cimg_use_magick double stmin, stmax = (double)max_min(stmin); if (_depth > 1) cimg::warn(_cimg_instance "save_magick(): Instance is volumetric, only the first " "slice will be saved in file '%s'.", cimg_instance, filename); if (_spectrum > 3) cimg::warn(_cimg_instance "save_magick(): Instance is multispectral, only the " "three first channels will be " "saved in file '%s'.", cimg_instance, filename); if (stmin < 0 || (bytes_per_pixel == 1 && stmax >= 256) || stmax >= 65536) cimg::warn(_cimg_instance "save_magick(): Instance has pixel values in [%g,%g], " "probable type overflow in file '%s'.", cimg_instance, filename, stmin, stmax); Magick::Image image(Magick::Geometry(_width, _height), "black"); image.type(Magick::TrueColorType); image.depth(bytes_per_pixel ? (8 * bytes_per_pixel) : (stmax >= 256 ? 16 : 8)); const T *ptr_r = data(0, 0, 0, 0), *ptr_g = _spectrum > 1 ? data(0, 0, 0, 1) : 0, *ptr_b = _spectrum > 2 ? data(0, 0, 0, 2) : 0; Magick::PixelPacket* pixels = image.getPixels(0, 0, _width, _height); switch (_spectrum) { case 1: // Scalar images for (ulongT off = (ulongT)_width * _height; off; --off) { pixels->red = pixels->green = pixels->blue = (Magick::Quantum) * (ptr_r++); ++pixels; } break; case 2: // RG images for (ulongT off = (ulongT)_width * _height; off; --off) { pixels->red = (Magick::Quantum) * (ptr_r++); pixels->green = (Magick::Quantum) * (ptr_g++); pixels->blue = 0; ++pixels; } break; default: // RGB images for (ulongT off = (ulongT)_width * _height; off; --off) { pixels->red = (Magick::Quantum) * (ptr_r++); pixels->green = (Magick::Quantum) * (ptr_g++); pixels->blue = (Magick::Quantum) * (ptr_b++); ++pixels; } } image.syncPixels(); image.write(filename); return *this; #else cimg::unused(bytes_per_pixel); throw CImgIOException(_cimg_instance "save_magick(): Unable to save file '%s' unless " "libMagick++ is enabled.", cimg_instance, filename); #endif } //! Save image as a PNG file. /** \param filename Filename, as a C-string. \param bytes_per_pixel Force the number of bytes per pixels for the saving, when possible. **/ const CImg& save_png(const char* const filename, const unsigned int bytes_per_pixel = 0) const { return _save_png(0, filename, bytes_per_pixel); } //! Save image as a PNG file \overloading. const CImg& save_png(std::FILE* const file, const unsigned int bytes_per_pixel = 0) const { return _save_png(file, 0, bytes_per_pixel); } const CImg& _save_png(std::FILE* const file, const char* const filename, const unsigned int bytes_per_pixel = 0) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_png(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } #ifndef cimg_use_png cimg::unused(bytes_per_pixel); if (!file) return save_other(filename); else throw CImgIOException(_cimg_instance "save_png(): Unable to save data in " "'(*FILE)' unless libpng is enabled.", cimg_instance); #else #if defined __GNUC__ const char* volatile nfilename = filename; // Use 'volatile' to avoid (wrong) g++ warning std::FILE* volatile nfile = file ? file : cimg::fopen(nfilename, "wb"); volatile double stmin, stmax = (double)max_min(stmin); #else const char* nfilename = filename; std::FILE* nfile = file ? file : cimg::fopen(nfilename, "wb"); double stmin, stmax = (double)max_min(stmin); #endif if (_depth > 1) cimg::warn(_cimg_instance "save_png(): Instance is volumetric, only the first " "slice will be saved in file '%s'.", cimg_instance, filename); if (_spectrum > 4) cimg::warn(_cimg_instance "save_png(): Instance is multispectral, only the three " "first channels will be saved in file '%s'.", cimg_instance, filename); if (stmin < 0 || (bytes_per_pixel == 1 && stmax >= 256) || stmax >= 65536) cimg::warn(_cimg_instance "save_png(): Instance has pixel values in [%g,%g], " "probable type overflow in file '%s'.", cimg_instance, filename, stmin, stmax); // Setup PNG structures for write png_voidp user_error_ptr = 0; png_error_ptr user_error_fn = 0, user_warning_fn = 0; png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, user_error_ptr, user_error_fn, user_warning_fn); if (!png_ptr) { if (!file) cimg::fclose(nfile); throw CImgIOException(_cimg_instance "save_png(): Failed to initialize 'png_ptr' " "structure when saving file '%s'.", cimg_instance, nfilename ? nfilename : "(FILE*)"); } png_infop info_ptr = png_create_info_struct(png_ptr); if (!info_ptr) { png_destroy_write_struct(&png_ptr, (png_infopp)0); if (!file) cimg::fclose(nfile); throw CImgIOException(_cimg_instance "save_png(): Failed to initialize 'info_ptr' " "structure when saving file '%s'.", cimg_instance, nfilename ? nfilename : "(FILE*)"); } if (setjmp(png_jmpbuf(png_ptr))) { png_destroy_write_struct(&png_ptr, &info_ptr); if (!file) cimg::fclose(nfile); throw CImgIOException(_cimg_instance "save_png(): Encountered unknown fatal error " "in libpng when saving file '%s'.", cimg_instance, nfilename ? nfilename : "(FILE*)"); } png_init_io(png_ptr, nfile); const int bit_depth = bytes_per_pixel ? (bytes_per_pixel * 8) : (stmax >= 256 ? 16 : 8); int color_type; switch (spectrum()) { case 1: color_type = PNG_COLOR_TYPE_GRAY; break; case 2: color_type = PNG_COLOR_TYPE_GRAY_ALPHA; break; case 3: color_type = PNG_COLOR_TYPE_RGB; break; default: color_type = PNG_COLOR_TYPE_RGB_ALPHA; } const int interlace_type = PNG_INTERLACE_NONE; const int compression_type = PNG_COMPRESSION_TYPE_DEFAULT; const int filter_method = PNG_FILTER_TYPE_DEFAULT; png_set_IHDR(png_ptr, info_ptr, _width, _height, bit_depth, color_type, interlace_type, compression_type, filter_method); png_write_info(png_ptr, info_ptr); const int byte_depth = bit_depth >> 3; const int numChan = spectrum() > 4 ? 4 : spectrum(); const int pixel_bit_depth_flag = numChan * (bit_depth - 1); // Allocate Memory for Image Save and Fill pixel data png_bytep* const imgData = new png_byte*[_height]; for (unsigned int row = 0; row < _height; ++row) imgData[row] = new png_byte[byte_depth * numChan * _width]; const T* pC0 = data(0, 0, 0, 0); switch (pixel_bit_depth_flag) { case 7: { // Gray 8-bit cimg_forY(*this, y) { unsigned char* ptrd = imgData[y]; cimg_forX(*this, x) * (ptrd++) = (unsigned char)*(pC0++); } } break; case 14: { // Gray w/ Alpha 8-bit const T* pC1 = data(0, 0, 0, 1); cimg_forY(*this, y) { unsigned char* ptrd = imgData[y]; cimg_forX(*this, x) { *(ptrd++) = (unsigned char)*(pC0++); *(ptrd++) = (unsigned char)*(pC1++); } } } break; case 21: { // RGB 8-bit const T *pC1 = data(0, 0, 0, 1), *pC2 = data(0, 0, 0, 2); cimg_forY(*this, y) { unsigned char* ptrd = imgData[y]; cimg_forX(*this, x) { *(ptrd++) = (unsigned char)*(pC0++); *(ptrd++) = (unsigned char)*(pC1++); *(ptrd++) = (unsigned char)*(pC2++); } } } break; case 28: { // RGB x/ Alpha 8-bit const T *pC1 = data(0, 0, 0, 1), *pC2 = data(0, 0, 0, 2), *pC3 = data(0, 0, 0, 3); cimg_forY(*this, y) { unsigned char* ptrd = imgData[y]; cimg_forX(*this, x) { *(ptrd++) = (unsigned char)*(pC0++); *(ptrd++) = (unsigned char)*(pC1++); *(ptrd++) = (unsigned char)*(pC2++); *(ptrd++) = (unsigned char)*(pC3++); } } } break; case 15: { // Gray 16-bit cimg_forY(*this, y) { unsigned short* ptrd = (unsigned short*)(imgData[y]); cimg_forX(*this, x) * (ptrd++) = (unsigned short)*(pC0++); if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y], _width); } } break; case 30: { // Gray w/ Alpha 16-bit const T* pC1 = data(0, 0, 0, 1); cimg_forY(*this, y) { unsigned short* ptrd = (unsigned short*)(imgData[y]); cimg_forX(*this, x) { *(ptrd++) = (unsigned short)*(pC0++); *(ptrd++) = (unsigned short)*(pC1++); } if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y], 2 * _width); } } break; case 45: { // RGB 16-bit const T *pC1 = data(0, 0, 0, 1), *pC2 = data(0, 0, 0, 2); cimg_forY(*this, y) { unsigned short* ptrd = (unsigned short*)(imgData[y]); cimg_forX(*this, x) { *(ptrd++) = (unsigned short)*(pC0++); *(ptrd++) = (unsigned short)*(pC1++); *(ptrd++) = (unsigned short)*(pC2++); } if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y], 3 * _width); } } break; case 60: { // RGB w/ Alpha 16-bit const T *pC1 = data(0, 0, 0, 1), *pC2 = data(0, 0, 0, 2), *pC3 = data(0, 0, 0, 3); cimg_forY(*this, y) { unsigned short* ptrd = (unsigned short*)(imgData[y]); cimg_forX(*this, x) { *(ptrd++) = (unsigned short)*(pC0++); *(ptrd++) = (unsigned short)*(pC1++); *(ptrd++) = (unsigned short)*(pC2++); *(ptrd++) = (unsigned short)*(pC3++); } if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y], 4 * _width); } } break; default: if (!file) cimg::fclose(nfile); throw CImgIOException(_cimg_instance "save_png(): Encountered unknown fatal " "error in libpng when saving file '%s'.", cimg_instance, nfilename ? nfilename : "(FILE*)"); } png_write_image(png_ptr, imgData); png_write_end(png_ptr, info_ptr); png_destroy_write_struct(&png_ptr, &info_ptr); // Deallocate Image Write Memory cimg_forY(*this, n) delete[] imgData[n]; delete[] imgData; if (!file) cimg::fclose(nfile); return *this; #endif } //! Save image as a PNM file. /** \param filename Filename, as a C-string. \param bytes_per_pixel Force the number of bytes per pixels for the saving. **/ const CImg& save_pnm(const char* const filename, const unsigned int bytes_per_pixel = 0) const { return _save_pnm(0, filename, bytes_per_pixel); } //! Save image as a PNM file \overloading. const CImg& save_pnm(std::FILE* const file, const unsigned int bytes_per_pixel = 0) const { return _save_pnm(file, 0, bytes_per_pixel); } const CImg& _save_pnm(std::FILE* const file, const char* const filename, const unsigned int bytes_per_pixel = 0) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_pnm(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } double stmin, stmax = (double)max_min(stmin); if (_depth > 1) cimg::warn(_cimg_instance "save_pnm(): Instance is volumetric, only the first " "slice will be saved in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); if (_spectrum > 3) cimg::warn(_cimg_instance "save_pnm(): Instance is multispectral, only the three " "first channels will be saved in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); if (stmin < 0 || (bytes_per_pixel == 1 && stmax >= 256) || stmax >= 65536) cimg::warn(_cimg_instance "save_pnm(): Instance has pixel values in [%g,%g], " "probable type overflow in file '%s'.", cimg_instance, stmin, stmax, filename ? filename : "(FILE*)"); std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); const T *ptr_r = data(0, 0, 0, 0), *ptr_g = (_spectrum >= 2) ? data(0, 0, 0, 1) : 0, *ptr_b = (_spectrum >= 3) ? data(0, 0, 0, 2) : 0; const ulongT buf_size = std::min((ulongT)(1024 * 1024), (ulongT)(_width * _height * (_spectrum == 1 ? 1UL : 3UL))); std::fprintf(nfile, "P%c\n%u %u\n%u\n", (_spectrum == 1 ? '5' : '6'), _width, _height, stmax < 256 ? 255 : (stmax < 4096 ? 4095 : 65535)); switch (_spectrum) { case 1: { // Scalar image if (bytes_per_pixel == 1 || (!bytes_per_pixel && stmax < 256)) { // Binary PGM 8 bits CImg buf((unsigned int)buf_size); for (longT to_write = (longT)width() * height(); to_write > 0;) { const ulongT N = std::min((ulongT)to_write, buf_size); unsigned char* ptrd = buf._data; for (ulongT i = N; i > 0; --i) *(ptrd++) = (unsigned char)*(ptr_r++); cimg::fwrite(buf._data, N, nfile); to_write -= N; } } else { // Binary PGM 16 bits CImg buf((unsigned int)buf_size); for (longT to_write = (longT)width() * height(); to_write > 0;) { const ulongT N = std::min((ulongT)to_write, buf_size); unsigned short* ptrd = buf._data; for (ulongT i = N; i > 0; --i) *(ptrd++) = (unsigned short)*(ptr_r++); if (!cimg::endianness()) cimg::invert_endianness(buf._data, buf_size); cimg::fwrite(buf._data, N, nfile); to_write -= N; } } } break; case 2: { // RG image if (bytes_per_pixel == 1 || (!bytes_per_pixel && stmax < 256)) { // Binary PPM 8 bits CImg buf((unsigned int)buf_size); for (longT to_write = (longT)width() * height(); to_write > 0;) { const ulongT N = std::min((ulongT)to_write, buf_size / 3); unsigned char* ptrd = buf._data; for (ulongT i = N; i > 0; --i) { *(ptrd++) = (unsigned char)*(ptr_r++); *(ptrd++) = (unsigned char)*(ptr_g++); *(ptrd++) = 0; } cimg::fwrite(buf._data, 3 * N, nfile); to_write -= N; } } else { // Binary PPM 16 bits CImg buf((unsigned int)buf_size); for (longT to_write = (longT)width() * height(); to_write > 0;) { const ulongT N = std::min((ulongT)to_write, buf_size / 3); unsigned short* ptrd = buf._data; for (ulongT i = N; i > 0; --i) { *(ptrd++) = (unsigned short)*(ptr_r++); *(ptrd++) = (unsigned short)*(ptr_g++); *(ptrd++) = 0; } if (!cimg::endianness()) cimg::invert_endianness(buf._data, buf_size); cimg::fwrite(buf._data, 3 * N, nfile); to_write -= N; } } } break; default: { // RGB image if (bytes_per_pixel == 1 || (!bytes_per_pixel && stmax < 256)) { // Binary PPM 8 bits CImg buf((unsigned int)buf_size); for (longT to_write = (longT)width() * height(); to_write > 0;) { const ulongT N = std::min((ulongT)to_write, buf_size / 3); unsigned char* ptrd = buf._data; for (ulongT i = N; i > 0; --i) { *(ptrd++) = (unsigned char)*(ptr_r++); *(ptrd++) = (unsigned char)*(ptr_g++); *(ptrd++) = (unsigned char)*(ptr_b++); } cimg::fwrite(buf._data, 3 * N, nfile); to_write -= N; } } else { // Binary PPM 16 bits CImg buf((unsigned int)buf_size); for (longT to_write = (longT)width() * height(); to_write > 0;) { const ulongT N = std::min((ulongT)to_write, buf_size / 3); unsigned short* ptrd = buf._data; for (ulongT i = N; i > 0; --i) { *(ptrd++) = (unsigned short)*(ptr_r++); *(ptrd++) = (unsigned short)*(ptr_g++); *(ptrd++) = (unsigned short)*(ptr_b++); } if (!cimg::endianness()) cimg::invert_endianness(buf._data, buf_size); cimg::fwrite(buf._data, 3 * N, nfile); to_write -= N; } } } } if (!file) cimg::fclose(nfile); return *this; } //! Save image as a PNK file. /** \param filename Filename, as a C-string. **/ const CImg& save_pnk(const char* const filename) const { return _save_pnk(0, filename); } //! Save image as a PNK file \overloading. const CImg& save_pnk(std::FILE* const file) const { return _save_pnk(file, 0); } const CImg& _save_pnk(std::FILE* const file, const char* const filename) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_pnk(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } if (_spectrum > 1) cimg::warn(_cimg_instance "save_pnk(): Instance is multispectral, only the first " "channel will be saved in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); const ulongT buf_size = std::min((ulongT)1024 * 1024, (ulongT)_width * _height * _depth); std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); const T* ptr = data(0, 0, 0, 0); if (!cimg::type::is_float() && sizeof(T) == 1 && _depth < 2) // Can be saved as regular PNM file _save_pnm(file, filename, 0); else if (!cimg::type::is_float() && sizeof(T) == 1) { // Save as extended P5 file: Binary byte-valued 3D std::fprintf(nfile, "P5\n%u %u %u\n255\n", _width, _height, _depth); CImg buf((unsigned int)buf_size); for (longT to_write = (longT)width() * height() * depth(); to_write > 0;) { const ulongT N = std::min((ulongT)to_write, buf_size); unsigned char* ptrd = buf._data; for (ulongT i = N; i > 0; --i) *(ptrd++) = (unsigned char)*(ptr++); cimg::fwrite(buf._data, N, nfile); to_write -= N; } } else if (!cimg::type::is_float()) { // Save as P8: Binary // int32-valued 3D if (_depth > 1) std::fprintf(nfile, "P8\n%u %u %u\n%d\n", _width, _height, _depth, (int)max()); else std::fprintf(nfile, "P8\n%u %u\n%d\n", _width, _height, (int)max()); CImg buf((unsigned int)buf_size); for (longT to_write = (longT)width() * height() * depth(); to_write > 0;) { const ulongT N = std::min((ulongT)to_write, buf_size); int* ptrd = buf._data; for (ulongT i = N; i > 0; --i) *(ptrd++) = (int)*(ptr++); cimg::fwrite(buf._data, N, nfile); to_write -= N; } } else { // Save as P9: Binary float-valued 3D if (_depth > 1) std::fprintf(nfile, "P9\n%u %u %u\n%g\n", _width, _height, _depth, (double)max()); else std::fprintf(nfile, "P9\n%u %u\n%g\n", _width, _height, (double)max()); CImg buf((unsigned int)buf_size); for (longT to_write = (longT)width() * height() * depth(); to_write > 0;) { const ulongT N = std::min((ulongT)to_write, buf_size); float* ptrd = buf._data; for (ulongT i = N; i > 0; --i) *(ptrd++) = (float)*(ptr++); cimg::fwrite(buf._data, N, nfile); to_write -= N; } } if (!file) cimg::fclose(nfile); return *this; } //! Save image as a PFM file. /** \param filename Filename, as a C-string. **/ const CImg& save_pfm(const char* const filename) const { get_mirror('y')._save_pfm(0, filename); return *this; } //! Save image as a PFM file \overloading. const CImg& save_pfm(std::FILE* const file) const { get_mirror('y')._save_pfm(file, 0); return *this; } const CImg& _save_pfm(std::FILE* const file, const char* const filename) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_pfm(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } if (_depth > 1) cimg::warn(_cimg_instance "save_pfm(): Instance is volumetric, only the first " "slice will be saved in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); if (_spectrum > 3) cimg::warn(_cimg_instance "save_pfm(): image instance is multispectral, only the " "three first channels will be saved " "in file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); const T *ptr_r = data(0, 0, 0, 0), *ptr_g = (_spectrum >= 2) ? data(0, 0, 0, 1) : 0, *ptr_b = (_spectrum >= 3) ? data(0, 0, 0, 2) : 0; const unsigned int buf_size = std::min(1024 * 1024U, _width * _height * (_spectrum == 1 ? 1 : 3)); std::fprintf(nfile, "P%c\n%u %u\n1.0\n", (_spectrum == 1 ? 'f' : 'F'), _width, _height); switch (_spectrum) { case 1: { // Scalar image CImg buf(buf_size); for (longT to_write = (longT)width() * height(); to_write > 0;) { const ulongT N = std::min((ulongT)to_write, (ulongT)buf_size); float* ptrd = buf._data; for (ulongT i = N; i > 0; --i) *(ptrd++) = (float)*(ptr_r++); if (!cimg::endianness()) cimg::invert_endianness(buf._data, buf_size); cimg::fwrite(buf._data, N, nfile); to_write -= N; } } break; case 2: { // RG image CImg buf(buf_size); for (longT to_write = (longT)width() * height(); to_write > 0;) { const unsigned int N = std::min((unsigned int)to_write, buf_size / 3); float* ptrd = buf._data; for (ulongT i = N; i > 0; --i) { *(ptrd++) = (float)*(ptr_r++); *(ptrd++) = (float)*(ptr_g++); *(ptrd++) = 0; } if (!cimg::endianness()) cimg::invert_endianness(buf._data, buf_size); cimg::fwrite(buf._data, 3 * N, nfile); to_write -= N; } } break; default: { // RGB image CImg buf(buf_size); for (longT to_write = (longT)width() * height(); to_write > 0;) { const unsigned int N = std::min((unsigned int)to_write, buf_size / 3); float* ptrd = buf._data; for (ulongT i = N; i > 0; --i) { *(ptrd++) = (float)*(ptr_r++); *(ptrd++) = (float)*(ptr_g++); *(ptrd++) = (float)*(ptr_b++); } if (!cimg::endianness()) cimg::invert_endianness(buf._data, buf_size); cimg::fwrite(buf._data, 3 * N, nfile); to_write -= N; } } } if (!file) cimg::fclose(nfile); return *this; } //! Save image as a RGB file. /** \param filename Filename, as a C-string. **/ const CImg& save_rgb(const char* const filename) const { return _save_rgb(0, filename); } //! Save image as a RGB file \overloading. const CImg& save_rgb(std::FILE* const file) const { return _save_rgb(file, 0); } const CImg& _save_rgb(std::FILE* const file, const char* const filename) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_rgb(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } if (_spectrum != 3) cimg::warn(_cimg_instance "save_rgb(): image instance has not exactly 3 channels, " "for file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); const ulongT wh = (ulongT)_width * _height; unsigned char *const buffer = new unsigned char[3 * wh], *nbuffer = buffer; const T *ptr1 = data(0, 0, 0, 0), *ptr2 = _spectrum > 1 ? data(0, 0, 0, 1) : 0, *ptr3 = _spectrum > 2 ? data(0, 0, 0, 2) : 0; switch (_spectrum) { case 1: { // Scalar image for (ulongT k = 0; k < wh; ++k) { const unsigned char val = (unsigned char)*(ptr1++); *(nbuffer++) = val; *(nbuffer++) = val; *(nbuffer++) = val; } } break; case 2: { // RG image for (ulongT k = 0; k < wh; ++k) { *(nbuffer++) = (unsigned char)(*(ptr1++)); *(nbuffer++) = (unsigned char)(*(ptr2++)); *(nbuffer++) = 0; } } break; default: { // RGB image for (ulongT k = 0; k < wh; ++k) { *(nbuffer++) = (unsigned char)(*(ptr1++)); *(nbuffer++) = (unsigned char)(*(ptr2++)); *(nbuffer++) = (unsigned char)(*(ptr3++)); } } } cimg::fwrite(buffer, 3 * wh, nfile); if (!file) cimg::fclose(nfile); delete[] buffer; return *this; } //! Save image as a RGBA file. /** \param filename Filename, as a C-string. **/ const CImg& save_rgba(const char* const filename) const { return _save_rgba(0, filename); } //! Save image as a RGBA file \overloading. const CImg& save_rgba(std::FILE* const file) const { return _save_rgba(file, 0); } const CImg& _save_rgba(std::FILE* const file, const char* const filename) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_rgba(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } if (_spectrum != 4) cimg::warn(_cimg_instance "save_rgba(): image instance has not exactly 4 " "channels, for file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); const ulongT wh = (ulongT)_width * _height; unsigned char *const buffer = new unsigned char[4 * wh], *nbuffer = buffer; const T *ptr1 = data(0, 0, 0, 0), *ptr2 = _spectrum > 1 ? data(0, 0, 0, 1) : 0, *ptr3 = _spectrum > 2 ? data(0, 0, 0, 2) : 0, *ptr4 = _spectrum > 3 ? data(0, 0, 0, 3) : 0; switch (_spectrum) { case 1: { // Scalar images for (ulongT k = 0; k < wh; ++k) { const unsigned char val = (unsigned char)*(ptr1++); *(nbuffer++) = val; *(nbuffer++) = val; *(nbuffer++) = val; *(nbuffer++) = 255; } } break; case 2: { // RG images for (ulongT k = 0; k < wh; ++k) { *(nbuffer++) = (unsigned char)(*(ptr1++)); *(nbuffer++) = (unsigned char)(*(ptr2++)); *(nbuffer++) = 0; *(nbuffer++) = 255; } } break; case 3: { // RGB images for (ulongT k = 0; k < wh; ++k) { *(nbuffer++) = (unsigned char)(*(ptr1++)); *(nbuffer++) = (unsigned char)(*(ptr2++)); *(nbuffer++) = (unsigned char)(*(ptr3++)); *(nbuffer++) = 255; } } break; default: { // RGBA images for (ulongT k = 0; k < wh; ++k) { *(nbuffer++) = (unsigned char)(*(ptr1++)); *(nbuffer++) = (unsigned char)(*(ptr2++)); *(nbuffer++) = (unsigned char)(*(ptr3++)); *(nbuffer++) = (unsigned char)(*(ptr4++)); } } } cimg::fwrite(buffer, 4 * wh, nfile); if (!file) cimg::fclose(nfile); delete[] buffer; return *this; } //! Save image as a TIFF file. /** \param filename Filename, as a C-string. \param compression_type Type of data compression. Can be { 0=None | 1=LZW | 2=JPEG }. \param voxel_size Voxel size, to be stored in the filename. \param description Description, to be stored in the filename. \param use_bigtiff Allow to save big tiff files (>4Gb). \note - libtiff support is enabled by defining the precompilation directive \c cimg_use_tif. - When libtiff is enabled, 2D and 3D (multipage) several channel per pixel are supported for char,uchar,short,ushort,float and \c double pixel types. - If \c cimg_use_tif is not defined at compile time the function uses CImg&save_other(const char*). **/ const CImg& save_tiff(const char* const filename, const unsigned int compression_type = 0, const float* const voxel_size = 0, const char* const description = 0, const bool use_bigtiff = true) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_tiff(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } #ifdef cimg_use_tiff const bool _use_bigtiff = use_bigtiff && sizeof(ulongT) >= 8 && size() * sizeof(T) >= 1UL << 31; // No bigtiff for small images TIFF* tif = TIFFOpen(filename, _use_bigtiff ? "w8" : "w4"); if (tif) { cimg_forZ(*this, z) _save_tiff(tif, z, z, compression_type, voxel_size, description); TIFFClose(tif); } else throw CImgIOException( _cimg_instance "save_tiff(): Failed to open file '%s' for writing.", cimg_instance, filename); return *this; #else cimg::unused(compression_type, voxel_size, description, use_bigtiff); return save_other(filename); #endif } #ifdef cimg_use_tiff #define _cimg_save_tiff(types, typed, compression_type) \ if (!std::strcmp(types, pixel_type())) { \ const typed foo = (typed)0; \ return _save_tiff(tif, directory, z, foo, compression_type, \ voxel_size, description); \ } // [internal] Save a plane into a tiff file template const CImg& _save_tiff(TIFF* tif, const unsigned int directory, const unsigned int z, const t& pixel_t, const unsigned int compression_type, const float* const voxel_size, const char* const description) const { if (is_empty() || !tif || pixel_t) return *this; const char* const filename = TIFFFileName(tif); uint32 rowsperstrip = (uint32)-1; uint16 spp = _spectrum, bpp = sizeof(t) * 8, photometric; if (spp == 3 || spp == 4) photometric = PHOTOMETRIC_RGB; else photometric = PHOTOMETRIC_MINISBLACK; TIFFSetDirectory(tif, directory); TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, _width); TIFFSetField(tif, TIFFTAG_IMAGELENGTH, _height); if (voxel_size) { const float vx = voxel_size[0], vy = voxel_size[1], vz = voxel_size[2]; TIFFSetField(tif, TIFFTAG_RESOLUTIONUNIT, RESUNIT_NONE); TIFFSetField(tif, TIFFTAG_XRESOLUTION, 1.f / vx); TIFFSetField(tif, TIFFTAG_YRESOLUTION, 1.f / vy); CImg s_description(256); cimg_snprintf(s_description, s_description._width, "VX=%g VY=%g VZ=%g spacing=%g", vx, vy, vz, vz); TIFFSetField(tif, TIFFTAG_IMAGEDESCRIPTION, s_description.data()); } if (description) TIFFSetField(tif, TIFFTAG_IMAGEDESCRIPTION, description); TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT); TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, spp); if (cimg::type::is_float()) TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, 3); else if (cimg::type::min() == 0) TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, 1); else TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, 2); double valm, valM = max_min(valm); TIFFSetField(tif, TIFFTAG_SMINSAMPLEVALUE, valm); TIFFSetField(tif, TIFFTAG_SMAXSAMPLEVALUE, valM); TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, bpp); TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, photometric); TIFFSetField( tif, TIFFTAG_COMPRESSION, compression_type == 2 ? COMPRESSION_JPEG : compression_type == 1 ? COMPRESSION_LZW : COMPRESSION_NONE); rowsperstrip = TIFFDefaultStripSize(tif, rowsperstrip); TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, rowsperstrip); TIFFSetField(tif, TIFFTAG_FILLORDER, FILLORDER_MSB2LSB); TIFFSetField(tif, TIFFTAG_SOFTWARE, "CImg"); t* const buf = (t*)_TIFFmalloc(TIFFStripSize(tif)); if (buf) { for (unsigned int row = 0; row < _height; row += rowsperstrip) { uint32 nrow = (row + rowsperstrip > _height ? _height - row : rowsperstrip); tstrip_t strip = TIFFComputeStrip(tif, row, 0); tsize_t i = 0; for (unsigned int rr = 0; rr < nrow; ++rr) for (unsigned int cc = 0; cc < _width; ++cc) for (unsigned int vv = 0; vv < spp; ++vv) buf[i++] = (t)(*this)(cc, row + rr, z, vv); if (TIFFWriteEncodedStrip(tif, strip, buf, i * sizeof(t)) < 0) throw CImgIOException(_cimg_instance "save_tiff(): Invalid strip writing " "when saving file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); } _TIFFfree(buf); } TIFFWriteDirectory(tif); return *this; } const CImg& _save_tiff(TIFF* tif, const unsigned int directory, const unsigned int z, const unsigned int compression_type, const float* const voxel_size, const char* const description) const { _cimg_save_tiff("bool", unsigned char, compression_type); _cimg_save_tiff("unsigned char", unsigned char, compression_type); _cimg_save_tiff("char", char, compression_type); _cimg_save_tiff("unsigned short", unsigned short, compression_type); _cimg_save_tiff("short", short, compression_type); _cimg_save_tiff("unsigned int", unsigned int, compression_type); _cimg_save_tiff("int", int, compression_type); _cimg_save_tiff("unsigned int64", unsigned int, compression_type); _cimg_save_tiff("int64", int, compression_type); _cimg_save_tiff("float", float, compression_type); _cimg_save_tiff("double", float, compression_type); const char* const filename = TIFFFileName(tif); throw CImgInstanceException( _cimg_instance "save_tiff(): Unsupported pixel type '%s' for file '%s'.", cimg_instance, pixel_type(), filename ? filename : "(FILE*)"); return *this; } #endif //! Save image as a MINC2 file. /** \param filename Filename, as a C-string. \param imitate_file If non-zero, reference filename, as a C-string, to borrow header from. **/ const CImg& save_minc2(const char* const filename, const char* const imitate_file = 0) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_minc2(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } #ifndef cimg_use_minc2 cimg::unused(imitate_file); return save_other(filename); #else minc::minc_1_writer wtr; if (imitate_file) wtr.open(filename, imitate_file); else { minc::minc_info di; if (width()) di.push_back(minc::dim_info(width(), width() * 0.5, -1, minc::dim_info::DIM_X)); if (height()) di.push_back(minc::dim_info(height(), height() * 0.5, -1, minc::dim_info::DIM_Y)); if (depth()) di.push_back(minc::dim_info(depth(), depth() * 0.5, -1, minc::dim_info::DIM_Z)); if (spectrum()) di.push_back(minc::dim_info(spectrum(), spectrum() * 0.5, -1, minc::dim_info::DIM_TIME)); wtr.open(filename, di, 1, NC_FLOAT, 0); } if (cimg::type::string() == cimg::type::string()) wtr.setup_write_byte(); else if (cimg::type::string() == cimg::type::string()) wtr.setup_write_int(); else if (cimg::type::string() == cimg::type::string()) wtr.setup_write_double(); else wtr.setup_write_float(); minc::save_standard_volume(wtr, this->_data); return *this; #endif } //! Save image as an ANALYZE7.5 or NIFTI file. /** \param filename Filename, as a C-string. \param voxel_size Pointer to 3 consecutive values that tell about the voxel sizes along the X,Y and Z dimensions. **/ const CImg& save_analyze(const char* const filename, const float* const voxel_size = 0) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_analyze(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } std::FILE* file; CImg hname(1024), iname(1024); const char* const ext = cimg::split_filename(filename); short datatype = -1; if (!*ext) { cimg_snprintf(hname, hname._width, "%s.hdr", filename); cimg_snprintf(iname, iname._width, "%s.img", filename); } if (!cimg::strncasecmp(ext, "hdr", 3)) { std::strcpy(hname, filename); std::strncpy(iname, filename, iname._width - 1); cimg_sprintf(iname._data + std::strlen(iname) - 3, "img"); } if (!cimg::strncasecmp(ext, "img", 3)) { std::strcpy(hname, filename); std::strncpy(iname, filename, iname._width - 1); cimg_sprintf(hname._data + std::strlen(iname) - 3, "hdr"); } if (!cimg::strncasecmp(ext, "nii", 3)) { std::strncpy(hname, filename, hname._width - 1); *iname = 0; } CImg header(*iname ? 348 : 352, 1, 1, 1, 0); int* const iheader = (int*)header._data; *iheader = 348; std::strcpy(header._data + 4, "CImg"); std::strcpy(header._data + 14, " "); ((short*)&(header[36]))[0] = 4096; ((char*)&(header[38]))[0] = 114; ((short*)&(header[40]))[0] = 4; ((short*)&(header[40]))[1] = (short)_width; ((short*)&(header[40]))[2] = (short)_height; ((short*)&(header[40]))[3] = (short)_depth; ((short*)&(header[40]))[4] = (short)_spectrum; if (!cimg::strcasecmp(pixel_type(), "bool")) datatype = 2; if (!cimg::strcasecmp(pixel_type(), "unsigned char")) datatype = 2; if (!cimg::strcasecmp(pixel_type(), "char")) datatype = 2; if (!cimg::strcasecmp(pixel_type(), "unsigned short")) datatype = 4; if (!cimg::strcasecmp(pixel_type(), "short")) datatype = 4; if (!cimg::strcasecmp(pixel_type(), "unsigned int")) datatype = 8; if (!cimg::strcasecmp(pixel_type(), "int")) datatype = 8; if (!cimg::strcasecmp(pixel_type(), "unsigned int64")) datatype = 8; if (!cimg::strcasecmp(pixel_type(), "int64")) datatype = 8; if (!cimg::strcasecmp(pixel_type(), "float")) datatype = 16; if (!cimg::strcasecmp(pixel_type(), "double")) datatype = 64; if (datatype < 0) throw CImgIOException( _cimg_instance "save_analyze(): Unsupported pixel type '%s' for file '%s'.", cimg_instance, pixel_type(), filename); ((short*)&(header[70]))[0] = datatype; ((short*)&(header[72]))[0] = sizeof(T); ((float*)&(header[108]))[0] = (float)(*iname ? 