
Audit
Ellipsis Labs

Presented by:

OtterSec contact@osec.io

Robert Chen notdeghost@osec.io

WilliamWang defund@osec.io

mailto:contact@osec.io
mailto:notdeghost@osec.io
mailto:defund@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Discussion 4

04 Findings 5

05 Vulnerabilities 6
OS-EPS-ADV-00 [high] [resolved] | Invalid DoubleEndedIterator Trait Implementations 7
OS-EPS-ADV-01 [high] [resolved] | SDK Transaction Spoofing 8
OS-EPS-ADV-02 [med] [resolved] | Account Creation DOS . 9
OS-EPS-ADV-03 [med] [resolved] | Explicate Overflow Boundaries 10

06 General Findings 12
OS-EPS-SUG-00 | Enforce Critical Orderbook Invariants . 13
OS-EPS-SUG-01 | Red-Black Tree Optimization . 14
OS-EPS-SUG-02 | Improved SDK Error Handling . 15
OS-EPS-SUG-03 | Potentially Unsafe Truncation . 16

Appendices

A Proofs of Concept 17
Adversial Eviction . 17

B Vulnerability Rating Scale 19

C Procedure 20

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 20

01 | Executive Summary

Overview

Ellipsis Labs engaged OtterSec to perform an assessment of the phoenix program. This assessment of
the source code was conducted between January 9th and February 8th, 2023. For more information on
our auditing methodology, see Appendix C.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, we worked closely with the team to streamline patches and
confirm remediation. We delivered final confirmation of the patches February 8th, 2023.

Key Findings

Over the course of this audit engagement, we produced 8 findings total. For a more detailed discussion of
our analysis, see Discussion.

In particular, we found a Rust soundness issue in the core red-black tree implementation (OS-EPS-ADV-00).
While this does not have immediate implications for the onchain orderbook, independent users of the
library could experience undefined behavior.

We also noted a number of denial of service scenarios (OS-EPS-ADV-02, OS-EPS-ADV-03).

In addition, we provided recommendations around validating critical invariants (OS-EPS-SUG-00), opti-
mizing data structures (OS-EPS-SUG-01), and general code quality to improve resilience.

Overall, we commend the Ellipsis Labs team for being responsive and knowledgeable. The codebase was
well written, documented, and tested prior to our audit with clear attention to detail.

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 20

02 | Scope
A brief description of the programs and scopes is as follows.

Name Description

phoenix On-chain, crankless orderbook built on top of sokoban. We reviewed
github.com/Ellipsis-Labs/phoenix-v1 commit 85b9158.

sokoban Memory-efficient data structures library. For this engagement, we focused our anal-
ysis on the red black tree and node allocator. We reviewed github.com/Ellipsis-
Labs/sokoban commit 9a7c2d0.

ellipsis-macros Miscellaneousmacros forSolanaprogramcode, primarily intended forusebyphoenix.
We reviewed github.com/Ellipsis-Labs/ellipsis-macros commit 142c920.

phoenix-sdk Core SDK for interacting with the Phoenix onchain orderbook, built on ellipsis-client.
We reviewed github.com/Ellipsis-Labs/phoenix-sdk commit a92a875.

ellipsis-client Lightweight unified interface around RPC and BanksClient. We reviewed
github.com/Ellipsis-Labs/ellipsis-client commit 1b5168d.

As part of this audit, we also provided proofs of concept to demonstrate certain scenarios. In particular,
see our Adversarial Eviction POC.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 20

https://github.com/Ellipsis-Labs/phoenix-v1
https://github.com/Ellipsis-Labs/sokoban
https://github.com/Ellipsis-Labs/sokoban
https://github.com/Ellipsis-Labs/ellipsis-macros
https://github.com/Ellipsis-Labs/phoenix-sdk
https://github.com/Ellipsis-Labs/ellipsis-client

03 | Discussion
As part of this engagement, we evaluated the onchain program and data structures for a variety of issues.
Drawing on our work with previous orderbooks such as Serum, we are able to make important parallels to
our past engagements. While we are unable to document all of our discussions, we include the important
ones here.

Adversial Eviction

Part of our analysis focused on the design of the orderbook. One interesting feature which we analyzed
heavily was eviction behavior when the orderbook was filled. We also provided a proof of concept to fully
demonstrate this behavior in Adversarial Eviction POC.

This behavior ismitigated by twomain factors. First, makers on the book need to have their seats explicitly
reserved, making them semi-trusted. Second, phoenix allows for large configurations of up to 4096 orders,
making clearing the orderbook relatively expensive for adversaries.