0 : header.width()); ((float*)&(header[112]))[0] = 1; ((float*)&(header[76]))[0] = 0; if (voxel_size) { ((float*)&(header[76]))[1] = voxel_size[0]; ((float*)&(header[76]))[2] = voxel_size[1]; ((float*)&(header[76]))[3] = voxel_size[2]; } else ((float*)&(header[76]))[1] = ((float*)&(header[76]))[2] = ((float*)&(header[76]))[3] = 1; file = cimg::fopen(hname, "wb"); cimg::fwrite(header._data, header.width(), file); if (*iname) { cimg::fclose(file); file = cimg::fopen(iname, "wb"); } cimg::fwrite(_data, size(), file); cimg::fclose(file); return *this; } //! Save image as a .cimg file. /** \param filename Filename, as a C-string. \param is_compressed Tells if the file contains compressed image data. **/ const CImg& save_cimg(const char* const filename, const bool is_compressed = false) const { CImgList(*this, true).save_cimg(filename, is_compressed); return *this; } //! Save image as a .cimg file \overloading. const CImg& save_cimg(std::FILE* const file, const bool is_compressed = false) const { CImgList(*this, true).save_cimg(file, is_compressed); return *this; } //! Save image as a sub-image into an existing .cimg file. /** \param filename Filename, as a C-string. \param n0 Index of the image inside the file. \param x0 X-coordinate of the sub-image location. \param y0 Y-coordinate of the sub-image location. \param z0 Z-coordinate of the sub-image location. \param c0 C-coordinate of the sub-image location. **/ const CImg& save_cimg(const char* const filename, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const { CImgList(*this, true).save_cimg(filename, n0, x0, y0, z0, c0); return *this; } //! Save image as a sub-image into an existing .cimg file \overloading. const CImg& save_cimg(std::FILE* const file, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const { CImgList(*this, true).save_cimg(file, n0, x0, y0, z0, c0); return *this; } //! Save blank image as a .cimg file. /** \param filename Filename, as a C-string. \param dx Width of the image. \param dy Height of the image. \param dz Depth of the image. \param dc Number of channels of the image. \note - All pixel values of the saved image are set to \c 0. - Use this method to save large images without having to instanciate and allocate them. **/ static void save_empty_cimg(const char* const filename, const unsigned int dx, const unsigned int dy = 1, const unsigned int dz = 1, const unsigned int dc = 1) { return CImgList::save_empty_cimg(filename, 1, dx, dy, dz, dc); } //! Save blank image as a .cimg file \overloading. /** Same as save_empty_cimg(const char *,unsigned int,unsigned int,unsigned int,unsigned int) with a file stream argument instead of a filename string. **/ static void save_empty_cimg(std::FILE* const file, const unsigned int dx, const unsigned int dy = 1, const unsigned int dz = 1, const unsigned int dc = 1) { return CImgList::save_empty_cimg(file, 1, dx, dy, dz, dc); } //! Save image as an INRIMAGE-4 file. /** \param filename Filename, as a C-string. \param voxel_size Pointer to 3 values specifying the voxel sizes along the X,Y and Z dimensions. **/ const CImg& save_inr(const char* const filename, const float* const voxel_size = 0) const { return _save_inr(0, filename, voxel_size); } //! Save image as an INRIMAGE-4 file \overloading. const CImg& save_inr(std::FILE* const file, const float* const voxel_size = 0) const { return _save_inr(file, 0, voxel_size); } const CImg& _save_inr(std::FILE* const file, const char* const filename, const float* const voxel_size) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_inr(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } int inrpixsize = -1; const char* inrtype = "unsigned fixed\nPIXSIZE=8 bits\nSCALE=2**0"; if (!cimg::strcasecmp(pixel_type(), "unsigned char")) { inrtype = "unsigned fixed\nPIXSIZE=8 bits\nSCALE=2**0"; inrpixsize = 1; } if (!cimg::strcasecmp(pixel_type(), "char")) { inrtype = "fixed\nPIXSIZE=8 bits\nSCALE=2**0"; inrpixsize = 1; } if (!cimg::strcasecmp(pixel_type(), "unsigned short")) { inrtype = "unsigned fixed\nPIXSIZE=16 bits\nSCALE=2**0"; inrpixsize = 2; } if (!cimg::strcasecmp(pixel_type(), "short")) { inrtype = "fixed\nPIXSIZE=16 bits\nSCALE=2**0"; inrpixsize = 2; } if (!cimg::strcasecmp(pixel_type(), "unsigned int")) { inrtype = "unsigned fixed\nPIXSIZE=32 bits\nSCALE=2**0"; inrpixsize = 4; } if (!cimg::strcasecmp(pixel_type(), "int")) { inrtype = "fixed\nPIXSIZE=32 bits\nSCALE=2**0"; inrpixsize = 4; } if (!cimg::strcasecmp(pixel_type(), "float")) { inrtype = "float\nPIXSIZE=32 bits"; inrpixsize = 4; } if (!cimg::strcasecmp(pixel_type(), "double")) { inrtype = "float\nPIXSIZE=64 bits"; inrpixsize = 8; } if (inrpixsize <= 0) throw CImgIOException( _cimg_instance "save_inr(): Unsupported pixel type '%s' for file '%s'", cimg_instance, pixel_type(), filename ? filename : "(FILE*)"); std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); CImg header(257); int err = cimg_snprintf(header, header._width, "#INRIMAGE-4#{\nXDIM=%u\nYDIM=%u\nZDIM=%u\nVDIM=%u\n", _width, _height, _depth, _spectrum); if (voxel_size) err += cimg_sprintf(header._data + err, "VX=%g\nVY=%g\nVZ=%g\n", voxel_size[0], voxel_size[1], voxel_size[2]); err += cimg_sprintf(header._data + err, "TYPE=%s\nCPU=%s\n", inrtype, cimg::endianness() ? "sun" : "decm"); std::memset(header._data + err, '\n', 252 - err); std::memcpy(header._data + 252, "##}\n", 4); cimg::fwrite(header._data, 256, nfile); cimg_forXYZ(*this, x, y, z) cimg_forC(*this, c) cimg::fwrite(&((*this)(x, y, z, c)), 1, nfile); if (!file) cimg::fclose(nfile); return *this; } //! Save image as an OpenEXR file. /** \param filename Filename, as a C-string. \note The OpenEXR file format is described here. **/ const CImg& save_exr(const char* const filename) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_exr(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } if (_depth > 1) cimg::warn(_cimg_instance "save_exr(): Instance is volumetric, only the first " "slice will be saved in file '%s'.", cimg_instance, filename); #ifndef cimg_use_openexr return save_other(filename); #else Imf::Rgba *const ptrd0 = new Imf::Rgba[(size_t)_width * _height], *ptrd = ptrd0, rgba; switch (_spectrum) { case 1: { // Grayscale image for (const T *ptr_r = data(), *const ptr_e = ptr_r + (ulongT)_width * _height; ptr_r < ptr_e;) { rgba.r = rgba.g = rgba.b = (half)(*(ptr_r++)); rgba.a = (half)1; *(ptrd++) = rgba; } } break; case 2: { // RG image for (const T *ptr_r = data(), *ptr_g = data(0, 0, 0, 1), *const ptr_e = ptr_r + (ulongT)_width * _height; ptr_r < ptr_e;) { rgba.r = (half)(*(ptr_r++)); rgba.g = (half)(*(ptr_g++)); rgba.b = (half)0; rgba.a = (half)1; *(ptrd++) = rgba; } } break; case 3: { // RGB image for (const T *ptr_r = data(), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2), *const ptr_e = ptr_r + (ulongT)_width * _height; ptr_r < ptr_e;) { rgba.r = (half)(*(ptr_r++)); rgba.g = (half)(*(ptr_g++)); rgba.b = (half)(*(ptr_b++)); rgba.a = (half)1; *(ptrd++) = rgba; } } break; default: { // RGBA image for (const T *ptr_r = data(), *ptr_g = data(0, 0, 0, 1), *ptr_b = data(0, 0, 0, 2), *ptr_a = data(0, 0, 0, 3), *const ptr_e = ptr_r + (ulongT)_width * _height; ptr_r < ptr_e;) { rgba.r = (half)(*(ptr_r++)); rgba.g = (half)(*(ptr_g++)); rgba.b = (half)(*(ptr_b++)); rgba.a = (half)(*(ptr_a++)); *(ptrd++) = rgba; } } break; } Imf::RgbaOutputFile outFile( filename, _width, _height, _spectrum == 1 ? Imf::WRITE_Y : _spectrum == 2 ? Imf::WRITE_YA : _spectrum == 3 ? Imf::WRITE_RGB : Imf::WRITE_RGBA); outFile.setFrameBuffer(ptrd0, 1, _width); outFile.writePixels(_height); delete[] ptrd0; return *this; #endif } //! Save image as a Pandore-5 file. /** \param filename Filename, as a C-string. \param colorspace Colorspace data field in output file (see Pandore file specifications for more information). **/ const CImg& save_pandore(const char* const filename, const unsigned int colorspace = 0) const { return _save_pandore(0, filename, colorspace); } //! Save image as a Pandore-5 file \overloading. /** Same as save_pandore(const char *,unsigned int) const with a file stream argument instead of a filename string. **/ const CImg& save_pandore(std::FILE* const file, const unsigned int colorspace = 0) const { return _save_pandore(file, 0, colorspace); } unsigned int _save_pandore_header_length( unsigned int id, unsigned int* dims, const unsigned int colorspace) const { unsigned int nbdims = 0; if (id == 2 || id == 3 || id == 4) { dims[0] = 1; dims[1] = _width; nbdims = 2; } if (id == 5 || id == 6 || id == 7) { dims[0] = 1; dims[1] = _height; dims[2] = _width; nbdims = 3; } if (id == 8 || id == 9 || id == 10) { dims[0] = _spectrum; dims[1] = _depth; dims[2] = _height; dims[3] = _width; nbdims = 4; } if (id == 16 || id == 17 || id == 18) { dims[0] = 3; dims[1] = _height; dims[2] = _width; dims[3] = colorspace; nbdims = 4; } if (id == 19 || id == 20 || id == 21) { dims[0] = 3; dims[1] = _depth; dims[2] = _height; dims[3] = _width; dims[4] = colorspace; nbdims = 5; } if (id == 22 || id == 23 || id == 25) { dims[0] = _spectrum; dims[1] = _width; nbdims = 2; } if (id == 26 || id == 27 || id == 29) { dims[0] = _spectrum; dims[1] = _height; dims[2] = _width; nbdims = 3; } if (id == 30 || id == 31 || id == 33) { dims[0] = _spectrum; dims[1] = _depth; dims[2] = _height; dims[3] = _width; nbdims = 4; } return nbdims; } const CImg& _save_pandore(std::FILE* const file, const char* const filename, const unsigned int colorspace) const { #define __cimg_save_pandore_case(dtype) \ dtype* buffer = new dtype[size()]; \ const T* ptrs = _data; \ cimg_foroff(*this, off) * (buffer++) = (dtype)(*(ptrs++)); \ buffer -= size(); \ cimg::fwrite(buffer, size(), nfile); \ delete[] buffer #define _cimg_save_pandore_case(sy, sz, sv, stype, id) \ if (!saved && (sy ? (sy == _height) : true) && \ (sz ? (sz == _depth) : true) && (sv ? (sv == _spectrum) : true) && \ !std::strcmp(stype, pixel_type())) { \ unsigned int* iheader = (unsigned int*)(header + 12); \ nbdims = \ _save_pandore_header_length((*iheader = id), dims, colorspace); \ cimg::fwrite(header, 36, nfile); \ if (sizeof(unsigned long) == 4) { \ CImg ndims(5); \ for (int d = 0; d < 5; ++d) ndims[d] = (unsigned long)dims[d]; \ cimg::fwrite(ndims._data, nbdims, nfile); \ } else if (sizeof(unsigned int) == 4) { \ CImg ndims(5); \ for (int d = 0; d < 5; ++d) ndims[d] = (unsigned int)dims[d]; \ cimg::fwrite(ndims._data, nbdims, nfile); \ } else if (sizeof(unsigned short) == 4) { \ CImg ndims(5); \ for (int d = 0; d < 5; ++d) ndims[d] = (unsigned short)dims[d]; \ cimg::fwrite(ndims._data, nbdims, nfile); \ } else \ throw CImgIOException( \ _cimg_instance \ "save_pandore(): Unsupported datatype for file '%s'.", \ cimg_instance, filename ? filename : "(FILE*)"); \ if (id == 2 || id == 5 || id == 8 || id == 16 || id == 19 || \ id == 22 || id == 26 || id == 30) { \ __cimg_save_pandore_case(unsigned char); \ } else if (id == 3 || id == 6 || id == 9 || id == 17 || id == 20 || \ id == 23 || id == 27 || id == 31) { \ if (sizeof(unsigned long) == 4) { \ __cimg_save_pandore_case(unsigned long); \ } else if (sizeof(unsigned int) == 4) { \ __cimg_save_pandore_case(unsigned int); \ } else if (sizeof(unsigned short) == 4) { \ __cimg_save_pandore_case(unsigned short); \ } else \ throw CImgIOException( \ _cimg_instance \ "save_pandore(): Unsupported datatype for file '%s'.", \ cimg_instance, filename ? filename : "(FILE*)"); \ } else if (id == 4 || id == 7 || id == 10 || id == 18 || id == 21 || \ id == 25 || id == 29 || id == 33) { \ if (sizeof(double) == 4) { \ __cimg_save_pandore_case(double); \ } else if (sizeof(float) == 4) { \ __cimg_save_pandore_case(float); \ } else \ throw CImgIOException( \ _cimg_instance \ "save_pandore(): Unsupported datatype for file '%s'.", \ cimg_instance, filename ? filename : "(FILE*)"); \ } \ saved = true; \ } if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_pandore(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); unsigned char header[36] = {'P', 'A', 'N', 'D', 'O', 'R', 'E', '0', '4', 0, 0, 0, 0, 0, 0, 0, 'C', 'I', 'm', 'g', 0, 0, 0, 0, 0, 'N', 'o', ' ', 'd', 'a', 't', 'e', 0, 0, 0, 0}; unsigned int nbdims, dims[5] = {0}; bool saved = false; _cimg_save_pandore_case(1, 1, 1, "unsigned char", 2); _cimg_save_pandore_case(1, 1, 1, "char", 3); _cimg_save_pandore_case(1, 1, 1, "unsigned short", 3); _cimg_save_pandore_case(1, 1, 1, "short", 3); _cimg_save_pandore_case(1, 1, 1, "unsigned int", 3); _cimg_save_pandore_case(1, 1, 1, "int", 3); _cimg_save_pandore_case(1, 1, 1, "unsigned int64", 3); _cimg_save_pandore_case(1, 1, 1, "int64", 3); _cimg_save_pandore_case(1, 1, 1, "float", 4); _cimg_save_pandore_case(1, 1, 1, "double", 4); _cimg_save_pandore_case(0, 1, 1, "unsigned char", 5); _cimg_save_pandore_case(0, 1, 1, "char", 6); _cimg_save_pandore_case(0, 1, 1, "unsigned short", 6); _cimg_save_pandore_case(0, 1, 1, "short", 6); _cimg_save_pandore_case(0, 1, 1, "unsigned int", 6); _cimg_save_pandore_case(0, 1, 1, "int", 6); _cimg_save_pandore_case(0, 1, 1, "unsigned int64", 6); _cimg_save_pandore_case(0, 1, 1, "int64", 6); _cimg_save_pandore_case(0, 1, 1, "float", 7); _cimg_save_pandore_case(0, 1, 1, "double", 7); _cimg_save_pandore_case(0, 0, 1, "unsigned char", 8); _cimg_save_pandore_case(0, 0, 1, "char", 9); _cimg_save_pandore_case(0, 0, 1, "unsigned short", 9); _cimg_save_pandore_case(0, 0, 1, "short", 9); _cimg_save_pandore_case(0, 0, 1, "unsigned int", 9); _cimg_save_pandore_case(0, 0, 1, "int", 9); _cimg_save_pandore_case(0, 0, 1, "unsigned int64", 9); _cimg_save_pandore_case(0, 0, 1, "int64", 9); _cimg_save_pandore_case(0, 0, 1, "float", 10); _cimg_save_pandore_case(0, 0, 1, "double", 10); _cimg_save_pandore_case(0, 1, 3, "unsigned char", 16); _cimg_save_pandore_case(0, 1, 3, "char", 17); _cimg_save_pandore_case(0, 1, 3, "unsigned short", 17); _cimg_save_pandore_case(0, 1, 3, "short", 17); _cimg_save_pandore_case(0, 1, 3, "unsigned int", 17); _cimg_save_pandore_case(0, 1, 3, "int", 17); _cimg_save_pandore_case(0, 1, 3, "unsigned int64", 17); _cimg_save_pandore_case(0, 1, 3, "int64", 17); _cimg_save_pandore_case(0, 1, 3, "float", 18); _cimg_save_pandore_case(0, 1, 3, "double", 18); _cimg_save_pandore_case(0, 0, 3, "unsigned char", 19); _cimg_save_pandore_case(0, 0, 3, "char", 20); _cimg_save_pandore_case(0, 0, 3, "unsigned short", 20); _cimg_save_pandore_case(0, 0, 3, "short", 20); _cimg_save_pandore_case(0, 0, 3, "unsigned int", 20); _cimg_save_pandore_case(0, 0, 3, "int", 20); _cimg_save_pandore_case(0, 0, 3, "unsigned int64", 20); _cimg_save_pandore_case(0, 0, 3, "int64", 20); _cimg_save_pandore_case(0, 0, 3, "float", 21); _cimg_save_pandore_case(0, 0, 3, "double", 21); _cimg_save_pandore_case(1, 1, 0, "unsigned char", 22); _cimg_save_pandore_case(1, 1, 0, "char", 23); _cimg_save_pandore_case(1, 1, 0, "unsigned short", 23); _cimg_save_pandore_case(1, 1, 0, "short", 23); _cimg_save_pandore_case(1, 1, 0, "unsigned int", 23); _cimg_save_pandore_case(1, 1, 0, "int", 23); _cimg_save_pandore_case(1, 1, 0, "unsigned int64", 23); _cimg_save_pandore_case(1, 1, 0, "int64", 23); _cimg_save_pandore_case(1, 1, 0, "float", 25); _cimg_save_pandore_case(1, 1, 0, "double", 25); _cimg_save_pandore_case(0, 1, 0, "unsigned char", 26); _cimg_save_pandore_case(0, 1, 0, "char", 27); _cimg_save_pandore_case(0, 1, 0, "unsigned short", 27); _cimg_save_pandore_case(0, 1, 0, "short", 27); _cimg_save_pandore_case(0, 1, 0, "unsigned int", 27); _cimg_save_pandore_case(0, 1, 0, "int", 27); _cimg_save_pandore_case(0, 1, 0, "unsigned int64", 27); _cimg_save_pandore_case(0, 1, 0, "int64", 27); _cimg_save_pandore_case(0, 1, 0, "float", 29); _cimg_save_pandore_case(0, 1, 0, "double", 29); _cimg_save_pandore_case(0, 0, 0, "unsigned char", 30); _cimg_save_pandore_case(0, 0, 0, "char", 31); _cimg_save_pandore_case(0, 0, 0, "unsigned short", 31); _cimg_save_pandore_case(0, 0, 0, "short", 31); _cimg_save_pandore_case(0, 0, 0, "unsigned int", 31); _cimg_save_pandore_case(0, 0, 0, "int", 31); _cimg_save_pandore_case(0, 0, 0, "unsigned int64", 31); _cimg_save_pandore_case(0, 0, 0, "int64", 31); _cimg_save_pandore_case(0, 0, 0, "float", 33); _cimg_save_pandore_case(0, 0, 0, "double", 33); if (!file) cimg::fclose(nfile); return *this; } //! Save image as a raw data file. /** \param filename Filename, as a C-string. \param is_multiplexed Tells if the image channels are stored in a multiplexed way (\c true) or not (\c false). \note The .raw format does not store the image dimensions in the output file, so you have to keep track of them somewhere to be able to read the file correctly afterwards. **/ const CImg& save_raw(const char* const filename, const bool is_multiplexed = false) const { return _save_raw(0, filename, is_multiplexed); } //! Save image as a raw data file \overloading. /** Same as save_raw(const char *,bool) const with a file stream argument instead of a filename string. **/ const CImg& save_raw(std::FILE* const file, const bool is_multiplexed = false) const { return _save_raw(file, 0, is_multiplexed); } const CImg& _save_raw(std::FILE* const file, const char* const filename, const bool is_multiplexed) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_raw(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(file, filename); return *this; } std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); if (!is_multiplexed) cimg::fwrite(_data, size(), nfile); else { CImg buf(_spectrum); cimg_forXYZ(*this, x, y, z) { cimg_forC(*this, c) buf[c] = (*this)(x, y, z, c); cimg::fwrite(buf._data, _spectrum, nfile); } } if (!file) cimg::fclose(nfile); return *this; } //! Save image as a .yuv video file. /** \param filename Filename, as a C-string. \param chroma_subsampling Type of chroma subsampling. Can be { 420 | 422 | 444 }. \param is_rgb Tells if pixel values of the instance image are RGB-coded (\c true) or YUV-coded (\c false). \note Each slice of the instance image is considered to be a single frame of the output video file. **/ const CImg& save_yuv(const char* const filename, const unsigned int chroma_subsampling = 444, const bool is_rgb = true) const { CImgList(*this, true).save_yuv(filename, chroma_subsampling, is_rgb); return *this; } //! Save image as a .yuv video file \overloading. /** Same as save_yuv(const char*,const unsigned int,const bool) const with a file stream argument instead of a filename string. **/ const CImg& save_yuv(std::FILE* const file, const unsigned int chroma_subsampling = 444, const bool is_rgb = true) const { CImgList(*this, true).save_yuv(file, chroma_subsampling, is_rgb); return *this; } //! Save 3D object as an Object File Format (.off) file. /** \param filename Filename, as a C-string. \param primitives List of 3D object primitives. \param colors List of 3D object colors. \note - Instance image contains the vertices data of the 3D object. - Textured, transparent or sphere-shaped primitives cannot be managed by the .off file format. Such primitives will be lost or simplified during file saving. - The .off file format is described here. **/ template const CImg& save_off(const CImgList& primitives, const CImgList& colors, const char* const filename) const { return _save_off(primitives, colors, 0, filename); } //! Save 3D object as an Object File Format (.off) file \overloading. /** Same as save_off(const CImgList&,const CImgList&,const char*) const with a file stream argument instead of a filename string. **/ template const CImg& save_off(const CImgList& primitives, const CImgList& colors, std::FILE* const file) const { return _save_off(primitives, colors, file, 0); } template const CImg& _save_off(const CImgList& primitives, const CImgList& colors, std::FILE* const file, const char* const filename) const { if (!file && !filename) throw CImgArgumentException( _cimg_instance "save_off(): Specified filename is (null).", cimg_instance); if (is_empty()) throw CImgInstanceException( _cimg_instance "save_off(): Empty instance, for file '%s'.", cimg_instance, filename ? filename : "(FILE*)"); CImgList opacities; CImg error_message(1024); if (!is_object3d(primitives, colors, opacities, true, error_message)) throw CImgInstanceException( _cimg_instance "save_off(): Invalid specified 3D object, for file '%s' (%s).", cimg_instance, filename ? filename : "(FILE*)", error_message.data()); const CImg default_color( 1, 3, 1, 1, (tc)std::min((int)cimg::type::max(), 200)); std::FILE* const nfile = file ? file : cimg::fopen(filename, "w"); unsigned int supported_primitives = 0; cimglist_for(primitives, l) if (primitives[l].size() != 5)++ supported_primitives; std::fprintf(nfile, "OFF\n%u %u %u\n", _width, supported_primitives, 3 * primitives._width); cimg_forX(*this, i) std::fprintf(nfile, "%f %f %f\n", (float)((*this)(i, 0)), (float)((*this)(i, 1)), (float)((*this)(i, 2))); cimglist_for(primitives, l) { const CImg& color = l < colors.width() ? colors[l] : default_color; const unsigned int psiz = primitives[l].size(), csiz = color.size(); const float r = color[0] / 255.f, g = (csiz > 1 ? color[1] : r) / 255.f, b = (csiz > 2 ? color[2] : g) / 255.f; switch (psiz) { case 1: std::fprintf(nfile, "1 %u %f %f %f\n", (unsigned int)primitives(l, 0), r, g, b); break; case 2: std::fprintf(nfile, "2 %u %u %f %f %f\n", (unsigned int)primitives(l, 0), (unsigned int)primitives(l, 1), r, g, b); break; case 3: std::fprintf(nfile, "3 %u %u %u %f %f %f\n", (unsigned int)primitives(l, 0), (unsigned int)primitives(l, 2), (unsigned int)primitives(l, 1), r, g, b); break; case 4: std::fprintf(nfile, "4 %u %u %u %u %f %f %f\n", (unsigned int)primitives(l, 0), (unsigned int)primitives(l, 3), (unsigned int)primitives(l, 2), (unsigned int)primitives(l, 1), r, g, b); break; case 5: std::fprintf(nfile, "2 %u %u %f %f %f\n", (unsigned int)primitives(l, 0), (unsigned int)primitives(l, 1), r, g, b); break; case 6: { const unsigned int xt = (unsigned int)primitives(l, 2), yt = (unsigned int)primitives(l, 3); const float rt = color.atXY(xt, yt, 0) / 255.f, gt = (csiz > 1 ? color.atXY(xt, yt, 1) : r) / 255.f, bt = (csiz > 2 ? color.atXY(xt, yt, 2) : g) / 255.f; std::fprintf(nfile, "2 %u %u %f %f %f\n", (unsigned int)primitives(l, 0), (unsigned int)primitives(l, 1), rt, gt, bt); } break; case 9: { const unsigned int xt = (unsigned int)primitives(l, 3), yt = (unsigned int)primitives(l, 4); const float rt = color.atXY(xt, yt, 0) / 255.f, gt = (csiz > 1 ? color.atXY(xt, yt, 1) : r) / 255.f, bt = (csiz > 2 ? color.atXY(xt, yt, 2) : g) / 255.f; std::fprintf(nfile, "3 %u %u %u %f %f %f\n", (unsigned int)primitives(l, 0), (unsigned int)primitives(l, 2), (unsigned int)primitives(l, 1), rt, gt, bt); } break; case 12: { const unsigned int xt = (unsigned int)primitives(l, 4), yt = (unsigned int)primitives(l, 5); const float rt = color.atXY(xt, yt, 0) / 255.f, gt = (csiz > 1 ? color.atXY(xt, yt, 1) : r) / 255.f, bt = (csiz > 2 ? color.atXY(xt, yt, 2) : g) / 255.f; std::fprintf(nfile, "4 %u %u %u %u %f %f %f\n", (unsigned int)primitives(l, 0), (unsigned int)primitives(l, 3), (unsigned int)primitives(l, 2), (unsigned int)primitives(l, 1), rt, gt, bt); } break; } } if (!file) cimg::fclose(nfile); return *this; } //! Save volumetric image as a video, using the OpenCV library. /** \param filename Filename to write data to. \param fps Number of frames per second. \param codec Type of compression (See http://www.fourcc.org/codecs.php to see available codecs). \param keep_open Tells if the video writer associated to the specified filename must be kept open or not (to allow frames to be added in the same file afterwards). **/ const CImg& save_video(const char* const filename, const unsigned int fps = 25, const char* codec = 0, const bool keep_open = false) const { if (is_empty()) { CImgList().save_video(filename, fps, codec, keep_open); return *this; } CImgList list; get_split('z').move_to(list); list.save_video(filename, fps, codec, keep_open); return *this; } //! Save volumetric image as a video, using ffmpeg external binary. /** \param filename Filename, as a C-string. \param fps Video framerate. \param codec Video codec, as a C-string. \param bitrate Video bitrate. \note - Each slice of the instance image is considered to be a single frame of the output video file. - This method uses \c ffmpeg, an external executable binary provided by FFmpeg. It must be installed for the method to succeed. **/ const CImg& save_ffmpeg_external( const char* const filename, const unsigned int fps = 25, const char* const codec = 0, const unsigned int bitrate = 2048) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_ffmpeg_external(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } CImgList list; get_split('z').move_to(list); list.save_ffmpeg_external(filename, fps, codec, bitrate); return *this; } //! Save image using gzip external binary. /** \param filename Filename, as a C-string. \note This method uses \c gzip, an external executable binary provided by gzip. It must be installed for the method to succeed. **/ const CImg& save_gzip_external(const char* const filename) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_gzip_external(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } CImg command(1024), filename_tmp(256), body(256); const char *ext = cimg::split_filename(filename, body), *ext2 = cimg::split_filename(body, 0); std::FILE* file; do { if (!cimg::strcasecmp(ext, "gz")) { if (*ext2) cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), ext2); else cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.cimg", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); } else { if (*ext) cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), ext); else cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.cimg", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); } if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); save(filename_tmp); cimg_snprintf( command, command._width, "%s -c \"%s\" > \"%s\"", cimg::gzip_path(), CImg::string(filename_tmp)._system_strescape().data(), CImg::string(filename)._system_strescape().data()); cimg::system(command); file = cimg::std_fopen(filename, "rb"); if (!file) throw CImgIOException(_cimg_instance "save_gzip_external(): Failed to save file " "'%s' with external command 'gzip'.", cimg_instance, filename); else cimg::fclose(file); std::remove(filename_tmp); return *this; } //! Save image using GraphicsMagick's external binary. /** \param filename Filename, as a C-string. \param quality Image quality (expressed in percent), when the file format supports it. \note This method uses \c gm, an external executable binary provided by GraphicsMagick. It must be installed for the method to succeed. **/ const CImg& save_graphicsmagick_external( const char* const filename, const unsigned int quality = 100) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_graphicsmagick_external(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } if (_depth > 1) cimg::warn(_cimg_instance "save_other(): File '%s', saving a volumetric image " "with an external call to " "GraphicsMagick only writes the first image slice.", cimg_instance, filename); #ifdef cimg_use_png #define _cimg_sge_ext1 "png" #define _cimg_sge_ext2 "png" #else #define _cimg_sge_ext1 "pgm" #define _cimg_sge_ext2 "ppm" #endif CImg command(1024), filename_tmp(256); std::FILE* file; do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), _spectrum == 1 ? _cimg_sge_ext1 : _cimg_sge_ext2); if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); #ifdef cimg_use_png save_png(filename_tmp); #else save_pnm(filename_tmp); #endif cimg_snprintf( command, command._width, "%s convert -quality %u \"%s\" \"%s\"", cimg::graphicsmagick_path(), quality, CImg::string(filename_tmp)._system_strescape().data(), CImg::string(filename)._system_strescape().data()); cimg::system(command); file = cimg::std_fopen(filename, "rb"); if (!file) throw CImgIOException(_cimg_instance "save_graphicsmagick_external(): Failed to " "save file '%s' with external command 'gm'.", cimg_instance, filename); if (file) cimg::fclose(file); std::remove(filename_tmp); return *this; } //! Save image using ImageMagick's external binary. /** \param filename Filename, as a C-string. \param quality Image quality (expressed in percent), when the file format supports it. \note This method uses \c convert, an external executable binary provided by ImageMagick. It must be installed for the method to succeed. **/ const CImg& save_imagemagick_external( const char* const filename, const unsigned int quality = 100) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_imagemagick_external(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } if (_depth > 1) cimg::warn(_cimg_instance "save_other(): File '%s', saving a volumetric image " "with an external call to " "ImageMagick only writes the first image slice.", cimg_instance, filename); #ifdef cimg_use_png #define _cimg_sie_ext1 "png" #define _cimg_sie_ext2 "png" #else #define _cimg_sie_ext1 "pgm" #define _cimg_sie_ext2 "ppm" #endif CImg command(1024), filename_tmp(256); std::FILE* file; do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), _spectrum == 1 ? _cimg_sie_ext1 : _cimg_sie_ext2); if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); #ifdef cimg_use_png save_png(filename_tmp); #else save_pnm(filename_tmp); #endif cimg_snprintf( command, command._width, "%s -quality %u \"%s\" \"%s\"", cimg::imagemagick_path(), quality, CImg::string(filename_tmp)._system_strescape().data(), CImg::string(filename)._system_strescape().data()); cimg::system(command); file = cimg::std_fopen(filename, "rb"); if (!file) throw CImgIOException( _cimg_instance "save_imagemagick_external(): Failed to save file '%s' with " "external command 'magick/convert'.", cimg_instance, filename); if (file) cimg::fclose(file); std::remove(filename_tmp); return *this; } //! Save image as a Dicom file. /** \param filename Filename, as a C-string. \note This method uses \c medcon, an external executable binary provided by (X)Medcon. It must be installed for the method to succeed. **/ const CImg& save_medcon_external(const char* const filename) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_medcon_external(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } CImg command(1024), filename_tmp(256), body(256); std::FILE* file; do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s.hdr", cimg::filenamerand()); if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); save_analyze(filename_tmp); cimg_snprintf( command, command._width, "%s -w -c dicom -o \"%s\" -f \"%s\"", cimg::medcon_path(), CImg::string(filename)._system_strescape().data(), CImg::string(filename_tmp)._system_strescape().data()); cimg::system(command); std::remove(filename_tmp); cimg::split_filename(filename_tmp, body); cimg_snprintf(filename_tmp, filename_tmp._width, "%s.img", body._data); std::remove(filename_tmp); file = cimg::std_fopen(filename, "rb"); if (!file) { cimg_snprintf(command, command._width, "m000-%s", filename); file = cimg::std_fopen(command, "rb"); if (!file) { cimg::fclose(cimg::fopen(filename, "r")); throw CImgIOException( _cimg_instance "save_medcon_external(): Failed to save file '%s' with " "external command 'medcon'.", cimg_instance, filename); } } cimg::fclose(file); std::rename(command, filename); return *this; } // Save image for non natively supported formats. /** \param filename Filename, as a C-string. \param quality Image quality (expressed in percent), when the file format supports it. \note - The filename extension tells about the desired file format. - This method tries to save the instance image as a file, using external tools from ImageMagick or GraphicsMagick. At least one of these tool must be installed for the method to succeed. - It is recommended to use the generic method save(const char*, int) const instead, as it can handle some file formats natively. **/ const CImg& save_other(const char* const filename, const unsigned int quality = 100) const { if (!filename) throw CImgArgumentException( _cimg_instance "save_other(): Specified filename is (null).", cimg_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } if (_depth > 1) cimg::warn(_cimg_instance "save_other(): File '%s', saving a volumetric image " "with an external call to " "ImageMagick or GraphicsMagick only writes the first " "image slice.", cimg_instance, filename); const unsigned int omode = cimg::exception_mode(); bool is_saved = true; cimg::exception_mode(0); try { save_magick(filename); } catch (CImgException&) { try { save_imagemagick_external(filename, quality); } catch (CImgException&) { try { save_graphicsmagick_external(filename, quality); } catch (CImgException&) { is_saved = false; } } } cimg::exception_mode(omode); if (!is_saved) throw CImgIOException(_cimg_instance "save_other(): Failed to save file '%s'. " "Format is not natively supported, " "and no external commands succeeded.", cimg_instance, filename); return *this; } //! Serialize a CImg instance into a raw CImg buffer. /** \param is_compressed tells if zlib compression must be used for serialization (this requires 'cimg_use_zlib' been enabled). **/ CImg get_serialize(const bool is_compressed = false) const { return CImgList(*this, true).get_serialize(is_compressed); } // [internal] Return a 40x38 color logo of a 'danger' item. static CImg _logo40x38() { CImg res(40, 38, 1, 3); const unsigned char* ptrs = cimg::logo40x38; T *ptr1 = res.data(0, 0, 0, 0), *ptr2 = res.data(0, 0, 0, 1), *ptr3 = res.data(0, 0, 0, 2); for (ulongT off = 0; off < (ulongT)res._width * res._height;) { const unsigned char n = *(ptrs++), r = *(ptrs++), g = *(ptrs++), b = *(ptrs++); for (unsigned int l = 0; l < n; ++off, ++l) { *(ptr1++) = (T)r; *(ptr2++) = (T)g; *(ptr3++) = (T)b; } } return res; } //@} }; // struct CImg { ... /* #----------------------------------------- # # # # Definition of the CImgList structure # # # #------------------------------------------ */ //! Represent a list of images CImg. template struct CImgList { unsigned int _width, _allocated_width; CImg* _data; //! Simple iterator type, to loop through each image of a list. /** \note - The \c CImgList::iterator type is defined as a CImg*. - You may use it like this: \code CImgList<> list; // Assuming this image list is not empty for (CImgList<>::iterator it = list.begin(); it* iterator; //! Simple const iterator type, to loop through each image of a \c const //! list instance. /** \note - The \c CImgList::const_iterator type is defined to be a const CImg*. - Similar to CImgList::iterator, but for constant list instances. **/ typedef const CImg* const_iterator; //! Pixel value type. /** Refer to the pixels value type of the images in the list. \note - The \c CImgList::value_type type of a \c CImgList is defined to be a \c T. It is then similar to CImg::value_type. - \c CImgList::value_type is actually not used in %CImg methods. It has been mainly defined for compatibility with STL naming conventions. **/ typedef T value_type; // Define common types related to template type T. typedef typename cimg::superset::type Tbool; typedef typename cimg::superset::type Tuchar; typedef typename cimg::superset::type Tchar; typedef typename cimg::superset::type Tushort; typedef typename cimg::superset::type Tshort; typedef typename cimg::superset::type Tuint; typedef typename cimg::superset::type Tint; typedef typename cimg::superset::type Tulong; typedef typename cimg::superset::type Tlong; typedef typename cimg::superset::type Tfloat; typedef typename cimg::superset::type Tdouble; typedef typename cimg::last::type boolT; typedef typename cimg::last::type ucharT; typedef typename cimg::last::type charT; typedef typename cimg::last::type ushortT; typedef typename cimg::last::type shortT; typedef typename cimg::last::type uintT; typedef typename cimg::last::type intT; typedef typename cimg::last::type ulongT; typedef typename cimg::last::type longT; typedef typename cimg::last::type uint64T; typedef typename cimg::last::type int64T; typedef typename cimg::last::type floatT; typedef typename cimg::last::type doubleT; //@} //--------------------------- // //! \name Plugins //@{ //--------------------------- #ifdef cimglist_plugin #include cimglist_plugin #endif #ifdef cimglist_plugin1 #include cimglist_plugin1 #endif #ifdef cimglist_plugin2 #include cimglist_plugin2 #endif #ifdef cimglist_plugin3 #include cimglist_plugin3 #endif #ifdef cimglist_plugin4 #include cimglist_plugin4 #endif #ifdef cimglist_plugin5 #include cimglist_plugin5 #endif #ifdef cimglist_plugin6 #include cimglist_plugin6 #endif #ifdef cimglist_plugin7 #include cimglist_plugin7 #endif #ifdef cimglist_plugin8 #include cimglist_plugin8 #endif //@} //-------------------------------------------------------- // //! \name Constructors / Destructor / Instance Management //@{ //-------------------------------------------------------- //! Destructor. /** Destroy current list instance. \note - Any allocated buffer is deallocated. - Destroying an empty list does nothing actually. **/ ~CImgList() { delete[] _data; } //! Default constructor. /** Construct a new empty list instance. \note - An empty list has no pixel data and its dimension width() is set to \c 0, as well as its image buffer pointer data(). - An empty list may be reassigned afterwards, with the family of the assign() methods. In all cases, the type of pixels stays \c T. **/ CImgList() : _width(0), _allocated_width(0), _data(0) {} //! Construct list containing empty images. /** \param n Number of empty images. \note Useful when you know by advance the number of images you want to manage, as it will allocate the right amount of memory for the list, without needs for reallocation (that may occur when starting from an empty list and inserting several images in it). **/ explicit CImgList(const unsigned int n) : _width(n) { if (n) _data = new CImg[_allocated_width = std::max( 16U, (unsigned int)cimg::nearest_pow2(n))]; else { _allocated_width = 0; _data = 0; } } //! Construct list containing images of specified size. /** \param n Number of images. \param width Width of images. \param height Height of images. \param depth Depth of images. \param spectrum Number of channels of images. \note Pixel values are not initialized and may probably contain garbage. **/ CImgList(const unsigned int n, const unsigned int width, const unsigned int height = 1, const unsigned int depth = 1, const unsigned int spectrum = 1) : _width(0), _allocated_width(0), _data(0) { assign(n); cimglist_apply(*this, assign)(width, height, depth, spectrum); } //! Construct list containing images of specified size, and initialize pixel //! values. /** \param n Number of images. \param width Width of images. \param height Height of images. \param depth Depth of images. \param spectrum Number of channels of images. \param val Initialization value for images pixels. **/ CImgList(const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const T& val) : _width(0), _allocated_width(0), _data(0) { assign(n); cimglist_apply(*this, assign)(width, height, depth, spectrum, val); } //! Construct list containing images of specified size, and initialize pixel //! values from a sequence of integers. /** \param n Number of images. \param width Width of images. \param height Height of images. \param depth Depth of images. \param spectrum Number of channels of images. \param val0 First value of the initializing integers sequence. \param val1 Second value of the initializing integers sequence. \warning You must specify at least width*height*depth*spectrum values in your argument list, or you will probably segfault. **/ CImgList(const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const int val0, const int val1, ...) : _width(0), _allocated_width(0), _data(0) { #define _CImgList_stdarg(t) \ { \ assign(n, width, height, depth, spectrum); \ const ulongT siz = (ulongT)width * height * depth * spectrum, \ nsiz = siz * n; \ T* ptrd = _data->_data; \ va_list ap; \ va_start(ap, val1); \ for (ulongT l = 0, s = 0, i = 0; i < nsiz; ++i) { \ *(ptrd++) = (T)(i == 0 ? val0 : (i == 1 ? val1 : va_arg(ap, t))); \ if ((++s) == siz) { \ ptrd = _data[++l]._data; \ s = 0; \ } \ } \ va_end(ap); \ } _CImgList_stdarg(int); } //! Construct list containing images of specified size, and initialize pixel //! values from a sequence of doubles. /** \param n Number of images. \param width Width of images. \param height Height of images. \param depth Depth of images. \param spectrum Number of channels of images. \param val0 First value of the initializing doubles sequence. \param val1 Second value of the initializing doubles sequence. \warning You must specify at least width*height*depth*spectrum values in your argument list, or you will probably segfault. **/ CImgList(const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const double val0, const double val1, ...) : _width(0), _allocated_width(0), _data(0) { _CImgList_stdarg(double); } //! Construct list containing copies of an input image. /** \param n Number of images. \param img Input image to copy in the constructed list. \param is_shared Tells if the elements of the list are shared or non-shared copies of \c img. **/ template CImgList(const unsigned int n, const CImg& img, const bool is_shared = false) : _width(0), _allocated_width(0), _data(0) { assign(n); cimglist_apply(*this, assign)(img, is_shared); } //! Construct list from one image. /** \param img Input image to copy in the constructed list. \param is_shared Tells if the element of the list is a shared or non-shared copy of \c img. **/ template explicit CImgList(const CImg& img, const bool is_shared = false) : _width(0), _allocated_width(0), _data(0) { assign(1); _data[0].assign(img, is_shared); } //! Construct list from two images. /** \param img1 First input image to copy in the constructed list. \param img2 Second input image to copy in the constructed list. \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. **/ template CImgList(const CImg& img1, const CImg& img2, const bool is_shared = false) : _width(0), _allocated_width(0), _data(0) { assign(2); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); } //! Construct list from three images. /** \param img1 First input image to copy in the constructed list. \param img2 Second input image to copy in the constructed list. \param img3 Third input image to copy in the constructed list. \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. **/ template CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const bool is_shared = false) : _width(0), _allocated_width(0), _data(0) { assign(3); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); } //! Construct list from four images. /** \param img1 First input image to copy in the constructed list. \param img2 Second input image to copy in the constructed list. \param img3 Third input image to copy in the constructed list. \param img4 Fourth input image to copy in the constructed list. \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. **/ template CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, const bool is_shared = false) : _width(0), _allocated_width(0), _data(0) { assign(4); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); _data[3].assign(img4, is_shared); } //! Construct list from five images. /** \param img1 First input image to copy in the constructed list. \param img2 Second input image to copy in the constructed list. \param img3 Third input image to copy in the constructed list. \param img4 Fourth input image to copy in the constructed list. \param img5 Fifth input image to copy in the constructed list. \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. **/ template CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, const CImg& img5, const bool is_shared = false) : _width(0), _allocated_width(0), _data(0) { assign(5); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); _data[3].assign(img4, is_shared); _data[4].assign(img5, is_shared); } //! Construct list from six images. /** \param img1 First input image to copy in the constructed list. \param img2 Second input image to copy in the constructed list. \param img3 Third input image to copy in the constructed list. \param img4 Fourth input image to copy in the constructed list. \param img5 Fifth input image to copy in the constructed list. \param img6 Sixth input image to copy in the constructed list. \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. **/ template CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, const CImg& img5, const CImg& img6, const bool is_shared = false) : _width(0), _allocated_width(0), _data(0) { assign(6); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); _data[3].assign(img4, is_shared); _data[4].assign(img5, is_shared); _data[5].assign(img6, is_shared); } //! Construct list from seven images. /** \param img1 First input image to copy in the constructed list. \param img2 Second input image to copy in the constructed list. \param img3 Third input image to copy in the constructed list. \param img4 Fourth input image to copy in the constructed list. \param img5 Fifth input image to copy in the constructed list. \param img6 Sixth input image to copy in the constructed list. \param img7 Seventh input image to copy in the constructed list. \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. **/ template CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, const CImg& img5, const CImg& img6, const CImg& img7, const bool is_shared = false) : _width(0), _allocated_width(0), _data(0) { assign(7); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); _data[3].assign(img4, is_shared); _data[4].assign(img5, is_shared); _data[5].assign(img6, is_shared); _data[6].assign(img7, is_shared); } //! Construct list from eight images. /** \param img1 First input image to copy in the constructed list. \param img2 Second input image to copy in the constructed list. \param img3 Third input image to copy in the constructed list. \param img4 Fourth input image to copy in the constructed list. \param img5 Fifth input image to copy in the constructed list. \param img6 Sixth input image to copy in the constructed list. \param img7 Seventh input image to copy in the constructed list. \param img8 Eighth input image to copy in the constructed list. \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. **/ template CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, const CImg& img5, const CImg& img6, const CImg& img7, const CImg& img8, const bool is_shared = false) : _width(0), _allocated_width(0), _data(0) { assign(8); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); _data[3].assign(img4, is_shared); _data[4].assign(img5, is_shared); _data[5].assign(img6, is_shared); _data[6].assign(img7, is_shared); _data[7].assign(img8, is_shared); } //! Construct list copy. /** \param list Input list to copy. \note The shared state of each element of the constructed list is kept the same as in \c list. **/ template CImgList(const CImgList& list) : _width(0), _allocated_width(0), _data(0) { assign(list._width); cimglist_for(*this, l) _data[l].assign(list[l], false); } //! Construct list copy \specialization. CImgList(const CImgList& list) : _width(0), _allocated_width(0), _data(0) { assign(list._width); cimglist_for(*this, l) _data[l].assign(list[l], list[l]._is_shared); } //! Construct list copy, and force the shared state of the list elements. /** \param list Input list to copy. \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. **/ template CImgList(const CImgList& list, const bool is_shared) : _width(0), _allocated_width(0), _data(0) { assign(list._width); cimglist_for(*this, l) _data[l].assign(list[l], is_shared); } //! Construct list by reading the content of a file. /** \param filename Filename, as a C-string. **/ explicit CImgList(const char* const filename) : _width(0), _allocated_width(0), _data(0) { assign(filename); } //! Construct list from the content of a display window. /** \param disp Display window to get content from. \note Constructed list contains a single image only. **/ explicit CImgList(const CImgDisplay& disp) : _width(0), _allocated_width(0), _data(0) { assign(disp); } //! Return a list with elements being shared copies of images in the list //! instance. /** \note list2 = list1.get_shared() is equivalent to list2.assign(list1,true). **/ CImgList get_shared() { CImgList res(_width); cimglist_for(*this, l) res[l].assign(_data[l], true); return res; } //! Return a list with elements being shared copies of images in the list //! instance \const. const CImgList get_shared() const { CImgList res(_width); cimglist_for(*this, l) res[l].assign(_data[l], true); return res; } //! Destructor \inplace. /** \see CImgList(). **/ CImgList& assign() { delete[] _data; _width = _allocated_width = 0; _data = 0; return *this; } //! Destructor \inplace. /** Equivalent to assign(). \note Only here for compatibility with STL naming conventions. **/ CImgList& clear() { return assign(); } //! Construct list containing empty images \inplace. /** \see CImgList(unsigned int). **/ CImgList& assign(const unsigned int n) { if (!n) return assign(); if (_allocated_width < n || _allocated_width > (n << 2)) { delete[] _data; _data = new CImg[_allocated_width = std::max( 16U, (unsigned int)cimg::nearest_pow2(n))]; } _width = n; return *this; } //! Construct list containing images of specified size \inplace. /** \see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int). **/ CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height = 1, const unsigned int depth = 1, const unsigned int spectrum = 1) { assign(n); cimglist_apply(*this, assign)(width, height, depth, spectrum); return *this; } //! Construct list containing images of specified size, and initialize pixel //! values \inplace. /** \see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const T). **/ CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const T& val) { assign(n); cimglist_apply(*this, assign)(width, height, depth, spectrum, val); return *this; } //! Construct list with images of specified size, and initialize pixel //! values from a sequence of integers \inplace. /** \see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const int, const int, ...). **/ CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const int val0, const int val1, ...) { _CImgList_stdarg(int); return *this; } //! Construct list with images of specified size, and initialize pixel //! values from a sequence of doubles \inplace. /** \see CImgList(unsigned int,unsigned int,unsigned int,unsigned int,unsigned int,const double,const double,...). **/ CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const double val0, const double val1, ...) { _CImgList_stdarg(double); return *this; } //! Construct list containing copies of an input image \inplace. /** \see CImgList(unsigned int, const CImg&, bool). **/ template CImgList& assign(const unsigned int n, const CImg& img, const bool is_shared = false) { assign(n); cimglist_apply(*this, assign)(img, is_shared); return *this; } //! Construct list from one image \inplace. /** \see CImgList(const CImg&, bool). **/ template CImgList& assign(const CImg& img, const bool is_shared = false) { assign(1); _data[0].assign(img, is_shared); return *this; } //! Construct list from two images \inplace. /** \see CImgList(const CImg&, const CImg&, bool). **/ template CImgList& assign(const CImg& img1, const CImg& img2, const bool is_shared = false) { assign(2); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); return *this; } //! Construct list from three images \inplace. /** \see CImgList(const CImg&, const CImg&, const CImg&, bool). **/ template CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const bool is_shared = false) { assign(3); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); return *this; } //! Construct list from four images \inplace. /** \see CImgList(const CImg&, const CImg&, const CImg&, const CImg&, bool). **/ template CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, const bool is_shared = false) { assign(4); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); _data[3].assign(img4, is_shared); return *this; } //! Construct list from five images \inplace. /** \see CImgList(const CImg&, const CImg&, const CImg&, const CImg&, const CImg&, bool). **/ template CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, const CImg& img5, const bool is_shared = false) { assign(5); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); _data[3].assign(img4, is_shared); _data[4].assign(img5, is_shared); return *this; } //! Construct list from six images \inplace. /** \see CImgList(const CImg&,const CImg&,const CImg&,const CImg&,const CImg&,const CImg&, bool). **/ template CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, const CImg& img5, const CImg& img6, const bool is_shared = false) { assign(6); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); _data[3].assign(img4, is_shared); _data[4].assign(img5, is_shared); _data[5].assign(img6, is_shared); return *this; } //! Construct list from seven images \inplace. /** \see CImgList(const CImg&,const CImg&,const CImg&,const CImg&,const CImg&,const CImg&, const CImg&, bool). **/ template CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, const CImg& img5, const CImg& img6, const CImg& img7, const bool is_shared = false) { assign(7); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); _data[3].assign(img4, is_shared); _data[4].assign(img5, is_shared); _data[5].assign(img6, is_shared); _data[6].assign(img7, is_shared); return *this; } //! Construct list from eight images \inplace. /** \see CImgList(const CImg&,const CImg&,const CImg&,const CImg&,const CImg&,const CImg&, const CImg&, const CImg&, bool). **/ template CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, const CImg& img5, const CImg& img6, const CImg& img7, const CImg& img8, const bool is_shared = false) { assign(8); _data[0].assign(img1, is_shared); _data[1].assign(img2, is_shared); _data[2].assign(img3, is_shared); _data[3].assign(img4, is_shared); _data[4].assign(img5, is_shared); _data[5].assign(img6, is_shared); _data[6].assign(img7, is_shared); _data[7].assign(img8, is_shared); return *this; } //! Construct list as a copy of an existing list and force the shared state //! of the list elements \inplace. /** \see CImgList(const CImgList&, bool is_shared). **/ template CImgList& assign(const CImgList& list, const bool is_shared = false) { cimg::unused(is_shared); assign(list._width); cimglist_for(*this, l) _data[l].assign(list[l], false); return *this; } //! Construct list as a copy of an existing list and force shared state of //! elements \inplace \specialization. CImgList& assign(const CImgList& list, const bool is_shared = false) { if (this == &list) return *this; CImgList res(list._width); cimglist_for(res, l) res[l].assign(list[l], is_shared); return res.move_to(*this); } //! Construct list by reading the content of a file \inplace. /** \see CImgList(const char *const). **/ CImgList& assign(const char* const filename) { return load(filename); } //! Construct list from the content of a display window \inplace. /** \see CImgList(const CImgDisplay&). **/ CImgList& assign(const CImgDisplay& disp) { return assign(CImg(disp)); } //! Transfer the content of the list instance to another list. /** \param list Destination list. \note When returning, the current list instance is empty and the initial content of \c list is destroyed. **/ template CImgList& move_to(CImgList& list) { list.assign(_width); bool is_one_shared_element = false; cimglist_for(*this, l) is_one_shared_element |= _data[l]._is_shared; if (is_one_shared_element) cimglist_for(*this, l) list[l].assign(_data[l]); else cimglist_for(*this, l) _data[l].move_to(list[l]); assign(); return list; } //! Transfer the content of the list instance at a specified position in //! another list. /** \param list Destination list. \param pos Index of the insertion in the list. \note When returning, the list instance is empty and the initial content of \c list is preserved (only images indexes may be modified). **/ template CImgList& move_to(CImgList& list, const unsigned int pos) { if (is_empty()) return list; const unsigned int npos = pos > list._width ? list._width : pos; list.insert(_width, npos); bool is_one_shared_element = false; cimglist_for(*this, l) is_one_shared_element |= _data[l]._is_shared; if (is_one_shared_element) cimglist_for(*this, l) list[npos + l].assign(_data[l]); else cimglist_for(*this, l) _data[l].move_to(list[npos + l]); assign(); return list; } //! Swap all fields between two list instances. /** \param list List to swap fields with. \note Can be used to exchange the content of two lists in a fast way. **/ CImgList& swap(CImgList& list) { cimg::swap(_width, list._width, _allocated_width, list._allocated_width); cimg::swap(_data, list._data); return list; } //! Return a reference to an empty list. /** \note Can be used to define default values in a function taking a CImgList as an argument. \code void f(const CImgList& list=CImgList::empty()); \endcode **/ static CImgList& empty() { static CImgList _empty; return _empty.assign(); } //! Return a reference to an empty list \const. static const CImgList& const_empty() { static const CImgList _empty; return _empty; } //@} //------------------------------------------ // //! \name Overloaded Operators //@{ //------------------------------------------ //! Return a reference to one image element of the list. /** \param pos Index of the image element. **/ CImg& operator()(const unsigned int pos) { #if cimg_verbosity >= 3 if (pos >= _width) { cimg::warn(_cimglist_instance "operator(): Invalid image request, at position [%u].", cimglist_instance, pos); return *_data; } #endif return _data[pos]; } //! Return a reference to one image of the list. /** \param pos Index of the image element. **/ const CImg& operator()(const unsigned int pos) const { return const_cast*>(this)->operator()(pos); } //! Return a reference to one pixel value of one image of the list. /** \param pos Index of the image element. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note list(n,x,y,z,c) is equivalent to list[n](x,y,z,c). **/ T& operator()(const unsigned int pos, const unsigned int x, const unsigned int y = 0, const unsigned int z = 0, const unsigned int c = 0) { return (*this)[pos](x, y, z, c); } //! Return a reference to one pixel value of one image of the list \const. const T& operator()(const unsigned int pos, const unsigned int x, const unsigned int y = 0, const unsigned int z = 0, const unsigned int c = 0) const { return (*this)[pos](x, y, z, c); } //! Return pointer to the first image of the list. /** \note Images in a list are stored as a buffer of \c CImg. **/ operator CImg*() { return _data; } //! Return pointer to the first image of the list \const. operator const CImg*() const { return _data; } //! Construct list from one image \inplace. /** \param img Input image to copy in the constructed list. \note list = img; is equivalent to list.assign(img);. **/ template CImgList& operator=(const CImg& img) { return assign(img); } //! Construct list from another list. /** \param list Input list to copy. \note list1 = list2 is equivalent to list1.assign(list2);. **/ template CImgList& operator=(const CImgList& list) { return assign(list); } //! Construct list from another list \specialization. CImgList& operator=(const CImgList& list) { return assign(list); } //! Construct list by reading the content of a file \inplace. /** \see CImgList(const char *const). **/ CImgList& operator=(const char* const filename) { return assign(filename); } //! Construct list from the content of a display window \inplace. /** \see CImgList(const CImgDisplay&). **/ CImgList& operator=(const CImgDisplay& disp) { return assign(disp); } //! Return a non-shared copy of a list. /** \note +list is equivalent to CImgList(list,false). It forces the copy to have non-shared elements. **/ CImgList operator+() const { return CImgList(*this, false); } //! Return a copy of the list instance, where image \c img has been inserted //! at the end. /** \param img Image inserted at the end of the instance copy. \note Define a convenient way to create temporary lists of images, as in the following code: \code (img1,img2,img3,img4).display("My four images"); \endcode **/ template CImgList& operator,(const CImg& img) { return insert(img); } //! Return a copy of the list instance, where image \c img has been inserted //! at the end \const. template CImgList operator,(const CImg& img) const { return (+*this).insert(img); } //! Return a copy of the list instance, where all elements of input list \c //! list have been inserted at the end. /** \param list List inserted at the end of the instance copy. **/ template CImgList& operator,(const CImgList& list) { return insert(list); } //! Return a copy of the list instance, where all elements of input \c list //! have been inserted at the end \const. template CImgList& operator,(const CImgList& list) const { return (+*this).insert(list); } //! Return image corresponding to the appending of all images of the //! instance list along specified axis. /** \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. \note list>'x' is equivalent to list.get_append('x'). **/ CImg operator>(const char axis) const { return get_append(axis, 0); } //! Return list corresponding to the splitting of all images of the instance //! list along specified axis. /** \param axis Axis used for image splitting. \note list<'x' is equivalent to list.get_split('x'). **/ CImgList operator<(const char axis) const { return get_split(axis); } //@} //------------------------------------- // //! \name Instance Characteristics //@{ //------------------------------------- //! Return the type of image pixel values as a C string. /** Return a \c char* string containing the usual type name of the image pixel values (i.e. a stringified version of the template parameter \c T). \note - The returned string may contain spaces (as in \c "unsigned char"). - If the pixel type \c T does not correspond to a registered type, the string "unknown" is returned. **/ static const char* pixel_type() { return cimg::type::string(); } //! Return the size of the list, i.e. the number of images contained in it. /** \note Similar to size() but returns result as a (signed) integer. **/ int width() const { return (int)_width; } //! Return the size of the list, i.e. the number of images contained in it. /** \note Similar to width() but returns result as an unsigned integer. **/ unsigned int size() const { return _width; } //! Return pointer to the first image of the list. /** \note Images in a list are stored as a buffer of \c CImg. **/ CImg* data() { return _data; } //! Return pointer to the first image of the list \const. const CImg* data() const { return _data; } //! Return pointer to the pos-th image of the list. /** \param pos Index of the image element to access. \note list.data(n); is equivalent to list.data + n;. **/ #if cimg_verbosity >= 3 CImg* data(const unsigned int pos) { if (pos >= size()) cimg::warn(_cimglist_instance "data(): Invalid pointer request, at position [%u].", cimglist_instance, pos); return _data + pos; } const CImg* data(const unsigned int l) const { return const_cast*>(this)->data(l); } #else CImg* data(const unsigned int l) { return _data + l; } //! Return pointer to the pos-th image of the list \const. const CImg* data(const unsigned int l) const { return _data + l; } #endif //! Return iterator to the first image of the list. /** **/ iterator begin() { return _data; } //! Return iterator to the first image of the list \const. const_iterator begin() const { return _data; } //! Return iterator to one position after the last image of the list. /** **/ iterator end() { return _data + _width; } //! Return iterator to one position after the last image of the list \const. const_iterator end() const { return _data + _width; } //! Return reference to the first image of the list. /** **/ CImg& front() { return *_data; } //! Return reference to the first image of the list \const. const CImg& front() const { return *_data; } //! Return a reference to the last image of the list. /** **/ const CImg& back() const { return *(_data + _width - 1); } //! Return a reference to the last image of the list \const. CImg& back() { return *(_data + _width - 1); } //! Return pos-th image of the list. /** \param pos Index of the image element to access. **/ CImg& at(const int pos) { if (is_empty()) throw CImgInstanceException( _cimglist_instance "at(): Empty instance.", cimglist_instance); return _data[cimg::cut(pos, 0, width() - 1)]; } //! Access to pixel value with Dirichlet boundary conditions. /** \param pos Index of the image element to access. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \param out_value Default value returned if \c offset is outside image bounds. \note list.atNXYZC(p,x,y,z,c); is equivalent to list[p].atXYZC(x,y,z,c);. **/ T& atNXYZC(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { return (pos < 0 || pos >= width()) ? (cimg::temporary(out_value) = out_value) : _data[pos].atXYZC(x, y, z, c, out_value); } //! Access to pixel value with Dirichlet boundary conditions \const. T atNXYZC(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { return (pos < 0 || pos >= width()) ? out_value : _data[pos].atXYZC(x, y, z, c, out_value); } //! Access to pixel value with Neumann boundary conditions. /** \param pos Index of the image element to access. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note list.atNXYZC(p,x,y,z,c); is equivalent to list[p].atXYZC(x,y,z,c);. **/ T& atNXYZC(const int pos, const int x, const int y, const int z, const int c) { if (is_empty()) throw CImgInstanceException(_cimglist_instance "atNXYZC(): Empty instance.", cimglist_instance); return _atNXYZC(pos, x, y, z, c); } //! Access to pixel value with Neumann boundary conditions \const. T atNXYZC(const int pos, const int x, const int y, const int z, const int c) const { if (is_empty()) throw CImgInstanceException(_cimglist_instance "atNXYZC(): Empty instance.", cimglist_instance); return _atNXYZC(pos, x, y, z, c); } T& _atNXYZC(const int pos, const int x, const int y, const int z, const int c) { return _data[cimg::cut(pos, 0, width() - 1)].atXYZC(x, y, z, c); } T _atNXYZC(const int pos, const int x, const int y, const int z, const int c) const { return _data[cimg::cut(pos, 0, width() - 1)].atXYZC(x, y, z, c); } //! Access pixel value with Dirichlet boundary conditions for the 3 //! coordinates (\c pos, \c x,\c y,\c z). /** \param pos Index of the image element to access. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \param out_value Default value returned if \c offset is outside image bounds. \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. **/ T& atNXYZ(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { return (pos < 0 || pos >= width()) ? (cimg::temporary(out_value) = out_value) : _data[pos].atXYZ(x, y, z, c, out_value); } //! Access pixel value with Dirichlet boundary conditions for the 3 //! coordinates (\c pos, \c x,\c y,\c z) \const. T atNXYZ(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { return (pos < 0 || pos >= width()) ? out_value : _data[pos].atXYZ(x, y, z, c, out_value); } //! Access to pixel value with Neumann boundary conditions for the 4 //! coordinates (\c pos, \c x,\c y,\c z). /** \param pos Index of the image element to access. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. **/ T& atNXYZ(const int pos, const int x, const int y, const int z, const int c = 0) { if (is_empty()) throw CImgInstanceException(_cimglist_instance "atNXYZ(): Empty instance.", cimglist_instance); return _atNXYZ(pos, x, y, z, c); } //! Access to pixel value with Neumann boundary conditions for the 4 //! coordinates (\c pos, \c x,\c y,\c z) \const. T atNXYZ(const int pos, const int x, const int y, const int z, const int c = 0) const { if (is_empty()) throw CImgInstanceException(_cimglist_instance "atNXYZ(): Empty instance.", cimglist_instance); return _atNXYZ(pos, x, y, z, c); } T& _atNXYZ(const int pos, const int x, const int y, const int z, const int c = 0) { return _data[cimg::cut(pos, 0, width() - 1)].atXYZ(x, y, z, c); } T _atNXYZ(const int pos, const int x, const int y, const int z, const int c = 0) const { return _data[cimg::cut(pos, 0, width() - 1)].atXYZ(x, y, z, c); } //! Access to pixel value with Dirichlet boundary conditions for the 3 //! coordinates (\c pos, \c x,\c y). /** \param pos Index of the image element to access. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \param out_value Default value returned if \c offset is outside image bounds. \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. **/ T& atNXY(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { return (pos < 0 || pos >= width()) ? (cimg::temporary(out_value) = out_value) : _data[pos].atXY(x, y, z, c, out_value); } //! Access to pixel value with Dirichlet boundary conditions for the 3 //! coordinates (\c pos, \c x,\c y) \const. T atNXY(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { return (pos < 0 || pos >= width()) ? out_value : _data[pos].atXY(x, y, z, c, out_value); } //! Access to pixel value with Neumann boundary conditions for the 3 //! coordinates (\c pos, \c x,\c y). /** \param pos Index of the image element to access. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. **/ T& atNXY(const int pos, const int x, const int y, const int z = 0, const int c = 0) { if (is_empty()) throw CImgInstanceException(_cimglist_instance "atNXY(): Empty instance.", cimglist_instance); return _atNXY(pos, x, y, z, c); } //! Access to pixel value with Neumann boundary conditions for the 3 //! coordinates (\c pos, \c x,\c y) \const. T atNXY(const int pos, const int x, const int y, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException(_cimglist_instance "atNXY(): Empty instance.", cimglist_instance); return _atNXY(pos, x, y, z, c); } T& _atNXY(const int pos, const int x, const int y, const int z = 0, const int c = 0) { return _data[cimg::cut(pos, 0, width() - 1)].atXY(x, y, z, c); } T _atNXY(const int pos, const int x, const int y, const int z = 0, const int c = 0) const { return _data[cimg::cut(pos, 0, width() - 1)].atXY(x, y, z, c); } //! Access to pixel value with Dirichlet boundary conditions for the 2 //! coordinates (\c pos,\c x). /** \param pos Index of the image element to access. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \param out_value Default value returned if \c offset is outside image bounds. \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. **/ T& atNX(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { return (pos < 0 || pos >= width()) ? (cimg::temporary(out_value) = out_value) : _data[pos].atX(x, y, z, c, out_value); } //! Access to pixel value with Dirichlet boundary conditions for the 2 //! coordinates (\c pos,\c x) \const. T atNX(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { return (pos < 0 || pos >= width()) ? out_value : _data[pos].atX(x, y, z, c, out_value); } //! Access to pixel value with Neumann boundary conditions for the 2 //! coordinates (\c pos, \c x). /** \param pos Index of the image element to access. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. **/ T& atNX(const int pos, const int x, const int y = 0, const int z = 0, const int c = 0) { if (is_empty()) throw CImgInstanceException(_cimglist_instance "atNX(): Empty instance.", cimglist_instance); return _atNX(pos, x, y, z, c); } //! Access to pixel value with Neumann boundary conditions for the 2 //! coordinates (\c pos, \c x) \const. T atNX(const int pos, const int x, const int y = 0, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException(_cimglist_instance "atNX(): Empty instance.", cimglist_instance); return _atNX(pos, x, y, z, c); } T& _atNX(const int pos, const int x, const int y = 0, const int z = 0, const int c = 0) { return _data[cimg::cut(pos, 0, width() - 1)].atX(x, y, z, c); } T _atNX(const int pos, const int x, const int y = 0, const int z = 0, const int c = 0) const { return _data[cimg::cut(pos, 0, width() - 1)].atX(x, y, z, c); } //! Access to pixel value with Dirichlet boundary conditions for the //! coordinate (\c pos). /** \param pos Index of the image element to access. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \param out_value Default value returned if \c offset is outside image bounds. \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. **/ T& atN(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { return (pos < 0 || pos >= width()) ? (cimg::temporary(out_value) = out_value) : (*this)(pos, x, y, z, c); } //! Access to pixel value with Dirichlet boundary conditions for the //! coordinate (\c pos) \const. T atN(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { return (pos < 0 || pos >= width()) ? out_value : (*this)(pos, x, y, z, c); } //! Return pixel value with Neumann boundary conditions for the coordinate //! (\c pos). /** \param pos Index of the image element to access. \param x X-coordinate of the pixel value. \param y Y-coordinate of the pixel value. \param z Z-coordinate of the pixel value. \param c C-coordinate of the pixel value. \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. **/ T& atN(const int pos, const int x = 0, const int y = 0, const int z = 0, const int c = 0) { if (is_empty()) throw CImgInstanceException( _cimglist_instance "atN(): Empty instance.", cimglist_instance); return _atN(pos, x, y, z, c); } //! Return pixel value with Neumann boundary conditions for the coordinate //! (\c pos) \const. T atN(const int pos, const int x = 0, const int y = 0, const int z = 0, const int c = 0) const { if (is_empty()) throw CImgInstanceException( _cimglist_instance "atN(): Empty instance.", cimglist_instance); return _atN(pos, x, y, z, c); } T& _atN(const int pos, const int x = 0, const int y = 0, const int z = 0, const int c = 0) { return _data[cimg::cut(pos, 0, width() - 1)](x, y, z, c); } T _atN(const int pos, const int x = 0, const int y = 0, const int z = 0, const int c = 0) const { return _data[cimg::cut(pos, 0, width() - 1)](x, y, z, c); } //@} //------------------------------------- // //! \name Instance Checking //@{ //------------------------------------- //! Return \c true if list is empty. /** **/ bool is_empty() const { return (!_data || !_width); } //! Test if number of image elements is equal to specified value. /** \param size_n Number of image elements to test. **/ bool is_sameN(const unsigned int size_n) const { return _width == size_n; } //! Test if number of image elements is equal between two images lists. /** \param list Input list to compare with. **/ template bool is_sameN(const CImgList& list) const { return is_sameN(list._width); } // Define useful functions to check list dimensions. // (cannot be documented because macro-generated). #define _cimglist_def_is_same1(axis) \ bool is_same##axis(const unsigned int val) const { \ bool res = true; \ for (unsigned int l = 0; l < _width && res; ++l) \ res = _data[l].is_same##axis(val); \ return res; \ } \ bool is_sameN##axis(const unsigned int n, const unsigned int val) const { \ return is_sameN(n) && is_same##axis(val); \ } #define _cimglist_def_is_same2(axis1, axis2) \ bool is_same##axis1##axis2(const unsigned int val1, \ const unsigned int val2) const { \ bool res = true; \ for (unsigned int l = 0; l < _width && res; ++l) \ res = _data[l].is_same##axis1##axis2(val1, val2); \ return res; \ } \ bool is_sameN##axis1##axis2(const unsigned int n, const unsigned int val1, \ const unsigned int val2) const { \ return is_sameN(n) && is_same##axis1##axis2(val1, val2); \ } #define _cimglist_def_is_same3(axis1, axis2, axis3) \ bool is_same##axis1##axis2##axis3(const unsigned int val1, \ const unsigned int val2, \ const unsigned int val3) const { \ bool res = true; \ for (unsigned int l = 0; l < _width && res; ++l) \ res = _data[l].is_same##axis1##axis2##axis3(val1, val2, val3); \ return res; \ } \ bool is_sameN##axis1##axis2##axis3( \ const unsigned int n, const unsigned int val1, \ const unsigned int val2, const unsigned int val3) const { \ return is_sameN(n) && is_same##axis1##axis2##axis3(val1, val2, val3); \ } #define _cimglist_def_is_same(axis) \ template \ bool is_same##axis(const CImg& img) const { \ bool res = true; \ for (unsigned int l = 0; l < _width && res; ++l) \ res = _data[l].is_same##axis(img); \ return res; \ } \ template \ bool is_same##axis(const CImgList& list) const { \ const unsigned int lmin = std::min(_width, list._width); \ bool res = true; \ for (unsigned int l = 0; l < lmin && res; ++l) \ res = _data[l].is_same##axis(list[l]); \ return res; \ } \ template \ bool is_sameN##axis(const unsigned int n, const CImg& img) const { \ return (is_sameN(n) && is_same##axis(img)); \ } \ template \ bool is_sameN##axis(const CImgList& list) const { \ return (is_sameN(list) && is_same##axis(list)); \ } _cimglist_def_is_same(XY) _cimglist_def_is_same(XZ) _cimglist_def_is_same( XC) _cimglist_def_is_same(YZ) _cimglist_def_is_same(YC) _cimglist_def_is_same(XYZ) _cimglist_def_is_same( XYC) _cimglist_def_is_same(YZC) _cimglist_def_is_same(XYZC) _cimglist_def_is_same1(X) _cimglist_def_is_same1(Y) _cimglist_def_is_same1(Z) _cimglist_def_is_same1(C) _cimglist_def_is_same2(X, Y) _cimglist_def_is_same2(X, Z) _cimglist_def_is_same2(X, C) _cimglist_def_is_same2(Y, Z) _cimglist_def_is_same2(Y, C) _cimglist_def_is_same2(Z, C) _cimglist_def_is_same3(X, Y, Z) _cimglist_def_is_same3(X, Y, C) _cimglist_def_is_same3(X, Z, C) _cimglist_def_is_same3(Y, Z, C) //! Test if dimensions of each image of the list match specified //! arguments. /** \param dx Checked image width. \param dy Checked image height. \param dz Checked image depth. \param dc Checked image spectrum. **/ bool is_sameXYZC(const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc) const { bool res = true; for (unsigned int l = 0; l < _width && res; ++l) res = _data[l].is_sameXYZC(dx, dy, dz, dc); return res; } //! Test if list dimensions match specified arguments. /** \param n Number of images in the list. \param dx Checked image width. \param dy Checked image height. \param dz Checked image depth. \param dc Checked image spectrum. **/ bool is_sameNXYZC(const unsigned int n, const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc) const { return is_sameN(n) && is_sameXYZC(dx, dy, dz, dc); } //! Test if list contains one particular pixel location. /** \param n Index of the image whom checked pixel value belong to. \param x X-coordinate of the checked pixel value. \param y Y-coordinate of the checked pixel value. \param z Z-coordinate of the checked pixel value. \param c C-coordinate of the checked pixel value. **/ bool containsNXYZC(const int n, const int x = 0, const int y = 0, const int z = 0, const int c = 0) const { if (is_empty()) return false; return n >= 0 && n < width() && x >= 0 && x < _data[n].width() && y >= 0 && y < _data[n].height() && z >= 0 && z < _data[n].depth() && c >= 0 && c < _data[n].spectrum(); } //! Test if list contains image with specified index. /** \param n Index of the checked image. **/ bool containsN(const int n) const { if (is_empty()) return false; return n >= 0 && n < width(); } //! Test if one image of the list contains the specified referenced value. /** \param pixel Reference to pixel value to test. \param[out] n Index of image containing the pixel value, if test succeeds. \param[out] x X-coordinate of the pixel value, if test succeeds. \param[out] y Y-coordinate of the pixel value, if test succeeds. \param[out] z Z-coordinate of the pixel value, if test succeeds. \param[out] c C-coordinate of the pixel value, if test succeeds. \note If true, set coordinates (n,x,y,z,c). **/ template bool contains(const T& pixel, t& n, t& x, t& y, t& z, t& c) const { if (is_empty()) return false; cimglist_for(*this, l) if (_data[l].contains(pixel, x, y, z, c)) { n = (t)l; return true; } return false; } //! Test if one of the image list contains the specified referenced value. /** \param pixel Reference to pixel value to test. \param[out] n Index of image containing the pixel value, if test succeeds. \param[out] x X-coordinate of the pixel value, if test succeeds. \param[out] y Y-coordinate of the pixel value, if test succeeds. \param[out] z Z-coordinate of the pixel value, if test succeeds. \note If true, set coordinates (n,x,y,z). **/ template bool contains(const T& pixel, t& n, t& x, t& y, t& z) const { t c; return contains(pixel, n, x, y, z, c); } //! Test if one of the image list contains the specified referenced value. /** \param pixel Reference to pixel value to test. \param[out] n Index of image containing the pixel value, if test succeeds. \param[out] x X-coordinate of the pixel value, if test succeeds. \param[out] y Y-coordinate of the pixel value, if test succeeds. \note If true, set coordinates (n,x,y). **/ template bool contains(const T& pixel, t& n, t& x, t& y) const { t z, c; return contains(pixel, n, x, y, z, c); } //! Test if one of the image list contains the specified referenced value. /** \param pixel Reference to pixel value to test. \param[out] n Index of image containing the pixel value, if test succeeds. \param[out] x X-coordinate of the pixel value, if test succeeds. \note If true, set coordinates (n,x). **/ template bool contains(const T& pixel, t& n, t& x) const { t y, z, c; return contains(pixel, n, x, y, z, c); } //! Test if one of the image list contains the specified referenced value. /** \param pixel Reference to pixel value to test. \param[out] n Index of image containing the pixel value, if test succeeds. \note If true, set coordinates (n). **/ template bool contains(const T& pixel, t& n) const { t x, y, z, c; return contains(pixel, n, x, y, z, c); } //! Test if one of the image list contains the specified referenced value. /** \param pixel Reference to pixel value to test. **/ bool contains(const T& pixel) const { unsigned int n, x, y, z, c; return contains(pixel, n, x, y, z, c); } //! Test if the list contains the image 'img'. /** \param img Reference to image to test. \param[out] n Index of image in the list, if test succeeds. \note If true, returns the position (n) of the image in the list. **/ template bool contains(const CImg& img, t& n) const { if (is_empty()) return false; const CImg* const ptr = &img; cimglist_for(*this, i) if (_data + i == ptr) { n = (t)i; return true; } return false; } //! Test if the list contains the image img. /** \param img Reference to image to test. **/ bool contains(const CImg& img) const { unsigned int n; return contains(img, n); } //@} //------------------------------------- // //! \name Mathematical Functions //@{ //------------------------------------- //! Return a reference to the minimum pixel value of the instance list. /** **/ T& min() { bool is_all_empty = true; T* ptr_min = 0; cimglist_for(*this, l) if (!_data[l].is_empty()) { ptr_min = _data[l]._data; is_all_empty = false; break; } if (is_all_empty) throw CImgInstanceException( _cimglist_instance "min(): %s.", _data ? "List of empty images" : "Empty instance", cimglist_instance); T min_value = *ptr_min; cimglist_for(*this, l) { const CImg& img = _data[l]; cimg_for(img, ptrs, T) if (*ptrs < min_value) min_value = *(ptr_min = ptrs); } return *ptr_min; } //! Return a reference to the minimum pixel value of the instance list //! \const. const T& min() const { bool is_all_empty = true; T* ptr_min = 0; cimglist_for(*this, l) if (!_data[l].is_empty()) { ptr_min = _data[l]._data; is_all_empty = false; break; } if (is_all_empty) throw CImgInstanceException( _cimglist_instance "min(): %s.", _data ? "List of empty images" : "Empty instance", cimglist_instance); T min_value = *ptr_min; cimglist_for(*this, l) { const CImg& img = _data[l]; cimg_for(img, ptrs, T) if (*ptrs < min_value) min_value = *(ptr_min = ptrs); } return *ptr_min; } //! Return a reference to the maximum pixel value of the instance list. /** **/ T& max() { bool is_all_empty = true; T* ptr_max = 0; cimglist_for(*this, l) if (!_data[l].is_empty()) { ptr_max = _data[l]._data; is_all_empty = false; break; } if (is_all_empty) throw CImgInstanceException( _cimglist_instance "max(): %s.", _data ? "List of empty images" : "Empty instance", cimglist_instance); T max_value = *ptr_max; cimglist_for(*this, l) { const CImg& img = _data[l]; cimg_for(img, ptrs, T) if (*ptrs > max_value) max_value = *(ptr_max = ptrs); } return *ptr_max; } //! Return a reference to the maximum pixel value of the instance list //! \const. const T& max() const { bool is_all_empty = true; T* ptr_max = 0; cimglist_for(*this, l) if (!_data[l].is_empty()) { ptr_max = _data[l]._data; is_all_empty = false; break; } if (is_all_empty) throw CImgInstanceException( _cimglist_instance "max(): %s.", _data ? "List of empty images" : "Empty instance", cimglist_instance); T max_value = *ptr_max; cimglist_for(*this, l) { const CImg& img = _data[l]; cimg_for(img, ptrs, T) if (*ptrs > max_value) max_value = *(ptr_max = ptrs); } return *ptr_max; } //! Return a reference to the minimum pixel value of the instance list and //! return the maximum vvalue as well. /** \param[out] max_val Value of the maximum value found. **/ template T& min_max(t& max_val) { bool is_all_empty = true; T* ptr_min = 0; cimglist_for(*this, l) if (!_data[l].is_empty()) { ptr_min = _data[l]._data; is_all_empty = false; break; } if (is_all_empty) throw CImgInstanceException( _cimglist_instance "min_max(): %s.", _data ? "List of empty images" : "Empty instance", cimglist_instance); T min_value = *ptr_min, max_value = min_value; cimglist_for(*this, l) { const CImg& img = _data[l]; cimg_for(img, ptrs, T) { const T val = *ptrs; if (val < min_value) { min_value = val; ptr_min = ptrs; } if (val > max_value) max_value = val; } } max_val = (t)max_value; return *ptr_min; } //! Return a reference to the minimum pixel value of the instance list and //! return the maximum vvalue as well \const. /** \param[out] max_val Value of the maximum value found. **/ template const T& min_max(t& max_val) const { bool is_all_empty = true; T* ptr_min = 0; cimglist_for(*this, l) if (!_data[l].is_empty()) { ptr_min = _data[l]._data; is_all_empty = false; break; } if (is_all_empty) throw CImgInstanceException( _cimglist_instance "min_max(): %s.", _data ? "List of empty images" : "Empty instance", cimglist_instance); T min_value = *ptr_min, max_value = min_value; cimglist_for(*this, l) { const CImg& img = _data[l]; cimg_for(img, ptrs, T) { const T val = *ptrs; if (val < min_value) { min_value = val; ptr_min = ptrs; } if (val > max_value) max_value = val; } } max_val = (t)max_value; return *ptr_min; } //! Return a reference to the minimum pixel value of the instance list and //! return the minimum value as well. /** \param[out] min_val Value of the minimum value found. **/ template T& max_min(t& min_val) { bool is_all_empty = true; T* ptr_max = 0; cimglist_for(*this, l) if (!_data[l].is_empty()) { ptr_max = _data[l]._data; is_all_empty = false; break; } if (is_all_empty) throw CImgInstanceException( _cimglist_instance "max_min(): %s.", _data ? "List of empty images" : "Empty instance", cimglist_instance); T min_value = *ptr_max, max_value = min_value; cimglist_for(*this, l) { const CImg& img = _data[l]; cimg_for(img, ptrs, T) { const T val = *ptrs; if (val > max_value) { max_value = val; ptr_max = ptrs; } if (val < min_value) min_value = val; } } min_val = (t)min_value; return *ptr_max; } //! Return a reference to the minimum pixel value of the instance list and //! return the minimum value as well \const. template const T& max_min(t& min_val) const { bool is_all_empty = true; T* ptr_max = 0; cimglist_for(*this, l) if (!_data[l].is_empty()) { ptr_max = _data[l]._data; is_all_empty = false; break; } if (is_all_empty) throw CImgInstanceException( _cimglist_instance "max_min(): %s.", _data ? "List of empty images" : "Empty instance", cimglist_instance); T min_value = *ptr_max, max_value = min_value; cimglist_for(*this, l) { const CImg& img = _data[l]; cimg_for(img, ptrs, T) { const T val = *ptrs; if (val > max_value) { max_value = val; ptr_max = ptrs; } if (val < min_value) min_value = val; } } min_val = (t)min_value; return *ptr_max; } //@} //--------------------------- // //! \name List Manipulation //@{ //--------------------------- //! Insert a copy of the image \c img into the current image list, at //! position \c pos. /** \param img Image to insert a copy to the list. \param pos Index of the insertion. \param is_shared Tells if the inserted image is a shared copy of \c img or not. **/ template CImgList& insert(const CImg& img, const unsigned int pos = ~0U, const bool is_shared = false) { const unsigned int npos = pos == ~0U ? _width : pos; if (npos > _width) throw CImgArgumentException(_cimglist_instance "insert(): Invalid insertion request " "of specified image (%u,%u,%u,%u,%p) " "at position %u.", cimglist_instance, img._width, img._height, img._depth, img._spectrum, img._data, npos); if (is_shared) throw CImgArgumentException( _cimglist_instance "insert(): Invalid insertion request of specified shared image " "CImg<%s>(%u,%u,%u,%u,%p) at position %u (pixel types are " "different).", cimglist_instance, img.pixel_type(), img._width, img._height, img._depth, img._spectrum, img._data, npos); CImg* const new_data = (++_width > _allocated_width) ? new CImg[_allocated_width ? (_allocated_width <<= 1) : (_allocated_width = 16)] : 0; if (!_data) { // Insert new element into empty list _data = new_data; *_data = img; } else { if (new_data) { // Insert with re-allocation if (npos) std::memcpy((void*)new_data, (void*)_data, sizeof(CImg) * npos); if (npos != _width - 1) std::memcpy((void*)(new_data + npos + 1), (void*)(_data + npos), sizeof(CImg) * (_width - 1 - npos)); std::memset((void*)_data, 0, sizeof(CImg) * (_width - 1)); delete[] _data; _data = new_data; } else if (npos != _width - 1) // Insert without re-allocation std::memmove((void*)(_data + npos + 1), (void*)(_data + npos), sizeof(CImg) * (_width - 1 - npos)); _data[npos]._width = _data[npos]._height = _data[npos]._depth = _data[npos]._spectrum = 0; _data[npos]._data = 0; _data[npos] = img; } return *this; } //! Insert a copy of the image \c img into the current image list, at //! position \c pos \specialization. CImgList& insert(const CImg& img, const unsigned int pos = ~0U, const bool is_shared = false) { const unsigned int npos = pos == ~0U ? _width : pos; if (npos > _width) throw CImgArgumentException(_cimglist_instance "insert(): Invalid insertion request " "of specified image (%u,%u,%u,%u,%p) " "at position %u.", cimglist_instance, img._width, img._height, img._depth, img._spectrum, img._data, npos); CImg* const new_data = (++_width > _allocated_width) ? new CImg[_allocated_width ? (_allocated_width <<= 1) : (_allocated_width = 16)] : 0; if (!_data) { // Insert new element into empty list _data = new_data; if (is_shared && img) { _data->_width = img._width; _data->_height = img._height; _data->_depth = img._depth; _data->_spectrum = img._spectrum; _data->_is_shared = true; _data->_data = img._data; } else *_data = img; } else { if (new_data) { // Insert with re-allocation if (npos) std::memcpy((void*)new_data, (void*)_data, sizeof(CImg) * npos); if (npos != _width - 1) std::memcpy((void*)(new_data + npos + 1), (void*)(_data + npos), sizeof(CImg) * (_width - 1 - npos)); if (is_shared && img) { new_data[npos]._width = img._width; new_data[npos]._height = img._height; new_data[npos]._depth = img._depth; new_data[npos]._spectrum = img._spectrum; new_data[npos]._is_shared = true; new_data[npos]._data = img._data; } else { new_data[npos]._width = new_data[npos]._height = new_data[npos]._depth = new_data[npos]._spectrum = 0; new_data[npos]._data = 0; new_data[npos] = img; } std::memset((void*)_data, 0, sizeof(CImg) * (_width - 1)); delete[] _data; _data = new_data; } else { // Insert without re-allocation if (npos != _width - 1) std::memmove((void*)(_data + npos + 1), (void*)(_data + npos), sizeof(CImg) * (_width - 1 - npos)); if (is_shared && img) { _data[npos]._width = img._width; _data[npos]._height = img._height; _data[npos]._depth = img._depth; _data[npos]._spectrum = img._spectrum; _data[npos]._is_shared = true; _data[npos]._data = img._data; } else { _data[npos]._width = _data[npos]._height = _data[npos]._depth = _data[npos]._spectrum = 0; _data[npos]._data = 0; _data[npos] = img; } } } return *this; } //! Insert a copy of the image \c img into the current image list, at //! position \c pos \newinstance. template CImgList get_insert(const CImg& img, const unsigned int pos = ~0U, const bool is_shared = false) const { return (+*this).insert(img, pos, is_shared); } //! Insert n empty images img into the current image list, at position \p //! pos. /** \param n Number of empty images to insert. \param pos Index of the insertion. **/ CImgList& insert(const unsigned int n, const unsigned int pos = ~0U) { CImg empty; if (!n) return *this; const unsigned int npos = pos == ~0U ? _width : pos; for (unsigned int i = 0; i < n; ++i) insert(empty, npos + i); return *this; } //! Insert n empty images img into the current image list, at position \p //! pos \newinstance. CImgList get_insert(const unsigned int n, const unsigned int pos = ~0U) const { return (+*this).insert(n, pos); } //! Insert \c n copies of the image \c img into the current image list, at //! position \c pos. /** \param n Number of image copies to insert. \param img Image to insert by copy. \param pos Index of the insertion. \param is_shared Tells if inserted images are shared copies of \c img or not. **/ template CImgList& insert(const unsigned int n, const CImg& img, const unsigned int pos = ~0U, const bool is_shared = false) { if (!n) return *this; const unsigned int npos = pos == ~0U ? _width : pos; insert(img, npos, is_shared); for (unsigned int i = 1; i < n; ++i) insert(_data[npos], npos + i, is_shared); return *this; } //! Insert \c n copies of the image \c img into the current image list, at //! position \c pos \newinstance. template CImgList get_insert(const unsigned int n, const CImg& img, const unsigned int pos = ~0U, const bool is_shared = false) const { return (+*this).insert(n, img, pos, is_shared); } //! Insert a copy of the image list \c list into the current image list, //! starting from position \c pos. /** \param list Image list to insert. \param pos Index of the insertion. \param is_shared Tells if inserted images are shared copies of images of \c list or not. **/ template CImgList& insert(const CImgList& list, const unsigned int pos = ~0U, const bool is_shared = false) { const unsigned int npos = pos == ~0U ? _width : pos; if ((void*)this != (void*)&list) cimglist_for(list, l) insert(list[l], npos + l, is_shared); else insert(CImgList(list), npos, is_shared); return *this; } //! Insert a copy of the image list \c list into the current image list, //! starting from position \c pos \newinstance. template CImgList get_insert(const CImgList& list, const unsigned int pos = ~0U, const bool is_shared = false) const { return (+*this).insert(list, pos, is_shared); } //! Insert n copies of the list \c list at position \c pos of the current //! list. /** \param n Number of list copies to insert. \param list Image list to insert. \param pos Index of the insertion. \param is_shared Tells if inserted images are shared copies of images of \c list or not. **/ template CImgList& insert(const unsigned int n, const CImgList& list, const unsigned int pos = ~0U, const bool is_shared = false) { if (!n) return *this; const unsigned int npos = pos == ~0U ? _width : pos; for (unsigned int i = 0; i < n; ++i) insert(list, npos, is_shared); return *this; } //! Insert n copies of the list \c list at position \c pos of the current //! list \newinstance. template CImgList get_insert(const unsigned int n, const CImgList& list, const unsigned int pos = ~0U, const bool is_shared = false) const { return (+*this).insert(n, list, pos, is_shared); } //! Remove all images between from indexes. /** \param pos1 Starting index of the removal. \param pos2 Ending index of the removal. **/ CImgList& remove(const unsigned int pos1, const unsigned int pos2) { const unsigned int npos1 = pos1 < pos2 ? pos1 : pos2, tpos2 = pos1 < pos2 ? pos2 : pos1, npos2 = tpos2 < _width ? tpos2 : _width - 1; if (npos1 >= _width) throw CImgArgumentException( _cimglist_instance "remove(): Invalid remove request at positions %u->%u.", cimglist_instance, npos1, tpos2); else { if (tpos2 >= _width) throw CImgArgumentException( _cimglist_instance "remove(): Invalid remove request at positions %u->%u.", cimglist_instance, npos1, tpos2); for (unsigned int k = npos1; k <= npos2; ++k) _data[k].assign(); const unsigned int nb = 1 + npos2 - npos1; if (!(_width -= nb)) return assign(); if (_width > (_allocated_width >> 2) || _allocated_width <= 16) { // Removing items without reallocation if (npos1 != _width) std::memmove((void*)(_data + npos1), (void*)(_data + npos2 + 1), sizeof(CImg) * (_width - npos1)); std::memset((void*)(_data + _width), 0, sizeof(CImg) * nb); } else { // Removing items with reallocation _allocated_width >>= 2; while (_allocated_width > 16 && _width < (_allocated_width >> 1)) _allocated_width >>= 1; CImg* const new_data = new CImg[_allocated_width]; if (npos1) std::memcpy((void*)new_data, (void*)_data, sizeof(CImg) * npos1); if (npos1 != _width) std::memcpy((void*)(new_data + npos1), (void*)(_data + npos2 + 1), sizeof(CImg) * (_width - npos1)); if (_width != _allocated_width) std::memset((void*)(new_data + _width), 0, sizeof(CImg) * (_allocated_width - _width)); std::memset((void*)_data, 0, sizeof(CImg) * (_width + nb)); delete[] _data; _data = new_data; } } return *this; } //! Remove all images between from indexes \newinstance. CImgList get_remove(const unsigned int pos1, const unsigned int pos2) const { return (+*this).remove(pos1, pos2); } //! Remove image at index \c pos from the image list. /** \param pos Index of the image to remove. **/ CImgList& remove(const unsigned int pos) { return remove(pos, pos); } //! Remove image at index \c pos from the image list \newinstance. CImgList get_remove(const unsigned int pos) const { return (+*this).remove(pos); } //! Remove last image. /** **/ CImgList& remove() { return remove(_width - 1); } //! Remove last image \newinstance. CImgList get_remove() const { return (+*this).remove(); } //! Reverse list order. CImgList& reverse() { for (unsigned int l = 0; l < _width / 2; ++l) (*this)[l].swap((*this)[_width - 1 - l]); return *this; } //! Reverse list order \newinstance. CImgList get_reverse() const { return (+*this).reverse(); } //! Return a sublist. /** \param pos0 Starting index of the sublist. \param pos1 Ending index of the sublist. **/ CImgList& images(const unsigned int pos0, const unsigned int pos1) { return get_images(pos0, pos1).move_to(*this); } //! Return a sublist \newinstance. CImgList get_images(const unsigned int pos0, const unsigned int pos1) const { if (pos0 > pos1 || pos1 >= _width) throw CImgArgumentException(_cimglist_instance "images(): Specified sub-list indices " "(%u->%u) are out of bounds.", cimglist_instance, pos0, pos1); CImgList res(pos1 - pos0 + 1); cimglist_for(res, l) res[l].assign(_data[pos0 + l]); return res; } //! Return a shared sublist. /** \param pos0 Starting index of the sublist. \param pos1 Ending index of the sublist. **/ CImgList get_shared_images(const unsigned int pos0, const unsigned int pos1) { if (pos0 > pos1 || pos1 >= _width) throw CImgArgumentException( _cimglist_instance "get_shared_images(): Specified sub-list indices (%u->%u) are " "out of bounds.", cimglist_instance, pos0, pos1); CImgList res(pos1 - pos0 + 1); cimglist_for(res, l) res[l].assign(_data[pos0 + l], _data[pos0 + l] ? true : false); return res; } //! Return a shared sublist \newinstance. const CImgList get_shared_images(const unsigned int pos0, const unsigned int pos1) const { if (pos0 > pos1 || pos1 >= _width) throw CImgArgumentException( _cimglist_instance "get_shared_images(): Specified sub-list indices (%u->%u) are " "out of bounds.", cimglist_instance, pos0, pos1); CImgList res(pos1 - pos0 + 1); cimglist_for(res, l) res[l].assign(_data[pos0 + l], _data[pos0 + l] ? true : false); return res; } //! Return a single image which is the appending of all images of the //! current CImgList instance. /** \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. \param align Appending alignment. **/ CImg get_append(const char axis, const float align = 0) const { if (is_empty()) return CImg(); if (_width == 1) return +((*this)[0]); unsigned int dx = 0, dy = 0, dz = 0, dc = 0, pos = 0; CImg res; switch (cimg::lowercase(axis)) { case 'x': { // Along the X-axis cimglist_for(*this, l) { const CImg& img = (*this)[l]; if (img) { dx += img._width; dy = std::max(dy, img._height); dz = std::max(dz, img._depth); dc = std::max(dc, img._spectrum); } } res.assign(dx, dy, dz, dc, (T)0); if (res) cimglist_for(*this, l) { const CImg& img = (*this)[l]; if (img) res.draw_image( pos, (int)(align * (dy - img._height)), (int)(align * (dz - img._depth)), (int)(align * (dc - img._spectrum)), img); pos += img._width; } } break; case 'y': { // Along the Y-axis cimglist_for(*this, l) { const CImg& img = (*this)[l]; if (img) { dx = std::max(dx, img._width); dy += img._height; dz = std::max(dz, img._depth); dc = std::max(dc, img._spectrum); } } res.assign(dx, dy, dz, dc, (T)0); if (res) cimglist_for(*this, l) { const CImg& img = (*this)[l]; if (img) res.draw_image( (int)(align * (dx - img._width)), pos, (int)(align * (dz - img._depth)), (int)(align * (dc - img._spectrum)), img); pos += img._height; } } break; case 'z': { // Along the Z-axis cimglist_for(*this, l) { const CImg& img = (*this)[l]; if (img) { dx = std::max(dx, img._width); dy = std::max(dy, img._height); dz += img._depth; dc = std::max(dc, img._spectrum); } } res.assign(dx, dy, dz, dc, (T)0); if (res) cimglist_for(*this, l) { const CImg& img = (*this)[l]; if (img) res.draw_image( (int)(align * (dx - img._width)), (int)(align * (dy - img._height)), pos, (int)(align * (dc - img._spectrum)), img); pos += img._depth; } } break; default: { // Along the C-axis cimglist_for(*this, l) { const CImg& img = (*this)[l]; if (img) { dx = std::max(dx, img._width); dy = std::max(dy, img._height); dz = std::max(dz, img._depth); dc += img._spectrum; } } res.assign(dx, dy, dz, dc, (T)0); if (res) cimglist_for(*this, l) { const CImg& img = (*this)[l]; if (img) res.draw_image((int)(align * (dx - img._width)), (int)(align * (dy - img._height)), (int)(align * (dz - img._depth)), pos, img); pos += img._spectrum; } } } return res; } //! Return a list where each image has been split along the specified axis. /** \param axis Axis to split images along. \param nb Number of spliting parts for each image. **/ CImgList& split(const char axis, const int nb = -1) { return get_split(axis, nb).move_to(*this); } //! Return a list where each image has been split along the specified axis //! \newinstance. CImgList get_split(const char axis, const int nb = -1) const { CImgList res; cimglist_for(*this, l) _data[l].get_split(axis, nb).move_to(res, ~0U); return res; } //! Insert image at the end of the list. /** \param img Image to insert. **/ template CImgList& push_back(const CImg& img) { return insert(img); } //! Insert image at the front of the list. /** \param img Image to insert. **/ template CImgList& push_front(const CImg& img) { return insert(img, 0); } //! Insert list at the end of the current list. /** \param list List to insert. **/ template CImgList& push_back(const CImgList& list) { return insert(list); } //! Insert list at the front of the current list. /** \param list List to insert. **/ template CImgList& push_front(const CImgList& list) { return insert(list, 0); } //! Remove last image. /** **/ CImgList& pop_back() { return remove(_width - 1); } //! Remove first image. /** **/ CImgList& pop_front() { return remove(0); } //! Remove image pointed by iterator. /** \param iter Iterator pointing to the image to remove. **/ CImgList& erase(const iterator iter) { return remove(iter - _data); } //@} //---------------------------------- // //! \name Data Input //@{ //---------------------------------- //! Display a simple interactive interface to select images or sublists. /** \param disp Window instance to display selection and user interface. \param feature_type Can be \c false to select a single image, or \c true to select a sublist. \param axis Axis along whom images are appended for visualization. \param align Alignment setting when images have not all the same size. \param exit_on_anykey Exit function when any key is pressed. \return A one-column vector containing the selected image indexes. **/ CImg get_select(CImgDisplay& disp, const bool feature_type = true, const char axis = 'x', const float align = 0, const bool exit_on_anykey = false) const { return _select(disp, 0, feature_type, axis, align, exit_on_anykey, 0, false, false, false); } //! Display a simple interactive interface to select images or sublists. /** \param title Title of a new window used to display selection and user interface. \param feature_type Can be \c false to select a single image, or \c true to select a sublist. \param axis Axis along whom images are appended for visualization. \param align Alignment setting when images have not all the same size. \param exit_on_anykey Exit function when any key is pressed. \return A one-column vector containing the selected image indexes. **/ CImg get_select(const char* const title, const bool feature_type = true, const char axis = 'x', const float align = 0, const bool exit_on_anykey = false) const { CImgDisplay disp; return _select(disp, title, feature_type, axis, align, exit_on_anykey, 0, false, false, false); } CImg _select(CImgDisplay& disp, const char* const title, const bool feature_type, const char axis, const float align, const bool exit_on_anykey, const unsigned int orig, const bool resize_disp, const bool exit_on_rightbutton, const bool exit_on_wheel) const { if (is_empty()) throw CImgInstanceException(_cimglist_instance "select(): Empty instance.", cimglist_instance); // Create image correspondence table and get list dimensions for // visualization. CImgList _indices; unsigned int max_width = 0, max_height = 0, sum_width = 0, sum_height = 0; cimglist_for(*this, l) { const CImg& img = _data[l]; const unsigned int w = CImgDisplay::_fitscreen( img._width, img._height, img._depth, 128, -85, false), h = CImgDisplay::_fitscreen( img._width, img._height, img._depth, 128, -85, true); if (w > max_width) max_width = w; if (h > max_height) max_height = h; sum_width += w; sum_height += h; if (axis == 'x') CImg(w, 1, 1, 1, (unsigned int)l).move_to(_indices); else CImg(h, 1, 1, 1, (unsigned int)l).move_to(_indices); } const CImg indices0 = _indices > 'x'; // Create display window. if (!disp) { if (axis == 'x') disp.assign(cimg_fitscreen(sum_width, max_height, 1), title ? title : 0, 1); else disp.assign(cimg_fitscreen(max_width, sum_height, 1), title ? title : 0, 1); if (!title) disp.set_title("CImgList<%s> (%u)", pixel_type(), _width); } else { if (title) disp.set_title("%s", title); disp.move_inside_screen(); } if (resize_disp) { if (axis == 'x') disp.resize(cimg_fitscreen(sum_width, max_height, 1), false); else disp.resize(cimg_fitscreen(max_width, sum_height, 1), false); } const unsigned int old_normalization = disp.normalization(); bool old_is_resized = disp.is_resized(); disp._normalization = 0; disp.show().set_key(0).show_mouse(); static const unsigned char foreground_color[] = {255, 255, 255}, background_color[] = {0, 0, 0}; // Enter event loop. CImg visu0, visu; CImg indices; CImg positions(_width, 4, 1, 1, -1); int oindex0 = -1, oindex1 = -1, index0 = -1, index1 = -1; bool is_clicked = false, is_selected = false, text_down = false, update_display = true; unsigned int key = 0; while (!is_selected && !disp.is_closed() && !key) { // Create background image. if (!visu0) { visu0.assign(disp._width, disp._height, 1, 3, 0); visu.assign(); (indices0.get_resize(axis == 'x' ? visu0._width : visu0._height, 1)) .move_to(indices); unsigned int _ind = 0; const CImg onexone(1, 1, 1, 1, (T)0); if (axis == 'x') cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width,4)) cimglist_for(*this,ind) { unsigned int x0 = 0; while (x0 < visu0._width && indices[x0++] != (unsigned int)ind) { } unsigned int x1 = x0; while (x1 < visu0._width && indices[x1++] == (unsigned int)ind) { } const CImg& src = _data[ind] ? _data[ind] : onexone; CImg res; src._get_select(disp, old_normalization, src._width / 2, src._height / 2, src._depth / 2) .move_to(res); const unsigned int h = CImgDisplay::_fitscreen( res._width, res._height, 1, 128, -85, true); res.resize(x1 - x0, std::max(32U, h * disp._height / max_height), 1, res._spectrum == 1 ? 3 : -100); positions(ind, 0) = positions(ind, 2) = (int)x0; positions(ind, 1) = positions(ind, 3) = (int)(align * (visu0.height() - res.height())); positions(ind, 2) += res._width; positions(ind, 3) += res._height - 1; visu0.draw_image(positions(ind, 0), positions(ind, 1), res); } else cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width,4)) cimglist_for(*this,ind) { unsigned int y0 = 0; while (y0 < visu0._height && indices[y0++] != (unsigned int)ind) { } unsigned int y1 = y0; while (y1 < visu0._height && indices[y1++] == (unsigned int)ind) { } const CImg& src = _data[ind] ? _data[ind] : onexone; CImg res; src._get_select(disp, old_normalization, (src._width - 1) / 2, (src._height - 1) / 2, (src._depth - 1) / 2) .move_to(res); const unsigned int w = CImgDisplay::_fitscreen( res._width, res._height, 1, 128, -85, false); res.resize(std::max(32U, w * disp._width / max_width), y1 - y0, 1, res._spectrum == 1 ? 3 : -100); positions(ind, 0) = positions(ind, 2) = (int)(align * (visu0.width() - res.width())); positions(ind, 1) = positions(ind, 3) = (int)y0; positions(ind, 2) += res._width - 1; positions(ind, 3) += res._height; visu0.draw_image(positions(ind, 0), positions(ind, 1), res); } if (axis == 'x') --positions(_ind, 2); else --positions(_ind, 3); update_display = true; } if (!visu || oindex0 != index0 || oindex1 != index1) { if (index0 >= 0 && index1 >= 0) { visu.assign(visu0, false); const int indm = std::min(index0, index1), indM = std::max(index0, index1); for (int ind = indm; ind <= indM; ++ind) if (positions(ind, 0) >= 0) { visu.draw_rectangle( positions(ind, 0), positions(ind, 1), positions(ind, 2), positions(ind, 3), background_color, 0.2f); if ((axis == 'x' && positions(ind, 2) - positions(ind, 0) >= 8) || (axis != 'x' && positions(ind, 3) - positions(ind, 1) >= 8)) visu.draw_rectangle( positions(ind, 0), positions(ind, 1), positions(ind, 2), positions(ind, 3), foreground_color, 0.9f, 0xAAAAAAAA); } if (is_clicked) visu.__draw_text(" Images #%u - #%u, Size = %u ", (int)text_down, orig + indm, orig + indM, indM - indm + 1); else visu.__draw_text( " Image #%u (%u,%u,%u,%u) ", (int)text_down, orig + index0, _data[index0]._width, _data[index0]._height, _data[index0]._depth, _data[index0]._spectrum); update_display = true; } else visu.assign(); } if (!visu) { visu.assign(visu0, true); update_display = true; } if (update_display) { visu.display(disp); update_display = false; } disp.wait(); // Manage user events. const int xm = disp.mouse_x(), ym = disp.mouse_y(); int index = -1; if (xm >= 0) { index = (int)indices(axis == 'x' ? xm : ym); if (disp.button() & 1) { if (!is_clicked) { is_clicked = true; oindex0 = index0; index0 = index; } oindex1 = index1; index1 = index; if (!feature_type) is_selected = true; } else { if (!is_clicked) { oindex0 = oindex1 = index0; index0 = index1 = index; } else is_selected = true; } } else { if (is_clicked) { if (!(disp.button() & 1)) { is_clicked = is_selected = false; index0 = index1 = -1; } else index1 = -1; } else index0 = index1 = -1; } if (disp.button() & 4) { is_clicked = is_selected = false; index0 = index1 = -1; } if (disp.button() & 2 && exit_on_rightbutton) { is_selected = true; index1 = index0 = -1; } if (disp.wheel() && exit_on_wheel) is_selected = true; CImg filename(32); switch (key = disp.key()) { #if cimg_OS != 2 case cimg::keyCTRLRIGHT: #endif case 0: case cimg::keyCTRLLEFT: key = 0; break; case cimg::keyD: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize( CImgDisplay::_fitscreen(3 * disp.width() / 2, 3 * disp.height() / 2, 1, 128, -100, false), CImgDisplay::_fitscreen(3 * disp.width() / 2, 3 * disp.height() / 2, 1, 128, -100, true), false) ._is_resized = true; disp.set_key(key, false); key = 0; visu0.assign(); } break; case cimg::keyC: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize(cimg_fitscreen(2 * disp.width() / 3, 2 * disp.height() / 3, 1), false) ._is_resized = true; disp.set_key(key, false); key = 0; visu0.assign(); } break; case cimg::keyR: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_fullscreen(false) .resize( cimg_fitscreen( axis == 'x' ? sum_width : max_width, axis == 'x' ? max_height : sum_height, 1), false) ._is_resized = true; disp.set_key(key, false); key = 0; visu0.assign(); } break; case cimg::keyF: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.resize(disp.screen_width(), disp.screen_height(), false) .toggle_fullscreen() ._is_resized = true; disp.set_key(key, false); key = 0; visu0.assign(); } break; case cimg::keyS: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { static unsigned int snap_number = 0; std::FILE* file; do { cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.bmp", snap_number++); if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); if (visu0) { (+visu0) .__draw_text(" Saving snapshot... ", (int)text_down) .display(disp); visu0.save(filename); (+visu0) .__draw_text(" Snapshot '%s' saved. ", (int)text_down, filename._data) .display(disp); } disp.set_key(key, false).wait(); key = 0; } break; case cimg::keyO: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { static unsigned int snap_number = 0; std::FILE* file; do { #ifdef cimg_use_zlib cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.cimgz", snap_number++); #else cimg_snprintf(filename, filename._width, cimg_appname "_%.4u.cimg", snap_number++); #endif if ((file = cimg::std_fopen(filename, "r")) != 0) cimg::fclose(file); } while (file); (+visu0) .__draw_text(" Saving instance... ", (int)text_down) .display(disp); save(filename); (+visu0) .__draw_text(" Instance '%s' saved. ", (int)text_down, filename._data) .display(disp); disp.set_key(key, false).wait(); key = 0; } break; } if (disp.is_resized()) { disp.resize(false); visu0.assign(); } if (ym >= 0 && ym < 13) { if (!text_down) { visu.assign(); text_down = true; } } else if (ym >= visu.height() - 13) { if (text_down) { visu.assign(); text_down = false; } } if (!exit_on_anykey && key && key != cimg::keyESC && (key != cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { key = 0; } } CImg res(1, 2, 1, 1, -1); if (is_selected) { if (feature_type) res.fill(std::min(index0, index1), std::max(index0, index1)); else res.fill(index0); } if (!(disp.button() & 2)) disp.set_button(); disp._normalization = old_normalization; disp._is_resized = old_is_resized; disp.set_key(key); return res; } //! Load a list from a file. /** \param filename Filename to read data from. **/ CImgList& load(const char* const filename) { if (!filename) throw CImgArgumentException(_cimglist_instance "load(): Specified filename is (null).", cimglist_instance); if (!cimg::strncasecmp(filename, "http://", 7) || !cimg::strncasecmp(filename, "https://", 8)) { CImg filename_local(256); load(cimg::load_network(filename, filename_local)); std::remove(filename_local); return *this; } const bool is_stdin = *filename == '-' && (!filename[1] || filename[1] == '.'); const char* const ext = cimg::split_filename(filename); const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); bool is_loaded = true; try { #ifdef cimglist_load_plugin cimglist_load_plugin(filename); #endif #ifdef cimglist_load_plugin1 cimglist_load_plugin1(filename); #endif #ifdef cimglist_load_plugin2 cimglist_load_plugin2(filename); #endif #ifdef cimglist_load_plugin3 cimglist_load_plugin3(filename); #endif #ifdef cimglist_load_plugin4 cimglist_load_plugin4(filename); #endif #ifdef cimglist_load_plugin5 cimglist_load_plugin5(filename); #endif #ifdef cimglist_load_plugin6 cimglist_load_plugin6(filename); #endif #ifdef cimglist_load_plugin7 cimglist_load_plugin7(filename); #endif #ifdef cimglist_load_plugin8 cimglist_load_plugin8(filename); #endif if (!cimg::strcasecmp(ext, "tif") || !cimg::strcasecmp(ext, "tiff")) load_tiff(filename); else if (!cimg::strcasecmp(ext, "gif")) load_gif_external(filename); else if (!cimg::strcasecmp(ext, "cimg") || !cimg::strcasecmp(ext, "cimgz") || !*ext) load_cimg(filename); else if (!cimg::strcasecmp(ext, "rec") || !cimg::strcasecmp(ext, "par")) load_parrec(filename); else if (!cimg::strcasecmp(ext, "avi") || !cimg::strcasecmp(ext, "mov") || !cimg::strcasecmp(ext, "asf") || !cimg::strcasecmp(ext, "divx") || !cimg::strcasecmp(ext, "flv") || !cimg::strcasecmp(ext, "mpg") || !cimg::strcasecmp(ext, "m1v") || !cimg::strcasecmp(ext, "m2v") || !cimg::strcasecmp(ext, "m4v") || !cimg::strcasecmp(ext, "mjp") || !cimg::strcasecmp(ext, "mp4") || !cimg::strcasecmp(ext, "mkv") || !cimg::strcasecmp(ext, "mpe") || !cimg::strcasecmp(ext, "movie") || !cimg::strcasecmp(ext, "ogm") || !cimg::strcasecmp(ext, "ogg") || !cimg::strcasecmp(ext, "ogv") || !cimg::strcasecmp(ext, "qt") || !cimg::strcasecmp(ext, "rm") || !cimg::strcasecmp(ext, "vob") || !cimg::strcasecmp(ext, "wmv") || !cimg::strcasecmp(ext, "xvid") || !cimg::strcasecmp(ext, "mpeg")) load_video(filename); else if (!cimg::strcasecmp(ext, "gz")) load_gzip_external(filename); else is_loaded = false; } catch (CImgIOException&) { is_loaded = false; } // If nothing loaded, try to guess file format from magic number in // file. if (!is_loaded && !is_stdin) { std::FILE* const file = cimg::std_fopen(filename, "rb"); if (!file) { cimg::exception_mode(omode); throw CImgIOException(_cimglist_instance "load(): Failed to open file '%s'.", cimglist_instance, filename); } const char* const f_type = cimg::ftype(file, filename); cimg::fclose(file); is_loaded = true; try { if (!cimg::strcasecmp(f_type, "gif")) load_gif_external(filename); else if (!cimg::strcasecmp(f_type, "tif")) load_tiff(filename); else is_loaded = false; } catch (CImgIOException&) { is_loaded = false; } } // If nothing loaded, try to load file as a single image. if (!is_loaded) { assign(1); try { _data->load(filename); } catch (CImgIOException&) { cimg::exception_mode(omode); throw CImgIOException( _cimglist_instance "load(): Failed to recognize format of file '%s'.", cimglist_instance, filename); } } cimg::exception_mode(omode); return *this; } //! Load a list from a file \newinstance. static CImgList get_load(const char* const filename) { return CImgList().load(filename); } //! Load a list from a .cimg file. /** \param filename Filename to read data from. **/ CImgList& load_cimg(const char* const filename) { return _load_cimg(0, filename); } //! Load a list from a .cimg file \newinstance. static CImgList get_load_cimg(const char* const filename) { return CImgList().load_cimg(filename); } //! Load a list from a .cimg file. /** \param file File to read data from. **/ CImgList& load_cimg(std::FILE* const file) { return _load_cimg(file, 0); } //! Load a list from a .cimg file \newinstance. static CImgList get_load_cimg(std::FILE* const file) { return CImgList().load_cimg(file); } CImgList& _load_cimg(std::FILE* const file, const char* const filename) { #ifdef cimg_use_zlib #define _cimgz_load_cimg_case(Tss) \ { \ Bytef* const cbuf = new Bytef[csiz]; \ cimg::fread(cbuf, csiz, nfile); \ raw.assign(W, H, D, C); \ uLongf destlen = (ulongT)raw.size() * sizeof(Tss); \ uncompress((Bytef*)raw._data, &destlen, cbuf, csiz); \ delete[] cbuf; \ if (endian != cimg::endianness()) \ cimg::invert_endianness(raw._data, raw.size()); \ raw.move_to(img); \ } #else #define _cimgz_load_cimg_case(Tss) \ throw CImgIOException(_cimglist_instance \ "load_cimg(): Unable to load compressed data from " \ "file '%s' unless zlib is enabled.", \ cimglist_instance, filename ? filename : "(FILE*)"); #endif #define _cimg_load_cimg_case(Ts, Tss) \ if (!loaded && !cimg::strcasecmp(Ts, str_pixeltype)) { \ for (unsigned int l = 0; l < N; ++l) { \ j = 0; \ while ((i = std::fgetc(nfile)) != '\n' && i >= 0 && j < 255) \ tmp[j++] = (char)i; \ tmp[j] = 0; \ W = H = D = C = 0; \ csiz = 0; \ if ((err = cimg_sscanf(tmp, "%u %u %u %u #%lu", &W, &H, &D, &C, \ &csiz)) < 4) \ throw CImgIOException( \ _cimglist_instance \ "load_cimg(): Invalid specified size (%u,%u,%u,%u) of " \ "image %u in file '%s'.", \ cimglist_instance, W, H, D, C, l, \ filename ? filename : ("(FILE*)")); \ if (W * H * D * C > 0) { \ CImg raw; \ CImg& img = _data[l]; \ if (err == 5) _cimgz_load_cimg_case(Tss) else { \ img.assign(W, H, D, C); \ T* ptrd = img._data; \ for (ulongT to_read = img.size(); to_read;) { \ raw.assign((unsigned int)std::min(to_read, \ cimg_iobuffer)); \ cimg::fread(raw._data, raw._width, nfile); \ if (endian != cimg::endianness()) \ cimg::invert_endianness(raw._data, \ raw.size()); \ const Tss* ptrs = raw._data; \ for (ulongT off = (ulongT)raw._width; off; --off) \ *(ptrd++) = (T) * (ptrs++); \ to_read -= raw._width; \ } \ } \ } \ } \ loaded = true; \ } if (!filename && !file) throw CImgArgumentException( _cimglist_instance "load_cimg(): Specified filename is (null).", cimglist_instance); const ulongT cimg_iobuffer = (ulongT)24 * 1024 * 1024; std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); bool loaded = false, endian = cimg::endianness(); CImg tmp(256), str_pixeltype(256), str_endian(256); *tmp = *str_pixeltype = *str_endian = 0; unsigned int j, N = 0, W, H, D, C; unsigned long csiz; int i, err; do { j = 0; while ((i = std::fgetc(nfile)) != '\n' && i >= 0 && j < 255) tmp[j++] = (char)i; tmp[j] = 0; } while (*tmp == '#' && i >= 0); err = cimg_sscanf(tmp, "%u%*c%255[A-Za-z64_]%*c%255[sA-Za-z_ ]", &N, str_pixeltype._data, str_endian._data); if (err < 2) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimglist_instance "load_cimg(): CImg header not found in file '%s'.", cimglist_instance, filename ? filename : "(FILE*)"); } if (!cimg::strncasecmp("little", str_endian, 6)) endian = false; else if (!cimg::strncasecmp("big", str_endian, 3)) endian = true; assign(N); _cimg_load_cimg_case("bool", bool); _cimg_load_cimg_case("unsigned_char", unsigned char); _cimg_load_cimg_case("uchar", unsigned char); _cimg_load_cimg_case("char", char); _cimg_load_cimg_case("unsigned_short", unsigned short); _cimg_load_cimg_case("ushort", unsigned short); _cimg_load_cimg_case("short", short); _cimg_load_cimg_case("unsigned_int", unsigned int); _cimg_load_cimg_case("uint", unsigned int); _cimg_load_cimg_case("int", int); _cimg_load_cimg_case("unsigned_long", ulongT); _cimg_load_cimg_case("ulong", ulongT); _cimg_load_cimg_case("long", longT); _cimg_load_cimg_case("unsigned_int64", uint64T); _cimg_load_cimg_case("uint64", uint64T); _cimg_load_cimg_case("int64", int64T); _cimg_load_cimg_case("float", float); _cimg_load_cimg_case("double", double); if (!loaded) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimglist_instance "load_cimg(): Unsupported pixel type '%s' for file '%s'.", cimglist_instance, str_pixeltype._data, filename ? filename : "(FILE*)"); } if (!file) cimg::fclose(nfile); return *this; } //! Load a sublist list from a (non compressed) .cimg file. /** \param filename Filename to read data from. \param n0 Starting index of images to read (~0U for max). \param n1 Ending index of images to read (~0U for max). \param x0 Starting X-coordinates of image regions to read. \param y0 Starting Y-coordinates of image regions to read. \param z0 Starting Z-coordinates of image regions to read. \param c0 Starting C-coordinates of image regions to read. \param x1 Ending X-coordinates of image regions to read (~0U for max). \param y1 Ending Y-coordinates of image regions to read (~0U for max). \param z1 Ending Z-coordinates of image regions to read (~0U for max). \param c1 Ending C-coordinates of image regions to read (~0U for max). **/ CImgList& load_cimg(const char* const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1) { return _load_cimg(0, filename, n0, n1, x0, y0, z0, c0, x1, y1, z1, c1); } //! Load a sublist list from a (non compressed) .cimg file \newinstance. static CImgList get_load_cimg( const char* const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1) { return CImgList().load_cimg(filename, n0, n1, x0, y0, z0, c0, x1, y1, z1, c1); } //! Load a sub-image list from a (non compressed) .cimg file \overloading. CImgList& load_cimg(std::FILE* const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1) { return _load_cimg(file, 0, n0, n1, x0, y0, z0, c0, x1, y1, z1, c1); } //! Load a sub-image list from a (non compressed) .cimg file \newinstance. static CImgList get_load_cimg( std::FILE* const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1) { return CImgList().load_cimg(file, n0, n1, x0, y0, z0, c0, x1, y1, z1, c1); } CImgList& _load_cimg(std::FILE* const file, const char* const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1) { #define _cimg_load_cimg_case2(Ts, Tss) \ if (!loaded && !cimg::strcasecmp(Ts, str_pixeltype)) { \ for (unsigned int l = 0; l <= nn1; ++l) { \ j = 0; \ while ((i = std::fgetc(nfile)) != '\n' && i >= 0) \ tmp[j++] = (char)i; \ tmp[j] = 0; \ W = H = D = C = 0; \ if (cimg_sscanf(tmp, "%u %u %u %u", &W, &H, &D, &C) != 4) \ throw CImgIOException( \ _cimglist_instance \ "load_cimg(): Invalid specified size (%u,%u,%u,%u) of " \ "image %u in file '%s'", \ cimglist_instance, W, H, D, C, l, \ filename ? filename : "(FILE*)"); \ if (W * H * D * C > 0) { \ if (l < nn0 || nx0 >= W || ny0 >= H || nz0 >= D || nc0 >= C) \ cimg::fseek(nfile, W* H* D* C * sizeof(Tss), SEEK_CUR); \ else { \ const unsigned int _nx1 = nx1 == ~0U ? W - 1 : nx1, \ _ny1 = ny1 == ~0U ? H - 1 : ny1, \ _nz1 = nz1 == ~0U ? D - 1 : nz1, \ _nc1 = nc1 == ~0U ? C - 1 : nc1; \ if (_nx1 >= W || _ny1 >= H || _nz1 >= D || _nc1 >= C) \ throw CImgArgumentException( \ _cimglist_instance \ "load_cimg(): Invalid specified coordinates " \ "[%u](%u,%u,%u,%u) -> [%u](%u,%u,%u,%u) " \ "because image [%u] in file '%s' has size " \ "(%u,%u,%u,%u).", \ cimglist_instance, n0, x0, y0, z0, c0, n1, x1, y1, \ z1, c1, l, filename ? filename : "(FILE*)", W, H, \ D, C); \ CImg raw(1 + _nx1 - nx0); \ CImg& img = _data[l - nn0]; \ img.assign(1 + _nx1 - nx0, 1 + _ny1 - ny0, 1 + _nz1 - nz0, \ 1 + _nc1 - nc0); \ T* ptrd = img._data; \ ulongT skipvb = nc0 * W * H * D * sizeof(Tss); \ if (skipvb) cimg::fseek(nfile, skipvb, SEEK_CUR); \ for (unsigned int c = 1 + _nc1 - nc0; c; --c) { \ const ulongT skipzb = nz0 * W * H * sizeof(Tss); \ if (skipzb) cimg::fseek(nfile, skipzb, SEEK_CUR); \ for (unsigned int z = 1 + _nz1 - nz0; z; --z) { \ const ulongT skipyb = ny0 * W * sizeof(Tss); \ if (skipyb) cimg::fseek(nfile, skipyb, SEEK_CUR); \ for (unsigned int y = 1 + _ny1 - ny0; y; --y) { \ const ulongT skipxb = nx0 * sizeof(Tss); \ if (skipxb) \ cimg::fseek(nfile, skipxb, SEEK_CUR); \ cimg::fread(raw._data, raw._width, nfile); \ if (endian != cimg::endianness()) \ cimg::invert_endianness(raw._data, \ raw._width); \ const Tss* ptrs = raw._data; \ for (unsigned int off = raw._width; off; \ --off) \ *(ptrd++) = (T) * (ptrs++); \ const ulongT skipxe = \ (W - 1 - _nx1) * sizeof(Tss); \ if (skipxe) \ cimg::fseek(nfile, skipxe, SEEK_CUR); \ } \ const ulongT skipye = \ (H - 1 - _ny1) * W * sizeof(Tss); \ if (skipye) cimg::fseek(nfile, skipye, SEEK_CUR); \ } \ const ulongT skipze = \ (D - 1 - _nz1) * W * H * sizeof(Tss); \ if (skipze) cimg::fseek(nfile, skipze, SEEK_CUR); \ } \ const ulongT skipve = \ (C - 1 - _nc1) * W * H * D * sizeof(Tss); \ if (skipve) cimg::fseek(nfile, skipve, SEEK_CUR); \ } \ } \ } \ loaded = true; \ } if (!filename && !file) throw CImgArgumentException( _cimglist_instance "load_cimg(): Specified filename is (null).", cimglist_instance); unsigned int nn0 = std::min(n0, n1), nn1 = std::max(n0, n1), nx0 = std::min(x0, x1), nx1 = std::max(x0, x1), ny0 = std::min(y0, y1), ny1 = std::max(y0, y1), nz0 = std::min(z0, z1), nz1 = std::max(z0, z1), nc0 = std::min(c0, c1), nc1 = std::max(c0, c1); std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); bool loaded = false, endian = cimg::endianness(); CImg tmp(256), str_pixeltype(256), str_endian(256); *tmp = *str_pixeltype = *str_endian = 0; unsigned int j, N, W, H, D, C; int i, err; j = 0; while ((i = std::fgetc(nfile)) != '\n' && i != EOF && j < 256) tmp[j++] = (char)i; tmp[j] = 0; err = cimg_sscanf(tmp, "%u%*c%255[A-Za-z64_]%*c%255[sA-Za-z_ ]", &N, str_pixeltype._data, str_endian._data); if (err < 2) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimglist_instance "load_cimg(): CImg header not found in file '%s'.", cimglist_instance, filename ? filename : "(FILE*)"); } if (!cimg::strncasecmp("little", str_endian, 6)) endian = false; else if (!cimg::strncasecmp("big", str_endian, 3)) endian = true; nn1 = n1 == ~0U ? N - 1 : n1; if (nn1 >= N) throw CImgArgumentException( _cimglist_instance "load_cimg(): Invalid specified coordinates [%u](%u,%u,%u,%u) " "-> [%u](%u,%u,%u,%u) " "because file '%s' contains only %u images.", cimglist_instance, n0, x0, y0, z0, c0, n1, x1, y1, z1, c1, filename ? filename : "(FILE*)", N); assign(1 + nn1 - n0); _cimg_load_cimg_case2("bool", bool); _cimg_load_cimg_case2("unsigned_char", unsigned char); _cimg_load_cimg_case2("uchar", unsigned char); _cimg_load_cimg_case2("char", char); _cimg_load_cimg_case2("unsigned_short", unsigned short); _cimg_load_cimg_case2("ushort", unsigned short); _cimg_load_cimg_case2("short", short); _cimg_load_cimg_case2("unsigned_int", unsigned int); _cimg_load_cimg_case2("uint", unsigned int); _cimg_load_cimg_case2("int", int); _cimg_load_cimg_case2("unsigned_long", ulongT); _cimg_load_cimg_case2("ulong", ulongT); _cimg_load_cimg_case2("long", longT); _cimg_load_cimg_case2("unsigned_int64", uint64T); _cimg_load_cimg_case2("uint64", uint64T); _cimg_load_cimg_case2("int64", int64T); _cimg_load_cimg_case2("float", float); _cimg_load_cimg_case2("double", double); if (!loaded) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimglist_instance "load_cimg(): Unsupported pixel type '%s' for file '%s'.", cimglist_instance, str_pixeltype._data, filename ? filename : "(FILE*)"); } if (!file) cimg::fclose(nfile); return *this; } //! Load a list from a PAR/REC (Philips) file. /** \param filename Filename to read data from. **/ CImgList& load_parrec(const char* const filename) { if (!filename) throw CImgArgumentException( _cimglist_instance "load_parrec(): Specified filename is (null).", cimglist_instance); CImg body(1024), filenamepar(1024), filenamerec(1024); *body = *filenamepar = *filenamerec = 0; const char* const ext = cimg::split_filename(filename, body); if (!std::strcmp(ext, "par")) { std::strncpy(filenamepar, filename, filenamepar._width - 1); cimg_snprintf(filenamerec, filenamerec._width, "%s.rec", body._data); } if (!std::strcmp(ext, "PAR")) { std::strncpy(filenamepar, filename, filenamepar._width - 1); cimg_snprintf(filenamerec, filenamerec._width, "%s.REC", body._data); } if (!std::strcmp(ext, "rec")) { std::strncpy(filenamerec, filename, filenamerec._width - 1); cimg_snprintf(filenamepar, filenamepar._width, "%s.par", body._data); } if (!std::strcmp(ext, "REC")) { std::strncpy(filenamerec, filename, filenamerec._width - 1); cimg_snprintf(filenamepar, filenamepar._width, "%s.PAR", body._data); } std::FILE* file = cimg::fopen(filenamepar, "r"); // Parse header file CImgList st_slices; CImgList st_global; CImg line(256); *line = 0; int err; do { err = std::fscanf(file, "%255[^\n]%*c", line._data); } while (err != EOF && (*line == '#' || *line == '.')); do { unsigned int sn, size_x, size_y, pixsize; float rs, ri, ss; err = std::fscanf(file, "%u%*u%*u%*u%*u%*u%*u%u%*u%u%u%g%g%g%*[^\n]", &sn, &pixsize, &size_x, &size_y, &ri, &rs, &ss); if (err == 7) { CImg::vector((float)sn, (float)pixsize, (float)size_x, (float)size_y, ri, rs, ss, 0) .move_to(st_slices); unsigned int i; for (i = 0; i < st_global._width && sn <= st_global[i][2]; ++i) { } if (i == st_global._width) CImg::vector(size_x, size_y, sn).move_to(st_global); else { CImg& vec = st_global[i]; if (size_x > vec[0]) vec[0] = size_x; if (size_y > vec[1]) vec[1] = size_y; vec[2] = sn; } st_slices[st_slices._width - 1][7] = (float)i; } } while (err == 7); // Read data std::FILE* file2 = cimg::fopen(filenamerec, "rb"); cimglist_for(st_global, l) { const CImg& vec = st_global[l]; CImg(vec[0], vec[1], vec[2]).move_to(*this); } cimglist_for(st_slices, l) { const CImg& vec = st_slices[l]; const unsigned int sn = (unsigned int)vec[0] - 1, pixsize = (unsigned int)vec[1], size_x = (unsigned int)vec[2], size_y = (unsigned int)vec[3], imn = (unsigned int)vec[7]; const float ri = vec[4], rs = vec[5], ss = vec[6]; switch (pixsize) { case 8: { CImg buf(size_x, size_y); cimg::fread(buf._data, size_x * size_y, file2); if (cimg::endianness()) cimg::invert_endianness(buf._data, size_x * size_y); CImg& img = (*this)[imn]; cimg_forXY(img, x, y) img(x, y, sn) = (T)((buf(x, y) * rs + ri) / (rs * ss)); } break; case 16: { CImg buf(size_x, size_y); cimg::fread(buf._data, size_x * size_y, file2); if (cimg::endianness()) cimg::invert_endianness(buf._data, size_x * size_y); CImg& img = (*this)[imn]; cimg_forXY(img, x, y) img(x, y, sn) = (T)((buf(x, y) * rs + ri) / (rs * ss)); } break; case 32: { CImg buf(size_x, size_y); cimg::fread(buf._data, size_x * size_y, file2); if (cimg::endianness()) cimg::invert_endianness(buf._data, size_x * size_y); CImg& img = (*this)[imn]; cimg_forXY(img, x, y) img(x, y, sn) = (T)((buf(x, y) * rs + ri) / (rs * ss)); } break; default: cimg::fclose(file); cimg::fclose(file2); throw CImgIOException(_cimglist_instance "load_parrec(): Unsupported %d-bits " "pixel type for file '%s'.", cimglist_instance, pixsize, filename); } } cimg::fclose(file); cimg::fclose(file2); if (!_width) throw CImgIOException(_cimglist_instance "load_parrec(): Failed to recognize valid " "PAR-REC data in file '%s'.", cimglist_instance, filename); return *this; } //! Load a list from a PAR/REC (Philips) file \newinstance. static CImgList get_load_parrec(const char* const filename) { return CImgList().load_parrec(filename); } //! Load a list from a YUV image sequence file. /** \param filename Filename to read data from. \param size_x Width of the images. \param size_y Height of the images. \param chroma_subsampling Type of chroma subsampling. Can be { 420 | 422 | 444 }. \param first_frame Index of first image frame to read. \param last_frame Index of last image frame to read. \param step_frame Step applied between each frame. \param yuv2rgb Apply YUV to RGB transformation during reading. **/ CImgList& load_yuv(const char* const filename, const unsigned int size_x, const unsigned int size_y, const unsigned int chroma_subsampling = 444, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, const bool yuv2rgb = true) { return _load_yuv(0, filename, size_x, size_y, chroma_subsampling, first_frame, last_frame, step_frame, yuv2rgb); } //! Load a list from a YUV image sequence file \newinstance. static CImgList get_load_yuv(const char* const filename, const unsigned int size_x, const unsigned int size_y = 1, const unsigned int chroma_subsampling = 444, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, const bool yuv2rgb = true) { return CImgList().load_yuv(filename, size_x, size_y, chroma_subsampling, first_frame, last_frame, step_frame, yuv2rgb); } //! Load a list from an image sequence YUV file \overloading. CImgList& load_yuv(std::FILE* const file, const unsigned int size_x, const unsigned int size_y, const unsigned int chroma_subsampling = 444, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, const bool yuv2rgb = true) { return _load_yuv(file, 0, size_x, size_y, chroma_subsampling, first_frame, last_frame, step_frame, yuv2rgb); } //! Load a list from an image sequence YUV file \newinstance. static CImgList get_load_yuv(std::FILE* const file, const unsigned int size_x, const unsigned int size_y = 1, const unsigned int chroma_subsampling = 444, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, const bool yuv2rgb = true) { return CImgList().load_yuv(file, size_x, size_y, chroma_subsampling, first_frame, last_frame, step_frame, yuv2rgb); } CImgList& _load_yuv(std::FILE* const file, const char* const filename, const unsigned int size_x, const unsigned int size_y, const unsigned int chroma_subsampling, const unsigned int first_frame, const unsigned int last_frame, const unsigned int step_frame, const bool yuv2rgb) { if (!filename && !file) throw CImgArgumentException( _cimglist_instance "load_yuv(): Specified filename is (null).", cimglist_instance); if (chroma_subsampling != 420 && chroma_subsampling != 422 && chroma_subsampling != 444) throw CImgArgumentException( _cimglist_instance "load_yuv(): Specified chroma subsampling '%u' is invalid, for " "file '%s'.", cimglist_instance, chroma_subsampling, filename ? filename : "(FILE*)"); const unsigned int cfx = chroma_subsampling == 420 || chroma_subsampling == 422 ? 2 : 1, cfy = chroma_subsampling == 420 ? 