Data Structure Concerns

One subcomponent of this audit was ensuring that the data structures operated as intended. This has
implications both for phoenix and also as an independent library. We sought to ensure that both use cases
were sound.

Here we noted a critical issue in the Rust soundness of the red-black tree (OS-EPS-ADV-00). We also made
suggestions around improving data structure efficiency (OS-EPS-SUG-01).

Denial of Service

We preface this section by noting that it is difficult to fully evaluate a program for denial of service issues.
We applied a best-effort analysis to try and find critical areaswhere the programmight not have performed
sufficient validation of data inputs and unintentionally abort. We noted two potential issues here, OS-
EPS-ADV-02 and OS-EPS-ADV-03.

Solana Specific Issues

One other area we looked into was quirks with the Solana VM that the Ellipsis team overlooked or was
unaware of. This includes various behaviors around account creation or reallocation, of which we’ve
reported novel bugs around.

In particular, a quirk with Solana account creation ended up being the root cause of OS-EPS-ADV-02.

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 20

https://osec.io/blog/reports/2022-12-09-rust-realloc-and-references/

04 | Findings
Overall, we report 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

Severity Count

Critical 0
High 2

Medium 2
Low 0

Informational 4

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 20

05 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix B.

ID Severity Status Description

OS-EPS-ADV-00 High Resolved In Sokoban, the critbit, AVL tree, and red-black tree do not
correctly implement Rust’s DoubleEndedIterator trait.

OS-EPS-ADV-01 High Resolved Phoenix SDK parses all transactions, even those with errors.
This can allow an attacker to spoof log transactions by man-
ually calling the Phoenix program.

OS-EPS-ADV-02 Medium Resolved Edgecaseduringaccount creationwithextra lamports causes
denial of service.

OS-EPS-ADV-03 Medium Resolved Overflows can occur during normal operation of the order-
book under certain parameter configurations.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 20

Ellipsis Labs Audit 05 | Vulnerabilities

OS-EPS-ADV-00 [high] [resolved] | InvalidDoubleEndedIterator Trait Implemen-
tations

Description

The critbit, AVL tree, and red-black tree do not correctly implement Rust’s DoubleEndedIterator
trait, which is described here.

For instance, the red-black tree iterator’s next and next_backmethod will cross each other, “double-
counting” each element. This does not follow the spec, and can even be unsafe: when using iter_mut,
one can obtain multiple mutable references to the same value.

RUST

let mut rbtree = RedBlackTree::<u64, u64, 100>::new();
rbtree.insert(0, 0);
rbtree.insert(1, 0);

let mut iter = rbtree.iter_mut();
let x: &mut u64 = iter.next().unwrap().1;
let y: &mut u64 = iter.next().unwrap().1;

*x = 1337;
assert_eq!(*y, 1337);

Remediation

Rewrite next and next_back so that they do not cross each other, or remove the implementations of
DoubleEndedIterator altogether.

Patch

Resolved in #11.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 20

https://doc.rust-lang.org/std/iter/trait.DoubleEndedIterator.html
https://github.com/Ellipsis-Labs/sokoban/pull/11

Ellipsis Labs Audit 05 | Vulnerabilities

OS-EPS-ADV-01 [high] [resolved] | SDK Transaction Spoofing

Description

When parsing events from transactions, the Phoenix SDK iterates over all the inner instructions to try and
parse out PhoenixInstruction::Log instructions. Unfortunately, this loop fails to return when the
transaction has errored, as specified in the is_err field.

sdk_client.rs RUST

for inner_ixs in tx.inner_instructions.iter() {
for inner_ix in inner_ixs.iter() {

let current_program_id = inner_ix.instruction.program_id.clone();
if current_program_id != phoenix::id().to_string() {

continue;
}
if inner_ix.instruction.data.is_empty() {

continue;
}

If a malicious user were to manually invoke the Phoenix program from a separate onchain program,
inaccurate log events could be subsequently processed in parse_phoenix_events.

In conjunction with OS-EPS-SUG-02, this could lead to a denial of service condition for users of the SDK.

Remediation

Check if the transaction was successfully completed, and if not, skip processing of the transaction.

Patch

Resolved in #50.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 20

https://github.com/Ellipsis-Labs/phoenix-sdk/pull/50

Ellipsis Labs Audit 05 | Vulnerabilities

OS-EPS-ADV-02 [med] [resolved] | Account Creation DOS

Description

Account creation primitives in phoenix will error if the account already has lamports.