2 : 1, nfirst_frame = first_frame < last_frame ? first_frame : last_frame, nlast_frame = first_frame < last_frame ? last_frame : first_frame, nstep_frame = step_frame ? step_frame : 1; if (!size_x || !size_y || size_x % cfx || size_y % cfy) throw CImgArgumentException(_cimglist_instance "load_yuv(): Specified dimensions " "(%u,%u) are invalid, for file '%s'.", cimglist_instance, size_x, size_y, filename ? filename : "(FILE*)"); CImg YUV(size_x, size_y, 1, 3), UV(size_x / cfx, size_y / cfy, 1, 2); std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb"); bool stop_flag = false; int err; if (nfirst_frame) { err = cimg::fseek( nfile, (uint64T)nfirst_frame * (YUV._width * YUV._height + 2 * UV._width * UV._height), SEEK_CUR); if (err) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimglist_instance "load_yuv(): File '%s' doesn't contain frame number %u.", cimglist_instance, filename ? filename : "(FILE*)", nfirst_frame); } } unsigned int frame; for (frame = nfirst_frame; !stop_flag && frame <= nlast_frame; frame += nstep_frame) { YUV.get_shared_channel(0).fill(0); // *TRY* to read the luminance part, do not replace by cimg::fread! err = (int)std::fread((void*)(YUV._data), 1, (size_t)YUV._width * YUV._height, nfile); if (err != (int)(YUV._width * YUV._height)) { stop_flag = true; if (err > 0) cimg::warn(_cimglist_instance "load_yuv(): File '%s' contains incomplete data " "or given image dimensions " "(%u,%u) are incorrect.", cimglist_instance, filename ? filename : "(FILE*)", size_x, size_y); } else { UV.fill(0); // *TRY* to read the luminance part, do not replace by // cimg::fread! err = (int)std::fread((void*)(UV._data), 1, (size_t)UV.size(), nfile); if (err != (int)(UV.size())) { stop_flag = true; if (err > 0) cimg::warn(_cimglist_instance "load_yuv(): File '%s' contains incomplete " "data or given image dimensions " "(%u,%u) are incorrect.", cimglist_instance, filename ? filename : "(FILE*)", size_x, size_y); } else { const ucharT *ptrs1 = UV._data, *ptrs2 = UV.data(0, 0, 0, 1); ucharT *ptrd1 = YUV.data(0, 0, 0, 1), *ptrd2 = YUV.data(0, 0, 0, 2); const unsigned int wd = YUV._width; switch (chroma_subsampling) { case 420: cimg_forY(UV, y) { cimg_forX(UV, x) { const ucharT U = *(ptrs1++), V = *(ptrs2++); ptrd1[wd] = U; *(ptrd1)++ = U; ptrd1[wd] = U; *(ptrd1)++ = U; ptrd2[wd] = V; *(ptrd2)++ = V; ptrd2[wd] = V; *(ptrd2)++ = V; } ptrd1 += wd; ptrd2 += wd; } break; case 422: cimg_forXY(UV, x, y) { const ucharT U = *(ptrs1++), V = *(ptrs2++); *(ptrd1++) = U; *(ptrd1++) = U; *(ptrd2++) = V; *(ptrd2++) = V; } break; default: YUV.draw_image(0, 0, 0, 1, UV); } if (yuv2rgb) YUV.YCbCrtoRGB(); insert(YUV); if (nstep_frame > 1) cimg::fseek(nfile, (uint64T)(nstep_frame - 1) * (size_x * size_y + size_x * size_y / 2), SEEK_CUR); } } } if (is_empty()) throw CImgIOException( _cimglist_instance "load_yuv() : Missing data in file '%s'.", cimglist_instance, filename ? filename : "(FILE*)"); if (stop_flag && nlast_frame != ~0U && frame != nlast_frame) cimg::warn(_cimglist_instance "load_yuv(): Frame %d not reached since only %u frames " "were found in file '%s'.", cimglist_instance, nlast_frame, frame - 1, filename ? filename : "(FILE*)"); if (!file) cimg::fclose(nfile); return *this; } //! Load an image from a video file, using OpenCV library. /** \param filename Filename, as a C-string. \param first_frame Index of the first frame to read. \param last_frame Index of the last frame to read (can be higher than the actual number of frames, e.g. '~0U'). \param step_frame Step value for frame reading. \note If step_frame==0, the current video stream is forced to be released (without any frames read). **/ CImgList& load_video(const char* const filename, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1) { #ifndef cimg_use_opencv if (first_frame || last_frame != ~0U || step_frame > 1) throw CImgArgumentException( _cimglist_instance "load_video() : File '%s', arguments 'first_frame', " "'last_frame' " "and 'step_frame' can be only set when using OpenCV " "(-Dcimg_use_opencv must be enabled).", cimglist_instance, filename); return load_ffmpeg_external(filename); #else static cv::VideoCapture* captures[32] = {0}; static CImgList filenames(32); static CImg positions(32, 1, 1, 1, 0); static int last_used_index = -1; // Detect if a video capture already exists for the specified filename. cimg::mutex(9); int index = -1; if (filename) { if (last_used_index >= 0 && !std::strcmp(filename, filenames[last_used_index])) { index = last_used_index; } else cimglist_for(filenames, l) if (filenames[l] && !std::strcmp(filename, filenames[l])) { index = l; break; } } else index = last_used_index; cimg::mutex(9, 0); // Release stream if needed. if (!step_frame || (index >= 0 && positions[index] > first_frame)) { if (index >= 0) { cimg::mutex(9); captures[index]->release(); delete captures[index]; captures[index] = 0; positions[index] = 0; filenames[index].assign(); if (last_used_index == index) last_used_index = -1; index = -1; cimg::mutex(9, 0); } else if (filename) cimg::warn(_cimglist_instance "load_video() : File '%s', no opened video stream " "associated with filename found.", cimglist_instance, filename); else cimg::warn(_cimglist_instance "load_video() : No opened video stream found.", cimglist_instance, filename); if (!step_frame) return *this; } // Find empty slot for capturing video stream. if (index < 0) { if (!filename) throw CImgArgumentException( _cimglist_instance "load_video(): No already open video reader found. You " "must specify a " "non-(null) filename argument for the first call.", cimglist_instance); else { cimg::mutex(9); cimglist_for(filenames, l) if (!filenames[l]) { index = l; break; } cimg::mutex(9, 0); } if (index < 0) throw CImgIOException( _cimglist_instance "load_video(): File '%s', no video reader slots available. " "You have to release some of your previously opened " "videos.", cimglist_instance, filename); cimg::mutex(9); captures[index] = new cv::VideoCapture(filename); positions[index] = 0; if (!captures[index]->isOpened()) { delete captures[index]; captures[index] = 0; cimg::mutex(9, 0); cimg::fclose( cimg::fopen(filename, "rb")); // Check file availability throw CImgIOException(_cimglist_instance "load_video(): File '%s', unable to " "detect format of video file.", cimglist_instance, filename); } CImg::string(filename).move_to(filenames[index]); cimg::mutex(9, 0); } cimg::mutex(9); const unsigned int nb_frames = (unsigned int)std::max( 0., captures[index]->get(_cimg_cap_prop_frame_count)); cimg::mutex(9, 0); assign(); // Skip frames if requested. bool go_on = true; unsigned int& pos = positions[index]; while (pos < first_frame) { cimg::mutex(9); if (!captures[index]->grab()) { cimg::mutex(9, 0); go_on = false; break; } cimg::mutex(9, 0); ++pos; } // Read and convert frames. const unsigned int _last_frame = std::min(nb_frames ? nb_frames - 1 : ~0U, last_frame); while (go_on && pos <= _last_frame) { cv::Mat cvimg; cimg::mutex(9); if (captures[index]->read(cvimg)) { CImg::_cvmat2cimg(cvimg).move_to(*this); ++pos; } else go_on = false; cimg::mutex(9, 0); if (go_on) for (unsigned int i = 1; go_on && i < step_frame && pos <= _last_frame; ++i, ++pos) { cimg::mutex(9); if (!captures[index]->grab()) go_on = false; cimg::mutex(9, 0); } } if (!go_on || (nb_frames && pos >= nb_frames)) { // Close video stream when necessary cimg::mutex(9); captures[index]->release(); delete captures[index]; captures[index] = 0; filenames[index].assign(); positions[index] = 0; index = -1; cimg::mutex(9, 0); } cimg::mutex(9); last_used_index = index; cimg::mutex(9, 0); if (is_empty()) throw CImgIOException( _cimglist_instance "load_video(): File '%s', unable to locate frame %u.", cimglist_instance, filename, first_frame); return *this; #endif } //! Load an image from a video file, using OpenCV library \newinstance. static CImgList get_load_video(const char* const filename, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1) { return CImgList().load_video(filename, first_frame, last_frame, step_frame); } //! Load an image from a video file using the external tool 'ffmpeg'. /** \param filename Filename to read data from. **/ CImgList& load_ffmpeg_external(const char* const filename) { if (!filename) throw CImgArgumentException( _cimglist_instance "load_ffmpeg_external(): Specified filename is (null).", cimglist_instance); cimg::fclose(cimg::fopen(filename, "rb")); // Check if file exists CImg command(1024), filename_tmp(256), filename_tmp2(256); std::FILE* file = 0; do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s_000001.ppm", filename_tmp._data); if ((file = cimg::std_fopen(filename_tmp2, "rb")) != 0) cimg::fclose(file); } while (file); cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s_%%6d.ppm", filename_tmp._data); cimg_snprintf( command, command._width, "%s -i \"%s\" \"%s\"", cimg::ffmpeg_path(), CImg::string(filename)._system_strescape().data(), CImg::string(filename_tmp2)._system_strescape().data()); cimg::system(command, 0); const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); assign(); unsigned int i = 1; for (bool stop_flag = false; !stop_flag; ++i) { cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s_%.6u.ppm", filename_tmp._data, i); CImg img; try { img.load_pnm(filename_tmp2); } catch (CImgException&) { stop_flag = true; } if (img) { img.move_to(*this); std::remove(filename_tmp2); } } cimg::exception_mode(omode); if (is_empty()) throw CImgIOException(_cimglist_instance "load_ffmpeg_external(): Failed to open file " "'%s' with external command 'ffmpeg'.", cimglist_instance, filename); return *this; } //! Load an image from a video file using the external tool 'ffmpeg' //! \newinstance. static CImgList get_load_ffmpeg_external(const char* const filename) { return CImgList().load_ffmpeg_external(filename); } //! Load gif file, using ImageMagick or GraphicsMagick's external tools. /** \param filename Filename to read data from. **/ CImgList& load_gif_external(const char* const filename) { if (!filename) throw CImgArgumentException( _cimglist_instance "load_gif_external(): Specified filename is (null).", cimglist_instance); cimg::fclose(cimg::fopen(filename, "rb")); // Check if file exists if (!_load_gif_external(filename, false)) if (!_load_gif_external(filename, true)) try { assign(CImg().load_other(filename)); } catch (CImgException&) { assign(); } if (is_empty()) throw CImgIOException( _cimglist_instance "load_gif_external(): Failed to open file '%s'.", cimglist_instance, filename); return *this; } CImgList& _load_gif_external(const char* const filename, const bool use_graphicsmagick = false) { CImg command(1024), filename_tmp(256), filename_tmp2(256); std::FILE* file = 0; do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); if (use_graphicsmagick) cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s.png.0", filename_tmp._data); else cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s-0.png", filename_tmp._data); if ((file = cimg::std_fopen(filename_tmp2, "rb")) != 0) cimg::fclose(file); } while (file); if (use_graphicsmagick) cimg_snprintf( command, command._width, "%s convert \"%s\" \"%s.png\"", cimg::graphicsmagick_path(), CImg::string(filename)._system_strescape().data(), CImg::string(filename_tmp)._system_strescape().data()); else cimg_snprintf( command, command._width, "%s \"%s\" \"%s.png\"", cimg::imagemagick_path(), CImg::string(filename)._system_strescape().data(), CImg::string(filename_tmp)._system_strescape().data()); cimg::system(command, 0); const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); assign(); // Try to read a single frame gif. cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s.png", filename_tmp._data); CImg img; try { img.load_png(filename_tmp2); } catch (CImgException&) { } if (img) { img.move_to(*this); std::remove(filename_tmp2); } else { // Try to read animated gif unsigned int i = 0; for (bool stop_flag = false; !stop_flag; ++i) { if (use_graphicsmagick) cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s.png.%u", filename_tmp._data, i); else cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s-%u.png", filename_tmp._data, i); try { img.load_png(filename_tmp2); } catch (CImgException&) { stop_flag = true; } if (img) { img.move_to(*this); std::remove(filename_tmp2); } } } cimg::exception_mode(omode); return *this; } //! Load gif file, using ImageMagick or GraphicsMagick's external tools //! \newinstance. static CImgList get_load_gif_external(const char* const filename) { return CImgList().load_gif_external(filename); } //! Load a gzipped list, using external tool 'gunzip'. /** \param filename Filename to read data from. **/ CImgList& load_gzip_external(const char* const filename) { if (!filename) throw CImgIOException( _cimglist_instance "load_gzip_external(): Specified filename is (null).", cimglist_instance); cimg::fclose(cimg::fopen(filename, "rb")); // Check if file exists CImg command(1024), filename_tmp(256), body(256); const char *ext = cimg::split_filename(filename, body), *ext2 = cimg::split_filename(body, 0); std::FILE* file = 0; do { if (!cimg::strcasecmp(ext, "gz")) { if (*ext2) cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), ext2); else cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); } else { if (*ext) cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), ext); else cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); } if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); cimg_snprintf( command, command._width, "%s -c \"%s\" > \"%s\"", cimg::gunzip_path(), CImg::string(filename)._system_strescape().data(), CImg::string(filename_tmp)._system_strescape().data()); cimg::system(command); if (!(file = cimg::std_fopen(filename_tmp, "rb"))) { cimg::fclose(cimg::fopen(filename, "r")); throw CImgIOException( _cimglist_instance "load_gzip_external(): Failed to open file '%s'.", cimglist_instance, filename); } else cimg::fclose(file); load(filename_tmp); std::remove(filename_tmp); return *this; } //! Load a gzipped list, using external tool 'gunzip' \newinstance. static CImgList get_load_gzip_external(const char* const filename) { return CImgList().load_gzip_external(filename); } //! Load images from a TIFF file. /** \param filename Filename to read data from. \param first_frame Index of first image frame to read. \param last_frame Index of last image frame to read. \param step_frame Step applied between each frame. \param[out] voxel_size Voxel size, as stored in the filename. \param[out] description Description, as stored in the filename. **/ CImgList& load_tiff(const char* const filename, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, float* const voxel_size = 0, CImg* const description = 0) { const unsigned int nfirst_frame = first_frame < last_frame ? first_frame : last_frame, nstep_frame = step_frame ? step_frame : 1; unsigned int nlast_frame = first_frame < last_frame ? last_frame : first_frame; #ifndef cimg_use_tiff cimg::unused(voxel_size, description); if (nfirst_frame || nlast_frame != ~0U || nstep_frame != 1) throw CImgArgumentException( _cimglist_instance "load_tiff(): Unable to load sub-images from file '%s' unless " "libtiff is enabled.", cimglist_instance, filename); return assign(CImg::get_load_tiff(filename)); #else #if cimg_verbosity < 3 TIFFSetWarningHandler(0); TIFFSetErrorHandler(0); #endif TIFF* tif = TIFFOpen(filename, "r"); if (tif) { unsigned int nb_images = 0; do ++nb_images; while (TIFFReadDirectory(tif)); if (nfirst_frame >= nb_images || (nlast_frame != ~0U && nlast_frame >= nb_images)) cimg::warn(_cimglist_instance "load_tiff(): Invalid specified frame range is " "[%u,%u] (step %u) since " "file '%s' contains %u image(s).", cimglist_instance, nfirst_frame, nlast_frame, nstep_frame, filename, nb_images); if (nfirst_frame >= nb_images) return assign(); if (nlast_frame >= nb_images) nlast_frame = nb_images - 1; assign(1 + (nlast_frame - nfirst_frame) / nstep_frame); TIFFSetDirectory(tif, 0); cimglist_for(*this, l) _data[l]._load_tiff( tif, nfirst_frame + l * nstep_frame, voxel_size, description); TIFFClose(tif); } else throw CImgIOException(_cimglist_instance "load_tiff(): Failed to open file '%s'.", cimglist_instance, filename); return *this; #endif } //! Load a multi-page TIFF file \newinstance. static CImgList get_load_tiff(const char* const filename, const unsigned int first_frame = 0, const unsigned int last_frame = ~0U, const unsigned int step_frame = 1, float* const voxel_size = 0, CImg* const description = 0) { return CImgList().load_tiff(filename, first_frame, last_frame, step_frame, voxel_size, description); } //@} //---------------------------------- // //! \name Data Output //@{ //---------------------------------- //! Print information about the list on the standard output. /** \param title Label set to the information displayed. \param display_stats Tells if image statistics must be computed and displayed. **/ const CImgList& print(const char* const title = 0, const bool display_stats = true) const { unsigned int msiz = 0; cimglist_for(*this, l) msiz += _data[l].size(); msiz *= sizeof(T); const unsigned int mdisp = msiz < 8 * 1024 ? 0U : msiz < 8 * 1024 * 1024 ? 1U : 2U; CImg _title(64); if (!title) cimg_snprintf(_title, _title._width, "CImgList<%s>", pixel_type()); std::fprintf( cimg::output(), "%s%s%s%s: %sthis%s = %p, %ssize%s = %u/%u [%u %s], %sdata%s = " "(CImg<%s>*)%p", cimg::t_magenta, cimg::t_bold, title ? title : _title._data, cimg::t_normal, cimg::t_bold, cimg::t_normal, (void*)this, cimg::t_bold, cimg::t_normal, _width, _allocated_width, mdisp == 0 ? msiz : (mdisp == 1 ? (msiz >> 10) : (msiz >> 20)), mdisp == 0 ? "b" : (mdisp == 1 ? "Kio" : "Mio"), cimg::t_bold, cimg::t_normal, pixel_type(), (void*)begin()); if (_data) std::fprintf(cimg::output(), "..%p.\n", (void*)((char*)end() - 1)); else std::fprintf(cimg::output(), ".\n"); char tmp[16] = {0}; cimglist_for(*this, ll) { cimg_snprintf(tmp, sizeof(tmp), "[%d]", ll); std::fprintf(cimg::output(), " "); _data[ll].print(tmp, display_stats); if (ll == 3 && width() > 8) { ll = width() - 5; std::fprintf(cimg::output(), " ...\n"); } } std::fflush(cimg::output()); return *this; } //! Display the current CImgList instance in an existing CImgDisplay window //! (by reference). /** \param disp Reference to an existing CImgDisplay instance, where the current image list will be displayed. \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. \param align Appending alignmenet. \note This function displays the list images of the current CImgList instance into an existing CImgDisplay window. Images of the list are appended in a single temporarly image for visualization purposes. The function returns immediately. **/ const CImgList& display(CImgDisplay& disp, const char axis = 'x', const float align = 0) const { disp.display(*this, axis, align); return *this; } //! Display the current CImgList instance in a new display window. /** \param disp Display window. \param display_info Tells if image information are displayed on the standard output. \param axis Alignment axis for images viewing. \param align Apending alignment. \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. \param exit_on_anykey Exit function when any key is pressed. \note This function opens a new window with a specific title and displays the list images of the current CImgList instance into it. Images of the list are appended in a single temporarly image for visualization purposes. The function returns when a key is pressed or the display window is closed by the user. **/ const CImgList& display(CImgDisplay& disp, const bool display_info, const char axis = 'x', const float align = 0, unsigned int* const XYZ = 0, const bool exit_on_anykey = false) const { bool is_exit = false; return _display(disp, 0, 0, display_info, axis, align, XYZ, exit_on_anykey, 0, true, is_exit); } //! Display the current CImgList instance in a new display window. /** \param title Title of the opening display window. \param display_info Tells if list information must be written on standard output. \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. \param align Appending alignment. \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. \param exit_on_anykey Exit function when any key is pressed. **/ const CImgList& display(const char* const title = 0, const bool display_info = true, const char axis = 'x', const float align = 0, unsigned int* const XYZ = 0, const bool exit_on_anykey = false) const { CImgDisplay disp; bool is_exit = false; return _display(disp, title, 0, display_info, axis, align, XYZ, exit_on_anykey, 0, true, is_exit); } const CImgList& _display(CImgDisplay& disp, const char* const title, const CImgList* const titles, const bool display_info, const char axis, const float align, unsigned int* const XYZ, const bool exit_on_anykey, const unsigned int orig, const bool is_first_call, bool& is_exit) const { if (is_empty()) throw CImgInstanceException(_cimglist_instance "display(): Empty instance.", cimglist_instance); if (!disp) { if (axis == 'x') { unsigned int sum_width = 0, max_height = 0; cimglist_for(*this, l) { const CImg& img = _data[l]; const unsigned int w = CImgDisplay::_fitscreen( img._width, img._height, img._depth, 128, -85, false), h = CImgDisplay::_fitscreen( img._width, img._height, img._depth, 128, -85, true); sum_width += w; if (h > max_height) max_height = h; } disp.assign( cimg_fitscreen(sum_width, max_height, 1), title ? title : titles ? titles->__display()._data : 0, 1); } else { unsigned int max_width = 0, sum_height = 0; cimglist_for(*this, l) { const CImg& img = _data[l]; const unsigned int w = CImgDisplay::_fitscreen( img._width, img._height, img._depth, 128, -85, false), h = CImgDisplay::_fitscreen( img._width, img._height, img._depth, 128, -85, true); if (w > max_width) max_width = w; sum_height += h; } disp.assign( cimg_fitscreen(max_width, sum_height, 1), title ? title : titles ? titles->__display()._data : 0, 1); } if (!title && !titles) disp.set_title("CImgList<%s> (%u)", pixel_type(), _width); } else if (title) disp.set_title("%s", title); else if (titles) disp.set_title("%s", titles->__display()._data); const CImg dtitle = CImg::string(disp.title()); if (display_info) print(disp.title()); disp.show().flush(); if (_width == 1) { const unsigned int dw = disp._width, dh = disp._height; if (!is_first_call) disp.resize(cimg_fitscreen(_data[0]._width, _data[0]._height, _data[0]._depth), false); disp.set_title("%s (%ux%ux%ux%u)", dtitle.data(), _data[0]._width, _data[0]._height, _data[0]._depth, _data[0]._spectrum); _data[0]._display(disp, 0, false, XYZ, exit_on_anykey, !is_first_call); if (disp.key()) is_exit = true; disp.resize(cimg_fitscreen(dw, dh, 1), false) .set_title("%s", dtitle.data()); } else { bool disp_resize = !is_first_call; while (!disp.is_closed() && !is_exit) { const CImg s = _select(disp, 0, true, axis, align, exit_on_anykey, orig, disp_resize, !is_first_call, true); disp_resize = true; if (s[0] < 0 && !disp.wheel()) { // No selections done if (disp.button() & 2) { disp.flush(); break; } is_exit = true; } else if (disp.wheel()) { // Zoom in/out const int wheel = disp.wheel(); disp.set_wheel(); if (!is_first_call && wheel < 0) break; if (wheel > 0 && _width >= 4) { const unsigned int delta = std::max( 1U, (unsigned int)cimg::round( 0.3 * _width)), ind0 = (unsigned int)std::max( 0, s[0] - (int)delta), ind1 = (unsigned int)std::min( width() - 1, s[0] + (int)delta); if ((ind0 != 0 || ind1 != _width - 1) && ind1 - ind0 >= 3) { const CImgList sublist = get_shared_images(ind0, ind1); CImgList t_sublist; if (titles) t_sublist = titles->get_shared_images(ind0, ind1); sublist._display(disp, 0, titles ? &t_sublist : 0, false, axis, align, XYZ, exit_on_anykey, orig + ind0, false, is_exit); } } } else if (s[0] != 0 || s[1] != width() - 1) { const CImgList sublist = get_shared_images(s[0], s[1]); CImgList t_sublist; if (titles) t_sublist = titles->get_shared_images(s[0], s[1]); sublist._display(disp, 0, titles ? &t_sublist : 0, false, axis, align, XYZ, exit_on_anykey, orig + s[0], false, is_exit); } disp.set_title("%s", dtitle.data()); } } return *this; } // [internal] Return string to describe display title. CImg __display() const { CImg res, str; cimglist_for(*this, l) { CImg::string((char*)_data[l]).move_to(str); if (l != width() - 1) { str.resize(str._width + 1, 1, 1, 1, 0); str[str._width - 2] = ','; str[str._width - 1] = ' '; } res.append(str, 'x'); } if (!res) return CImg(1, 1, 1, 1, 0).move_to(res); cimg::strellipsize(res, 128, false); if (_width > 1) { const unsigned int l = (unsigned int)std::strlen(res); if (res._width <= l + 16) res.resize(l + 16, 1, 1, 1, 0); cimg_snprintf(res._data + l, 16, " (#%u)", _width); } return res; } //! Save list into a file. /** \param filename Filename to write data to. \param number When positive, represents an index added to the filename. Otherwise, no number is added. \param digits Number of digits used for adding the number to the filename. **/ const CImgList& save(const char* const filename, const int number = -1, const unsigned int digits = 6) const { if (!filename) throw CImgArgumentException(_cimglist_instance "save(): Specified filename is (null).", cimglist_instance); // Do not test for empty instances, since .cimg format is able to manage // empty instances. const bool is_stdout = *filename == '-' && (!filename[1] || filename[1] == '.'); const char* const ext = cimg::split_filename(filename); CImg nfilename(1024); const char* const fn = is_stdout ? filename : number >= 0 ? cimg::number_filename(filename, number, digits, nfilename) : filename; #ifdef cimglist_save_plugin cimglist_save_plugin(fn); #endif #ifdef cimglist_save_plugin1 cimglist_save_plugin1(fn); #endif #ifdef cimglist_save_plugin2 cimglist_save_plugin2(fn); #endif #ifdef cimglist_save_plugin3 cimglist_save_plugin3(fn); #endif #ifdef cimglist_save_plugin4 cimglist_save_plugin4(fn); #endif #ifdef cimglist_save_plugin5 cimglist_save_plugin5(fn); #endif #ifdef cimglist_save_plugin6 cimglist_save_plugin6(fn); #endif #ifdef cimglist_save_plugin7 cimglist_save_plugin7(fn); #endif #ifdef cimglist_save_plugin8 cimglist_save_plugin8(fn); #endif if (!cimg::strcasecmp(ext, "cimgz")) return save_cimg(fn, true); else if (!cimg::strcasecmp(ext, "cimg") || !*ext) return save_cimg(fn, false); else if (!cimg::strcasecmp(ext, "yuv")) return save_yuv(fn, 444, true); else if (!cimg::strcasecmp(ext, "avi") || !cimg::strcasecmp(ext, "mov") || !cimg::strcasecmp(ext, "asf") || !cimg::strcasecmp(ext, "divx") || !cimg::strcasecmp(ext, "flv") || !cimg::strcasecmp(ext, "mpg") || !cimg::strcasecmp(ext, "m1v") || !cimg::strcasecmp(ext, "m2v") || !cimg::strcasecmp(ext, "m4v") || !cimg::strcasecmp(ext, "mjp") || !cimg::strcasecmp(ext, "mp4") || !cimg::strcasecmp(ext, "mkv") || !cimg::strcasecmp(ext, "mpe") || !cimg::strcasecmp(ext, "movie") || !cimg::strcasecmp(ext, "ogm") || !cimg::strcasecmp(ext, "ogg") || !cimg::strcasecmp(ext, "ogv") || !cimg::strcasecmp(ext, "qt") || !cimg::strcasecmp(ext, "rm") || !cimg::strcasecmp(ext, "vob") || !cimg::strcasecmp(ext, "wmv") || !cimg::strcasecmp(ext, "xvid") || !cimg::strcasecmp(ext, "mpeg")) return save_video(fn); #ifdef cimg_use_tiff else if (!cimg::strcasecmp(ext, "tif") || !cimg::strcasecmp(ext, "tiff")) return save_tiff(fn); #endif else if (!cimg::strcasecmp(ext, "gz")) return save_gzip_external(fn); else { if (_width == 1) _data[0].save(fn, -1); else cimglist_for(*this, l) { _data[l].save(fn, is_stdout ? -1 : l); if (is_stdout) std::fputc(EOF, cimg::_stdout()); } } return *this; } //! Tell if an image list can be saved as one single file. /** \param filename Filename, as a C-string. \return \c true if the file format supports multiple images, \c false otherwise. **/ static bool is_saveable(const char* const filename) { const char* const ext = cimg::split_filename(filename); if (!cimg::strcasecmp(ext, "cimgz") || #ifdef cimg_use_tiff !cimg::strcasecmp(ext, "tif") || !cimg::strcasecmp(ext, "tiff") || #endif !cimg::strcasecmp(ext, "yuv") || !cimg::strcasecmp(ext, "avi") || !cimg::strcasecmp(ext, "mov") || !cimg::strcasecmp(ext, "asf") || !cimg::strcasecmp(ext, "divx") || !cimg::strcasecmp(ext, "flv") || !cimg::strcasecmp(ext, "mpg") || !cimg::strcasecmp(ext, "m1v") || !cimg::strcasecmp(ext, "m2v") || !cimg::strcasecmp(ext, "m4v") || !cimg::strcasecmp(ext, "mjp") || !cimg::strcasecmp(ext, "mp4") || !cimg::strcasecmp(ext, "mkv") || !cimg::strcasecmp(ext, "mpe") || !cimg::strcasecmp(ext, "movie") || !cimg::strcasecmp(ext, "ogm") || !cimg::strcasecmp(ext, "ogg") || !cimg::strcasecmp(ext, "ogv") || !cimg::strcasecmp(ext, "qt") || !cimg::strcasecmp(ext, "rm") || !cimg::strcasecmp(ext, "vob") || !cimg::strcasecmp(ext, "wmv") || !cimg::strcasecmp(ext, "xvid") || !cimg::strcasecmp(ext, "mpeg")) return true; return false; } //! Save image sequence as a GIF animated file. /** \param filename Filename to write data to. \param fps Number of desired frames per second. \param nb_loops Number of loops (\c 0 for infinite looping). **/ const CImgList& save_gif_external(const char* const filename, const float fps = 25, const unsigned int nb_loops = 0) { CImg command(1024), filename_tmp(256), filename_tmp2(256); CImgList filenames; std::FILE* file = 0; #ifdef cimg_use_png #define _cimg_save_gif_ext "png" #else #define _cimg_save_gif_ext "ppm" #endif do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s_000001." _cimg_save_gif_ext, filename_tmp._data); if ((file = cimg::std_fopen(filename_tmp2, "rb")) != 0) cimg::fclose(file); } while (file); cimglist_for(*this, l) { cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s_%.6u." _cimg_save_gif_ext, filename_tmp._data, l + 1); CImg::string(filename_tmp2).move_to(filenames); if (_data[l]._depth > 1 || _data[l]._spectrum != 3) _data[l].get_resize(-100, -100, 1, 3).save(filename_tmp2); else _data[l].save(filename_tmp2); } cimg_snprintf(command, command._width, "%s -delay %u -loop %u", cimg::imagemagick_path(), (unsigned int)std::max(0.f, cimg::round(100 / fps)), nb_loops); CImg::string(command).move_to(filenames, 0); cimg_snprintf(command, command._width, "\"%s\"", CImg::string(filename)._system_strescape().data()); CImg::string(command).move_to(filenames); CImg _command = filenames > 'x'; cimg_for(_command, p, char) if (!*p)* p = ' '; _command.back() = 0; cimg::system(_command); file = cimg::std_fopen(filename, "rb"); if (!file) throw CImgIOException( _cimglist_instance "save_gif_external(): Failed to save file '%s' with external " "command 'magick/convert'.", cimglist_instance, filename); else cimg::fclose(file); cimglist_for_in(*this, 1, filenames._width - 1, l) std::remove(filenames[l]); return *this; } //! Save list as a YUV image sequence file. /** \param filename Filename to write data to. \param chroma_subsampling Type of chroma subsampling. Can be { 420 | 422 | 444 }. \param is_rgb Tells if the RGB to YUV conversion must be done for saving. **/ const CImgList& save_yuv(const char* const filename = 0, const unsigned int chroma_subsampling = 444, const bool is_rgb = true) const { return _save_yuv(0, filename, chroma_subsampling, is_rgb); } //! Save image sequence into a YUV file. /** \param file File to write data to. \param chroma_subsampling Type of chroma subsampling. Can be { 420 | 422 | 444 }. \param is_rgb Tells if the RGB to YUV conversion must be done for saving. **/ const CImgList& save_yuv(std::FILE* const file, const unsigned int chroma_subsampling = 444, const bool is_rgb = true) const { return _save_yuv(file, 0, chroma_subsampling, is_rgb); } const CImgList& _save_yuv(std::FILE* const file, const char* const filename, const unsigned int chroma_subsampling, const bool is_rgb) const { if (!file && !filename) throw CImgArgumentException( _cimglist_instance "save_yuv(): Specified filename is (null).", cimglist_instance); if (chroma_subsampling != 420 && chroma_subsampling != 422 && chroma_subsampling != 444) throw CImgArgumentException( _cimglist_instance "save_yuv(): Specified chroma subsampling %u is invalid, for " "file '%s'.", cimglist_instance, chroma_subsampling, filename ? filename : "(FILE*)"); if (is_empty()) { cimg::fempty(file, filename); return *this; } const unsigned int cfx = chroma_subsampling == 420 || chroma_subsampling == 422 ? 2 : 1, cfy = chroma_subsampling == 420 ? 2 : 1, w0 = (*this)[0]._width, h0 = (*this)[0]._height, width0 = w0 + (w0 % cfx), height0 = h0 + (h0 % cfy); std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); cimglist_for(*this, l) { const CImg& frame = (*this)[l]; cimg_forZ(frame, z) { CImg YUV; if (sizeof(T) == 1 && !is_rgb && frame._width == width0 && frame._height == height0 && frame._depth == 1 && frame._spectrum == 3) YUV.assign((unsigned char*)frame._data, width0, height0, 1, 3, true); else { YUV = frame.get_slice(z); if (YUV._width != width0 || YUV._height != height0) YUV.resize(width0, height0, 1, -100, 0); if (YUV._spectrum != 3) YUV.resize(-100, -100, 1, 3, YUV._spectrum == 1 ? 1 : 0); if (is_rgb) YUV.RGBtoYCbCr(); } if (chroma_subsampling == 444) cimg::fwrite(YUV._data, (size_t)YUV._width * YUV._height * 3, nfile); else { cimg::fwrite(YUV._data, (size_t)YUV._width * YUV._height, nfile); CImg UV = YUV.get_channels(1, 2); UV.resize(UV._width / cfx, UV._height / cfy, 1, 2, 2); cimg::fwrite(UV._data, (size_t)UV._width * UV._height * 2, nfile); } } } if (!file) cimg::fclose(nfile); return *this; } //! Save list into a .cimg file. /** \param filename Filename to write data to. \param is_compressed Tells if data compression must be enabled. **/ const CImgList& save_cimg(const char* const filename, const bool is_compressed = false) const { return _save_cimg(0, filename, is_compressed); } const CImgList& _save_cimg(std::FILE* const file, const char* const filename, const bool is_compressed) const { if (!file && !filename) throw CImgArgumentException( _cimglist_instance "save_cimg(): Specified filename is (null).", cimglist_instance); #ifndef cimg_use_zlib if (is_compressed) cimg::warn(_cimglist_instance "save_cimg(): Unable to save compressed data in file " "'%s' unless zlib is enabled, " "saving them uncompressed.", cimglist_instance, filename ? filename : "(FILE*)"); #endif std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); const char *const ptype = pixel_type(), *const etype = cimg::endianness() ? "big" : "little"; if (std::strstr(ptype, "unsigned") == ptype) std::fprintf(nfile, "%u unsigned_%s %s_endian\n", _width, ptype + 9, etype); else std::fprintf(nfile, "%u %s %s_endian\n", _width, ptype, etype); cimglist_for(*this, l) { const CImg& img = _data[l]; std::fprintf(nfile, "%u %u %u %u", img._width, img._height, img._depth, img._spectrum); if (img._data) { CImg tmp; if (cimg::endianness()) { tmp = img; cimg::invert_endianness(tmp._data, tmp.size()); } const CImg& ref = cimg::endianness() ? tmp : img; bool failed_to_compress = true; if (is_compressed) { #ifdef cimg_use_zlib const ulongT siz = sizeof(T) * ref.size(); uLongf csiz = siz + siz / 100 + 16; Bytef* const cbuf = new Bytef[csiz]; if (compress(cbuf, &csiz, (Bytef*)ref._data, siz)) cimg::warn( _cimglist_instance "save_cimg(): Failed to save compressed data for " "file '%s', saving them uncompressed.", cimglist_instance, filename ? filename : "(FILE*)"); else { std::fprintf(nfile, " #%lu\n", csiz); cimg::fwrite(cbuf, csiz, nfile); delete[] cbuf; failed_to_compress = false; } #endif } if (failed_to_compress) { // Write in a non-compressed way std::fputc('\n', nfile); cimg::fwrite(ref._data, ref.size(), nfile); } } else std::fputc('\n', nfile); } if (!file) cimg::fclose(nfile); return *this; } //! Save list into a .cimg file. /** \param file File to write data to. \param is_compressed Tells if data compression must be enabled. **/ const CImgList& save_cimg(std::FILE* file, const bool is_compressed = false) const { return _save_cimg(file, 0, is_compressed); } const CImgList& _save_cimg(std::FILE* const file, const char* const filename, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const { #define _cimg_save_cimg_case(Ts, Tss) \ if (!saved && !cimg::strcasecmp(Ts, str_pixeltype)) { \ for (unsigned int l = 0; l < lmax; ++l) { \ j = 0; \ while ((i = std::fgetc(nfile)) != '\n') tmp[j++] = (char)i; \ tmp[j] = 0; \ W = H = D = C = 0; \ if (cimg_sscanf(tmp, "%u %u %u %u", &W, &H, &D, &C) != 4) \ throw CImgIOException( \ _cimglist_instance \ "save_cimg(): Invalid size (%u,%u,%u,%u) of image[%u], " \ "for file '%s'.", \ cimglist_instance, W, H, D, C, l, \ filename ? filename : "(FILE*)"); \ if (W * H * D * C > 0) { \ if (l < n0 || x0 >= W || y0 >= H || z0 >= D || c0 >= D) \ cimg::fseek(nfile, W* H* D* C * sizeof(Tss), SEEK_CUR); \ else { \ const CImg& img = (*this)[l - n0]; \ const T* ptrs = img._data; \ const unsigned int x1 = x0 + img._width - 1, \ y1 = y0 + img._height - 1, \ z1 = z0 + img._depth - 1, \ c1 = c0 + img._spectrum - 1, \ nx1 = x1 >= W ? W - 1 : x1, \ ny1 = y1 >= H ? H - 1 : y1, \ nz1 = z1 >= D ? D - 1 : z1, \ nc1 = c1 >= C ? C - 1 : c1; \ CImg raw(1 + nx1 - x0); \ const unsigned int skipvb = c0 * W * H * D * sizeof(Tss); \ if (skipvb) cimg::fseek(nfile, skipvb, SEEK_CUR); \ for (unsigned int v = 1 + nc1 - c0; v; --v) { \ const unsigned int skipzb = z0 * W * H * sizeof(Tss); \ if (skipzb) cimg::fseek(nfile, skipzb, SEEK_CUR); \ for (unsigned int z = 1 + nz1 - z0; z; --z) { \ const unsigned int skipyb = y0 * W * sizeof(Tss); \ if (skipyb) cimg::fseek(nfile, skipyb, SEEK_CUR); \ for (unsigned int y = 1 + ny1 - y0; y; --y) { \ const unsigned int skipxb = x0 * sizeof(Tss); \ if (skipxb) \ cimg::fseek(nfile, skipxb, SEEK_CUR); \ raw.assign(ptrs, raw._width); \ ptrs += img._width; \ if (endian) \ cimg::invert_endianness(raw._data, \ raw._width); \ cimg::fwrite(raw._data, raw._width, nfile); \ const unsigned int skipxe = \ (W - 1 - nx1) * sizeof(Tss); \ if (skipxe) \ cimg::fseek(nfile, skipxe, SEEK_CUR); \ } \ const unsigned int skipye = \ (H - 1 - ny1) * W * sizeof(Tss); \ if (skipye) cimg::fseek(nfile, skipye, SEEK_CUR); \ } \ const unsigned int skipze = \ (D - 1 - nz1) * W * H * sizeof(Tss); \ if (skipze) cimg::fseek(nfile, skipze, SEEK_CUR); \ } \ const unsigned int skipve = \ (C - 1 - nc1) * W * H * D * sizeof(Tss); \ if (skipve) cimg::fseek(nfile, skipve, SEEK_CUR); \ } \ } \ } \ saved = true; \ } if (!file && !filename) throw CImgArgumentException( _cimglist_instance "save_cimg(): Specified filename is (null).", cimglist_instance); if (is_empty()) throw CImgInstanceException( _cimglist_instance "save_cimg(): Empty instance, for file '%s'.", cimglist_instance, filename ? filename : "(FILE*)"); std::FILE* const nfile = file ? file : cimg::fopen(filename, "rb+"); bool saved = false, endian = cimg::endianness(); CImg tmp(256), str_pixeltype(256), str_endian(256); *tmp = *str_pixeltype = *str_endian = 0; unsigned int j, N, W, H, D, C; int i, err; j = 0; while ((i = std::fgetc(nfile)) != '\n' && i != EOF && j < 256) tmp[j++] = (char)i; tmp[j] = 0; err = cimg_sscanf(tmp, "%u%*c%255[A-Za-z64_]%*c%255[sA-Za-z_ ]", &N, str_pixeltype._data, str_endian._data); if (err < 2) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimglist_instance "save_cimg(): CImg header not found in file '%s'.", cimglist_instance, filename ? filename : "(FILE*)"); } if (!cimg::strncasecmp("little", str_endian, 6)) endian = false; else if (!cimg::strncasecmp("big", str_endian, 3)) endian = true; const unsigned int lmax = std::min(N, n0 + _width); _cimg_save_cimg_case("bool", bool); _cimg_save_cimg_case("unsigned_char", unsigned char); _cimg_save_cimg_case("uchar", unsigned char); _cimg_save_cimg_case("char", char); _cimg_save_cimg_case("unsigned_short", unsigned short); _cimg_save_cimg_case("ushort", unsigned short); _cimg_save_cimg_case("short", short); _cimg_save_cimg_case("unsigned_int", unsigned int); _cimg_save_cimg_case("uint", unsigned int); _cimg_save_cimg_case("int", int); _cimg_save_cimg_case("unsigned_int64", uint64T); _cimg_save_cimg_case("uint64", uint64T); _cimg_save_cimg_case("int64", int64T); _cimg_save_cimg_case("float", float); _cimg_save_cimg_case("double", double); if (!saved) { if (!file) cimg::fclose(nfile); throw CImgIOException( _cimglist_instance "save_cimg(): Unsupported data type '%s' for file '%s'.", cimglist_instance, filename ? filename : "(FILE*)", str_pixeltype._data); } if (!file) cimg::fclose(nfile); return *this; } //! Insert the image instance into into an existing .cimg file, at specified //! coordinates. /** \param filename Filename to write data to. \param n0 Starting index of images to write. \param x0 Starting X-coordinates of image regions to write. \param y0 Starting Y-coordinates of image regions to write. \param z0 Starting Z-coordinates of image regions to write. \param c0 Starting C-coordinates of image regions to write. **/ const CImgList& save_cimg(const char* const filename, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const { return _save_cimg(0, filename, n0, x0, y0, z0, c0); } //! Insert the image instance into into an existing .cimg file, at specified //! coordinates. /** \param file File to write data to. \param n0 Starting index of images to write. \param x0 Starting X-coordinates of image regions to write. \param y0 Starting Y-coordinates of image regions to write. \param z0 Starting Z-coordinates of image regions to write. \param c0 Starting C-coordinates of image regions to write. **/ const CImgList& save_cimg(std::FILE* const file, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const { return _save_cimg(file, 0, n0, x0, y0, z0, c0); } static void _save_empty_cimg(std::FILE* const file, const char* const filename, const unsigned int nb, const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc) { std::FILE* const nfile = file ? file : cimg::fopen(filename, "wb"); const ulongT siz = (ulongT)dx * dy * dz * dc * sizeof(T); std::fprintf(nfile, "%u %s\n", nb, pixel_type()); for (unsigned int i = nb; i; --i) { std::fprintf(nfile, "%u %u %u %u\n", dx, dy, dz, dc); for (ulongT off = siz; off; --off) std::fputc(0, nfile); } if (!file) cimg::fclose(nfile); } //! Save empty (non-compressed) .cimg file with specified dimensions. /** \param filename Filename to write data to. \param nb Number of images to write. \param dx Width of images in the written file. \param dy Height of images in the written file. \param dz Depth of images in the written file. \param dc Spectrum of images in the written file. **/ static void save_empty_cimg(const char* const filename, const unsigned int nb, const unsigned int dx, const unsigned int dy = 1, const unsigned int dz = 1, const unsigned int dc = 1) { return _save_empty_cimg(0, filename, nb, dx, dy, dz, dc); } //! Save empty .cimg file with specified dimensions. /** \param file File to write data to. \param nb Number of images to write. \param dx Width of images in the written file. \param dy Height of images in the written file. \param dz Depth of images in the written file. \param dc Spectrum of images in the written file. **/ static void save_empty_cimg(std::FILE* const file, const unsigned int nb, const unsigned int dx, const unsigned int dy = 1, const unsigned int dz = 1, const unsigned int dc = 1) { return _save_empty_cimg(file, 0, nb, dx, dy, dz, dc); } //! Save list as a TIFF file. /** \param filename Filename to write data to. \param compression_type Compression mode used to write data. \param voxel_size Voxel size, to be stored in the filename. \param description Description, to be stored in the filename. \param use_bigtiff Allow to save big tiff files (>4Gb). **/ const CImgList& save_tiff(const char* const filename, const unsigned int compression_type = 0, const float* const voxel_size = 0, const char* const description = 0, const bool use_bigtiff = true) const { if (!filename) throw CImgArgumentException( _cimglist_instance "save_tiff(): Specified filename is (null).", cimglist_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } #ifndef cimg_use_tiff if (_width == 1) _data[0].save_tiff(filename, compression_type, voxel_size, description, use_bigtiff); else cimglist_for(*this, l) { CImg nfilename(1024); cimg::number_filename(filename, l, 6, nfilename); _data[l].save_tiff(nfilename, compression_type, voxel_size, description, use_bigtiff); } #else ulongT siz = 0; cimglist_for(*this, l) siz += _data[l].size(); const bool _use_bigtiff = use_bigtiff && sizeof(siz) >= 8 && siz * sizeof(T) >= 1UL << 31; // No bigtiff for small images TIFF* tif = TIFFOpen(filename, _use_bigtiff ? "w8" : "w4"); if (tif) { for (unsigned int dir = 0, l = 0; l < _width; ++l) { const CImg& img = (*this)[l]; cimg_forZ(img, z) img._save_tiff( tif, dir++, z, compression_type, voxel_size, description); } TIFFClose(tif); } else throw CImgIOException( _cimglist_instance "save_tiff(): Failed to open stream for file '%s'.", cimglist_instance, filename); #endif return *this; } //! Save list as a gzipped file, using external tool 'gzip'. /** \param filename Filename to write data to. **/ const CImgList& save_gzip_external(const char* const filename) const { if (!filename) throw CImgIOException( _cimglist_instance "save_gzip_external(): Specified filename is (null).", cimglist_instance); CImg command(1024), filename_tmp(256), body(256); const char *ext = cimg::split_filename(filename, body), *ext2 = cimg::split_filename(body, 0); std::FILE* file; do { if (!cimg::strcasecmp(ext, "gz")) { if (*ext2) cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), ext2); else cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.cimg", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); } else { if (*ext) cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), ext); else cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s.cimg", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); } if ((file = cimg::std_fopen(filename_tmp, "rb")) != 0) cimg::fclose(file); } while (file); if (is_saveable(body)) { save(filename_tmp); cimg_snprintf( command, command._width, "%s -c \"%s\" > \"%s\"", cimg::gzip_path(), CImg::string(filename_tmp)._system_strescape().data(), CImg::string(filename)._system_strescape().data()); cimg::system(command); file = cimg::std_fopen(filename, "rb"); if (!file) throw CImgIOException(_cimglist_instance "save_gzip_external(): Failed to save " "file '%s' with external command 'gzip'.", cimglist_instance, filename); else cimg::fclose(file); std::remove(filename_tmp); } else { CImg nfilename(1024); cimglist_for(*this, l) { cimg::number_filename(body, l, 6, nfilename); if (*ext) cimg_sprintf(nfilename._data + std::strlen(nfilename), ".%s", ext); _data[l].save_gzip_external(nfilename); } } return *this; } //! Save image sequence, using the OpenCV library. /** \param filename Filename to write data to. \param fps Number of frames per second. \param codec Type of compression (See http://www.fourcc.org/codecs.php to see available codecs). \param keep_open Tells if the video writer associated to the specified filename must be kept open or not (to allow frames to be added in the same file afterwards). **/ const CImgList& save_video(const char* const filename, const unsigned int fps = 25, const char* codec = 0, const bool keep_open = false) const { #ifndef cimg_use_opencv cimg::unused(codec, keep_open); return save_ffmpeg_external(filename, fps); #else static cv::VideoWriter* writers[32] = {0}; static CImgList filenames(32); static CImg sizes(32, 2, 1, 1, 0); static int last_used_index = -1; // Detect if a video writer already exists for the specified filename. cimg::mutex(9); int index = -1; if (filename) { if (last_used_index >= 0 && !std::strcmp(filename, filenames[last_used_index])) { index = last_used_index; } else cimglist_for(filenames, l) if (filenames[l] && !std::strcmp(filename, filenames[l])) { index = l; break; } } else index = last_used_index; cimg::mutex(9, 0); // Find empty slot for capturing video stream. if (index < 0) { if (!filename) throw CImgArgumentException( _cimglist_instance "save_video(): No already open video writer found. You " "must specify a " "non-(null) filename argument for the first call.", cimglist_instance); else { cimg::mutex(9); cimglist_for(filenames, l) if (!filenames[l]) { index = l; break; } cimg::mutex(9, 0); } if (index < 0) throw CImgIOException( _cimglist_instance "save_video(): File '%s', no video writer slots available. " "You have to release some of your previously opened " "videos.", cimglist_instance, filename); if (is_empty()) throw CImgInstanceException( _cimglist_instance "save_video(): Instance list is empty.", cimglist_instance); const unsigned int W = _data ? _data[0]._width : 0, H = _data ? _data[0]._height : 0; if (!W || !H) throw CImgInstanceException( _cimglist_instance "save_video(): Frame [0] is an empty image.", cimglist_instance); const char *const _codec = codec && *codec ? codec : cimg_OS == 2 ? "mpeg" : "mp4v", codec0 = cimg::uppercase(_codec[0]), codec1 = _codec[0] ? cimg::uppercase(_codec[1]) : 0, codec2 = _codec[1] ? cimg::uppercase(_codec[2]) : 0, codec3 = _codec[2] ? cimg::uppercase(_codec[3]) : 0; cimg::mutex(9); writers[index] = new cv::VideoWriter( filename, _cimg_fourcc(codec0, codec1, codec2, codec3), fps, cv::Size(W, H)); if (!writers[index]->isOpened()) { delete writers[index]; writers[index] = 0; cimg::mutex(9, 0); throw CImgIOException( _cimglist_instance "save_video(): File '%s', unable to initialize video " "writer with codec '%c%c%c%c'.", cimglist_instance, filename, codec0, codec1, codec2, codec3); } CImg::string(filename).move_to(filenames[index]); sizes(index, 0) = W; sizes(index, 1) = H; cimg::mutex(9, 0); } if (!is_empty()) { const unsigned int W = sizes(index, 0), H = sizes(index, 1); cimg::mutex(9); cimglist_for(*this, l) { CImg& src = _data[l]; if (src.is_empty()) cimg::warn( _cimglist_instance "save_video(): Skip empty frame %d for file '%s'.", cimglist_instance, l, filename); if (src._depth > 1 || src._spectrum > 3) cimg::warn(_cimglist_instance "save_video(): Frame %u has incompatible " "dimension (%u,%u,%u,%u). " "Some image data may be ignored when writing " "frame into video file '%s'.", cimglist_instance, l, src._width, src._height, src._depth, src._spectrum, filename); if (src._width == W && src._height == H && src._spectrum == 3) writers[index]->write(CImg(src)._cimg2cvmat()); else { CImg _src(src, false); _src.channels(0, std::min(_src._spectrum - 1, 2U)) .resize(W, H); _src.resize(W, H, 1, 3, _src._spectrum == 1); writers[index]->write(_src._cimg2cvmat()); } } cimg::mutex(9, 0); } cimg::mutex(9); if (!keep_open) { delete writers[index]; writers[index] = 0; filenames[index].assign(); sizes(index, 0) = sizes(index, 1) = 0; last_used_index = -1; } else last_used_index = index; cimg::mutex(9, 0); return *this; #endif } //! Save image sequence, using the external tool 'ffmpeg'. /** \param filename Filename to write data to. \param fps Number of frames per second. \param codec Type of compression. \param bitrate Output bitrate **/ const CImgList& save_ffmpeg_external( const char* const filename, const unsigned int fps = 25, const char* const codec = 0, const unsigned int bitrate = 2048) const { if (!filename) throw CImgArgumentException( _cimglist_instance "save_ffmpeg_external(): Specified filename is (null).", cimglist_instance); if (is_empty()) { cimg::fempty(0, filename); return *this; } const char *const ext = cimg::split_filename(filename), *const _codec = codec ? codec : !cimg::strcasecmp(ext, "flv") ? "flv" : "mpeg2video"; CImg command(1024), filename_tmp(256), filename_tmp2(256); CImgList filenames; std::FILE* file = 0; cimglist_for(*this, l) if ( !_data[l].is_sameXYZ( _data[0])) throw CImgInstanceException(_cimglist_instance "save_ffmpeg_external():" " Invalid instance " "dimensions for file " "'%s'.", cimglist_instance, filename); do { cimg_snprintf(filename_tmp, filename_tmp._width, "%s%c%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand()); cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s_000001.ppm", filename_tmp._data); if ((file = cimg::std_fopen(filename_tmp2, "rb")) != 0) cimg::fclose(file); } while (file); cimglist_for(*this, l) { cimg_snprintf(filename_tmp2, filename_tmp2._width, "%s_%.6u.ppm", filename_tmp._data, l + 1); CImg::string(filename_tmp2).move_to(filenames); if (_data[l]._depth > 1 || _data[l]._spectrum != 3) _data[l].get_resize(-100, -100, 1, 3).save_pnm(filename_tmp2); else _data[l].save_pnm(filename_tmp2); } cimg_snprintf( command, command._width, "%s -i \"%s_%%6d.ppm\" -vcodec %s -b %uk -r %u -y \"%s\"", cimg::ffmpeg_path(), CImg::string(filename_tmp)._system_strescape().data(), _codec, bitrate, fps, CImg::string(filename)._system_strescape().data()); cimg::system(command); file = cimg::std_fopen(filename, "rb"); if (!file) throw CImgIOException(_cimglist_instance "save_ffmpeg_external(): Failed to save file " "'%s' with external command 'ffmpeg'.", cimglist_instance, filename); else cimg::fclose(file); cimglist_for(*this, l) std::remove(filenames[l]); return *this; } //! Serialize a CImgList instance into a raw CImg buffer. /** \param is_compressed tells if zlib compression must be used for serialization (this requires 'cimg_use_zlib' been enabled). **/ CImg get_serialize(const bool is_compressed = false) const { #ifndef cimg_use_zlib if (is_compressed) cimg::warn(_cimglist_instance "get_serialize(): Unable to compress data unless zlib " "is enabled, " "storing them uncompressed.", cimglist_instance); #endif CImgList stream; CImg tmpstr(128); const char *const ptype = pixel_type(), *const etype = cimg::endianness() ? "big" : "little"; if (std::strstr(ptype, "unsigned") == ptype) cimg_snprintf(tmpstr, tmpstr._width, "%u unsigned_%s %s_endian\n", _width, ptype + 9, etype); else cimg_snprintf(tmpstr, tmpstr._width, "%u %s %s_endian\n", _width, ptype, etype); CImg::string(tmpstr, false).move_to(stream); cimglist_for(*this, l) { const CImg& img = _data[l]; cimg_snprintf(tmpstr, tmpstr._width, "%u %u %u %u", img._width, img._height, img._depth, img._spectrum); CImg::string(tmpstr, false).move_to(stream); if (img._data) { CImg tmp; if (cimg::endianness()) { tmp = img; cimg::invert_endianness(tmp._data, tmp.size()); } const CImg& ref = cimg::endianness() ? tmp : img; bool failed_to_compress = true; if (is_compressed) { #ifdef cimg_use_zlib const ulongT siz = sizeof(T) * ref.size(); uLongf csiz = (ulongT)compressBound(siz); Bytef* const cbuf = new Bytef[csiz]; if (compress(cbuf, &csiz, (Bytef*)ref._data, siz)) cimg::warn(_cimglist_instance "get_serialize(): Failed to save compressed " "data, saving them uncompressed.", cimglist_instance); else { cimg_snprintf(tmpstr, tmpstr._width, " #%lu\n", csiz); CImg::string(tmpstr, false).move_to(stream); CImg(cbuf, csiz).move_to(stream); delete[] cbuf; failed_to_compress = false; } #endif } if (failed_to_compress) { // Write in a non-compressed way CImg::string("\n", false).move_to(stream); stream.insert(1); stream.back().assign((unsigned char*)ref._data, ref.size() * sizeof(T), 1, 1, 1, true); } } else CImg::string("\n", false).move_to(stream); } cimglist_apply(stream, unroll)('y'); return stream > 'y'; } //! Unserialize a CImg serialized buffer into a CImgList //! list. template static CImgList get_unserialize(const CImg& buffer) { #ifdef cimg_use_zlib #define _cimgz_unserialize_case(Tss) \ { \ Bytef* cbuf = 0; \ if (sizeof(t) != 1 || \ cimg::type::string() == cimg::type::string()) { \ cbuf = new Bytef[csiz]; \ Bytef* _cbuf = cbuf; \ for (ulongT k = 0; k < csiz; ++k) \ *(_cbuf++) = (Bytef) * (stream++); \ is_bytef = false; \ } else { \ cbuf = (Bytef*)stream; \ stream += csiz; \ is_bytef = true; \ } \ raw.assign(W, H, D, C); \ uLongf destlen = raw.size() * sizeof(Tss); \ uncompress((Bytef*)raw._data, &destlen, cbuf, csiz); \ if (!is_bytef) delete[] cbuf; \ } #else #define _cimgz_unserialize_case(Tss) \ throw CImgArgumentException( \ "CImgList<%s>::get_unserialize(): Unable to unserialize compressed " \ "data " \ "unless zlib is enabled.", \ pixel_type()); #endif #define _cimg_unserialize_case(Ts, Tss) \ if (!loaded && !cimg::strcasecmp(Ts, str_pixeltype)) { \ for (unsigned int l = 0; l < N; ++l) { \ j = 0; \ while ((i = (int)*stream) != '\n' && stream < estream && \ j < 255) { \ ++stream; \ tmp[j++] = (char)i; \ } \ ++stream; \ tmp[j] = 0; \ W = H = D = C = 0; \ csiz = 0; \ if ((err = cimg_sscanf(tmp, "%u %u %u %u #" cimg_fuint64, &W, &H, \ &D, &C, &csiz)) < 4) \ throw CImgArgumentException( \ "CImgList<%s>::unserialize(): Invalid specified size " \ "(%u,%u,%u,%u) for " \ "image #%u in serialized buffer.", \ pixel_type(), W, H, D, C, l); \ if (W * H * D * C > 0) { \ CImg raw; \ CImg& img = res._data[l]; \ if (err == 5) \ _cimgz_unserialize_case( \ Tss) else if (sizeof(Tss) == sizeof(t) && \ cimg::type::is_float() == \ cimg::type::is_float()) { \ raw.assign((Tss*)stream, W, H, D, C, true); \ stream += raw.size(); \ } \ else { \ raw.assign(W, H, D, C); \ CImg _raw((unsigned char*)raw._data, \ W * sizeof(Tss), H, D, C, true); \ cimg_for(_raw, p, unsigned char)* p = \ (unsigned char)*(stream++); \ } \ if (endian != cimg::endianness()) \ cimg::invert_endianness(raw._data, raw.size()); \ raw.move_to(img); \ } \ } \ loaded = true; \ } if (buffer.is_empty()) throw CImgArgumentException( "CImgList<%s>::get_unserialize(): Specified serialized buffer " "is (null).", pixel_type()); CImgList res; const t *stream = buffer._data, *const estream = buffer._data + buffer.size(); bool loaded = false, endian = cimg::endianness(), is_bytef = false; CImg tmp(256), str_pixeltype(256), str_endian(256); *tmp = *str_pixeltype = *str_endian = 0; unsigned int j, N = 0, W, H, D, C; uint64T csiz; int i, err; cimg::unused(is_bytef); do { j = 0; while ((i = (int)*stream) != '\n' && stream < estream && j < 255) { ++stream; tmp[j++] = (char)i; } ++stream; tmp[j] = 0; } while (*tmp == '#' && stream < estream); err = cimg_sscanf(tmp, "%u%*c%255[A-Za-z64_]%*c%255[sA-Za-z_ ]", &N, str_pixeltype._data, str_endian._data); if (err < 2) throw CImgArgumentException( "CImgList<%s>::get_unserialize(): CImg header not found in " "serialized buffer.", pixel_type()); if (!cimg::strncasecmp("little", str_endian, 6)) endian = false; else if (!cimg::strncasecmp("big", str_endian, 3)) endian = true; res.assign(N); _cimg_unserialize_case("bool", bool); _cimg_unserialize_case("unsigned_char", unsigned char); _cimg_unserialize_case("uchar", unsigned char); _cimg_unserialize_case("char", char); _cimg_unserialize_case("unsigned_short", unsigned short); _cimg_unserialize_case("ushort", unsigned short); _cimg_unserialize_case("short", short); _cimg_unserialize_case("unsigned_int", unsigned int); _cimg_unserialize_case("uint", unsigned int); _cimg_unserialize_case("int", int); _cimg_unserialize_case("unsigned_int64", uint64T); _cimg_unserialize_case("uint64", uint64T); _cimg_unserialize_case("int64", int64T); _cimg_unserialize_case("float", float); _cimg_unserialize_case("double", double); if (!loaded) throw CImgArgumentException( "CImgList<%s>::get_unserialize(): Unsupported pixel type '%s' " "defined " "in serialized buffer.", pixel_type(), str_pixeltype._data); return res; } //@} //---------------------------------- // //! \name Others //@{ //---------------------------------- //! Return a CImg pre-defined font with requested height. /** \param font_height Height of the desired font (exact match for 13,23,53,103). \param is_variable_width Decide if the font has a variable (\c true) or fixed (\c false) width. **/ static const CImgList& font(const unsigned int requested_height, const bool is_variable_width = true) { if (!requested_height) return CImgList::const_empty(); cimg::mutex(11); static const unsigned char font_resizemap[] = { 0, 4, 7, 9, 11, 13, 15, 17, 19, 21, 22, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 157, 158, 159, 160, 161, 162, 163, 164, 164, 165, 166, 167, 168, 169, 170, 170, 171, 172, 173, 174, 175, 176, 176, 177, 178, 179, 180, 181, 181, 182, 183, 184, 185, 186, 186, 187, 188, 189, 190, 191, 191, 192, 193, 194, 195, 196, 196, 197, 198, 199, 200, 200, 201, 202, 203, 204, 205, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 213, 214, 215, 216, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, 225, 226, 227, 227, 228, 229, 230, 231, 231, 232, 233, 234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243, 244, 244, 245, 246, 247, 247, 248, 249, 250, 250, 251, 252, 253, 253, 254, 255}; static const char* const* font_data[] = { cimg::data_font_small, cimg::data_font_normal, cimg::data_font_large, cimg::data_font_huge}; static const unsigned int font_width[] = {10, 26, 52, 104}, font_height[] = {13, 32, 64, 128}, font_M[] = {86, 91, 91, 47}, font_chunk[] = {sizeof(cimg::data_font_small) / sizeof(char*), sizeof(cimg::data_font_normal) / sizeof(char*), sizeof(cimg::data_font_large) / sizeof(char*), sizeof(cimg::data_font_huge) / sizeof(char*)}; static const unsigned char font_is_binary[] = {1, 0, 0, 1}; static CImg font_base[4]; unsigned int ind = requested_height <= font_height[0] ? 0U : requested_height <= font_height[1] ? 1U : requested_height <= font_height[2] ? 2U : 3U; // Decompress nearest base font data if needed. CImg& basef = font_base[ind]; if (!basef) { basef.assign(256 * font_width[ind], font_height[ind]); unsigned char* ptrd = basef; const unsigned char* const ptrde = basef.end(); // Recompose font data from several chunks, to deal with MS compiler // limit with big strings (64 Kb). CImg dataf; for (unsigned int k = 0; k < font_chunk[ind]; ++k) dataf.append(CImg::string(font_data[ind][k], k == font_chunk[ind] - 1, true), 'x'); // Uncompress font data (decode RLE). const unsigned int M = font_M[ind]; if (font_is_binary[ind]) for (const char* ptrs = dataf; *ptrs; ++ptrs) { const int _n = (int)(*ptrs - M - 32), v = _n >= 0 ? 255 : 0, n = _n >= 0 ? _n : -_n; if (ptrd + n <= ptrde) { std::memset(ptrd, v, n); ptrd += n; } else { std::memset(ptrd, v, ptrde - ptrd); break; } } else for (const char* ptrs = dataf; *ptrs; ++ptrs) { int n = (int)*ptrs - M - 32, v = 0; if (n >= 0) { v = 85 * n; n = 1; } else { n = -n; v = (int)*(++ptrs) - M - 32; if (v < 0) { v = 0; --ptrs; } else v *= 85; } if (ptrd + n <= ptrde) { std::memset(ptrd, v, n); ptrd += n; } else { std::memset(ptrd, v, ptrde - ptrd); break; } } } // Find optimal font cache location to return. static CImgList fonts[16]; static bool is_variable_widths[16] = {0}; ind = ~0U; for (int i = 0; i < 16; ++i) if (!fonts[i] || (is_variable_widths[i] == is_variable_width && requested_height == fonts[i][0]._height)) { ind = (unsigned int)i; break; // Found empty slot or cached font } if (ind == ~0U) { // No empty slots nor existing font in cache fonts->assign(); std::memmove(fonts, fonts + 1, 15 * sizeof(CImgList)); std::memmove(is_variable_widths, is_variable_widths + 1, 15 * sizeof(bool)); std::memset( (void*)(fonts + (ind = 15)), 0, sizeof(CImgList)); // Free a slot in cache for new font } CImgList& font = fonts[ind]; // Render requested font. if (!font) { const unsigned int padding_x = requested_height <= 64 ? 1U : requested_height <= 128 ? 2U : 3U; is_variable_widths[ind] = is_variable_width; font = basef.get_split('x', 256); if (requested_height != font[0]._height) cimglist_for(font, l) { font[l].resize( std::max(1U, font[l]._width * requested_height / font[l]._height), requested_height, -100, -100, font[0]._height > requested_height ? 2 : 5); cimg_for(font[l], ptr, ucharT)* ptr = font_resizemap[*ptr]; } if (is_variable_width) { // Crop font cimglist_for(font, l) { CImg& letter = font[l]; int xmin = letter.width(), xmax = 0; cimg_forXY(letter, x, y) if (letter(x, y)) { if (x < xmin) xmin = x; if (x > xmax) xmax = x; } if (xmin <= xmax) letter.crop(xmin, 0, xmax, letter._height - 1); } font[(int)' '].resize(font[(int)'f']._width, -100, -100, -100, 0); if (' ' + 256 < font.size()) font[' ' + 256].resize(font[(int)'f']._width, -100, -100, -100, 0); cimglist_for(font, l) font[l].resize( std::max(font[(int)';']._width, font[l]._width) + padding_x, -100, 1, 1, 0, 0, 0.55f); } else cimglist_for(font, l) font[l].resize(font[l]._width + padding_x, -100, 1, 1, 0, 0, 0.55f); font.insert(256, 0); cimglist_for_in(font, 0, 255, l) font[l].assign( font[l + 256]._width, font[l + 256]._height, 1, 3, 1); } cimg::mutex(11, 0); return font; } //! Compute a 1D Fast Fourier Transform, along specified axis. /** \param axis Axis along which the Fourier transform is computed. \param invert Tells if the direct (\c false) or inverse transform (\c true) is computed. **/ CImgList& FFT(const char axis, const bool invert = false) { if (is_empty()) return *this; if (_width == 1) insert(1); if (_width > 2) cimg::warn(_cimglist_instance "FFT(): Instance has more than 2 images", cimglist_instance); CImg::FFT(_data[0], _data[1], axis, invert); return *this; } //! Compute a 1-D Fast Fourier Transform, along specified axis \newinstance. CImgList get_FFT(const char axis, const bool invert = false) const { return CImgList(*this, false).FFT(axis, invert); } //! Compute n-D Fast Fourier Transform. /** \param invert Tells if the direct (\c false) or inverse transform (\c true) is computed. **/ CImgList& FFT(const bool invert = false) { if (is_empty()) return *this; if (_width == 1) insert(1); if (_width > 2) cimg::warn(_cimglist_instance "FFT(): Instance has more than 2 images", cimglist_instance); CImg::FFT(_data[0], _data[1], invert); return *this; } //! Compute n-D Fast Fourier Transform \newinstance. CImgList get_FFT(const bool invert = false) const { return CImgList(*this, false).FFT(invert); } //! Reverse primitives orientations of a 3D object. /** **/ CImgList& reverse_object3d() { cimglist_for(*this, l) { CImg& p = _data[l]; switch (p.size()) { case 2: case 3: cimg::swap(p[0], p[1]); break; case 6: cimg::swap(p[0], p[1], p[2], p[4], p[3], p[5]); break; case 9: cimg::swap(p[0], p[1], p[3], p[5], p[4], p[6]); break; case 4: cimg::swap(p[0], p[1], p[2], p[3]); break; case 12: cimg::swap(p[0], p[1], p[2], p[3], p[4], p[6], p[5], p[7], p[8], p[10], p[9], p[11]); break; } } return *this; } //! Reverse primitives orientations of a 3D object \newinstance. CImgList get_reverse_object3d() const { return (+*this).reverse_object3d(); } //@} }; // struct CImgList { ... // Completion of previously declared functions //-------------------------------------------- namespace cimg { // Functions to return standard streams 'stdin', 'stdout' and 'stderr'. // (throw a CImgIOException when macro 'cimg_use_r' is defined). inline FILE* _stdin(const bool throw_exception) { #ifndef cimg_use_r cimg::unused(throw_exception); return stdin; #else if (throw_exception) { cimg::exception_mode(0); throw CImgIOException( "cimg::stdin(): Reference to 'stdin' stream not allowed in R mode " "('cimg_use_r' is defined)."); } return 0; #endif } inline FILE* _stdout(const bool throw_exception) { #ifndef cimg_use_r cimg::unused(throw_exception); return stdout; #else if (throw_exception) { cimg::exception_mode(0); throw CImgIOException( "cimg::stdout(): Reference to 'stdout' stream not allowed in R " "mode " "('cimg_use_r' is defined)."); } return 0; #endif } inline FILE* _stderr(const bool throw_exception) { #ifndef cimg_use_r cimg::unused(throw_exception); return stderr; #else if (throw_exception) { cimg::exception_mode(0); throw CImgIOException( "cimg::stderr(): Reference to 'stderr' stream not allowed in R " "mode " "('cimg_use_r' is defined)."); } return 0; #endif } // Open a file (similar to std:: fopen(), but with wide character support on // Windows). inline std::FILE* std_fopen(const char* const path, const char* const mode) { std::FILE* const res = std::fopen(path, mode); if (res) return res; #if cimg_OS == 2 // Try alternative method, with wide-character string. int err = MultiByteToWideChar(CP_UTF8, 0, path, -1, 0, 0); if (err) { CImg wpath(err); err = MultiByteToWideChar(CP_UTF8, 0, path, -1, wpath, err); if (err) { // Convert 'mode' to a wide-character string err = MultiByteToWideChar(CP_UTF8, 0, mode, -1, 0, 0); if (err) { CImg wmode(err); if (MultiByteToWideChar(CP_UTF8, 0, mode, -1, wmode, err)) return _wfopen(wpath, wmode); } } } #endif return 0; } //! Get/set path to store temporary files. /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path where temporary files can be saved. **/ inline const char* temporary_path(const char* const user_path, const bool reinit_path) { #define _cimg_test_temporary_path(p) \ if (!path_found) { \ cimg_snprintf(s_path, s_path.width(), "%s", p); \ cimg_snprintf(tmp, tmp._width, "%s%c%s", s_path.data(), \ cimg_file_separator, filename_tmp._data); \ if ((file = cimg::std_fopen(tmp, "wb")) != 0) { \ cimg::fclose(file); \ std::remove(tmp); \ path_found = true; \ } \ } static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(1024); bool path_found = false; CImg tmp(1024), filename_tmp(256); std::FILE* file = 0; cimg_snprintf(filename_tmp, filename_tmp._width, "%s.tmp", cimg::filenamerand()); char* tmpPath = std::getenv("TMP"); if (!tmpPath) { tmpPath = std::getenv("TEMP"); winformat_string(tmpPath); } if (tmpPath) _cimg_test_temporary_path(tmpPath); #if cimg_OS == 2 _cimg_test_temporary_path("C:\\WINNT\\Temp"); _cimg_test_temporary_path("C:\\WINDOWS\\Temp"); _cimg_test_temporary_path("C:\\Temp"); _cimg_test_temporary_path("C:"); _cimg_test_temporary_path("D:\\WINNT\\Temp"); _cimg_test_temporary_path("D:\\WINDOWS\\Temp"); _cimg_test_temporary_path("D:\\Temp"); _cimg_test_temporary_path("D:"); #else _cimg_test_temporary_path("/tmp"); _cimg_test_temporary_path("/var/tmp"); #endif if (!path_found) { *s_path = 0; std::strncpy(tmp, filename_tmp, tmp._width - 1); if ((file = cimg::std_fopen(tmp, "wb")) != 0) { cimg::fclose(file); std::remove(tmp); path_found = true; } } if (!path_found) { cimg::mutex(7, 0); throw CImgIOException( "cimg::temporary_path(): Failed to locate path for writing " "temporary files.