This could, for example, allow an attacker to deny seat creation.

processor/manageseat.rs RUST

let space = size_of::<Seat>();
invoke_signed(

&system_instruction::create_account(
payer.key,
seat.key,
Rent::get()?.minimum_balance(space),
space.try_into().unwrap(),
&crate::ID,

),
&[payer.clone(), seat.clone(), system_program.clone()],
&[&[b"seat", market_key.as_ref(), trader.as_ref(), &[bump]]],

Remediation

Use transfer and allocate instead of create_account similar to what Anchor does.

RUST

// Fund the account for rent exemption.
// ...
// Allocate space.
// ...
// Assign to the spl token program.

Patch

Resolved in #1.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 20

https://github.com/coral-xyz/anchor/blob/c47fb2877e45798e35376440b8ffdf0a7d330c8b/lang/syn/src/codegen/accounts/constraints.rs#L826
https://github.com/Ellipsis-Labs/phoenix-v1/pull/1

Ellipsis Labs Audit 05 | Vulnerabilities

OS-EPS-ADV-03 [med] [resolved] | Explicate Overflow Boundaries

Description

Throughout phoenix, the largest numerical calculation occurs in the matching engine when calculating
adjusted quote lots.

RUST

inflight_order.adjusted_quote_lot_budget =
inflight_order.adjusted_quote_lot_budget.saturating_sub(

self.tick_size_in_quote_lots_per_base_unit
* order_id.price_in_ticks
* num_base_lots_quoted,

);

Note that adjusted quote lots are declared as a basic_u64_structwith an internal maximum u64
representation.

RUST

macro_rules! basic_u64_struct {
($type_name:ident) => {

#[derive(Debug, Clone, Copy, PartialOrd, Ord, Zeroable, Pod)]
#[repr(transparent)]
pub struct $type_name {

inner: u64,
}

basic_u64!($type_name);
};

}

More concretely, let

1. q be the number of quote atoms transacted

2. b be the number of decimals in the base token

3. lotsq be quote atoms per lot

4. lotsb be base atoms per lot

This calculation will abort if
q ∗ lotsq ∗ lotsb ∗ 10b ≥ 264

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 20

Ellipsis Labs Audit 05 | Vulnerabilities

Remediation

Because adjusted quote lots are multiplied by an additional factor of base_lots_per_base_unit,
the maximum size can exceed the representable limit for u64.

Consider either increasing the internal representation for adjusted quote lots to u128 or explicating
constraints on lot sizes.

Patch

The Ellipsis team acknowledges the issue and agrees to select parameters carefully with these constraints
in mind. In particular, they note that upon large price fluctuations, new markets will likely be created,
mitigating this issue for most practical usecases.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 20

06 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

OS-EPS-SUG-00 Consider stronger enforcement of critical orderbook invariants.

OS-EPS-SUG-01 The red-black tree’s node removal algorithm can be slightly improved.

OS-EPS-SUG-02 Consider using explicit error handling over hard panics

OS-EPS-SUG-03 Use checked truncation over potentially unsafe typecasts

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 20

Ellipsis Labs Audit 06 | General Findings

OS-EPS-SUG-00 | Enforce Critical Orderbook Invariants

Description

Certain phoenix functions could use additional validation.

For example, process_multiple_new_orders could ensure that quote and base lots to deposit is
equal to zero if there are no bids or asks respectively.

processor/new_order.rs RUST

if !bids.is_empty() {
maybe_invoke_deposit(/**/)?;

} // else assert quote_lots_to_deposit == 0
if !asks.is_empty() {

maybe_invoke_deposit(/**/)?;
} // else assert base_lots_to_deposit == 0

In process_cancel_orders, withdrawn quantities could similarly be asserted to zero if context is
None.

processor/cancel_multiple_orders.rs RUST

if let Some(PhoenixVaultContext {
// ...

}) = vault_context_option
{

try_withdraw(/**/)?;
} // else assert num_base_lots_out == 0 && num_quote_lots_out == 0

Remediation

Consider adding relevant asserts to ensure critical orderbook invariants.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 20

Ellipsis Labs Audit 06 | General Findings

OS-EPS-SUG-01 | Red-Black Tree Optimization

As part of its balancing procedure, the red-black tree’s _remove_tree_nodemethod identifies a pivot
node, which represents the subtree which has lost a black node. If the pivot node is also the root, the
tree is already balanced. Otherwise, we invoke the _fix_removemethod to balance the tree through
rotations.

src/red_black_tree.rs RUST

if self.is_root(pivot_node_index) {
self._color_black(pivot_node_index);

} else {
self._fix_remove(pivot_node_index, parent_and_dir);

}

However, notice that if the pivot node is red, we can color it black to immediately balance the red-black
tree. This case is ignored in _fix_remove because it immediately begins traversing up the tree.

Remediation

The _remove_tree_node should immediately color the node black if the pivot node is red.

RUST

if self.is_root(pivot_node_index) || self.is_red(pivot_node_index) {
self._color_black(pivot_node_index);

} else {
self._fix_remove(pivot_node_index, parent_and_dir);

}

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 20

Ellipsis Labs Audit 06 | General Findings

OS-EPS-SUG-02 | Improved SDK Error Handling

In multiple areas in the Phoenix SDK, hard panics are used for error handling when encountering unex-
pected conditions.

sdk_client_core.rs RUST

let header = match header_event {
MarketEvent::Header { header } => Some(header),
_ => {

panic!("Expected a header event");
}

}?;

sdk_client_core.rs RUST

}),
_ => {

panic!("Unexpected Event!");
}

}

As demonstrated in OS-EPS-ADV-01, some of these invariants may be violated.

Remediation

Manually log errors and return None instead of panicking.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 20

Ellipsis Labs Audit 06 | General Findings

OS-EPS-SUG-03 | Potentially Unsafe Truncation

Description

Phoenix uses unsafe typecasting to truncate integers. While we were unable to find a way to exploit these
as is, it could lead to potentially unsafe behavior in a future refactor if integer bounds change.

markets/fifo.rs RUST

fn size_post_fee_adjustment(&self, size_in_adjusted_quote_lots:
AdjustedQuoteLots) -> u64 {↪→

let fee_adjustment =
self.compute_fee(AdjustedQuoteLots::MAX).as_u128() + u64::MAX as
u128;

↪→

↪→

(size_in_adjusted_quote_lots.as_u128() * u64::MAX as u128 /
fee_adjustment) as u64↪→

}

markets/fifo.rs RUST

fn compute_fee(&self, size_in_adjusted_quote_lots: AdjustedQuoteLots) ->
AdjustedQuoteLots {↪→

AdjustedQuoteLots::new(
((size_in_adjusted_quote_lots.as_u128() * self.taker_fee_bps as
u128 + 10000 - 1)↪→

/ 10000) as u64,
)

}

Remediation

Use safe casting variants such as try_from over potentially unsafe as casting.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 20

A | Proofs of Concept
Adversial Eviction

RUST

fn test_malicious_eviction() {
let mut empty_func = |_| {};
let mut market = setup_market();
let maker = 0;
let trader = 1;

for i in 1..5 {
place_limit_order(

&mut market,
maker,
100 + 10 * i,
1000 + 100 * i,
Side::Ask,
&mut empty_func,

)
.unwrap();

}
print_ladder(&market);

// place aggressive orders
let mut order_ids = vec![];
for _i in 0..BOOK_SIZE {

if let (Some(order_id), _) =
place_post_only_order(&mut market, trader, 105, 1, Side::Ask,

&mut empty_func).unwrap()↪→

{
order_ids.push(order_id);

} else {
panic!("unreachable");

}
}
for order_id in order_ids {

cancel_order(
&mut market,
trader,
&order_id,
Side::Ask,

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 20

Ellipsis Labs Audit A | Proofs of Concept

true,
&mut empty_func,

)
.unwrap();

}
print_ladder(&market);

}

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 20

B | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 19 / 20

C | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 20 / 20

	Executive Summary
	Overview
	Key Findings

	Scope
	Discussion
	Findings
	Vulnerabilities
	OS-EPS-ADV-00 [high] [resolved] | Invalid DoubleEndedIterator Trait Implementations
	OS-EPS-ADV-01 [high] [resolved] | SDK Transaction Spoofing
	OS-EPS-ADV-02 [med] [resolved] | Account Creation DOS
	OS-EPS-ADV-03 [med] [resolved] | Explicate Overflow Boundaries

	General Findings
	OS-EPS-SUG-00 | Enforce Critical Orderbook Invariants
	OS-EPS-SUG-01 | Red-Black Tree Optimization
	OS-EPS-SUG-02 | Improved SDK Error Handling
	OS-EPS-SUG-03 | Potentially Unsafe Truncation

	Appendices
	Proofs of Concept
	Adversial Eviction

	Vulnerability Rating Scale
	Procedure