\n"); } } cimg::mutex(7, 0); return s_path; } //! Get/set path to the Program Files/ directory (Windows only). /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path containing the program files. **/ #if cimg_OS == 2 inline const char* programfiles_path(const char* const user_path, const bool reinit_path) { static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(MAX_PATH); *s_path = 0; // Note: in the following line, 0x26 = CSIDL_PROGRAM_FILES (not defined // on every compiler). #if !defined(__INTEL_COMPILER) if (!SHGetSpecialFolderPathA(0, s_path, 0x0026, false)) { const char* const pfPath = std::getenv("PROGRAMFILES"); if (pfPath) std::strncpy(s_path, pfPath, MAX_PATH - 1); else std::strcpy(s_path, "C:\\PROGRA~1"); } #else std::strcpy(s_path, "C:\\PROGRA~1"); #endif } cimg::mutex(7, 0); return s_path; } #endif //! Get/set path to the ImageMagick's \c convert binary. /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path containing the \c convert binary. **/ inline const char* imagemagick_path(const char* const user_path, const bool reinit_path) { static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(1024); bool path_found = false; std::FILE* file = 0; #if cimg_OS == 2 const char* const pf_path = programfiles_path(); for (int l = 0; l < 2 && !path_found; ++l) { const char* const s_exe = l ? "convert" : "magick"; cimg_snprintf(s_path, s_path._width, ".\\%s.exe", s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\IMAGEM~1.%.2d-\\%s.exe", pf_path, k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\IMAGEM~1.%d-Q\\%s.exe", pf_path, k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\IMAGEM~1.%d\\%s.exe", pf_path, k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe", pf_path, k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe", pf_path, k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe", pf_path, k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\IMAGEM~1.%.2d-\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\IMAGEM~1.%d-Q\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\IMAGEM~1.%d\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\IMAGEM~1.%.2d-\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\IMAGEM~1.%d-Q\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\IMAGEM~1.%d\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe", k, s_exe); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) cimg_snprintf(s_path, s_path._width, "%s.exe", s_exe); } #else std::strcpy(s_path, "./magick"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } if (!path_found) { std::strcpy(s_path, "./convert"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "convert"); #endif winformat_string(s_path); } cimg::mutex(7, 0); return s_path; } //! Get/set path to the GraphicsMagick's \c gm binary. /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path containing the \c gm binary. **/ inline const char* graphicsmagick_path(const char* const user_path, const bool reinit_path) { static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(1024); bool path_found = false; std::FILE* file = 0; #if cimg_OS == 2 const char* const pf_path = programfiles_path(); if (!path_found) { std::strcpy(s_path, ".\\gm.exe"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\GRAPHI~1.%.2d-\\gm.exe", pf_path, k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\GRAPHI~1.%d-Q\\gm.exe", pf_path, k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\GRAPHI~1.%d\\gm.exe", pf_path, k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe", pf_path, k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe", pf_path, k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "%s\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe", pf_path, k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\GRAPHI~1.%.2d-\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\GRAPHI~1.%d-Q\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\GRAPHI~1.%d\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "C:\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\GRAPHI~1.%.2d-\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\GRAPHI~1.%d-Q\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\GRAPHI~1.%d\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 10 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 9; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } for (int k = 32; k >= 0 && !path_found; --k) { cimg_snprintf(s_path, s_path._width, "D:\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe", k); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "gm.exe"); #else if (!path_found) { std::strcpy(s_path, "./gm"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "gm"); #endif winformat_string(s_path); } cimg::mutex(7, 0); return s_path; } //! Get/set path to the XMedcon's \c medcon binary. /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path containing the \c medcon binary. **/ inline const char* medcon_path(const char* const user_path, const bool reinit_path) { static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(1024); bool path_found = false; std::FILE* file = 0; #if cimg_OS == 2 const char* const pf_path = programfiles_path(); if (!path_found) { std::strcpy(s_path, ".\\medcon.exe"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) { cimg_snprintf(s_path, s_path._width, "%s\\XMedCon\\bin\\medcon.bat", pf_path); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) { cimg_snprintf(s_path, s_path._width, "%s\\XMedCon\\bin\\medcon.exe", pf_path); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) { std::strcpy(s_path, "C:\\XMedCon\\bin\\medcon.exe"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "medcon.exe"); #else if (!path_found) { std::strcpy(s_path, "./medcon"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "medcon"); #endif winformat_string(s_path); } cimg::mutex(7, 0); return s_path; } //! Get/set path to the FFMPEG's \c ffmpeg binary. /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path containing the \c ffmpeg binary. **/ inline const char* ffmpeg_path(const char* const user_path, const bool reinit_path) { static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(1024); bool path_found = false; std::FILE* file = 0; #if cimg_OS == 2 if (!path_found) { std::strcpy(s_path, ".\\ffmpeg.exe"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "ffmpeg.exe"); #else if (!path_found) { std::strcpy(s_path, "./ffmpeg"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "ffmpeg"); #endif winformat_string(s_path); } cimg::mutex(7, 0); return s_path; } //! Get/set path to the \c gzip binary. /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path containing the \c gzip binary. **/ inline const char* gzip_path(const char* const user_path, const bool reinit_path) { static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(1024); bool path_found = false; std::FILE* file = 0; #if cimg_OS == 2 if (!path_found) { std::strcpy(s_path, ".\\gzip.exe"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "gzip.exe"); #else if (!path_found) { std::strcpy(s_path, "./gzip"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "gzip"); #endif winformat_string(s_path); } cimg::mutex(7, 0); return s_path; } //! Get/set path to the \c gunzip binary. /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path containing the \c gunzip binary. **/ inline const char* gunzip_path(const char* const user_path, const bool reinit_path) { static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(1024); bool path_found = false; std::FILE* file = 0; #if cimg_OS == 2 if (!path_found) { std::strcpy(s_path, ".\\gunzip.exe"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "gunzip.exe"); #else if (!path_found) { std::strcpy(s_path, "./gunzip"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "gunzip"); #endif winformat_string(s_path); } cimg::mutex(7, 0); return s_path; } //! Get/set path to the \c dcraw binary. /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path containing the \c dcraw binary. **/ inline const char* dcraw_path(const char* const user_path, const bool reinit_path) { static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(1024); bool path_found = false; std::FILE* file = 0; #if cimg_OS == 2 if (!path_found) { std::strcpy(s_path, ".\\dcraw.exe"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "dcraw.exe"); #else if (!path_found) { std::strcpy(s_path, "./dcraw"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "dcraw"); #endif winformat_string(s_path); } cimg::mutex(7, 0); return s_path; } //! Get/set path to the \c wget binary. /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path containing the \c wget binary. **/ inline const char* wget_path(const char* const user_path, const bool reinit_path) { static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(1024); bool path_found = false; std::FILE* file = 0; #if cimg_OS == 2 if (!path_found) { std::strcpy(s_path, ".\\wget.exe"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "wget.exe"); #else if (!path_found) { std::strcpy(s_path, "./wget"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "wget"); #endif winformat_string(s_path); } cimg::mutex(7, 0); return s_path; } //! Get/set path to the \c curl binary. /** \param user_path Specified path, or \c 0 to get the path currently used. \param reinit_path Force path to be recalculated (may take some time). \return Path containing the \c curl binary. **/ inline const char* curl_path(const char* const user_path, const bool reinit_path) { static CImg s_path; cimg::mutex(7); if (reinit_path) s_path.assign(); if (user_path) { if (!s_path) s_path.assign(1024); std::strncpy(s_path, user_path, 1023); } else if (!s_path) { s_path.assign(1024); bool path_found = false; std::FILE* file = 0; #if cimg_OS == 2 if (!path_found) { std::strcpy(s_path, ".\\curl.exe"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "curl.exe"); #else if (!path_found) { std::strcpy(s_path, "./curl"); if ((file = cimg::std_fopen(s_path, "r")) != 0) { cimg::fclose(file); path_found = true; } } if (!path_found) std::strcpy(s_path, "curl"); #endif winformat_string(s_path); } cimg::mutex(7, 0); return s_path; } // [internal] Sorting function, used by cimg::files(). inline int _sort_files(const void* a, const void* b) { const CImg&sa = *(CImg*)a, &sb = *(CImg*)b; return std::strcmp(sa._data, sb._data); } //! Return list of files/directories in specified directory. /** \param path Path to the directory. Set to 0 for current directory. \param is_pattern Tell if specified path has a matching pattern in it. \param mode Output type, can be primary { 0=files only | 1=folders only | 2=files + folders }. \param include_path Tell if \c path must be included in resulting filenames. \return A list of filenames. **/ inline CImgList files(const char* const path, const bool is_pattern = false, const unsigned int mode = 2, const bool include_path = false) { if (!path || !*path) return files("*", true, mode, include_path); CImgList res; // If path is a valid folder name, ignore argument 'is_pattern'. const bool _is_pattern = is_pattern && !cimg::is_directory(path); bool is_root = false, is_current = false; cimg::unused(is_root, is_current); // Clean format of input path. CImg pattern, _path = CImg::string(path); #if cimg_OS == 2 for (char* ps = _path; *ps; ++ps) if (*ps == '\\') *ps = '/'; #endif char* pd = _path; for (char* ps = pd; *ps; ++ps) { if (*ps != '/' || *ps != *(ps + 1)) *(pd++) = *ps; } *pd = 0; unsigned int lp = (unsigned int)std::strlen(_path); if (!_is_pattern && lp && _path[lp - 1] == '/') { _path[lp - 1] = 0; --lp; #if cimg_OS != 2 is_root = !*_path; #endif } // Separate folder path and matching pattern. if (_is_pattern) { const unsigned int bpos = (unsigned int)(cimg::basename(_path, '/') - _path.data()); CImg::string(_path).move_to(pattern); if (bpos) { _path[bpos - 1] = 0; // End 'path' at last slash #if cimg_OS != 2 is_root = !*_path; #endif } else { // No path to folder specified, assuming current folder is_current = true; *_path = 0; } lp = (unsigned int)std::strlen(_path); } // Windows version. #if cimg_OS == 2 if (!_is_pattern) { pattern.assign(lp + 3); std::memcpy(pattern, _path, lp); pattern[lp] = '/'; pattern[lp + 1] = '*'; pattern[lp + 2] = 0; } WIN32_FIND_DATAA file_data; const HANDLE dir = FindFirstFileA(pattern.data(), &file_data); if (dir == INVALID_HANDLE_VALUE) return CImgList::const_empty(); do { const char* const filename = file_data.cFileName; if (*filename != '.' || (filename[1] && (filename[1] != '.' || filename[2]))) { const unsigned int lf = (unsigned int)std::strlen(filename); const bool is_directory = (file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0; if ((!mode && !is_directory) || (mode == 1 && is_directory) || mode >= 2) { if (include_path) { CImg full_filename((lp ? lp + 1 : 0) + lf + 1); if (lp) { std::memcpy(full_filename, _path, lp); full_filename[lp] = '/'; } std::memcpy(full_filename._data + (lp ? lp + 1 : 0), filename, lf + 1); full_filename.move_to(res); } else CImg(filename, lf + 1).move_to(res); } } } while (FindNextFileA(dir, &file_data)); FindClose(dir); // Unix version (posix). #elif cimg_OS == 1 DIR* const dir = opendir(is_root ? "/" : is_current ? "." : _path.data()); if (!dir) return CImgList::const_empty(); struct dirent* ent; while ((ent = readdir(dir)) != 0) { const char* const filename = ent->d_name; if (*filename != '.' || (filename[1] && (filename[1] != '.' || filename[2]))) { const unsigned int lf = (unsigned int)std::strlen(filename); CImg full_filename(lp + lf + 2); if (!is_current) { full_filename.assign(lp + lf + 2); if (lp) std::memcpy(full_filename, _path, lp); full_filename[lp] = '/'; std::memcpy(full_filename._data + lp + 1, filename, lf + 1); } else full_filename.assign(filename, lf + 1); struct stat st; if (stat(full_filename, &st) == -1) continue; const bool is_directory = (st.st_mode & S_IFDIR) != 0; if ((!mode && !is_directory) || (mode == 1 && is_directory) || mode == 2) { if (include_path) { if (!_is_pattern || (_is_pattern && !fnmatch(pattern, full_filename, 0))) full_filename.move_to(res); } else { if (!_is_pattern || (_is_pattern && !fnmatch(pattern, full_filename, 0))) CImg(filename, lf + 1).move_to(res); } } } } closedir(dir); #endif // Sort resulting list by lexicographic order. if (res._width >= 2) std::qsort(res._data, res._width, sizeof(CImg), _sort_files); return res; } //! Try to guess format from an image file. /** \param file Input file (can be \c 0 if \c filename is set). \param filename Filename, as a C-string (can be \c 0 if \c file is set). \return C-string containing the guessed file format, or \c 0 if nothing has been guessed. **/ inline const char* ftype(std::FILE* const file, const char* const filename) { if (!file && !filename) throw CImgArgumentException( "cimg::ftype(): Specified filename is (null)."); static const char *const _pnm = "pnm", *const _pfm = "pfm", *const _bmp = "bmp", *const _gif = "gif", *const _jpg = "jpg", *const _off = "off", *const _pan = "pan", *const _png = "png", *const _tif = "tif", *const _inr = "inr", *const _dcm = "dcm"; const char* f_type = 0; CImg header; const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); try { header._load_raw(file, filename, 512, 1, 1, 1, false, false, 0); const unsigned char* const uheader = (unsigned char*)header._data; if (!std::strncmp(header, "OFF\n", 4)) f_type = _off; // OFF else if (!std::strncmp(header, "#INRIMAGE", 9)) // INRIMAGE f_type = _inr; else if (!std::strncmp(header, "PANDORE", 7)) // PANDORE f_type = _pan; else if (!std::strncmp(header.data() + 128, "DICM", 4)) // DICOM f_type = _dcm; else if (uheader[0] == 0xFF && uheader[1] == 0xD8 && uheader[2] == 0xFF) // JPEG f_type = _jpg; else if (header[0] == 'B' && header[1] == 'M') // BMP f_type = _bmp; else if (header[0] == 'G' && header[1] == 'I' && header[2] == 'F' && header[3] == '8' && header[5] == 'a' && (header[4] == '7' || header[4] == '9')) // GIF f_type = _gif; else if (uheader[0] == 0x89 && uheader[1] == 0x50 && uheader[2] == 0x4E && uheader[3] == 0x47 && uheader[4] == 0x0D && uheader[5] == 0x0A && uheader[6] == 0x1A && uheader[7] == 0x0A) // PNG f_type = _png; else if ((uheader[0] == 0x49 && uheader[1] == 0x49) || (uheader[0] == 0x4D && uheader[1] == 0x4D)) // TIFF f_type = _tif; else { // PNM or PFM CImgList _header = header.get_split(CImg::vector('\n'), 0, false); cimglist_for(_header, l) { if (_header(l, 0) == '#') continue; if (_header[l]._height == 2 && _header(l, 0) == 'P') { const char c = _header(l, 1); if (c == 'f' || c == 'F') { f_type = _pfm; break; } if (c >= '1' && c <= '9') { f_type = _pnm; break; } } f_type = 0; break; } } } catch (CImgIOException&) { } cimg::exception_mode(omode); return f_type; } //! Load file from network as a local temporary file. /** \param url URL of the filename, as a C-string. \param[out] filename_local C-string containing the path to a local copy of \c filename. \param timeout Maximum time (in seconds) authorized for downloading the file from the URL. \param try_fallback When using libcurl, tells using system calls as fallbacks in case of libcurl failure. \param referer Referer used, as a C-string. \return Value of \c filename_local. \note Use the \c libcurl library, or the external binaries \c wget or \c curl to perform the download. **/ inline char* load_network(const char* const url, char* const filename_local, const unsigned int timeout, const bool try_fallback, const char* const referer) { if (!url) throw CImgArgumentException( "cimg::load_network(): Specified URL is (null)."); if (!filename_local) throw CImgArgumentException( "cimg::load_network(): Specified destination string is (null)."); const char *const __ext = cimg::split_filename(url), *const _ext = (*__ext && __ext > url) ? __ext - 1 : __ext; CImg ext = CImg::string(_ext); std::FILE* file = 0; *filename_local = 0; if (ext._width > 16 || !cimg::strncasecmp(ext, "cgi", 3)) *ext = 0; else cimg::strwindows_reserved(ext); do { cimg_snprintf(filename_local, 256, "%s%c%s%s", cimg::temporary_path(), cimg_file_separator, cimg::filenamerand(), ext._data); if ((file = cimg::std_fopen(filename_local, "rb")) != 0) cimg::fclose(file); } while (file); #ifdef cimg_use_curl const unsigned int omode = cimg::exception_mode(); cimg::exception_mode(0); try { CURL* curl = 0; CURLcode res; curl = curl_easy_init(); if (curl) { file = cimg::fopen(filename_local, "wb"); curl_easy_setopt(curl, CURLOPT_URL, url); curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, 0); curl_easy_setopt(curl, CURLOPT_WRITEDATA, file); curl_easy_setopt(curl, CURLOPT_SSL_VERIFYPEER, 0L); curl_easy_setopt(curl, CURLOPT_SSL_VERIFYHOST, 0L); curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L); if (timeout) curl_easy_setopt(curl, CURLOPT_TIMEOUT, (long)timeout); if (std::strchr(url, '?')) curl_easy_setopt(curl, CURLOPT_HTTPGET, 1L); if (referer) curl_easy_setopt(curl, CURLOPT_REFERER, referer); res = curl_easy_perform(curl); curl_easy_cleanup(curl); cimg::fseek(file, 0, SEEK_END); // Check if file size is 0 const cimg_ulong siz = cimg::ftell(file); cimg::fclose(file); if (siz > 0 && res == CURLE_OK) { cimg::exception_mode(omode); return filename_local; } else std::remove(filename_local); } } catch (...) { } cimg::exception_mode(omode); if (!try_fallback) throw CImgIOException( "cimg::load_network(): Failed to load file '%s' with libcurl.", url); #endif CImg command((unsigned int)std::strlen(url) + 64); cimg::unused(try_fallback); // Try with 'curl' first. if (timeout) { if (referer) cimg_snprintf( command, command._width, "%s -e %s -m %u -f --silent --compressed -o \"%s\" \"%s\"", cimg::curl_path(), referer, timeout, filename_local, CImg::string(url)._system_strescape().data()); else cimg_snprintf(command, command._width, "%s -m %u -f --silent --compressed -o \"%s\" \"%s\"", cimg::curl_path(), timeout, filename_local, CImg::string(url)._system_strescape().data()); } else { if (referer) cimg_snprintf(command, command._width, "%s -e %s -f --silent --compressed -o \"%s\" \"%s\"", cimg::curl_path(), referer, filename_local, CImg::string(url)._system_strescape().data()); else cimg_snprintf(command, command._width, "%s -f --silent --compressed -o \"%s\" \"%s\"", cimg::curl_path(), filename_local, CImg::string(url)._system_strescape().data()); } cimg::system(command); if (!(file = cimg::std_fopen(filename_local, "rb"))) { // Try with 'wget' otherwise. if (timeout) { if (referer) cimg_snprintf( command, command._width, "%s --referer=%s -T %u -q -r -l 0 --no-cache -O \"%s\" " "\"%s\"", cimg::wget_path(), referer, timeout, filename_local, CImg::string(url)._system_strescape().data()); else cimg_snprintf( command, command._width, "%s -T %u -q -r -l 0 --no-cache -O \"%s\" \"%s\"", cimg::wget_path(), timeout, filename_local, CImg::string(url)._system_strescape().data()); } else { if (referer) cimg_snprintf( command, command._width, "%s --referer=%s -q -r -l 0 --no-cache -O \"%s\" \"%s\"", cimg::wget_path(), referer, filename_local, CImg::string(url)._system_strescape().data()); else cimg_snprintf( command, command._width, "%s -q -r -l 0 --no-cache -O \"%s\" \"%s\"", cimg::wget_path(), filename_local, CImg::string(url)._system_strescape().data()); } cimg::system(command); if (!(file = cimg::std_fopen(filename_local, "rb"))) throw CImgIOException( "cimg::load_network(): Failed to load file '%s' with external " "commands " "'wget' or 'curl'.", url); cimg::fclose(file); // Try gunzip it. cimg_snprintf(command, command._width, "%s.gz", filename_local); std::rename(filename_local, command); cimg_snprintf(command, command._width, "%s --quiet \"%s.gz\"", gunzip_path(), filename_local); cimg::system(command); file = cimg::std_fopen(filename_local, "rb"); if (!file) { cimg_snprintf(command, command._width, "%s.gz", filename_local); std::rename(command, filename_local); file = cimg::std_fopen(filename_local, "rb"); } } cimg::fseek(file, 0, SEEK_END); // Check if file size is 0 if (std::ftell(file) <= 0) throw CImgIOException( "cimg::load_network(): Failed to load URL '%s' with external " "commands " "'wget' or 'curl'.", url); cimg::fclose(file); return filename_local; } // Implement a tic/toc mechanism to display elapsed time of algorithms. inline cimg_ulong tictoc(const bool is_tic) { cimg::mutex(2); static CImg times(64); static unsigned int pos = 0; const cimg_ulong t1 = cimg::time(); if (is_tic) { // Tic times[pos++] = t1; if (pos >= times._width) throw CImgArgumentException( "cimg::tic(): Too much calls to 'cimg::tic()' without calls to " "'cimg::toc()'."); cimg::mutex(2, 0); return t1; } // Toc if (!pos) throw CImgArgumentException( "cimg::toc(): No previous call to 'cimg::tic()' has been made."); const cimg_ulong t0 = times[--pos], dt = t1 >= t0 ? (t1 - t0) : cimg::type::max(); const unsigned int edays = (unsigned int)(dt / 86400000.), ehours = (unsigned int)((dt - edays * 86400000.) / 3600000.), emin = (unsigned int)((dt - edays * 86400000. - ehours * 3600000.) / 60000.), esec = (unsigned int)((dt - edays * 86400000. - ehours * 3600000. - emin * 60000.) / 1000.), ems = (unsigned int)(dt - edays * 86400000. - ehours * 3600000. - emin * 60000. - esec * 1000.); if (!edays && !ehours && !emin && !esec) std::fprintf(cimg::output(), "%s[CImg]%*sElapsed time: %u ms%s\n", cimg::t_red, 1 + 2 * pos, "", ems, cimg::t_normal); else { if (!edays && !ehours && !emin) std::fprintf( cimg::output(), "%s[CImg]%*sElapsed time: %u sec %u ms%s\n", cimg::t_red, 1 + 2 * pos, "", esec, ems, cimg::t_normal); else { if (!edays && !ehours) std::fprintf(cimg::output(), "%s[CImg]%*sElapsed time: %u min %u sec %u ms%s\n", cimg::t_red, 1 + 2 * pos, "", emin, esec, ems, cimg::t_normal); else { if (!edays) std::fprintf(cimg::output(), "%s[CImg]%*sElapsed time: %u hours %u min %u " "sec %u ms%s\n", cimg::t_red, 1 + 2 * pos, "", ehours, emin, esec, ems, cimg::t_normal); else { std::fprintf(cimg::output(), "%s[CImg]%*sElapsed time: %u days %u hours %u " "min %u sec %u ms%s\n", cimg::t_red, 1 + 2 * pos, "", edays, ehours, emin, esec, ems, cimg::t_normal); } } } } cimg::mutex(2, 0); return dt; } // Return a temporary string describing the size of a memory buffer. inline const char* strbuffersize(const cimg_ulong size) { static CImg res(256); cimg::mutex(5); if (size < 1024LU) cimg_snprintf(res, res._width, "%lu byte%s", (unsigned long)size, size > 1 ? "s" : ""); else if (size < 1024 * 1024LU) { const float nsize = size / 1024.f; cimg_snprintf(res, res._width, "%.1f Kio", nsize); } else if (size < 1024 * 1024 * 1024LU) { const float nsize = size / (1024 * 1024.f); cimg_snprintf(res, res._width, "%.1f Mio", nsize); } else { const float nsize = size / (1024 * 1024 * 1024.f); cimg_snprintf(res, res._width, "%.1f Gio", nsize); } cimg::mutex(5, 0); return res; } //! Display a simple dialog box, and wait for the user's response. /** \param title Title of the dialog window. \param msg Main message displayed inside the dialog window. \param button1_label Label of the 1st button. \param button2_label Label of the 2nd button (\c 0 to hide button). \param button3_label Label of the 3rd button (\c 0 to hide button). \param button4_label Label of the 4th button (\c 0 to hide button). \param button5_label Label of the 5th button (\c 0 to hide button). \param button6_label Label of the 6th button (\c 0 to hide button). \param logo Image logo displayed at the left of the main message. \param is_centered Tells if the dialog window must be centered on the screen. \return Index of clicked button (from \c 0 to \c 5), or \c -1 if the dialog window has been closed by the user. \note - Up to 6 buttons can be defined in the dialog window. - The function returns when a user clicked one of the button or closed the dialog window. - If a button text is set to 0, the corresponding button (and the followings) will not appear in the dialog box. At least one button must be specified. **/ template inline int dialog(const char* const title, const char* const msg, const char* const button1_label, const char* const button2_label, const char* const button3_label, const char* const button4_label, const char* const button5_label, const char* const button6_label, const CImg& logo, const bool is_centered = false) { #if cimg_display == 0 cimg::unused(title, msg, button1_label, button2_label, button3_label, button4_label, button5_label, button6_label, logo._data, is_centered); throw CImgIOException("cimg::dialog(): No display available."); #else static const unsigned char black[] = {0, 0, 0}, white[] = {255, 255, 255}, gray[] = {200, 200, 200}, gray2[] = {150, 150, 150}; // Create buttons and canvas graphics CImgList buttons, cbuttons, sbuttons; if (button1_label) { CImg() .draw_text(0, 0, button1_label, black, gray, 1, 13) .move_to(buttons); if (button2_label) { CImg() .draw_text(0, 0, button2_label, black, gray, 1, 13) .move_to(buttons); if (button3_label) { CImg() .draw_text(0, 0, button3_label, black, gray, 1, 13) .move_to(buttons); if (button4_label) { CImg() .draw_text(0, 0, button4_label, black, gray, 1, 13) .move_to(buttons); if (button5_label) { CImg() .draw_text(0, 0, button5_label, black, gray, 1, 13) .move_to(buttons); if (button6_label) { CImg() .draw_text(0, 0, button6_label, black, gray, 1, 13) .move_to(buttons); } } } } } } if (!buttons._width) throw CImgArgumentException( "cimg::dialog(): No buttons have been defined."); cimglist_for(buttons, l) buttons[l].resize(-100, -100, 1, 3); unsigned int bw = 0, bh = 0; cimglist_for(buttons, l) { bw = std::max(bw, buttons[l]._width); bh = std::max(bh, buttons[l]._height); } bw += 8; bh += 8; if (bw < 64) bw = 64; if (bw > 128) bw = 128; if (bh < 24) bh = 24; if (bh > 48) bh = 48; CImg button(bw, bh, 1, 3); button.draw_rectangle(0, 0, bw - 1, bh - 1, gray); button.draw_line(0, 0, bw - 1, 0, white).draw_line(0, bh - 1, 0, 0, white); button.draw_line(bw - 1, 0, bw - 1, bh - 1, black) .draw_line(bw - 1, bh - 1, 0, bh - 1, black); button.draw_line(1, bh - 2, bw - 2, bh - 2, gray2) .draw_line(bw - 2, bh - 2, bw - 2, 1, gray2); CImg sbutton(bw, bh, 1, 3); sbutton.draw_rectangle(0, 0, bw - 1, bh - 1, gray); sbutton.draw_line(0, 0, bw - 1, 0, black) .draw_line(bw - 1, 0, bw - 1, bh - 1, black); sbutton.draw_line(bw - 1, bh - 1, 0, bh - 1, black) .draw_line(0, bh - 1, 0, 0, black); sbutton.draw_line(1, 1, bw - 2, 1, white).draw_line(1, bh - 2, 1, 1, white); sbutton.draw_line(bw - 2, 1, bw - 2, bh - 2, black) .draw_line(bw - 2, bh - 2, 1, bh - 2, black); sbutton.draw_line(2, bh - 3, bw - 3, bh - 3, gray2) .draw_line(bw - 3, bh - 3, bw - 3, 2, gray2); sbutton.draw_line(4, 4, bw - 5, 4, black, 1, 0xAAAAAAAA, true) .draw_line(bw - 5, 4, bw - 5, bh - 5, black, 1, 0xAAAAAAAA, false); sbutton.draw_line(bw - 5, bh - 5, 4, bh - 5, black, 1, 0xAAAAAAAA, false) .draw_line(4, bh - 5, 4, 4, black, 1, 0xAAAAAAAA, false); CImg cbutton(bw, bh, 1, 3); cbutton.draw_rectangle(0, 0, bw - 1, bh - 1, black) .draw_rectangle(1, 1, bw - 2, bh - 2, gray2) .draw_rectangle(2, 2, bw - 3, bh - 3, gray); cbutton.draw_line(4, 4, bw - 5, 4, black, 1, 0xAAAAAAAA, true) .draw_line(bw - 5, 4, bw - 5, bh - 5, black, 1, 0xAAAAAAAA, false); cbutton.draw_line(bw - 5, bh - 5, 4, bh - 5, black, 1, 0xAAAAAAAA, false) .draw_line(4, bh - 5, 4, 4, black, 1, 0xAAAAAAAA, false); cimglist_for(buttons, ll) { CImg(cbutton) .draw_image(1 + (bw - buttons[ll].width()) / 2, 1 + (bh - buttons[ll].height()) / 2, buttons[ll]) .move_to(cbuttons); CImg(sbutton) .draw_image((bw - buttons[ll].width()) / 2, (bh - buttons[ll].height()) / 2, buttons[ll]) .move_to(sbuttons); CImg(button) .draw_image((bw - buttons[ll].width()) / 2, (bh - buttons[ll].height()) / 2, buttons[ll]) .move_to(buttons[ll]); } CImg canvas; if (msg) ((CImg().draw_text(0, 0, "%s", gray, 0, 1, 13, msg) *= -1) += 200) .resize(-100, -100, 1, 3) .move_to(canvas); const unsigned int bwall = (buttons._width - 1) * (12 + bw) + bw, w = cimg::max(196U, 36 + logo._width + canvas._width, 24 + bwall), h = cimg::max(96U, 36 + canvas._height + bh, 36 + logo._height + bh), lx = 12 + (canvas._data ? 0 : ((w - 24 - logo._width) / 2)), ly = (h - 12 - bh - logo._height) / 2, tx = lx + logo._width + 12, ty = (h - 12 - bh - canvas._height) / 2, bx = (w - bwall) / 2, by = h - 12 - bh; if (canvas._data) canvas = CImg(w, h, 1, 3) .draw_rectangle(0, 0, w - 1, h - 1, gray) .draw_line(0, 0, w - 1, 0, white) .draw_line(0, h - 1, 0, 0, white) .draw_line(w - 1, 0, w - 1, h - 1, black) .draw_line(w - 1, h - 1, 0, h - 1, black) .draw_image(tx, ty, canvas); else canvas = CImg(w, h, 1, 3) .draw_rectangle(0, 0, w - 1, h - 1, gray) .draw_line(0, 0, w - 1, 0, white) .draw_line(0, h - 1, 0, 0, white) .draw_line(w - 1, 0, w - 1, h - 1, black) .draw_line(w - 1, h - 1, 0, h - 1, black); if (logo._data) canvas.draw_image(lx, ly, logo); unsigned int xbuttons[6] = {0}; cimglist_for(buttons, lll) { xbuttons[lll] = bx + (bw + 12) * lll; canvas.draw_image(xbuttons[lll], by, buttons[lll]); } // Open window and enter events loop CImgDisplay disp(canvas, title ? title : " ", 0, false, is_centered ? true : false); if (is_centered) disp.move((CImgDisplay::screen_width() - disp.width()) / 2, (CImgDisplay::screen_height() - disp.height()) / 2); bool stop_flag = false, refresh = false; int oselected = -1, oclicked = -1, selected = -1, clicked = -1; while (!disp.is_closed() && !stop_flag) { if (refresh) { if (clicked >= 0) CImg(canvas) .draw_image(xbuttons[clicked], by, cbuttons[clicked]) .display(disp); else { if (selected >= 0) CImg(canvas) .draw_image(xbuttons[selected], by, sbuttons[selected]) .display(disp); else canvas.display(disp); } refresh = false; } disp.wait(15); if (disp.is_resized()) disp.resize(disp, false); if (disp.button() & 1) { oclicked = clicked; clicked = -1; cimglist_for(buttons, l) if (disp.mouse_y() >= (int)by && disp.mouse_y() < (int)(by + bh) && disp.mouse_x() >= (int)xbuttons[l] && disp.mouse_x() < (int)(xbuttons[l] + bw)) { clicked = selected = l; refresh = true; } if (clicked != oclicked) refresh = true; } else if (clicked >= 0) stop_flag = true; if (disp.key()) { oselected = selected; switch (disp.key()) { case cimg::keyESC: selected = -1; stop_flag = true; break; case cimg::keyENTER: if (selected < 0) selected = 0; stop_flag = true; break; case cimg::keyTAB: case cimg::keyARROWRIGHT: case cimg::keyARROWDOWN: selected = (selected + 1) % buttons.width(); break; case cimg::keyARROWLEFT: case cimg::keyARROWUP: selected = (selected + buttons.width() - 1) % buttons.width(); break; } disp.set_key(); if (selected != oselected) refresh = true; } } if (!disp) selected = -1; return selected; #endif } //! Display a simple dialog box, and wait for the user's response //! \specialization. inline int dialog(const char* const title, const char* const msg, const char* const button1_label, const char* const button2_label, const char* const button3_label, const char* const button4_label, const char* const button5_label, const char* const button6_label, const bool is_centered) { return dialog(title, msg, button1_label, button2_label, button3_label, button4_label, button5_label, button6_label, CImg::_logo40x38(), is_centered); } //! Evaluate math expression. /** \param expression C-string describing the formula to evaluate. \param x Value of the pre-defined variable \c x. \param y Value of the pre-defined variable \c y. \param z Value of the pre-defined variable \c z. \param c Value of the pre-defined variable \c c. \return Result of the formula evaluation. \note Set \c expression to \c 0 to keep evaluating the last specified \c expression. \par Example \code const double res1 = cimg::eval("cos(x)^2 + sin(y)^2",2,2), // will return '1' res2 = cimg::eval(0,1,1); // will return '1' too \endcode **/ inline double eval(const char* const expression, const double x, const double y, const double z, const double c) { static const CImg empty; return empty.eval(expression, x, y, z, c); } template inline CImg::type> eval( const char* const expression, const CImg& xyzc) { static const CImg empty; return empty.eval(expression, xyzc); } } // namespace cimg } // namespace cimg_library_suffixed //! Short alias name. namespace cil = cimg_library_suffixed; #ifdef _cimg_redefine_False #define False 0 #endif #ifdef _cimg_redefine_True #define True 1 #endif #ifdef _cimg_redefine_Status #define Status int #endif #ifdef _cimg_redefine_Success #define Success 0 #endif #ifdef _cimg_redefine_min #define min(a, b) (((a) < (b)) ? (a) : (b)) #endif #ifdef _cimg_redefine_max #define max(a, b) (((a) > (b)) ? (a) : (b)) #endif #ifdef _cimg_redefine_PI #define PI 3.141592653589793238462643383 #endif #ifdef _MSC_VER #pragma warning(pop) #endif #endif // Local Variables: // mode: c++ // End: