use assert_cmd::Command; use std::num::NonZeroUsize; use std::thread; const HELP_STR: &str = "Creates a matplotlib script plotting the contents of the grid Usage: pineappl plot [OPTIONS] ... Arguments: Path to the input grid ... LHAPDF id(s) or name of the PDF set(s) Options: --conv-fun-uncert-from Choose for which convolution function the uncertainty should be calculated [default: 0] -s, --scales Set the number of scale variations [default: 7] [possible values: 1, 3, 7, 9] --subgrid-pull Show the pull for a specific grid three-dimensionally --asymmetry Plot the asymmetry --threads Number of threads to utilize [default: {}] --no-conv-fun-unc Disable the (time-consuming) calculation of PDF uncertainties -h, --help Print help "; const DEFAULT_STR: &str = r#"#!/usr/bin/env python3 import math import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pickle # color cycler for different PDF results colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] # color for the first PDF result with QCD-only predictions colors0_qcd = "red" # stylesheet for plot stylesheet = { "axes.axisbelow": True, "axes.grid": True, "axes.labelsize": "small", "figure.constrained_layout.hspace": 0.0, "figure.constrained_layout.use": True, "figure.constrained_layout.wspace": 0.0, "font.family": "serif", "font.size": 14.0, "grid.linestyle": "dotted", "legend.borderpad": 0.0, "legend.fontsize": "x-small", "legend.frameon": False, "pdf.compression": 0, "text.usetex": True, "text.latex.preamble": r"\usepackage{siunitx}\usepackage{lmodern}\usepackage[T1]{fontenc}", "xtick.bottom": True, "xtick.top": True, "xtick.direction": "in", "xtick.major.width": 0.5, "xtick.minor.bottom": True, "xtick.minor.top": True, "xtick.minor.width": 0.5, "ytick.direction": "in", "ytick.left": True, "ytick.right": True, "ytick.major.width": 0.5, "ytick.minor.visible": True, "ytick.minor.width": 0.5, } # global plot labels title = r"LHCb differential W-boson production cross section at 7 TeV" xlabel = r"$\eta_{\bar{\ell}}$" ylabel = r"$\frac{\mathrm{d}\sigma}{\mathrm{d}\eta_{\bar{\ell}}}$ [\si{pb}]" # panel plot labels ylabel_ratio_pdf = "Ratio to {central_pdf}" ylabel_double_ratio_pdf = "Ratio to NLO" ylabel_rel_ewonoff = "NLO EW on/off [\si{\percent}]" ylabel_rel_pdfunc = "PDF uncertainty [\si{\percent}]" ylabel_rel_pdfpull = "Pull [$\sigma$]" label_rel_ewonoff_qcd = "NLO QCD" label_rel_ewonoff_ew = "NLO QCD+EW" label_rel_ewonoff_scale_unc = "7-p.\ scale var." label_rel_ewonoff_pdf_unc = "PDF uncertainty" xlog = False ylog = False def main(): panels = [ # plot_int, plot_abs, plot_rel_ewonoff, plot_abs_pdfs, plot_ratio_pdf, plot_double_ratio_pdf, plot_rel_pdfunc, plot_rel_pdfpull, ] mpl.rcParams.update(stylesheet) plt.rc("figure", figsize=(6.4, 2.4 * len(panels))) # plt.rc("figure", figsize=(4.2, 2.6)) data_slices = data() for index, kwargs in enumerate(data_slices): figure, axes = plt.subplots(len(panels), 1, sharex=True, squeeze=False) if len(kwargs["x"]) > 2 and xlog: axes[0, 0].set_xscale("log") axes[0, 0].set_title(title) axes[-1, 0].set_xlabel(xlabel) for plot, axis in zip(panels, axes[:, 0]): plot(axis, **kwargs) if len(data_slices) == 1: figure.savefig("LHCB_WP_7TEV.pdf") else: figure.savefig("LHCB_WP_7TEV-{}.pdf".format(index)) plt.close(figure) def percent_diff(a, b): return (a / b - 1.0) * 100.0 def set_ylim(axis, save, load, filename): # extract the y limits *not* considering margins margins = axis.margins() axis.margins(y=0.0) ymin, ymax = axis.get_ylim() axis.margins(y=margins[1]) inc = 1.0 if (ymax - ymin) > 100.0: ymin = -50.0 ymax = 50.0 inc = 25.0 elif (ymax - ymin) > 30.5: inc = 10.0 elif (ymax - ymin) > 20.5: inc = 5.0 elif (ymax - ymin) > 10.5: inc = 2.0 elif (ymax - ymin) < 3.0: inc = 0.5 ymin = math.floor(ymin / inc) * inc ymax = math.ceil(ymax / inc) * inc if save: with open(filename, "wb") as f: pickle.dump([ymin, ymax, inc], f) if load: resave = False with open(filename, "rb") as f: [saved_ymin, saved_ymax, saved_inc] = pickle.load(f) if saved_ymin < ymin: ymin = saved_ymin resave = True if saved_ymax > ymax: ymax = saved_ymax resave = True if saved_inc > inc: inc = saved_inc resave = True if resave: with open(filename, "wb") as f: pickle.dump([ymin, ymax, inc], f) axis.set_yticks(np.arange(ymin, ymax + inc, inc)) space = 0.05 * (ymax - ymin) axis.set_ylim((ymin - space, ymax + space)) def plot_int(axis, **kwargs): xmin = np.array([]) xmax = np.array([]) x = np.array([]) y = np.array([]) for index, i in enumerate(kwargs["pdf_results"]): label, ycentral, ymin, ymax = i x = np.append(x, ycentral[:-1]) xmin = np.append(xmin, ymin[:-1]) xmax = np.append(xmax, ymax[:-1]) y = np.append(y, label) # draw one- and two-sigma bands if label == "CENTRAL-PDF": axis.axvspan(xmin[-1], xmax[-1], alpha=0.3, color=colors[index], linewidth=0) # TODO: this is only correct for MC PDF uncertainties axis.axvspan(x[-1] - 2.0 * (x[-1] - xmin[-1]), x[-1] + 2.0 * (xmax[-1] - x[-1]), alpha=0.1, color=colors[index], linewidth=0) axis.errorbar(x, y, xerr=(x - xmin, xmax - x), fmt=".", capsize=3, markersize=5, linewidth=1.5) axis.margins(x=0.1, y=0.1) def plot_abs(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] axis.set_yscale("log" if ylog else "linear") axis.step(x, kwargs["y"], colors[0], linewidth=1.0, where="post", label=slice_label) axis.fill_between(x, kwargs["ymin"], kwargs["ymax"], alpha=0.4, color=colors[0], linewidth=0.5, step="post") axis.set_ylabel(ylabel) if slice_label != "": axis.legend() def plot_ratio_pdf(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] pdf_uncertainties = kwargs["pdf_results"] axis.set_ylabel(ylabel_ratio_pdf.format(central_pdf=pdf_uncertainties[0][0])) for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i y = y / pdf_uncertainties[0][1] ymin = ymin / pdf_uncertainties[0][1] ymax = ymax / pdf_uncertainties[0][1] axis.step(x, y, color=colors[index], linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[index], label=label, linewidth=0.5, step="post") axis.legend(bbox_to_anchor=(0, -0.24, 1, 0.2), loc="upper left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties))) if slice_label != "": t = axis.text(0.98, 0.98, slice_label, horizontalalignment="right", verticalalignment="top", transform=axis.transAxes, fontsize="x-small") t.set_bbox({ "alpha": 0.7, "boxstyle": "square, pad=0.0", "edgecolor": "white", "facecolor": "white" }) def plot_double_ratio_pdf(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] pdf_uncertainties = kwargs["pdf_results"] axis.set_ylabel(ylabel_double_ratio_pdf) for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i if index == 0 or index == 2: y = y / pdf_uncertainties[0][1] ymin = ymin / pdf_uncertainties[0][1] ymax = ymax / pdf_uncertainties[0][1] else: y = y / pdf_uncertainties[1][1] ymin = ymin / pdf_uncertainties[1][1] ymax = ymax / pdf_uncertainties[1][1] axis.step(x, y, color=colors[index], linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[index], label=label, linewidth=0.5, step="post") axis.legend(bbox_to_anchor=(0, -0.24, 1, 0.2), loc="upper left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties))) if slice_label != "": t = axis.text(0.98, 0.98, slice_label, horizontalalignment="right", verticalalignment="top", transform=axis.transAxes, fontsize="x-small") t.set_bbox({ "alpha": 0.7, "boxstyle": "square, pad=0.0", "edgecolor": "white", "facecolor": "white" }) def plot_abs_pdfs(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] pdf_uncertainties = kwargs["pdf_results"] channels = kwargs["channels"] axis.set_yscale("log" if ylog else "linear") axis.set_ylabel(ylabel) for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i axis.step(x, y, color=colors[index], linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[index], label=label, linewidth=0.5, step="post") linestyles = ["--", ":"] for index, ((label, y), linestyle) in enumerate(zip(channels, linestyles)): axis.step(x, y, color=colors[0], label=label, linestyle=linestyle, linewidth=1.0, where="post") axis.legend(bbox_to_anchor=(0, -0.24, 1, 0.2), loc="upper left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties) + len(linestyles))) if slice_label != "": t = axis.text(0.98, 0.98, slice_label, horizontalalignment="right", verticalalignment="top", transform=axis.transAxes, fontsize="x-small") t.set_bbox({ "alpha": 0.7, "boxstyle": "square, pad=0.0", "edgecolor": "white", "facecolor": "white" }) def plot_rel_ewonoff(axis, **kwargs): x = kwargs["x"] y = percent_diff(kwargs["y"], kwargs["qcd_y"]) qcd_y = percent_diff(kwargs["qcd_y"], kwargs["qcd_y"]) qcd_ymin = percent_diff(kwargs["qcd_min"], kwargs["qcd_y"]) qcd_ymax = percent_diff(kwargs["qcd_max"], kwargs["qcd_y"]) ymin = percent_diff(kwargs["ymin"], kwargs["qcd_y"]) ymax = percent_diff(kwargs["ymax"], kwargs["qcd_y"]) pdf_min = abs(percent_diff(kwargs["pdf_results"][0][2], kwargs["pdf_results"][0][1]))[:-1] pdf_max = abs(percent_diff(kwargs["pdf_results"][0][3], kwargs["pdf_results"][0][1]))[:-1] axis.step(x, qcd_y, colors0_qcd, label=label_rel_ewonoff_qcd, linewidth=1.0, where="post") # axis.fill_between(x, qcd_ymin, qcd_ymax, alpha=0.4, color=colors0_qcd, label=label_rel_ewonoff_scale_unc, linewidth=0.5, step="post") axis.step(x, y, colors[0], label=label_rel_ewonoff_ew, linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[0], label=label_rel_ewonoff_scale_unc, linewidth=0.5, step="post") axis.errorbar(kwargs["mid"], y[:-1], yerr=(pdf_min, pdf_max), color=colors[0], label=label_rel_ewonoff_pdf_unc, fmt=".", capsize=1, markersize=0, linewidth=1) axis.set_ylabel(ylabel_rel_ewonoff) axis.legend(bbox_to_anchor=(0, 1.03, 1, 0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=4) def plot_rel_pdfunc(axis, **kwargs): x = kwargs["x"] pdf_uncertainties = kwargs["pdf_results"] for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i ymin = percent_diff(ymin, y) ymax = percent_diff(ymax, y) axis.step(x, ymax, color=colors[index], label=label, linewidth=1, where="post") axis.step(x, ymin, color=colors[index], linewidth=1, where="post") axis.set_ylabel(ylabel_rel_pdfunc) set_ylim(axis, False, False, "rel_pdfunc") def plot_rel_pdfpull(axis, **kwargs): central_y = kwargs["pdf_results"][0][1] central_ymin = kwargs["pdf_results"][0][2] central_ymax = kwargs["pdf_results"][0][3] pdf_uncertainties = kwargs["pdf_results"] x = kwargs["x"] y = kwargs["y"] for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i diff = y - central_y yerr = np.where(diff > 0.0, y - ymin, ymax - y) cerr = np.where(diff > 0.0, central_ymax - central_y, central_y - central_ymin) pull = diff / np.sqrt(np.power(yerr, 2) + np.power(cerr, 2)) axis.step(x, pull, color=colors[index], label=label, linewidth=1, where="post", zorder=2 * index + 1) axis.legend(bbox_to_anchor=(0, 1.03, 1, 0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties))) #rel_pdfpull axis.set_ylabel(ylabel_rel_pdfpull) set_ylim(axis, False, False, "rel_pdfpull") def data(): return [ { "slice_label" : r"", "x" : np.array([2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 4, 4.5]), "mid" : np.array([2.125, 2.375, 2.625, 2.875, 3.125, 3.375, 3.75, 4.25]), "pdf_results" : [ ( "NNPDF31\_nlo\_as\_0118\_luxqed", np.array([7.5461655e2, 6.9027941e2, 6.0022595e2, 4.8548211e2, 3.6191001e2, 2.4582640e2, 1.1584074e2, 2.7504644e1, 2.7504644e1]), np.array([7.4602445e2, 6.8228693e2, 5.9312383e2, 4.7957251e2, 3.5732461e2, 2.4250580e2, 1.1409722e2, 2.6743047e1, 2.6743047e1]), np.array([7.6320866e2, 6.9827189e2, 6.0732807e2, 4.9139170e2, 3.6649540e2, 2.4914699e2, 1.1758425e2, 2.8266240e1, 2.8266240e1]), ), ( "NNPDF4.0", np.array([7.8845642e2, 7.2060104e2, 6.2525179e2, 5.0384928e2, 3.7399422e2, 2.5300320e2, 1.1909100e2, 2.9002507e1, 2.9002507e1]), np.array([7.8450378e2, 7.1690933e2, 6.2191897e2, 5.0097415e2, 3.7162070e2, 2.5109709e2, 1.1772232e2, 2.8044400e1, 2.8044400e1]), np.array([7.9240905e2, 7.2429275e2, 6.2858461e2, 5.0672441e2, 3.7636773e2, 2.5490931e2, 1.2045969e2, 2.9960613e1, 2.9960613e1]), ), ], "qcd_y" : np.array([7.6246034e2, 6.9684577e2, 6.0548681e2, 4.8928139e2, 3.6454175e2, 2.4754316e2, 1.1667878e2, 2.7737493e1, 2.7737493e1]), "qcd_min" : np.array([7.3365413e2, 6.7075857e2, 5.8286230e2, 4.7122879e2, 3.5126111e2, 2.3864984e2, 1.1258836e2, 2.6810991e1, 2.6810991e1]), "qcd_max" : np.array([7.8308860e2, 7.1589472e2, 6.2240294e2, 5.0304405e2, 3.7486018e2, 2.5457732e2, 1.1997317e2, 2.8492180e1, 2.8492180e1]), "y" : np.array([7.5459110e2, 6.9028342e2, 6.0025198e2, 4.8552235e2, 3.6195456e2, 2.4586691e2, 1.1586851e2, 2.7517266e1, 2.7517266e1]), "ymin" : np.array([7.2595107e2, 6.6417441e2, 5.7747295e2, 4.6723687e2, 3.4843600e2, 2.3677625e2, 1.1166942e2, 2.6562471e1, 2.6562471e1]), "ymax" : np.array([7.7529764e2, 7.0957480e2, 6.1750966e2, 4.9966237e2, 3.7261436e2, 2.5316566e2, 1.1930157e2, 2.8306905e1, 2.8306905e1]), "channels" : [ (r"$\mathrm{u}\bar{\mathrm{d}} + \mathrm{c}\bar{\mathrm{s}}$", np.array([8.4002759e2, 7.7448295e2, 6.7891182e2, 5.5341626e2, 4.1562095e2, 2.8427837e2, 1.3470473e2, 3.1886258e1, 3.1886258e1])), (r"$\mathrm{u}\mathrm{g} + \mathrm{c}\mathrm{g}$", np.array([-6.0727462e1, -6.1109036e1, -5.7385834e1, -4.9385114e1, -3.8287410e1, -2.6578788e1, -1.2142190e1, -2.3686722e0, -2.3686722e0])), (r"$\mathrm{g}\bar{\mathrm{s}} + \mathrm{g}\bar{\mathrm{d}}$", np.array([-2.4969360e1, -2.3319483e1, -2.1436419e1, -1.8639887e1, -1.5462782e1, -1.1889878e1, -6.7199873e0, -2.0056686e0, -2.0056686e0])), (r"$\mathrm{u}\gamma + \mathrm{c}\gamma$", np.array([1.7176328e-1, 1.4518685e-1, 1.1534278e-1, 7.2943823e-2, 4.9352954e-2, 3.8564621e-2, 1.2734974e-2, 3.4154203e-3, 3.4154203e-3])), (r"$\gamma\bar{\mathrm{s}} + \gamma\bar{\mathrm{d}}$", np.array([8.8565923e-2, 8.3802762e-2, 4.7074109e-2, 5.8147927e-2, 3.4452663e-2, 1.8643688e-2, 1.3223117e-2, 1.9334685e-3, 1.9334685e-3])) ], }, ] def metadata(): return { "arxiv": r"1505.07024", "description": r"LHCb differential W-boson production cross section at 7 TeV", "hepdata": r"10.17182/hepdata.2114.v1/t4", "initial_state_1": r"2212", "initial_state_2": r"2212", "lumi_id_types": r"pdg_mc_ids", "mg5amc_repo": r"http://bazaar.launchpad.net/~maddevelopers/mg5amcnlo/3.1.2/", "mg5amc_revno": r"983", "nnpdf_id": r"LHCBWZMU7TEV", "pineappl_gitversion": r"v0.4.1-114-gdce19e0", "runcard_gitversion": r"82de4ad", "x1_label": r"etal", "x1_label_tex": r"$\eta_{\bar{\ell}}$", "x1_unit": r"", "y_label": r"dsig/detal", "y_label_tex": r"$\frac{\mathrm{d}\sigma}{\mathrm{d}\eta_{\bar{\ell}}}$", "y_unit": r"\pico\barn", } if __name__ == "__main__": main() "#; const SUBGRID_PULL_STR: &str = r"#!/usr/bin/env python3 import matplotlib.pyplot as plt import numpy as np from math import fabs, log10 from scipy.interpolate import griddata x1 = np.array([1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 1.0000000e0, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 9.3094408e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 8.6278393e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.9562425e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 7.2958684e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.6481395e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 6.0147220e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 5.3975723e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.7989890e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 4.2216678e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.6687532e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 3.1438740e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.6511370e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 2.1950413e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.7802566e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.4112081e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 1.0914376e-1, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 8.2281221e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 6.0480029e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 4.3414917e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 3.0521584e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 2.1089187e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 1.4375069e-2, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 9.6991596e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 6.4962062e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 4.3285006e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 2.8738676e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.9034634e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 1.2586797e-3, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 8.3140688e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 5.4877953e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 3.6205450e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 2.3878783e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4, 1.5745606e-4]) x2 = np.array([1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.5745606e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 2.3878783e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 5.4877953e-4, 3.6205450e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 9.6991596e-3, 6.4962062e-3, 4.3285006e-3, 2.8738676e-3, 1.9034634e-3, 1.2586797e-3, 8.3140688e-4, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.4375069e-2, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 3.0521584e-2, 2.1089187e-2, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1, 8.2281221e-2, 6.0480029e-2, 4.3414917e-2, 1.0000000e0, 9.3094408e-1, 8.6278393e-1, 7.9562425e-1, 7.2958684e-1, 6.6481395e-1, 6.0147220e-1, 5.3975723e-1, 4.7989890e-1, 4.2216678e-1, 3.6687532e-1, 3.1438740e-1, 2.6511370e-1, 2.1950413e-1, 1.7802566e-1, 1.4112081e-1, 1.0914376e-1]) z = np.array([2.2636404e-50, -6.6271991e-35, -7.2634072e-33, -4.6363414e-32, -1.4035336e-32, -2.8615101e-34, -5.7171596e-33, 2.0242914e-32, 1.3011318e-31, 4.1943851e-32, -2.3943194e-31, -4.0822874e-31, 7.4269835e-32, 3.3102466e-30, -6.7406134e-29, 8.6405882e-29, 1.0251798e-29, 1.3337201e-29, -2.9594797e-28, -1.1280018e-27, -3.8272760e-27, -1.7111422e-26, -4.9137747e-26, -1.5452493e-25, -3.4803850e-25, -5.7661139e-25, -1.0950002e-24, -1.8561449e-24, -2.8635779e-24, -4.4710254e-24, -8.4639636e-24, -7.2626942e-24, 1.0952234e-25, 3.9359005e-26, 3.3405328e-33, -1.3346395e-17, -4.8781727e-16, -5.9094970e-15, -2.1377644e-15, -2.3693874e-16, 5.2750171e-15, -3.1676335e-14, -2.6638469e-14, -3.5876241e-14, 1.0792360e-13, 2.2024053e-13, 2.9625766e-13, 1.5190447e-12, -7.8923279e-12, -6.3136866e-12, 1.3367405e-13, 6.5117263e-12, -2.6263564e-11, -1.3253278e-10, -5.2854102e-10, -1.7998723e-9, -4.5718855e-9, -1.1353889e-8, -2.5220820e-8, -4.0480265e-8, -7.4559439e-8, -1.2669793e-7, -1.7344949e-7, -2.6003615e-7, -4.9586261e-7, -4.0712760e-7, 8.0035743e-9, 2.0992949e-9, -8.3501575e-32, 1.0473548e-15, 6.9232022e-16, 1.6377031e-15, 6.2674631e-16, 2.4746937e-16, 5.6180959e-14, -5.2477389e-13, -3.7459172e-13, -5.1222694e-14, -1.1538769e-12, -1.9473236e-12, -1.3518003e-12, -2.0176182e-11, -1.4973123e-11, -1.2672978e-12, -4.6166958e-12, -2.7338840e-11, -2.2945925e-10, -5.8204425e-10, -1.4007845e-9, -9.3035517e-9, -2.3111487e-8, -6.9037312e-8, -1.8369617e-7, -3.5810204e-7, -6.2948300e-7, -1.0157924e-6, -1.5465761e-6, -2.5107433e-6, -3.8492327e-6, -3.4443504e-6, 2.7139652e-8, 2.1584204e-8, 8.7148255e-31, -1.0572343e-14, -5.4812750e-15, 3.1510860e-16, -1.2314582e-16, 1.5637972e-16, 1.5458272e-15, -5.3208888e-15, -9.5196838e-14, 1.3914144e-13, -1.9411887e-12, -1.6244368e-12, -1.3413328e-11, -3.2330354e-11, -9.7224500e-13, -1.6788048e-11, -2.6265706e-11, -1.1033576e-10, -3.2067523e-10, -1.5270926e-9, -5.3956276e-9, -2.4549726e-8, -5.8448748e-8, -1.7714857e-7, -4.1296658e-7, -8.1429510e-7, -1.5921714e-6, -2.6826893e-6, -4.1357465e-6, -6.3455187e-6, -1.2577322e-5, -1.2077464e-5, 9.7407087e-8, 7.3316252e-8, 7.4142163e-31, -8.7388370e-15, -4.5226812e-15, 5.3694145e-16, -2.0528870e-17, -2.4773048e-16, 2.1394891e-15, 5.3368846e-15, 1.1078804e-13, -4.9163353e-13, -6.6219964e-13, 7.2657410e-12, -2.4994527e-11, 4.2764747e-12, 1.3607993e-12, -1.6352811e-10, -2.0123420e-10, -1.3666115e-9, -2.3294077e-9, -8.2291178e-9, -3.2611080e-8, -1.0239661e-7, -2.8839084e-7, -6.7443540e-7, -1.4483487e-6, -2.7176548e-6, -4.7074741e-6, -7.7746412e-6, -1.3372776e-5, -2.6176755e-5, -2.4936503e-5, 4.1879425e-7, 1.2361343e-7, -1.0157926e-31, -4.7195075e-14, 3.6831404e-13, 1.3966716e-12, -6.0055557e-14, 9.8701055e-16, -4.9875972e-15, -1.4020565e-14, 1.6808289e-13, 1.0087753e-16, -4.6117377e-11, -5.7268164e-11, -1.3893656e-10, -5.0318622e-10, -1.9376616e-10, -1.0433486e-10, -9.9305561e-10, -3.2623833e-9, -9.7225187e-9, -4.3156215e-8, -1.4362935e-7, -3.8556540e-7, -1.0130496e-6, -2.2814062e-6, -4.1643540e-6, -7.5662202e-6, -1.2759819e-5, -2.3031613e-5, -4.7605387e-5, -4.7765874e-5, 6.2168558e-7, 2.4951050e-7, -1.1857032e-29, 5.2726612e-13, -2.6066534e-12, -1.5108634e-11, 3.0534448e-12, 9.0744037e-13, -4.6561174e-14, -1.1069503e-16, -1.6682160e-16, 5.2718882e-15, 1.1429880e-15, -2.0141882e-12, 9.6165819e-12, -4.0404360e-12, -1.9303445e-10, -4.0172847e-10, -5.9895228e-10, -3.6554058e-10, -1.1240702e-9, -3.9841549e-9, -1.2121262e-8, -4.0381843e-8, -1.3055458e-7, -3.6134334e-7, -9.9898608e-7, -2.2534804e-6, -4.6128655e-6, -8.5615406e-6, -1.5297525e-5, -2.6421520e-5, -6.1916690e-5, -6.6211291e-5, 8.0256629e-7, 3.5591929e-7, 2.5499586e-28, -6.4244294e-13, -1.7712820e-11, -1.2219208e-11, -7.7871479e-12, -1.6403480e-13, 6.7881434e-14, -3.4987745e-12, 4.7645970e-11, 3.8961481e-12, 1.0566797e-13, 2.6233284e-13, -5.8071031e-12, 1.1584537e-14, 1.5753439e-11, -1.4384561e-10, -6.6544935e-10, -2.2862146e-10, -8.1018147e-10, -2.2625611e-9, -7.5062513e-9, -2.4956816e-8, -9.1244024e-8, -2.4598505e-7, -6.2416442e-7, -1.4275727e-6, -3.1337900e-6, -6.3233371e-6, -1.2140342e-5, -2.2411096e-5, -6.1316829e-5, -7.2668009e-5, 1.1649743e-6, 3.6614665e-7, 5.5380719e-29, -1.7129600e-13, -6.5365517e-12, -1.2541490e-11, -1.1048914e-10, -5.0637548e-11, 4.5577381e-11, 3.9601891e-11, -2.9194852e-10, -2.2420871e-11, -1.2854167e-12, 1.2184872e-11, -8.6648158e-11, -5.5867810e-11, -7.9539499e-12, -3.4412185e-11, -2.0137035e-10, -1.0521022e-10, -7.1000682e-11, 9.7467594e-11, 1.3371991e-9, 5.2972353e-9, 3.2062445e-8, 1.7663752e-7, 5.9979324e-7, 1.7506638e-6, 3.8633109e-6, 7.0091538e-6, 1.1794264e-5, 2.0361526e-5, 5.8035894e-5, 1.7009881e-5, -4.8184902e-6, 2.7100184e-7, -8.4621327e-30, 9.8522382e-12, -1.0413355e-10, -9.0831059e-11, -5.8284036e-10, -5.2920422e-10, -4.3721904e-10, 1.3948737e-11, -1.9796035e-9, -1.4723867e-10, -4.5311348e-12, -4.4681974e-10, 1.7717271e-9, 1.2925705e-9, -3.9816635e-11, 9.9414626e-13, 6.2239563e-11, 8.4730221e-10, 9.6355500e-10, 3.7343835e-9, 9.1149296e-9, 3.4591411e-8, 1.5702457e-7, 6.6410544e-7, 2.2296681e-6, 6.3998664e-6, 1.4905801e-5, 3.0065469e-5, 5.7201076e-5, 1.5131209e-4, 9.1602346e-5, 1.5424775e-3, 2.6122474e-4, -3.3185780e-5, 3.8251634e-11, -4.3320050e-10, -2.1665666e-10, -5.6185677e-10, -8.7283449e-10, -5.5458353e-10, -1.7400499e-10, 2.8592402e-10, 9.7539938e-12, -9.6979679e-11, 3.0126869e-9, 1.7913247e-9, 7.4537886e-11, -7.1603455e-11, -4.7380184e-11, 3.7939388e-10, 6.9896558e-10, 5.9278332e-11, 6.7169086e-9, 2.5397745e-8, 5.8042891e-8, 2.6460096e-7, 1.1776365e-6, 4.1512789e-6, 1.2464109e-5, 3.1212321e-5, 6.9130705e-5, 1.4365826e-4, -1.3656938e-4, 3.4073221e-3, 2.6151684e-2, -1.4059245e-4, -7.7021394e-5, -1.3616365e-28, 4.3305760e-13, 6.1110843e-11, -1.6545214e-10, -1.8728217e-9, -1.6514651e-9, -4.0542730e-10, -2.1592334e-10, -2.8390564e-9, -2.9053010e-11, -3.7684031e-11, 1.0312057e-9, 2.4142060e-10, 1.0668585e-9, 4.5356512e-10, 6.4720843e-10, 7.6446766e-10, 1.4282449e-9, 1.8143415e-9, 2.3536707e-8, 2.7608213e-8, 8.3382167e-8, 4.1160758e-7, 1.8471389e-6, 6.9601138e-6, 2.2424409e-5, 6.1131423e-5, 1.4815249e-4, 4.0691039e-4, -5.6830910e-3, 5.0433912e-2, 7.0915551e-2, -5.4919601e-3, -4.5095266e-6, 6.1182589e-27, -8.2042288e-11, 6.7407045e-11, -3.9439127e-10, -4.3078510e-9, -1.3977467e-9, -2.9974857e-10, -7.9598119e-10, -1.1736519e-9, 3.1194329e-11, -5.2523563e-11, -1.3757889e-10, -1.1556921e-9, 8.4383247e-9, 3.6708831e-9, 1.3802659e-9, 7.9283249e-9, 1.5651727e-8, 5.1950108e-8, 4.4172168e-8, 9.3859427e-8, 1.0801898e-7, 5.2033821e-7, 2.4734611e-6, 9.8164773e-6, 3.4478637e-5, 1.0259666e-4, 2.7371541e-4, 7.4464872e-4, -8.0538931e-3, 1.7501488e-1, 4.8828131e-2, -5.7257730e-3, -1.1749209e-6, -3.7817763e-28, 2.5199969e-11, -1.3021638e-10, -2.5207269e-10, -1.9548951e-9, -2.5600136e-9, -5.5083926e-10, -1.1913260e-9, -2.5623040e-9, -1.6098474e-9, 2.4977952e-10, -3.2955955e-10, 2.7481117e-9, 1.9916195e-9, 1.3607153e-8, 3.3547926e-9, -9.1645850e-10, 5.9619817e-9, 2.7857894e-8, 1.1491626e-8, 1.4020078e-7, 9.8292687e-8, 5.6306460e-7, 2.6408253e-6, 1.2032412e-5, 4.5324050e-5, 1.4795309e-4, 6.1028262e-4, -1.1559854e-2, 8.6605680e-2, 2.3825572e-1, -5.8490463e-3, -7.2151526e-4, -3.1919268e-7, 1.2103619e-26, -1.7652687e-10, -1.4696110e-10, -3.3161298e-10, 6.6081108e-10, -3.9684117e-9, -2.5733292e-9, -3.5457870e-9, -2.6236093e-9, -1.3142445e-9, 2.7751644e-9, 5.9231233e-9, 1.7955457e-9, 5.4984005e-9, 2.4810842e-9, 6.6080469e-9, -6.8122289e-10, 2.1242503e-8, 9.7166133e-8, 6.3345445e-8, 9.6875353e-8, 1.0054617e-7, 4.2988074e-7, 2.4623472e-6, 1.1607888e-5, 5.0940086e-5, 1.9203753e-4, 2.1659366e-4, -1.3909222e-2, 2.8615908e-1, 1.0736927e-1, -9.9254177e-3, -1.2999074e-4, -1.2934666e-8, 2.3824383e-26, -3.3837361e-10, -3.5775202e-10, 5.5893096e-10, -1.4575537e-8, -9.7086292e-9, -4.5414395e-9, -2.2833459e-9, -4.3059266e-9, -3.3765916e-9, 4.1669710e-9, 4.5490341e-9, 1.1205338e-8, 2.0362731e-8, 4.4990899e-9, 9.7753398e-9, 1.2529509e-8, 1.7556548e-8, 6.3123721e-8, 1.2414029e-7, 1.9792560e-7, 1.0930233e-7, 2.8685927e-7, 2.1875524e-6, 1.0619072e-5, 5.2340619e-5, 5.7251358e-4, -1.6615201e-2, 1.2797337e-1, 2.6652428e-1, -4.9442294e-3, -1.0013963e-4, -8.1276624e-5, 2.9681751e-9, 3.0665398e-26, -2.9626867e-10, -1.5187439e-9, -5.1405406e-9, -2.6596237e-8, -1.9106404e-8, -8.8489479e-9, -7.3902438e-9, -8.8083090e-9, -4.8294372e-9, 7.1102768e-9, 1.8945445e-8, 4.2145705e-8, 3.5604958e-8, 1.1841401e-8, 1.4705496e-8, 3.9302566e-8, 7.8377105e-8, 7.5023652e-8, 1.6196125e-7, 8.8264582e-8, 1.4561937e-7, 2.0528454e-7, 1.8008604e-6, 9.4770709e-6, 8.2346718e-5, -3.1833496e-3, 1.2063802e-2, 2.4399965e-1, 5.4725441e-2, -4.0420319e-3, 2.1452002e-4, -3.6650475e-5, 1.3752416e-11, 5.4224794e-26, -4.6988997e-10, -4.1394666e-9, -1.1151876e-8, -1.7856409e-8, -2.6954241e-8, -1.2999242e-8, -9.2769434e-9, -1.0992302e-8, -6.0130147e-9, 1.5594113e-8, 4.5614526e-8, 4.4066174e-8, 1.0023977e-7, 1.4988755e-8, 1.5080244e-8, 1.8602642e-8, 1.6148147e-7, 2.1737981e-7, 3.0432120e-7, 4.4400244e-7, 2.1081129e-7, 1.4578949e-7, 1.2197268e-6, 8.6115413e-6, -1.5109930e-4, -7.0135191e-3, 1.0207992e-1, 9.0038993e-2, -6.0127708e-3, 1.4932610e-3, -3.8792640e-6, -9.4708613e-6, 4.1946496e-26, -5.4851065e-10, -3.7589908e-9, -1.3632299e-8, -2.4066947e-8, -2.2793775e-8, -2.0458835e-8, -2.4927983e-8, -1.5418935e-8, -7.8124949e-9, 2.9926370e-8, 8.1840850e-8, 7.8543424e-8, 1.0423817e-7, 6.9682368e-8, 2.2419414e-8, 5.9255221e-8, 1.3521721e-7, 4.7744711e-7, 9.7322354e-7, 1.6424482e-6, 4.5282143e-7, 3.8731155e-8, 8.0318796e-7, 9.6464191e-6, -2.1834195e-3, 2.0132306e-2, 5.2859799e-2, -7.4579046e-4, 8.8911803e-4, 3.8281978e-4, -3.3225927e-5, -3.0002638e-8, 9.7102919e-26, -6.4799183e-10, -4.3912804e-9, -2.7683127e-8, -3.2660159e-8, -5.3747335e-8, -3.8016573e-8, -3.1822105e-8, -2.0693761e-8, -9.5240151e-10, 6.3960660e-8, 1.4269118e-7, 1.8203660e-7, 1.7536315e-7, 1.2679026e-7, 6.3706732e-8, 1.5402191e-7, 6.8743789e-7, 1.1887688e-6, 3.2929844e-6, 3.2412913e-6, 3.9913926e-7, 8.7186269e-9, 1.2417225e-6, -2.8484192e-4, 2.0098683e-3, 1.5676175e-2, 1.3756861e-3, -2.1557175e-4, 3.7798369e-4, 6.7517563e-6, -4.3492566e-6, 6.7547150e-8, 2.2948461e-25, -1.1104415e-9, -1.4407023e-8, -3.5610260e-8, -9.2900436e-8, -8.4121351e-8, -6.2831646e-8, -2.8903659e-8, -4.7224052e-9, 3.0440576e-8, 1.5742112e-7, 3.0651927e-7, 3.8890190e-7, 4.0744651e-7, 2.7635083e-7, 2.1873077e-7, 4.4929003e-7, 1.5147634e-6, 3.8179131e-6, 8.2886400e-6, 1.0835385e-5, 3.2492322e-6, -3.8310965e-7, -2.0411685e-5, 3.0401333e-5, 2.7925594e-3, 6.7772792e-4, -3.9208815e-4, 1.0243541e-4, -7.3603602e-6, -5.8013848e-6, 5.1172353e-7, 2.7743638e-25, -1.4862900e-9, -1.7066125e-8, -4.5230156e-8, -1.3763054e-7, -1.5773990e-7, -8.8947525e-8, -3.0545943e-8, 5.1686702e-8, 1.2029683e-7, 3.4679600e-7, 6.2208724e-7, 7.5986652e-7, 7.7075029e-7, 5.4767109e-7, 5.9263475e-7, 1.7234493e-6, 5.1260954e-6, 1.0531513e-5, 1.7234861e-5, 2.8150595e-5, 1.0408577e-5, -1.1674625e-6, -9.0883886e-6, 1.0064140e-4, 3.1936185e-5, -1.5860686e-4, 1.6594031e-7, -9.6381669e-6, -2.3932130e-6, 2.2786737e-7, 9.8620700e-10, 2.3008841e-25, -7.1375780e-10, -1.9262703e-8, -5.7275935e-8, -1.2676277e-7, -2.1447209e-7, -1.0645276e-7, 8.9982719e-9, 1.7309202e-7, 2.9508036e-7, 6.6653377e-7, 1.0878744e-6, 1.3840829e-6, 1.4640060e-6, 1.0720661e-6, 1.3467379e-6, 4.3657959e-6, 1.3085144e-5, 3.1580565e-5, 5.2539315e-5, 7.7665162e-5, 1.8673342e-5, -2.2448579e-6, 1.0299361e-6, -9.4295366e-6, -2.2857899e-5, -4.1528741e-7, -4.0662746e-7, -2.2689066e-8, 5.6763893e-9, 2.6186366e-25, -2.9170507e-10, -1.6790959e-8, -7.9625353e-8, -1.9350211e-7, -2.8796194e-7, -1.1189228e-7, 8.8689426e-8, 4.0182556e-7, 6.0869589e-7, 1.1839759e-6, 1.9490359e-6, 2.5191211e-6, 2.6590562e-6, 2.1935256e-6, 3.2954453e-6, 1.1376313e-5, 3.5315649e-5, 8.9569003e-5, 2.8997448e-4, -1.9426200e-3, -1.0891489e-3, 1.2585829e-4, 2.5723850e-25, -2.6380207e-10, -1.1179034e-8, -8.6168819e-8, -2.0598709e-7, -2.5567363e-7, -7.7226908e-8, 1.6701914e-7, 7.0488446e-7, 1.0443168e-6, 1.8643972e-6, 3.2428547e-6, 4.0692877e-6, 4.5815792e-6, 4.1309336e-6, 7.3321815e-6, 2.8892808e-5, 1.0617479e-4, 5.4887042e-4, -7.3064022e-3, 1.4855827e-2, 1.2365740e-2, -1.3137301e-3, 2.2742282e-25, 1.6918091e-11, -8.6813222e-9, -6.7599673e-8, -1.8543044e-7, -2.3771148e-7, -4.8784064e-8, 2.7669000e-7, 8.7710299e-7, 1.4609388e-6, 2.6046369e-6, 4.1943659e-6, 5.6982410e-6, 7.0761406e-6, 7.3852139e-6, 1.5795644e-5, 9.6844100e-5, 1.1308952e-4, -1.1895358e-2, 6.4758108e-2, 1.6206131e-1, 1.3740112e-2, -2.5412250e-3, 1.6512735e-25, 1.2025223e-10, -7.2282832e-9, -6.1373353e-8, -1.5099245e-7, -1.9741423e-7, -1.8280752e-8, 3.2352956e-7, 8.7452187e-7, 1.5625673e-6, 3.0121698e-6, 5.0119923e-6, 7.4446267e-6, 1.0245328e-5, 1.2613665e-5, 6.1402479e-5, -5.4990910e-4, -5.9252908e-3, 1.0046756e-1, 2.2088899e-1, 4.2065114e-2, -5.9131971e-3, 8.0138290e-5, 1.6578514e-25, 1.9649112e-10, -4.3026053e-9, -4.2952838e-8, -8.8210692e-8, -1.4535548e-7, 1.3170235e-9, 2.5248454e-7, 9.2598360e-7, 1.4621636e-6, 3.0345345e-6, 5.5322386e-6, 8.9270276e-6, 1.6221649e-5, 2.3761706e-5, -4.4621170e-4, 1.7791054e-3, 7.9297078e-2, 1.5808405e-1, 2.0283426e-2, -6.1894603e-3, 2.8513205e-4, -2.3938247e-6, 8.3458783e-26, 1.4797754e-10, -2.6972327e-9, -1.9409432e-8, -6.5940114e-8, -9.8199999e-8, 8.3723992e-9, 2.3520159e-7, 7.9645143e-7, 1.3949807e-6, 3.0033922e-6, 6.4262675e-6, 1.3920928e-5, -4.4487993e-5, -1.4043411e-4, 2.2264251e-3, 2.7205775e-2, 4.6187615e-2, -2.2650774e-3, -2.2534118e-3, 7.1210703e-4, -4.6216289e-5, 3.1946896e-7, 4.6145762e-26, 1.0838804e-10, -1.7911423e-9, -1.3949767e-8, -4.7492022e-8, -5.4909604e-8, 1.4597901e-8, 2.1173753e-7, 6.1415498e-7, 1.6344247e-6, 2.6592239e-6, -1.1236355e-5, -4.2815379e-5, 2.5480945e-4, 1.2358994e-3, 3.6289320e-3, 3.6265611e-3, -3.4830672e-3, 2.7063439e-5, 5.6457918e-4, -3.8247895e-6, -4.8299507e-6, 4.6496118e-8, 5.6326972e-26, 1.4141424e-10, -1.5331451e-9, -1.2866923e-8, -3.9146376e-8, -6.4515371e-8, 1.8264919e-8, 2.3120630e-7, 8.7472407e-7, 1.1071635e-7, 4.5626120e-6, 1.0557267e-4, 4.4686737e-4, 7.1310092e-4, 3.3277622e-4, -1.6067416e-4, -4.1602217e-4, 1.2018187e-4, 1.1339273e-4, -6.8148408e-6, -8.5193388e-6, 7.4974305e-7, 2.6756500e-26, 6.5646229e-11, -6.6713562e-10, -6.6920930e-9, -1.8938415e-8, -3.8361839e-8, 1.3944163e-8, 1.3740334e-7, -2.0724964e-7, 3.4016518e-6, 6.9656523e-5, 1.6236569e-4, 1.0456041e-4, -3.0321707e-5, -3.3108491e-5, -5.0377425e-6, 7.7321367e-7, -4.8441446e-6, -1.3836940e-5, -4.3280496e-6, 4.5264510e-7, 1.3206784e-9, 9.0789578e-28, 6.2126304e-12, 1.5798654e-11, 2.3170290e-10, 3.5435462e-10, 1.7267708e-9, -4.3101794e-10, -5.7085448e-9, -9.3355721e-8, 1.1083124e-6, -3.2317539e-7, -1.3572595e-5, -1.2485768e-5, -1.4067410e-6, -2.1245218e-7, -2.9071409e-7, -6.8490342e-7, -7.4999602e-7, -7.8875047e-8, 1.8591121e-8, -3.0724506e-28, -1.3992807e-12, 3.1558144e-12, 3.0973499e-11, 8.3814135e-11, 9.4465101e-11, -7.9526084e-11, -4.4493691e-10, 8.7757349e-9, -1.3457356e-7, -2.0511661e-7, -1.1824214e-8, -2.0322501e-9, -6.7921281e-10, -3.9270519e-11, 6.1648977e-12, 3.4897604e-14]) x = 0.5 * np.log(x1 / x2) y = np.sqrt(x1 * x2) nrap = 50 nmass = 50 sym_min = -max(fabs(np.min(x)), fabs(np.max(x))) sym_max = max(fabs(np.min(x)), fabs(np.max(x))) xi = np.linspace(sym_min, sym_max, (nrap // 2) * 2 + 1) yi = np.logspace(log10(np.min(y)), log10(np.max(y)), nmass) zi = griddata((x, y), z, (xi[None, :], yi[:, None]), method='linear', rescale=True) #print(xi.shape) #print(yi.shape) #print(zi.shape) # mask impossible kinematic values for iy, ix in np.ndindex(zi.shape): #print(ix, iy) x1v = yi[iy] * np.exp(xi[ix]) x2v = yi[iy] / np.exp(xi[ix]) #print('y = {} m/s = {} -> x1 = {} x2 = {}'.format(xi[ix], yi[iy], x1v, x2v)) if x1v > 1.0 or x2v > 1.0: zi[iy, ix] = np.nan figure, axes = plt.subplots(1, 2, constrained_layout=True) figure.set_size_inches(10, 5) mesh = axes[0].pcolormesh(xi, yi, zi, shading='nearest', linewidth=0, snap=True) axes[0].scatter(x, y, marker='*', s=5) axes[0].set_yscale('log') axes[0].set_xlabel(r'$y = 1/2 \log (x_1/x_2)$') axes[0].set_ylabel(r'$M/\sqrt{s} = \sqrt{x_1 x_2}$') #axes[0].set_aspect('equal', share=True) x1i = np.logspace(log10(np.min(x1)), log10(np.max(x1)), 50) x2i = np.logspace(log10(np.min(x2)), log10(np.max(x2)), 50) z12i = griddata((x1, x2), z, (x1i[None, :], x2i[:, None]), method='linear', rescale=True) mesh = axes[1].pcolormesh(x1i, x2i, z12i, shading='nearest', linewidth=0, snap=True) axes[1].set_xscale('log') axes[1].set_yscale('log') axes[1].scatter(x1, x2, marker='*', s=5) axes[1].set_aspect('equal', share=True) axes[1].set_xlabel(r'$x_1$') axes[1].set_ylabel(r'$x_2$') figure.colorbar(mesh, ax=axes, extend='min') figure.savefig('plot.pdf') "; const DRELL_YAN_AFB_STR: &str = r#"#!/usr/bin/env python3 import math import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pickle # color cycler for different PDF results colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] # color for the first PDF result with QCD-only predictions colors0_qcd = "red" # stylesheet for plot stylesheet = { "axes.axisbelow": True, "axes.grid": True, "axes.labelsize": "small", "figure.constrained_layout.hspace": 0.0, "figure.constrained_layout.use": True, "figure.constrained_layout.wspace": 0.0, "font.family": "serif", "font.size": 14.0, "grid.linestyle": "dotted", "legend.borderpad": 0.0, "legend.fontsize": "x-small", "legend.frameon": False, "pdf.compression": 0, "text.usetex": True, "text.latex.preamble": r"\usepackage{siunitx}\usepackage{lmodern}\usepackage[T1]{fontenc}", "xtick.bottom": True, "xtick.top": True, "xtick.direction": "in", "xtick.major.width": 0.5, "xtick.minor.bottom": True, "xtick.minor.top": True, "xtick.minor.width": 0.5, "ytick.direction": "in", "ytick.left": True, "ytick.right": True, "ytick.major.width": 0.5, "ytick.minor.visible": True, "ytick.minor.width": 0.5, } # global plot labels title = r"" xlabel = r"$\cos \theta^*$" ylabel = r"$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos \theta^*}$ [\si{pb}]" # panel plot labels ylabel_ratio_pdf = "Ratio to {central_pdf}" ylabel_double_ratio_pdf = "Ratio to NLO" ylabel_rel_ewonoff = "NLO EW on/off [\si{\percent}]" ylabel_rel_pdfunc = "PDF uncertainty [\si{\percent}]" ylabel_rel_pdfpull = "Pull [$\sigma$]" label_rel_ewonoff_qcd = "NLO QCD" label_rel_ewonoff_ew = "NLO QCD+EW" label_rel_ewonoff_scale_unc = "7-p.\ scale var." label_rel_ewonoff_pdf_unc = "PDF uncertainty" xlog = False ylog = False def main(): panels = [ # plot_int, plot_abs, plot_rel_ewonoff, # plot_abs_pdfs, # plot_ratio_pdf, # plot_double_ratio_pdf, # plot_rel_pdfunc, # plot_rel_pdfpull, ] mpl.rcParams.update(stylesheet) plt.rc("figure", figsize=(6.4, 2.4 * len(panels))) # plt.rc("figure", figsize=(4.2, 2.6)) data_slices = data() for index, kwargs in enumerate(data_slices): figure, axes = plt.subplots(len(panels), 1, sharex=True, squeeze=False) if len(kwargs["x"]) > 2 and xlog: axes[0, 0].set_xscale("log") axes[0, 0].set_title(title) axes[-1, 0].set_xlabel(xlabel) for plot, axis in zip(panels, axes[:, 0]): plot(axis, **kwargs) if len(data_slices) == 1: figure.savefig("CMS_DY_14TEV_MLL_6000_COSTH.pdf") else: figure.savefig("CMS_DY_14TEV_MLL_6000_COSTH-{}.pdf".format(index)) plt.close(figure) def percent_diff(a, b): return (a / b - 1.0) * 100.0 def set_ylim(axis, save, load, filename): # extract the y limits *not* considering margins margins = axis.margins() axis.margins(y=0.0) ymin, ymax = axis.get_ylim() axis.margins(y=margins[1]) inc = 1.0 if (ymax - ymin) > 100.0: ymin = -50.0 ymax = 50.0 inc = 25.0 elif (ymax - ymin) > 30.5: inc = 10.0 elif (ymax - ymin) > 20.5: inc = 5.0 elif (ymax - ymin) > 10.5: inc = 2.0 elif (ymax - ymin) < 3.0: inc = 0.5 ymin = math.floor(ymin / inc) * inc ymax = math.ceil(ymax / inc) * inc if save: with open(filename, "wb") as f: pickle.dump([ymin, ymax, inc], f) if load: resave = False with open(filename, "rb") as f: [saved_ymin, saved_ymax, saved_inc] = pickle.load(f) if saved_ymin < ymin: ymin = saved_ymin resave = True if saved_ymax > ymax: ymax = saved_ymax resave = True if saved_inc > inc: inc = saved_inc resave = True if resave: with open(filename, "wb") as f: pickle.dump([ymin, ymax, inc], f) axis.set_yticks(np.arange(ymin, ymax + inc, inc)) space = 0.05 * (ymax - ymin) axis.set_ylim((ymin - space, ymax + space)) def plot_int(axis, **kwargs): xmin = np.array([]) xmax = np.array([]) x = np.array([]) y = np.array([]) for index, i in enumerate(kwargs["pdf_results"]): label, ycentral, ymin, ymax = i x = np.append(x, ycentral[:-1]) xmin = np.append(xmin, ymin[:-1]) xmax = np.append(xmax, ymax[:-1]) y = np.append(y, label) # draw one- and two-sigma bands if label == "CENTRAL-PDF": axis.axvspan(xmin[-1], xmax[-1], alpha=0.3, color=colors[index], linewidth=0) # TODO: this is only correct for MC PDF uncertainties axis.axvspan(x[-1] - 2.0 * (x[-1] - xmin[-1]), x[-1] + 2.0 * (xmax[-1] - x[-1]), alpha=0.1, color=colors[index], linewidth=0) axis.errorbar(x, y, xerr=(x - xmin, xmax - x), fmt=".", capsize=3, markersize=5, linewidth=1.5) axis.margins(x=0.1, y=0.1) def plot_abs(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] axis.set_yscale("log" if ylog else "linear") axis.step(x, kwargs["y"], colors[0], linewidth=1.0, where="post", label=slice_label) axis.fill_between(x, kwargs["ymin"], kwargs["ymax"], alpha=0.4, color=colors[0], linewidth=0.5, step="post") axis.set_ylabel(ylabel) if slice_label != "": axis.legend() def plot_ratio_pdf(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] pdf_uncertainties = kwargs["pdf_results"] axis.set_ylabel(ylabel_ratio_pdf.format(central_pdf=pdf_uncertainties[0][0])) for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i y = y / pdf_uncertainties[0][1] ymin = ymin / pdf_uncertainties[0][1] ymax = ymax / pdf_uncertainties[0][1] axis.step(x, y, color=colors[index], linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[index], label=label, linewidth=0.5, step="post") axis.legend(bbox_to_anchor=(0, -0.24, 1, 0.2), loc="upper left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties))) if slice_label != "": t = axis.text(0.98, 0.98, slice_label, horizontalalignment="right", verticalalignment="top", transform=axis.transAxes, fontsize="x-small") t.set_bbox({ "alpha": 0.7, "boxstyle": "square, pad=0.0", "edgecolor": "white", "facecolor": "white" }) def plot_double_ratio_pdf(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] pdf_uncertainties = kwargs["pdf_results"] axis.set_ylabel(ylabel_double_ratio_pdf) for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i if index == 0 or index == 2: y = y / pdf_uncertainties[0][1] ymin = ymin / pdf_uncertainties[0][1] ymax = ymax / pdf_uncertainties[0][1] else: y = y / pdf_uncertainties[1][1] ymin = ymin / pdf_uncertainties[1][1] ymax = ymax / pdf_uncertainties[1][1] axis.step(x, y, color=colors[index], linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[index], label=label, linewidth=0.5, step="post") axis.legend(bbox_to_anchor=(0, -0.24, 1, 0.2), loc="upper left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties))) if slice_label != "": t = axis.text(0.98, 0.98, slice_label, horizontalalignment="right", verticalalignment="top", transform=axis.transAxes, fontsize="x-small") t.set_bbox({ "alpha": 0.7, "boxstyle": "square, pad=0.0", "edgecolor": "white", "facecolor": "white" }) def plot_abs_pdfs(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] pdf_uncertainties = kwargs["pdf_results"] channels = kwargs["channels"] axis.set_yscale("log" if ylog else "linear") axis.set_ylabel(ylabel) for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i axis.step(x, y, color=colors[index], linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[index], label=label, linewidth=0.5, step="post") linestyles = ["--", ":"] for index, ((label, y), linestyle) in enumerate(zip(channels, linestyles)): axis.step(x, y, color=colors[0], label=label, linestyle=linestyle, linewidth=1.0, where="post") axis.legend(bbox_to_anchor=(0, -0.24, 1, 0.2), loc="upper left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties) + len(linestyles))) if slice_label != "": t = axis.text(0.98, 0.98, slice_label, horizontalalignment="right", verticalalignment="top", transform=axis.transAxes, fontsize="x-small") t.set_bbox({ "alpha": 0.7, "boxstyle": "square, pad=0.0", "edgecolor": "white", "facecolor": "white" }) def plot_rel_ewonoff(axis, **kwargs): x = kwargs["x"] y = percent_diff(kwargs["y"], kwargs["qcd_y"]) qcd_y = percent_diff(kwargs["qcd_y"], kwargs["qcd_y"]) qcd_ymin = percent_diff(kwargs["qcd_min"], kwargs["qcd_y"]) qcd_ymax = percent_diff(kwargs["qcd_max"], kwargs["qcd_y"]) ymin = percent_diff(kwargs["ymin"], kwargs["qcd_y"]) ymax = percent_diff(kwargs["ymax"], kwargs["qcd_y"]) pdf_min = abs(percent_diff(kwargs["pdf_results"][0][2], kwargs["pdf_results"][0][1]))[:-1] pdf_max = abs(percent_diff(kwargs["pdf_results"][0][3], kwargs["pdf_results"][0][1]))[:-1] axis.step(x, qcd_y, colors0_qcd, label=label_rel_ewonoff_qcd, linewidth=1.0, where="post") # axis.fill_between(x, qcd_ymin, qcd_ymax, alpha=0.4, color=colors0_qcd, label=label_rel_ewonoff_scale_unc, linewidth=0.5, step="post") axis.step(x, y, colors[0], label=label_rel_ewonoff_ew, linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[0], label=label_rel_ewonoff_scale_unc, linewidth=0.5, step="post") axis.errorbar(kwargs["mid"], y[:-1], yerr=(pdf_min, pdf_max), color=colors[0], label=label_rel_ewonoff_pdf_unc, fmt=".", capsize=1, markersize=0, linewidth=1) axis.set_ylabel(ylabel_rel_ewonoff) axis.legend(bbox_to_anchor=(0, 1.03, 1, 0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=4) def plot_rel_pdfunc(axis, **kwargs): x = kwargs["x"] pdf_uncertainties = kwargs["pdf_results"] for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i ymin = percent_diff(ymin, y) ymax = percent_diff(ymax, y) axis.step(x, ymax, color=colors[index], label=label, linewidth=1, where="post") axis.step(x, ymin, color=colors[index], linewidth=1, where="post") axis.set_ylabel(ylabel_rel_pdfunc) set_ylim(axis, False, False, "rel_pdfunc") def plot_rel_pdfpull(axis, **kwargs): central_y = kwargs["pdf_results"][0][1] central_ymin = kwargs["pdf_results"][0][2] central_ymax = kwargs["pdf_results"][0][3] pdf_uncertainties = kwargs["pdf_results"] x = kwargs["x"] y = kwargs["y"] for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i diff = y - central_y yerr = np.where(diff > 0.0, y - ymin, ymax - y) cerr = np.where(diff > 0.0, central_ymax - central_y, central_y - central_ymin) pull = diff / np.sqrt(np.power(yerr, 2) + np.power(cerr, 2)) axis.step(x, pull, color=colors[index], label=label, linewidth=1, where="post", zorder=2 * index + 1) axis.legend(bbox_to_anchor=(0, 1.03, 1, 0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties))) #rel_pdfpull axis.set_ylabel(ylabel_rel_pdfpull) set_ylim(axis, False, False, "rel_pdfpull") def data(): return [ { "slice_label" : r"", "x" : np.array([0, 0.040000000000000036, 0.08000000000000007, 0.1200000000000001, 0.15999999999999992, 0.19999999999999996, 0.24, 0.28, 0.32000000000000006, 0.3600000000000001, 0.40000000000000013, 0.43999999999999995, 0.48, 0.52, 0.56, 0.6000000000000001, 0.6400000000000001, 0.6799999999999999, 0.72, 0.76, 0.8, 0.8400000000000001, 0.8800000000000001, 0.9199999999999999, 0.96, 1]), "mid" : np.array([0.020000000000000018, 0.06000000000000005, 0.10000000000000009, 0.14, 0.17999999999999994, 0.21999999999999997, 0.26, 0.30000000000000004, 0.3400000000000001, 0.3800000000000001, 0.42000000000000004, 0.45999999999999996, 0.5, 0.54, 0.5800000000000001, 0.6200000000000001, 0.66, 0.7, 0.74, 0.78, 0.8200000000000001, 0.8600000000000001, 0.9, 0.94, 0.98]), "pdf_results" : [ ( "NNPDF40\_nnlo\_as\_01180", np.array([-8.9073097e-3, -2.5258011e-2, -4.2074993e-2, -5.7119354e-2, -7.2072246e-2, -8.8769233e-2, -1.0168073e-1, -1.1291620e-1, -1.2694004e-1, -1.3981641e-1, -1.4822989e-1, -1.5828910e-1, -1.6656074e-1, -1.7672691e-1, -1.8106409e-1, -1.8604958e-1, -1.9264779e-1, -1.9711216e-1, -1.9947876e-1, -2.0333702e-1, -2.0602952e-1, -2.0751500e-1, -2.0920588e-1, -2.0522087e-1, -1.5755961e-1, -1.5755961e-1]), np.array([-1.3416731e-2, -3.8485931e-2, -6.4022917e-2, -8.7525834e-2, -1.1059996e-1, -1.3506164e-1, -1.5518895e-1, -1.7370393e-1, -1.9408882e-1, -2.1338899e-1, -2.2702283e-1, -2.4212719e-1, -2.5490585e-1, -2.6928706e-1, -2.7696185e-1, -2.8511886e-1, -2.9435668e-1, -3.0107075e-1, -3.0528544e-1, -3.1066117e-1, -3.1459806e-1, -3.1687573e-1, -3.1925830e-1, -3.1465864e-1, -2.4456638e-1, -2.4456638e-1]), np.array([-4.3978881e-3, -1.2030092e-2, -2.0127068e-2, -2.6712874e-2, -3.3544535e-2, -4.2476821e-2, -4.8172510e-2, -5.2128475e-2, -5.9791257e-2, -6.6243833e-2, -6.9436948e-2, -7.4451017e-2, -7.8215644e-2, -8.4166747e-2, -8.5166318e-2, -8.6980291e-2, -9.0938899e-2, -9.3153568e-2, -9.3672084e-2, -9.6012876e-2, -9.7460983e-2, -9.8154272e-2, -9.9153450e-2, -9.5783090e-2, -7.0552833e-2, -7.0552833e-2]), ), ], "qcd_y" : np.array([-9.7774455e-3, -2.7803070e-2, -4.6322000e-2, -6.2975151e-2, -7.9511210e-2, -9.7716412e-2, -1.1201228e-1, -1.2465352e-1, -1.3992382e-1, -1.5403592e-1, -1.6342388e-1, -1.7449431e-1, -1.8365024e-1, -1.9465371e-1, -1.9962541e-1, -2.0517482e-1, -2.1229826e-1, -2.1722257e-1, -2.1993325e-1, -2.2407089e-1, -2.2699239e-1, -2.2865013e-1, -2.3047026e-1, -2.2613492e-1, -1.7065560e-1, -1.7065560e-1]), "qcd_min" : np.array([-9.9495415e-3, -2.8039568e-2, -4.6641585e-2, -6.3405979e-2, -8.0058809e-2, -9.8477267e-2, -1.1292865e-1, -1.2565850e-1, -1.4105077e-1, -1.5520442e-1, -1.6480071e-1, -1.7585102e-1, -1.8515335e-1, -1.9618737e-1, -2.0119655e-1, -2.0679841e-1, -2.1382807e-1, -2.1888069e-1, -2.2163057e-1, -2.2580492e-1, -2.2871629e-1, -2.3041863e-1, -2.3219166e-1, -2.2801534e-1, -1.7200834e-1, -1.7200834e-1]), "qcd_max" : np.array([-9.6561309e-3, -2.7599708e-2, -4.6069879e-2, -6.2637658e-2, -7.9083183e-2, -9.7073087e-2, -1.1122072e-1, -1.2380361e-1, -1.3896519e-1, -1.5306307e-1, -1.6222176e-1, -1.7335756e-1, -1.8235507e-1, -1.9334313e-1, -1.9829474e-1, -2.0380214e-1, -2.1106506e-1, -2.1583806e-1, -2.1851565e-1, -2.2261390e-1, -2.2555043e-1, -2.2716600e-1, -2.2905247e-1, -2.2452090e-1, -1.6964796e-1, -1.6964796e-1]), "y" : np.array([-9.7774455e-3, -2.7803070e-2, -4.6322000e-2, -6.2975151e-2, -7.9511210e-2, -9.7716412e-2, -1.1201228e-1, -1.2465352e-1, -1.3992382e-1, -1.5403592e-1, -1.6342388e-1, -1.7449431e-1, -1.8365024e-1, -1.9465371e-1, -1.9962541e-1, -2.0517482e-1, -2.1229826e-1, -2.1722257e-1, -2.1993325e-1, -2.2407089e-1, -2.2699239e-1, -2.2865013e-1, -2.3047026e-1, -2.2613492e-1, -1.7065560e-1, -1.7065560e-1]), "ymin" : np.array([-9.9495415e-3, -2.8039568e-2, -4.6641585e-2, -6.3405979e-2, -8.0058809e-2, -9.8477267e-2, -1.1292865e-1, -1.2565850e-1, -1.4105077e-1, -1.5520442e-1, -1.6480071e-1, -1.7585102e-1, -1.8515335e-1, -1.9618737e-1, -2.0119655e-1, -2.0679841e-1, -2.1382807e-1, -2.1888069e-1, -2.2163057e-1, -2.2580492e-1, -2.2871629e-1, -2.3041863e-1, -2.3219166e-1, -2.2801534e-1, -1.7200834e-1, -1.7200834e-1]), "ymax" : np.array([-9.6561309e-3, -2.7599708e-2, -4.6069879e-2, -6.2637658e-2, -7.9083183e-2, -9.7073087e-2, -1.1122072e-1, -1.2380361e-1, -1.3896519e-1, -1.5306307e-1, -1.6222176e-1, -1.7335756e-1, -1.8235507e-1, -1.9334313e-1, -1.9829474e-1, -2.0380214e-1, -2.1106506e-1, -2.1583806e-1, -2.1851565e-1, -2.2261390e-1, -2.2555043e-1, -2.2716600e-1, -2.2905247e-1, -2.2452090e-1, -1.6964796e-1, -1.6964796e-1]), "channels" : [ ], }, ] def metadata(): return { "arxiv": r"", "description": r"", "hepdata": r"", "initial_state_1": r"2212", "initial_state_2": r"2212", "lumi_id_types": r"pdg_mc_ids", "mg5amc_repo": r"http://bazaar.launchpad.net/~maddevelopers/mg5amcnlo/3.3.1/", "mg5amc_revno": r"981", "patches": r"", "pineappl_gitversion": r"v0.5.4-49-g04650d9", "results_pdf": r"MSHT20nnlo_as118", "runcard_gitversion": r"7b5180d", "tau_min": r"", "user_cuts": r"", "x1_label": r"costh", "x1_label_tex": r"$\cos \theta^*$", "x1_unit": r"", "y_label": r"dsig/dcosth", "y_label_tex": r"$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos \theta^*}$", "y_unit": r"\pico\barn", } if __name__ == "__main__": main() "#; const DRELL_YAN_MASS_SLICES_STR: &str = r#"#!/usr/bin/env python3 import math import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pickle # color cycler for different PDF results colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] # color for the first PDF result with QCD-only predictions colors0_qcd = "red" # stylesheet for plot stylesheet = { "axes.axisbelow": True, "axes.grid": True, "axes.labelsize": "small", "figure.constrained_layout.hspace": 0.0, "figure.constrained_layout.use": True, "figure.constrained_layout.wspace": 0.0, "font.family": "serif", "font.size": 14.0, "grid.linestyle": "dotted", "legend.borderpad": 0.0, "legend.fontsize": "x-small", "legend.frameon": False, "pdf.compression": 0, "text.usetex": True, "text.latex.preamble": r"\usepackage{siunitx}\usepackage{lmodern}\usepackage[T1]{fontenc}", "xtick.bottom": True, "xtick.top": True, "xtick.direction": "in", "xtick.major.width": 0.5, "xtick.minor.bottom": True, "xtick.minor.top": True, "xtick.minor.width": 0.5, "ytick.direction": "in", "ytick.left": True, "ytick.right": True, "ytick.major.width": 0.5, "ytick.minor.visible": True, "ytick.minor.width": 0.5, } # global plot labels title = r"" xlabel = r"$\cos \theta^*$" ylabel = r"$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos \theta^*}$ [\si{pb}]" # panel plot labels ylabel_ratio_pdf = "Ratio to {central_pdf}" ylabel_double_ratio_pdf = "Ratio to NLO" ylabel_rel_ewonoff = "NLO EW on/off [\si{\percent}]" ylabel_rel_pdfunc = "PDF uncertainty [\si{\percent}]" ylabel_rel_pdfpull = "Pull [$\sigma$]" label_rel_ewonoff_qcd = "NLO QCD" label_rel_ewonoff_ew = "NLO QCD+EW" label_rel_ewonoff_scale_unc = "7-p.\ scale var." label_rel_ewonoff_pdf_unc = "PDF uncertainty" xlog = False ylog = False def main(): panels = [ # plot_int, plot_abs, plot_rel_ewonoff, # plot_abs_pdfs, # plot_ratio_pdf, # plot_double_ratio_pdf, # plot_rel_pdfunc, # plot_rel_pdfpull, ] mpl.rcParams.update(stylesheet) plt.rc("figure", figsize=(6.4, 2.4 * len(panels))) # plt.rc("figure", figsize=(4.2, 2.6)) data_slices = data() for index, kwargs in enumerate(data_slices): figure, axes = plt.subplots(len(panels), 1, sharex=True, squeeze=False) if len(kwargs["x"]) > 2 and xlog: axes[0, 0].set_xscale("log") axes[0, 0].set_title(title) axes[-1, 0].set_xlabel(xlabel) for plot, axis in zip(panels, axes[:, 0]): plot(axis, **kwargs) if len(data_slices) == 1: figure.savefig("NNPDF_DY_14TEV_BSM_AFB.pdf") else: figure.savefig("NNPDF_DY_14TEV_BSM_AFB-{}.pdf".format(index)) plt.close(figure) def percent_diff(a, b): return (a / b - 1.0) * 100.0 def set_ylim(axis, save, load, filename): # extract the y limits *not* considering margins margins = axis.margins() axis.margins(y=0.0) ymin, ymax = axis.get_ylim() axis.margins(y=margins[1]) inc = 1.0 if (ymax - ymin) > 100.0: ymin = -50.0 ymax = 50.0 inc = 25.0 elif (ymax - ymin) > 30.5: inc = 10.0 elif (ymax - ymin) > 20.5: inc = 5.0 elif (ymax - ymin) > 10.5: inc = 2.0 elif (ymax - ymin) < 3.0: inc = 0.5 ymin = math.floor(ymin / inc) * inc ymax = math.ceil(ymax / inc) * inc if save: with open(filename, "wb") as f: pickle.dump([ymin, ymax, inc], f) if load: resave = False with open(filename, "rb") as f: [saved_ymin, saved_ymax, saved_inc] = pickle.load(f) if saved_ymin < ymin: ymin = saved_ymin resave = True if saved_ymax > ymax: ymax = saved_ymax resave = True if saved_inc > inc: inc = saved_inc resave = True if resave: with open(filename, "wb") as f: pickle.dump([ymin, ymax, inc], f) axis.set_yticks(np.arange(ymin, ymax + inc, inc)) space = 0.05 * (ymax - ymin) axis.set_ylim((ymin - space, ymax + space)) def plot_int(axis, **kwargs): xmin = np.array([]) xmax = np.array([]) x = np.array([]) y = np.array([]) for index, i in enumerate(kwargs["pdf_results"]): label, ycentral, ymin, ymax = i x = np.append(x, ycentral[:-1]) xmin = np.append(xmin, ymin[:-1]) xmax = np.append(xmax, ymax[:-1]) y = np.append(y, label) # draw one- and two-sigma bands if label == "CENTRAL-PDF": axis.axvspan(xmin[-1], xmax[-1], alpha=0.3, color=colors[index], linewidth=0) # TODO: this is only correct for MC PDF uncertainties axis.axvspan(x[-1] - 2.0 * (x[-1] - xmin[-1]), x[-1] + 2.0 * (xmax[-1] - x[-1]), alpha=0.1, color=colors[index], linewidth=0) axis.errorbar(x, y, xerr=(x - xmin, xmax - x), fmt=".", capsize=3, markersize=5, linewidth=1.5) axis.margins(x=0.1, y=0.1) def plot_abs(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] axis.set_yscale("log" if ylog else "linear") axis.step(x, kwargs["y"], colors[0], linewidth=1.0, where="post", label=slice_label) axis.fill_between(x, kwargs["ymin"], kwargs["ymax"], alpha=0.4, color=colors[0], linewidth=0.5, step="post") axis.set_ylabel(ylabel) if slice_label != "": axis.legend() def plot_ratio_pdf(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] pdf_uncertainties = kwargs["pdf_results"] axis.set_ylabel(ylabel_ratio_pdf.format(central_pdf=pdf_uncertainties[0][0])) for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i y = y / pdf_uncertainties[0][1] ymin = ymin / pdf_uncertainties[0][1] ymax = ymax / pdf_uncertainties[0][1] axis.step(x, y, color=colors[index], linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[index], label=label, linewidth=0.5, step="post") axis.legend(bbox_to_anchor=(0, -0.24, 1, 0.2), loc="upper left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties))) if slice_label != "": t = axis.text(0.98, 0.98, slice_label, horizontalalignment="right", verticalalignment="top", transform=axis.transAxes, fontsize="x-small") t.set_bbox({ "alpha": 0.7, "boxstyle": "square, pad=0.0", "edgecolor": "white", "facecolor": "white" }) def plot_double_ratio_pdf(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] pdf_uncertainties = kwargs["pdf_results"] axis.set_ylabel(ylabel_double_ratio_pdf) for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i if index == 0 or index == 2: y = y / pdf_uncertainties[0][1] ymin = ymin / pdf_uncertainties[0][1] ymax = ymax / pdf_uncertainties[0][1] else: y = y / pdf_uncertainties[1][1] ymin = ymin / pdf_uncertainties[1][1] ymax = ymax / pdf_uncertainties[1][1] axis.step(x, y, color=colors[index], linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[index], label=label, linewidth=0.5, step="post") axis.legend(bbox_to_anchor=(0, -0.24, 1, 0.2), loc="upper left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties))) if slice_label != "": t = axis.text(0.98, 0.98, slice_label, horizontalalignment="right", verticalalignment="top", transform=axis.transAxes, fontsize="x-small") t.set_bbox({ "alpha": 0.7, "boxstyle": "square, pad=0.0", "edgecolor": "white", "facecolor": "white" }) def plot_abs_pdfs(axis, **kwargs): x = kwargs["x"] slice_label = kwargs["slice_label"] pdf_uncertainties = kwargs["pdf_results"] channels = kwargs["channels"] axis.set_yscale("log" if ylog else "linear") axis.set_ylabel(ylabel) for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i axis.step(x, y, color=colors[index], linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[index], label=label, linewidth=0.5, step="post") linestyles = ["--", ":"] for index, ((label, y), linestyle) in enumerate(zip(channels, linestyles)): axis.step(x, y, color=colors[0], label=label, linestyle=linestyle, linewidth=1.0, where="post") axis.legend(bbox_to_anchor=(0, -0.24, 1, 0.2), loc="upper left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties) + len(linestyles))) if slice_label != "": t = axis.text(0.98, 0.98, slice_label, horizontalalignment="right", verticalalignment="top", transform=axis.transAxes, fontsize="x-small") t.set_bbox({ "alpha": 0.7, "boxstyle": "square, pad=0.0", "edgecolor": "white", "facecolor": "white" }) def plot_rel_ewonoff(axis, **kwargs): x = kwargs["x"] y = percent_diff(kwargs["y"], kwargs["qcd_y"]) qcd_y = percent_diff(kwargs["qcd_y"], kwargs["qcd_y"]) qcd_ymin = percent_diff(kwargs["qcd_min"], kwargs["qcd_y"]) qcd_ymax = percent_diff(kwargs["qcd_max"], kwargs["qcd_y"]) ymin = percent_diff(kwargs["ymin"], kwargs["qcd_y"]) ymax = percent_diff(kwargs["ymax"], kwargs["qcd_y"]) pdf_min = abs(percent_diff(kwargs["pdf_results"][0][2], kwargs["pdf_results"][0][1]))[:-1] pdf_max = abs(percent_diff(kwargs["pdf_results"][0][3], kwargs["pdf_results"][0][1]))[:-1] axis.step(x, qcd_y, colors0_qcd, label=label_rel_ewonoff_qcd, linewidth=1.0, where="post") # axis.fill_between(x, qcd_ymin, qcd_ymax, alpha=0.4, color=colors0_qcd, label=label_rel_ewonoff_scale_unc, linewidth=0.5, step="post") axis.step(x, y, colors[0], label=label_rel_ewonoff_ew, linewidth=1.0, where="post") axis.fill_between(x, ymin, ymax, alpha=0.4, color=colors[0], label=label_rel_ewonoff_scale_unc, linewidth=0.5, step="post") axis.errorbar(kwargs["mid"], y[:-1], yerr=(pdf_min, pdf_max), color=colors[0], label=label_rel_ewonoff_pdf_unc, fmt=".", capsize=1, markersize=0, linewidth=1) axis.set_ylabel(ylabel_rel_ewonoff) axis.legend(bbox_to_anchor=(0, 1.03, 1, 0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=4) def plot_rel_pdfunc(axis, **kwargs): x = kwargs["x"] pdf_uncertainties = kwargs["pdf_results"] for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i ymin = percent_diff(ymin, y) ymax = percent_diff(ymax, y) axis.step(x, ymax, color=colors[index], label=label, linewidth=1, where="post") axis.step(x, ymin, color=colors[index], linewidth=1, where="post") axis.set_ylabel(ylabel_rel_pdfunc) set_ylim(axis, False, False, "rel_pdfunc") def plot_rel_pdfpull(axis, **kwargs): central_y = kwargs["pdf_results"][0][1] central_ymin = kwargs["pdf_results"][0][2] central_ymax = kwargs["pdf_results"][0][3] pdf_uncertainties = kwargs["pdf_results"] x = kwargs["x"] y = kwargs["y"] for index, i in enumerate(pdf_uncertainties): label, y, ymin, ymax = i diff = y - central_y yerr = np.where(diff > 0.0, y - ymin, ymax - y) cerr = np.where(diff > 0.0, central_ymax - central_y, central_y - central_ymin) pull = diff / np.sqrt(np.power(yerr, 2) + np.power(cerr, 2)) axis.step(x, pull, color=colors[index], label=label, linewidth=1, where="post", zorder=2 * index + 1) axis.legend(bbox_to_anchor=(0, 1.03, 1, 0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=min(4, len(pdf_uncertainties))) #rel_pdfpull axis.set_ylabel(ylabel_rel_pdfpull) set_ylim(axis, False, False, "rel_pdfpull") def data(): return [ { "slice_label" : r"$\SI{200}{GeV} < M_{\ell\bar{\ell}} < \SI{500}{GeV}$", "x" : np.array([-1, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, -0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04, 0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1]), "mid" : np.array([-0.98, -0.94, -0.9, -0.86, -0.8200000000000001, -0.78, -0.74, -0.7, -0.66, -0.62, -0.5800000000000001, -0.54, -0.5, -0.45999999999999996, -0.42000000000000004, -0.38, -0.33999999999999997, -0.30000000000000004, -0.26, -0.22, -0.18, -0.14, -0.1, -0.06, -0.02, 0.02, 0.06, 0.1, 0.14, 0.18, 0.22, 0.26, 0.30000000000000004, 0.33999999999999997, 0.38, 0.42000000000000004, 0.45999999999999996, 0.5, 0.54, 0.5800000000000001, 0.62, 0.66, 0.7, 0.74, 0.78, 0.8200000000000001, 0.86, 0.9, 0.94, 0.98]), "pdf_results" : [ ( "NNPDF40\_nnlo\_as\_01180", np.array([1.2030676e0, 1.1565560e0, 1.1130457e0, 1.0725099e0, 1.0387691e0, 1.0063348e0, 9.7581283e-1, 9.5075401e-1, 9.2789806e-1, 9.0985382e-1, 8.9310798e-1, 8.8180179e-1, 8.7261653e-1, 8.6606981e-1, 8.6360260e-1, 8.6373393e-1, 8.6791957e-1, 8.7409325e-1, 8.8588921e-1, 8.9893349e-1, 9.1509988e-1, 9.3716398e-1, 9.6097839e-1, 9.8834317e-1, 1.0180896e0, 1.0535762e0, 1.0895800e0, 1.1288776e0, 1.1737558e0, 1.2197631e0, 1.2689601e0, 1.3247334e0, 1.3811064e0, 1.4397822e0, 1.5032413e0, 1.5720274e0, 1.6419769e0, 1.7134034e0, 1.7913589e0, 1.8745908e0, 1.9576793e0, 2.0405341e0, 2.1340674e0, 2.2269273e0, 2.3239393e0, 2.4234584e0, 2.5266015e0, 2.6334832e0, 2.7449504e0, 2.8548557e0, 2.8548557e0]), np.array([1.2030676e0, 1.1565560e0, 1.1130457e0, 1.0725099e0, 1.0387691e0, 1.0063348e0, 9.7581283e-1, 9.5075401e-1, 9.2789806e-1, 9.0985382e-1, 8.9310798e-1, 8.8180179e-1, 8.7261653e-1, 8.6606981e-1, 8.6360260e-1, 8.6373393e-1, 8.6791957e-1, 8.7409325e-1, 8.8588921e-1, 8.9893349e-1, 9.1509988e-1, 9.3716398e-1, 9.6097839e-1, 9.8834317e-1, 1.0180896e0, 1.0535762e0, 1.0895800e0, 1.1288776e0, 1.1737558e0, 1.2197631e0, 1.2689601e0, 1.3247334e0, 1.3811064e0, 1.4397822e0, 1.5032413e0, 1.5720274e0, 1.6419769e0, 1.7134034e0, 1.7913589e0, 1.8745908e0, 1.9576793e0, 2.0405341e0, 2.1340674e0, 2.2269273e0, 2.3239393e0, 2.4234584e0, 2.5266015e0, 2.6334832e0, 2.7449504e0, 2.8548557e0, 2.8548557e0]), np.array([1.2030676e0, 1.1565560e0, 1.1130457e0, 1.0725099e0, 1.0387691e0, 1.0063348e0, 9.7581283e-1, 9.5075401e-1, 9.2789806e-1, 9.0985382e-1, 8.9310798e-1, 8.8180179e-1, 8.7261653e-1, 8.6606981e-1, 8.6360260e-1, 8.6373393e-1, 8.6791957e-1, 8.7409325e-1, 8.8588921e-1, 8.9893349e-1, 9.1509988e-1, 9.3716398e-1, 9.6097839e-1, 9.8834317e-1, 1.0180896e0, 1.0535762e0, 1.0895800e0, 1.1288776e0, 1.1737558e0, 1.2197631e0, 1.2689601e0, 1.3247334e0, 1.3811064e0, 1.4397822e0, 1.5032413e0, 1.5720274e0, 1.6419769e0, 1.7134034e0, 1.7913589e0, 1.8745908e0, 1.9576793e0, 2.0405341e0, 2.1340674e0, 2.2269273e0, 2.3239393e0, 2.4234584e0, 2.5266015e0, 2.6334832e0, 2.7449504e0, 2.8548557e0, 2.8548557e0]), ), ], "qcd_y" : np.array([1.2030676e0, 1.1565560e0, 1.1130457e0, 1.0725099e0, 1.0387691e0, 1.0063348e0, 9.7581283e-1, 9.5075401e-1, 9.2789806e-1, 9.0985382e-1, 8.9310798e-1, 8.8180179e-1, 8.7261653e-1, 8.6606981e-1, 8.6360260e-1, 8.6373393e-1, 8.6791957e-1, 8.7409325e-1, 8.8588921e-1, 8.9893349e-1, 9.1509988e-1, 9.3716398e-1, 9.6097839e-1, 9.8834317e-1, 1.0180896e0, 1.0535762e0, 1.0895800e0, 1.1288776e0, 1.1737558e0, 1.2197631e0, 1.2689601e0, 1.3247334e0, 1.3811064e0, 1.4397822e0, 1.5032413e0, 1.5720274e0, 1.6419769e0, 1.7134034e0, 1.7913589e0, 1.8745908e0, 1.9576793e0, 2.0405341e0, 2.1340674e0, 2.2269273e0, 2.3239393e0, 2.4234584e0, 2.5266015e0, 2.6334832e0, 2.7449504e0, 2.8548557e0, 2.8548557e0]), "qcd_min" : np.array([1.1476341e0, 1.1032579e0, 1.0617385e0, 1.0231508e0, 9.9097579e-1, 9.6014207e-1, 9.3113469e-1, 9.0728416e-1, 8.8560674e-1, 8.6851930e-1, 8.5267109e-1, 8.4203435e-1, 8.3342689e-1, 8.2736426e-1, 8.2520004e-1, 8.2555967e-1, 8.2975676e-1, 8.3587859e-1, 8.4733087e-1, 8.6002996e-1, 8.7572987e-1, 8.9705641e-1, 9.2007984e-1, 9.4649062e-1, 9.7517487e-1, 1.0093523e0, 1.0440650e0, 1.0819022e0, 1.1251039e0, 1.1693745e0, 1.2166754e0, 1.2702912e0, 1.3245299e0, 1.3809292e0, 1.4419071e0, 1.5079840e0, 1.5752031e0, 1.6438283e0, 1.7186871e0, 1.7987148e0, 1.8783985e0, 1.9580267e0, 2.0477772e0, 2.1369454e0, 2.2300739e0, 2.3256051e0, 2.4246078e0, 2.5271474e0, 2.6341671e0, 2.7396171e0, 2.7396171e0]), "qcd_max" : np.array([1.2482967e0, 1.2000452e0, 1.1549126e0, 1.1127812e0, 1.0777638e0, 1.0440155e0, 1.0122494e0, 9.8620414e-1, 9.6237779e-1, 9.4354507e-1, 9.2605954e-1, 9.1419910e-1, 9.0453198e-1, 8.9757973e-1, 8.9485425e-1, 8.9478263e-1, 8.9894680e-1, 9.0514901e-1, 9.1721599e-1, 9.3052688e-1, 9.4705558e-1, 9.6970487e-1, 9.9414526e-1, 1.0222704e0, 1.0528665e0, 1.0894022e0, 1.1264355e0, 1.1669048e0, 1.2131264e0, 1.2605276e0, 1.3112501e0, 1.3687598e0, 1.4268454e0, 1.4873516e0, 1.5528115e0, 1.6237809e0, 1.6959271e0, 1.7696100e0, 1.8500634e0, 1.9358676e0, 2.0217144e0, 2.1071620e0, 2.2037519e0, 2.2995896e0, 2.3997365e0, 2.5024724e0, 2.6089569e0, 2.7193485e0, 2.8344013e0, 2.9479075e0, 2.9479075e0]), "y" : np.array([1.2030676e0, 1.1565560e0, 1.1130457e0, 1.0725099e0, 1.0387691e0, 1.0063348e0, 9.7581283e-1, 9.5075401e-1, 9.2789806e-1, 9.0985382e-1, 8.9310798e-1, 8.8180179e-1, 8.7261653e-1, 8.6606981e-1, 8.6360260e-1, 8.6373393e-1, 8.6791957e-1, 8.7409325e-1, 8.8588921e-1, 8.9893349e-1, 9.1509988e-1, 9.3716398e-1, 9.6097839e-1, 9.8834317e-1, 1.0180896e0, 1.0535762e0, 1.0895800e0, 1.1288776e0, 1.1737558e0, 1.2197631e0, 1.2689601e0, 1.3247334e0, 1.3811064e0, 1.4397822e0, 1.5032413e0, 1.5720274e0, 1.6419769e0, 1.7134034e0, 1.7913589e0, 1.8745908e0, 1.9576793e0, 2.0405341e0, 2.1340674e0, 2.2269273e0, 2.3239393e0, 2.4234584e0, 2.5266015e0, 2.6334832e0, 2.7449504e0, 2.8548557e0, 2.8548557e0]), "ymin" : np.array([1.1476341e0, 1.1032579e0, 1.0617385e0, 1.0231508e0, 9.9097579e-1, 9.6014207e-1, 9.3113469e-1, 9.0728416e-1, 8.8560674e-1, 8.6851930e-1, 8.5267109e-1, 8.4203435e-1, 8.3342689e-1, 8.2736426e-1, 8.2520004e-1, 8.2555967e-1, 8.2975676e-1, 8.3587859e-1, 8.4733087e-1, 8.6002996e-1, 8.7572987e-1, 8.9705641e-1, 9.2007984e-1, 9.4649062e-1, 9.7517487e-1, 1.0093523e0, 1.0440650e0, 1.0819022e0, 1.1251039e0, 1.1693745e0, 1.2166754e0, 1.2702912e0, 1.3245299e0, 1.3809292e0, 1.4419071e0, 1.5079840e0, 1.5752031e0, 1.6438283e0, 1.7186871e0, 1.7987148e0, 1.8783985e0, 1.9580267e0, 2.0477772e0, 2.1369454e0, 2.2300739e0, 2.3256051e0, 2.4246078e0, 2.5271474e0, 2.6341671e0, 2.7396171e0, 2.7396171e0]), "ymax" : np.array([1.2482967e0, 1.2000452e0, 1.1549126e0, 1.1127812e0, 1.0777638e0, 1.0440155e0, 1.0122494e0, 9.8620414e-1, 9.6237779e-1, 9.4354507e-1, 9.2605954e-1, 9.1419910e-1, 9.0453198e-1, 8.9757973e-1, 8.9485425e-1, 8.9478263e-1, 8.9894680e-1, 9.0514901e-1, 9.1721599e-1, 9.3052688e-1, 9.4705558e-1, 9.6970487e-1, 9.9414526e-1, 1.0222704e0, 1.0528665e0, 1.0894022e0, 1.1264355e0, 1.1669048e0, 1.2131264e0, 1.2605276e0, 1.3112501e0, 1.3687598e0, 1.4268454e0, 1.4873516e0, 1.5528115e0, 1.6237809e0, 1.6959271e0, 1.7696100e0, 1.8500634e0, 1.9358676e0, 2.0217144e0, 2.1071620e0, 2.2037519e0, 2.2995896e0, 2.3997365e0, 2.5024724e0, 2.6089569e0, 2.7193485e0, 2.8344013e0, 2.9479075e0, 2.9479075e0]), "channels" : [ (r"$\mathrm{u}\bar{\mathrm{u}} + \mathrm{c}\bar{\mathrm{c}}$", np.array([6.8792943e-1, 6.6125562e-1, 6.3777395e-1, 6.1486127e-1, 5.9741951e-1, 5.7963946e-1, 5.6412672e-1, 5.5280097e-1, 5.4155222e-1, 5.3440638e-1, 5.2772453e-1, 5.2540250e-1, 5.2312552e-1, 5.2336775e-1, 5.2636757e-1, 5.3147731e-1, 5.3918965e-1, 5.4717287e-1, 5.6056341e-1, 5.7337587e-1, 5.8836121e-1, 6.0791258e-1, 6.2862964e-1, 6.4938700e-1, 6.7588930e-1, 7.0371242e-1, 7.3209233e-1, 7.6402657e-1, 7.9766655e-1, 8.3289425e-1, 8.7035507e-1, 9.1152732e-1, 9.5376500e-1, 9.9877556e-1, 1.0445475e0, 1.0949400e0, 1.1456393e0, 1.1986085e0, 1.2540414e0, 1.3152467e0, 1.3747164e0, 1.4336967e0, 1.5021011e0, 1.5683542e0, 1.6368719e0, 1.7086013e0, 1.7810052e0, 1.8565613e0, 1.9354914e0, 2.0139646e0, 2.0139646e0])), (r"$\mathrm{d}\bar{\mathrm{d}} + \mathrm{s}\bar{\mathrm{s}} + \mathrm{b}\bar{\mathrm{b}}$", np.array([5.1513820e-1, 4.9530042e-1, 4.7527174e-1, 4.5764866e-1, 4.4134961e-1, 4.2669534e-1, 4.1168610e-1, 3.9795304e-1, 3.8634584e-1, 3.7544744e-1, 3.6538344e-1, 3.5639929e-1, 3.4949102e-1, 3.4270206e-1, 3.3723503e-1, 3.3225662e-1, 3.2872992e-1, 3.2692037e-1, 3.2532580e-1, 3.2555763e-1, 3.2673866e-1, 3.2925139e-1, 3.3234876e-1, 3.3895617e-1, 3.4220033e-1, 3.4986376e-1, 3.5748772e-1, 3.6485107e-1, 3.7608929e-1, 3.8686886e-1, 3.9860504e-1, 4.1320603e-1, 4.2734137e-1, 4.4100662e-1, 4.5869384e-1, 4.7708743e-1, 4.9633757e-1, 5.1479498e-1, 5.3731751e-1, 5.5934418e-1, 5.8296294e-1, 6.0683737e-1, 6.3196624e-1, 6.5857309e-1, 6.8706738e-1, 7.1485710e-1, 7.4559634e-1, 7.7692189e-1, 8.0945902e-1, 8.4089109e-1, 8.4089109e-1])) ], }, { "slice_label" : r"$\SI{500}{GeV} < M_{\ell\bar{\ell}} < \SI{1000}{GeV}$", "x" : np.array([-1, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, -0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04, 0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1]), "mid" : np.array([-0.98, -0.94, -0.9, -0.86, -0.8200000000000001, -0.78, -0.74, -0.7, -0.66, -0.62, -0.5800000000000001, -0.54, -0.5, -0.45999999999999996, -0.42000000000000004, -0.38, -0.33999999999999997, -0.30000000000000004, -0.26, -0.22, -0.18, -0.14, -0.1, -0.06, -0.02, 0.02, 0.06, 0.1, 0.14, 0.18, 0.22, 0.26, 0.30000000000000004, 0.33999999999999997, 0.38, 0.42000000000000004, 0.45999999999999996, 0.5, 0.54, 0.5800000000000001, 0.62, 0.66, 0.7, 0.74, 0.78, 0.8200000000000001, 0.86, 0.9, 0.94, 0.98]), "pdf_results" : [ ( "NNPDF40\_nnlo\_as\_01180", np.array([4.0594871e-2, 3.8970516e-2, 3.7589145e-2, 3.6287278e-2, 3.5138659e-2, 3.4083575e-2, 3.3138203e-2, 3.2369514e-2, 3.1687339e-2, 3.1130680e-2, 3.0694113e-2, 3.0348044e-2, 3.0193553e-2, 3.0118871e-2, 3.0174121e-2, 3.0339279e-2, 3.0573898e-2, 3.1016543e-2, 3.1542002e-2, 3.2184767e-2, 3.2964449e-2, 3.3870335e-2, 3.4866769e-2, 3.6057960e-2, 3.7346103e-2, 3.8648244e-2, 4.0227527e-2, 4.1803650e-2, 4.3536855e-2, 4.5451532e-2, 4.7387640e-2, 4.9457643e-2, 5.1733512e-2, 5.4105127e-2, 5.6588818e-2, 5.9238183e-2, 6.1866112e-2, 6.4704350e-2, 6.7748017e-2, 7.0789065e-2, 7.4060501e-2, 7.7264134e-2, 8.0877170e-2, 8.4406261e-2, 8.8038767e-2, 9.1920534e-2, 9.5741259e-2, 9.9856666e-2, 1.0403280e-1, 1.0829409e-1, 1.0829409e-1]), np.array([4.0594871e-2, 3.8970516e-2, 3.7589145e-2, 3.6287278e-2, 3.5138659e-2, 3.4083575e-2, 3.3138203e-2, 3.2369514e-2, 3.1687339e-2, 3.1130680e-2, 3.0694113e-2, 3.0348044e-2, 3.0193553e-2, 3.0118871e-2, 3.0174121e-2, 3.0339279e-2, 3.0573898e-2, 3.1016543e-2, 3.1542002e-2, 3.2184767e-2, 3.2964449e-2, 3.3870335e-2, 3.4866769e-2, 3.6057960e-2, 3.7346103e-2, 3.8648244e-2, 4.0227527e-2, 4.1803650e-2, 4.3536855e-2, 4.5451532e-2, 4.7387640e-2, 4.9457643e-2, 5.1733512e-2, 5.4105127e-2, 5.6588818e-2, 5.9238183e-2, 6.1866112e-2, 6.4704350e-2, 6.7748017e-2, 7.0789065e-2, 7.4060501e-2, 7.7264134e-2, 8.0877170e-2, 8.4406261e-2, 8.8038767e-2, 9.1920534e-2, 9.5741259e-2, 9.9856666e-2, 1.0403280e-1, 1.0829409e-1, 1.0829409e-1]), np.array([4.0594871e-2, 3.8970516e-2, 3.7589145e-2, 3.6287278e-2, 3.5138659e-2, 3.4083575e-2, 3.3138203e-2, 3.2369514e-2, 3.1687339e-2, 3.1130680e-2, 3.0694113e-2, 3.0348044e-2, 3.0193553e-2, 3.0118871e-2, 3.0174121e-2, 3.0339279e-2, 3.0573898e-2, 3.1016543e-2, 3.1542002e-2, 3.2184767e-2, 3.2964449e-2, 3.3870335e-2, 3.4866769e-2, 3.6057960e-2, 3.7346103e-2, 3.8648244e-2, 4.0227527e-2, 4.1803650e-2, 4.3536855e-2, 4.5451532e-2, 4.7387640e-2, 4.9457643e-2, 5.1733512e-2, 5.4105127e-2, 5.6588818e-2, 5.9238183e-2, 6.1866112e-2, 6.4704350e-2, 6.7748017e-2, 7.0789065e-2, 7.4060501e-2, 7.7264134e-2, 8.0877170e-2, 8.4406261e-2, 8.8038767e-2, 9.1920534e-2, 9.5741259e-2, 9.9856666e-2, 1.0403280e-1, 1.0829409e-1, 1.0829409e-1]), ), ], "qcd_y" : np.array([4.0594871e-2, 3.8970516e-2, 3.7589145e-2, 3.6287278e-2, 3.5138659e-2, 3.4083575e-2, 3.3138203e-2, 3.2369514e-2, 3.1687339e-2, 3.1130680e-2, 3.0694113e-2, 3.0348044e-2, 3.0193553e-2, 3.0118871e-2, 3.0174121e-2, 3.0339279e-2, 3.0573898e-2, 3.1016543e-2, 3.1542002e-2, 3.2184767e-2, 3.2964449e-2, 3.3870335e-2, 3.4866769e-2, 3.6057960e-2, 3.7346103e-2, 3.8648244e-2, 4.0227527e-2, 4.1803650e-2, 4.3536855e-2, 4.5451532e-2, 4.7387640e-2, 4.9457643e-2, 5.1733512e-2, 5.4105127e-2, 5.6588818e-2, 5.9238183e-2, 6.1866112e-2, 6.4704350e-2, 6.7748017e-2, 7.0789065e-2, 7.4060501e-2, 7.7264134e-2, 8.0877170e-2, 8.4406261e-2, 8.8038767e-2, 9.1920534e-2, 9.5741259e-2, 9.9856666e-2, 1.0403280e-1, 1.0829409e-1, 1.0829409e-1]), "qcd_min" : np.array([4.0037777e-2, 3.8435726e-2, 3.7073393e-2, 3.5789220e-2, 3.4655883e-2, 3.3613703e-2, 3.2680468e-2, 3.1921166e-2, 3.1247155e-2, 3.0695910e-2, 3.0263715e-2, 2.9921326e-2, 2.9765787e-2, 2.9690226e-2, 2.9743185e-2, 2.9903344e-2, 3.0131781e-2, 3.0565874e-2, 3.1081207e-2, 3.1711632e-2, 3.2477115e-2, 3.3366364e-2, 3.4346364e-2, 3.5517091e-2, 3.6783757e-2, 3.8063466e-2, 3.9616935e-2, 4.1166189e-2, 4.2871525e-2, 4.4755097e-2, 4.6659767e-2, 4.8697082e-2, 5.0934848e-2, 5.3268112e-2, 5.5712599e-2, 5.8320365e-2, 6.0905504e-2, 6.3698651e-2, 6.6694216e-2, 6.9687107e-2, 7.2907813e-2, 7.6059137e-2, 7.9616205e-2, 8.3090171e-2, 8.6665976e-2, 9.0484669e-2, 9.4247104e-2, 9.8297870e-2, 1.0240852e-1, 1.0660338e-1, 1.0660338e-1]), "qcd_max" : np.array([4.1061145e-2, 3.9418149e-2, 3.8020807e-2, 3.6704197e-2, 3.5542954e-2, 3.4477622e-2, 3.3522380e-2, 3.2746246e-2, 3.2057661e-2, 3.1497253e-2, 3.1057591e-2, 3.0708825e-2, 3.0556281e-2, 3.0483016e-2, 3.0540730e-2, 3.0711032e-2, 3.0951879e-2, 3.1402556e-2, 3.1937511e-2, 3.2591833e-2, 3.3384624e-2, 3.4305895e-2, 3.5317075e-2, 3.6526854e-2, 3.7834301e-2, 3.9156804e-2, 4.0759176e-2, 4.2359581e-2, 4.4117603e-2, 4.6059981e-2, 4.8024100e-2, 5.0123011e-2, 5.2433124e-2, 5.4838902e-2, 5.7357234e-2, 6.0043264e-2, 6.2709323e-2, 6.5587507e-2, 6.8673601e-2, 7.1757263e-2, 7.5073207e-2, 7.8323545e-2, 8.1985664e-2, 8.5563285e-2, 8.9245686e-2, 9.3183548e-2, 9.7055206e-2, 1.0122759e-1, 1.0546145e-1, 1.0978108e-1, 1.0978108e-1]), "y" : np.array([4.0594871e-2, 3.8970516e-2, 3.7589145e-2, 3.6287278e-2, 3.5138659e-2, 3.4083575e-2, 3.3138203e-2, 3.2369514e-2, 3.1687339e-2, 3.1130680e-2, 3.0694113e-2, 3.0348044e-2, 3.0193553e-2, 3.0118871e-2, 3.0174121e-2, 3.0339279e-2, 3.0573898e-2, 3.1016543e-2, 3.1542002e-2, 3.2184767e-2, 3.2964449e-2, 3.3870335e-2, 3.4866769e-2, 3.6057960e-2, 3.7346103e-2, 3.8648244e-2, 4.0227527e-2, 4.1803650e-2, 4.3536855e-2, 4.5451532e-2, 4.7387640e-2, 4.9457643e-2, 5.1733512e-2, 5.4105127e-2, 5.6588818e-2, 5.9238183e-2, 6.1866112e-2, 6.4704350e-2, 6.7748017e-2, 7.0789065e-2, 7.4060501e-2, 7.7264134e-2, 8.0877170e-2, 8.4406261e-2, 8.8038767e-2, 9.1920534e-2, 9.5741259e-2, 9.9856666e-2, 1.0403280e-1, 1.0829409e-1, 1.0829409e-1]), "ymin" : np.array([4.0037777e-2, 3.8435726e-2, 3.7073393e-2, 3.5789220e-2, 3.4655883e-2, 3.3613703e-2, 3.2680468e-2, 3.1921166e-2, 3.1247155e-2, 3.0695910e-2, 3.0263715e-2, 2.9921326e-2, 2.9765787e-2, 2.9690226e-2, 2.9743185e-2, 2.9903344e-2, 3.0131781e-2, 3.0565874e-2, 3.1081207e-2, 3.1711632e-2, 3.2477115e-2, 3.3366364e-2, 3.4346364e-2, 3.5517091e-2, 3.6783757e-2, 3.8063466e-2, 3.9616935e-2, 4.1166189e-2, 4.2871525e-2, 4.4755097e-2, 4.6659767e-2, 4.8697082e-2, 5.0934848e-2, 5.3268112e-2, 5.5712599e-2, 5.8320365e-2, 6.0905504e-2, 6.3698651e-2, 6.6694216e-2, 6.9687107e-2, 7.2907813e-2, 7.6059137e-2, 7.9616205e-2, 8.3090171e-2, 8.6665976e-2, 9.0484669e-2, 9.4247104e-2, 9.8297870e-2, 1.0240852e-1, 1.0660338e-1, 1.0660338e-1]), "ymax" : np.array([4.1061145e-2, 3.9418149e-2, 3.8020807e-2, 3.6704197e-2, 3.5542954e-2, 3.4477622e-2, 3.3522380e-2, 3.2746246e-2, 3.2057661e-2, 3.1497253e-2, 3.1057591e-2, 3.0708825e-2, 3.0556281e-2, 3.0483016e-2, 3.0540730e-2, 3.0711032e-2, 3.0951879e-2, 3.1402556e-2, 3.1937511e-2, 3.2591833e-2, 3.3384624e-2, 3.4305895e-2, 3.5317075e-2, 3.6526854e-2, 3.7834301e-2, 3.9156804e-2, 4.0759176e-2, 4.2359581e-2, 4.4117603e-2, 4.6059981e-2, 4.8024100e-2, 5.0123011e-2, 5.2433124e-2, 5.4838902e-2, 5.7357234e-2, 6.0043264e-2, 6.2709323e-2, 6.5587507e-2, 6.8673601e-2, 7.1757263e-2, 7.5073207e-2, 7.8323545e-2, 8.1985664e-2, 8.5563285e-2, 8.9245686e-2, 9.3183548e-2, 9.7055206e-2, 1.0122759e-1, 1.0546145e-1, 1.0978108e-1, 1.0978108e-1]), "channels" : [ (r"$\mathrm{u}\bar{\mathrm{u}} + \mathrm{c}\bar{\mathrm{c}}$", np.array([2.6199757e-2, 2.5141774e-2, 2.4301385e-2, 2.3475409e-2, 2.2742818e-2, 2.2111053e-2, 2.1562477e-2, 2.1150586e-2, 2.0753029e-2, 2.0527176e-2, 2.0286675e-2, 2.0198805e-2, 2.0196503e-2, 2.0277685e-2, 2.0455607e-2, 2.0654565e-2, 2.0963610e-2, 2.1393063e-2, 2.1909943e-2, 2.2517162e-2, 2.3181602e-2, 2.3967128e-2, 2.4795910e-2, 2.5775243e-2, 2.6848306e-2, 2.7911025e-2, 2.9189817e-2, 3.0427277e-2, 3.1802230e-2, 3.3315181e-2, 3.4815501e-2, 3.6458797e-2, 3.8188509e-2, 4.0036615e-2, 4.1945442e-2, 4.3957344e-2, 4.6030617e-2, 4.8180061e-2, 5.0492953e-2, 5.2808985e-2, 5.5264729e-2, 5.7718158e-2, 6.0458116e-2, 6.3119505e-2, 6.5844881e-2, 6.8772294e-2, 7.1647003e-2, 7.4759927e-2, 7.7907487e-2, 8.1060130e-2, 8.1060130e-2])), (r"$\mathrm{d}\bar{\mathrm{d}} + \mathrm{s}\bar{\mathrm{s}} + \mathrm{b}\bar{\mathrm{b}}$", np.array([1.4395113e-2, 1.3828743e-2, 1.3287760e-2, 1.2811869e-2, 1.2395841e-2, 1.1972522e-2, 1.1575727e-2, 1.1218927e-2, 1.0934310e-2, 1.0603503e-2, 1.0407438e-2, 1.0149239e-2, 9.9970507e-3, 9.8411857e-3, 9.7185140e-3, 9.6847141e-3, 9.6102880e-3, 9.6234798e-3, 9.6320596e-3, 9.6676052e-3, 9.7828473e-3, 9.9032066e-3, 1.0070859e-2, 1.0282716e-2, 1.0497797e-2, 1.0737219e-2, 1.1037711e-2, 1.1376372e-2, 1.1734625e-2, 1.2136350e-2, 1.2572139e-2, 1.2998846e-2, 1.3545003e-2, 1.4068512e-2, 1.4643376e-2, 1.5280839e-2, 1.5835494e-2, 1.6524288e-2, 1.7255064e-2, 1.7980080e-2, 1.8795773e-2, 1.9545976e-2, 2.0419054e-2, 2.1286756e-2, 2.2193887e-2, 2.3148239e-2, 2.4094256e-2, 2.5096739e-2, 2.6125312e-2, 2.7233960e-2, 2.7233960e-2])) ], }, { "slice_label" : r"$\SI{1000}{GeV} < M_{\ell\bar{\ell}} < \SI{3000}{GeV}$", "x" : np.array([-1, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, -0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04, 0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1]), "mid" : np.array([-0.98, -0.94, -0.9, -0.86, -0.8200000000000001, -0.78, -0.74, -0.7, -0.66, -0.62, -0.5800000000000001, -0.54, -0.5, -0.45999999999999996, -0.42000000000000004, -0.38, -0.33999999999999997, -0.30000000000000004, -0.26, -0.22, -0.18, -0.14, -0.1, -0.06, -0.02, 0.02, 0.06, 0.1, 0.14, 0.18, 0.22, 0.26, 0.30000000000000004, 0.33999999999999997, 0.38, 0.42000000000000004, 0.45999999999999996, 0.5, 0.54, 0.5800000000000001, 0.62, 0.66, 0.7, 0.74, 0.78, 0.8200000000000001, 0.86, 0.9, 0.94, 0.98]), "pdf_results" : [ ( "NNPDF40\_nnlo\_as\_01180", np.array([2.5617082e-3, 2.4598979e-3, 2.3739593e-3, 2.2904004e-3, 2.2169883e-3, 2.1545803e-3, 2.0954206e-3, 2.0498675e-3, 2.0070737e-3, 1.9754803e-3, 1.9463467e-3, 1.9278404e-3, 1.9236438e-3, 1.9198349e-3, 1.9306588e-3, 1.9387108e-3, 1.9583331e-3, 1.9907351e-3, 2.0286806e-3, 2.0733607e-3, 2.1270186e-3, 2.1863925e-3, 2.2577539e-3, 2.3390006e-3, 2.4212326e-3, 2.5112892e-3, 2.6161915e-3, 2.7238882e-3, 2.8385163e-3, 2.9647013e-3, 3.0959433e-3, 3.2331088e-3, 3.3817486e-3, 3.5385707e-3, 3.7031757e-3, 3.8780884e-3, 4.0550706e-3, 4.2388498e-3, 4.4433747e-3, 4.6413012e-3, 4.8539670e-3, 5.0680268e-3, 5.3044183e-3, 5.5388017e-3, 5.7755439e-3, 6.0326566e-3, 6.2848452e-3, 6.5558742e-3, 6.8328348e-3, 7.1072149e-3, 7.1072149e-3]), np.array([2.5617082e-3, 2.4598979e-3, 2.3739593e-3, 2.2904004e-3, 2.2169883e-3, 2.1545803e-3, 2.0954206e-3, 2.0498675e-3, 2.0070737e-3, 1.9754803e-3, 1.9463467e-3, 1.9278404e-3, 1.9236438e-3, 1.9198349e-3, 1.9306588e-3, 1.9387108e-3, 1.9583331e-3, 1.9907351e-3, 2.0286806e-3, 2.0733607e-3, 2.1270186e-3, 2.1863925e-3, 2.2577539e-3, 2.3390006e-3, 2.4212326e-3, 2.5112892e-3, 2.6161915e-3, 2.7238882e-3, 2.8385163e-3, 2.9647013e-3, 3.0959433e-3, 3.2331088e-3, 3.3817486e-3, 3.5385707e-3, 3.7031757e-3, 3.8780884e-3, 4.0550706e-3, 4.2388498e-3, 4.4433747e-3, 4.6413012e-3, 4.8539670e-3, 5.0680268e-3, 5.3044183e-3, 5.5388017e-3, 5.7755439e-3, 6.0326566e-3, 6.2848452e-3, 6.5558742e-3, 6.8328348e-3, 7.1072149e-3, 7.1072149e-3]), np.array([2.5617082e-3, 2.4598979e-3, 2.3739593e-3, 2.2904004e-3, 2.2169883e-3, 2.1545803e-3, 2.0954206e-3, 2.0498675e-3, 2.0070737e-3, 1.9754803e-3, 1.9463467e-3, 1.9278404e-3, 1.9236438e-3, 1.9198349e-3, 1.9306588e-3, 1.9387108e-3, 1.9583331e-3, 1.9907351e-3, 2.0286806e-3, 2.0733607e-3, 2.1270186e-3, 2.1863925e-3, 2.2577539e-3, 2.3390006e-3, 2.4212326e-3, 2.5112892e-3, 2.6161915e-3, 2.7238882e-3, 2.8385163e-3, 2.9647013e-3, 3.0959433e-3, 3.2331088e-3, 3.3817486e-3, 3.5385707e-3, 3.7031757e-3, 3.8780884e-3, 4.0550706e-3, 4.2388498e-3, 4.4433747e-3, 4.6413012e-3, 4.8539670e-3, 5.0680268e-3, 5.3044183e-3, 5.5388017e-3, 5.7755439e-3, 6.0326566e-3, 6.2848452e-3, 6.5558742e-3, 6.8328348e-3, 7.1072149e-3, 7.1072149e-3]), ), ], "qcd_y" : np.array([2.5617082e-3, 2.4598979e-3, 2.3739593e-3, 2.2904004e-3, 2.2169883e-3, 2.1545803e-3, 2.0954206e-3, 2.0498675e-3, 2.0070737e-3, 1.9754803e-3, 1.9463467e-3, 1.9278404e-3, 1.9236438e-3, 1.9198349e-3, 1.9306588e-3, 1.9387108e-3, 1.9583331e-3, 1.9907351e-3, 2.0286806e-3, 2.0733607e-3, 2.1270186e-3, 2.1863925e-3, 2.2577539e-3, 2.3390006e-3, 2.4212326e-3, 2.5112892e-3, 2.6161915e-3, 2.7238882e-3, 2.8385163e-3, 2.9647013e-3, 3.0959433e-3, 3.2331088e-3, 3.3817486e-3, 3.5385707e-3, 3.7031757e-3, 3.8780884e-3, 4.0550706e-3, 4.2388498e-3, 4.4433747e-3, 4.6413012e-3, 4.8539670e-3, 5.0680268e-3, 5.3044183e-3, 5.5388017e-3, 5.7755439e-3, 6.0326566e-3, 6.2848452e-3, 6.5558742e-3, 6.8328348e-3, 7.1072149e-3, 7.1072149e-3]), "qcd_min" : np.array([2.4433990e-3, 2.3462555e-3, 2.2643201e-3, 2.1845478e-3, 2.1145236e-3, 2.0548881e-3, 1.9983845e-3, 1.9548476e-3, 1.9139322e-3, 1.8836686e-3, 1.8557506e-3, 1.8379680e-3, 1.8337991e-3, 1.8299901e-3, 1.8401805e-3, 1.8476284e-3, 1.8662068e-3, 1.8968667e-3, 1.9328299e-3, 1.9751895e-3, 2.0260910e-3, 2.0824733e-3, 2.1502855e-3, 2.2275197e-3, 2.3055794e-3, 2.3911361e-3, 2.4909493e-3, 2.5933063e-3, 2.7022640e-3, 2.8222590e-3, 2.9470724e-3, 3.0775451e-3, 3.2189071e-3, 3.3680276e-3, 3.5246274e-3, 3.6910487e-3, 3.8593518e-3, 4.0342136e-3, 4.2287372e-3, 4.4170780e-3, 4.6194516e-3, 4.8230030e-3, 5.0480045e-3, 5.2710327e-3, 5.4962622e-3, 5.7409237e-3, 5.9809253e-3, 6.2388890e-3, 6.5023785e-3, 6.7635515e-3, 6.7635515e-3]), "qcd_max" : np.array([2.6900604e-3, 2.5831920e-3, 2.4929066e-3, 2.4052452e-3, 2.3281584e-3, 2.2627536e-3, 2.2007167e-3, 2.1529838e-3, 2.1081610e-3, 2.0751367e-3, 2.0446966e-3, 2.0254163e-3, 2.0212045e-3, 2.0174111e-3, 2.0289322e-3, 2.0376618e-3, 2.0584262e-3, 2.0927416e-3, 2.1328564e-3, 2.1800780e-3, 2.2367509e-3, 2.2993910e-3, 2.3746249e-3, 2.4602457e-3, 2.5470394e-3, 2.6420082e-3, 2.7524493e-3, 2.8659720e-3, 2.9867879e-3, 3.1197183e-3, 3.2579655e-3, 3.4024228e-3, 3.5589936e-3, 3.7242136e-3, 3.8975378e-3, 4.0816963e-3, 4.2681397e-3, 4.4616317e-3, 4.6770565e-3, 4.8854207e-3, 5.1092919e-3, 5.3348103e-3, 5.5835965e-3, 5.8303478e-3, 6.0796332e-3, 6.3502993e-3, 6.6157573e-3, 6.9010042e-3, 7.1926442e-3, 7.4813962e-3, 7.4813962e-3]), "y" : np.array([2.5617082e-3, 2.4598979e-3, 2.3739593e-3, 2.2904004e-3, 2.2169883e-3, 2.1545803e-3, 2.0954206e-3, 2.0498675e-3, 2.0070737e-3, 1.9754803e-3, 1.9463467e-3, 1.9278404e-3, 1.9236438e-3, 1.9198349e-3, 1.9306588e-3, 1.9387108e-3, 1.9583331e-3, 1.9907351e-3, 2.0286806e-3, 2.0733607e-3, 2.1270186e-3, 2.1863925e-3, 2.2577539e-3, 2.3390006e-3, 2.4212326e-3, 2.5112892e-3, 2.6161915e-3, 2.7238882e-3, 2.8385163e-3, 2.9647013e-3, 3.0959433e-3, 3.2331088e-3, 3.3817486e-3, 3.5385707e-3, 3.7031757e-3, 3.8780884e-3, 4.0550706e-3, 4.2388498e-3, 4.4433747e-3, 4.6413012e-3, 4.8539670e-3, 5.0680268e-3, 5.3044183e-3, 5.5388017e-3, 5.7755439e-3, 6.0326566e-3, 6.2848452e-3, 6.5558742e-3, 6.8328348e-3, 7.1072149e-3, 7.1072149e-3]), "ymin" : np.array([2.4433990e-3, 2.3462555e-3, 2.2643201e-3, 2.1845478e-3, 2.1145236e-3, 2.0548881e-3, 1.9983845e-3, 1.9548476e-3, 1.9139322e-3, 1.8836686e-3, 1.8557506e-3, 1.8379680e-3, 1.8337991e-3, 1.8299901e-3, 1.8401805e-3, 1.8476284e-3, 1.8662068e-3, 1.8968667e-3, 1.9328299e-3, 1.9751895e-3, 2.0260910e-3, 2.0824733e-3, 2.1502855e-3, 2.2275197e-3, 2.3055794e-3, 2.3911361e-3, 2.4909493e-3, 2.5933063e-3, 2.7022640e-3, 2.8222590e-3, 2.9470724e-3, 3.0775451e-3, 3.2189071e-3, 3.3680276e-3, 3.5246274e-3, 3.6910487e-3, 3.8593518e-3, 4.0342136e-3, 4.2287372e-3, 4.4170780e-3, 4.6194516e-3, 4.8230030e-3, 5.0480045e-3, 5.2710327e-3, 5.4962622e-3, 5.7409237e-3, 5.9809253e-3, 6.2388890e-3, 6.5023785e-3, 6.7635515e-3, 6.7635515e-3]), "ymax" : np.array([2.6900604e-3, 2.5831920e-3, 2.4929066e-3, 2.4052452e-3, 2.3281584e-3, 2.2627536e-3, 2.2007167e-3, 2.1529838e-3, 2.1081610e-3, 2.0751367e-3, 2.0446966e-3, 2.0254163e-3, 2.0212045e-3, 2.0174111e-3, 2.0289322e-3, 2.0376618e-3, 2.0584262e-3, 2.0927416e-3, 2.1328564e-3, 2.1800780e-3, 2.2367509e-3, 2.2993910e-3, 2.3746249e-3, 2.4602457e-3, 2.5470394e-3, 2.6420082e-3, 2.7524493e-3, 2.8659720e-3, 2.9867879e-3, 3.1197183e-3, 3.2579655e-3, 3.4024228e-3, 3.5589936e-3, 3.7242136e-3, 3.8975378e-3, 4.0816963e-3, 4.2681397e-3, 4.4616317e-3, 4.6770565e-3, 4.8854207e-3, 5.1092919e-3, 5.3348103e-3, 5.5835965e-3, 5.8303478e-3, 6.0796332e-3, 6.3502993e-3, 6.6157573e-3, 6.9010042e-3, 7.1926442e-3, 7.4813962e-3, 7.4813962e-3]), "channels" : [ (r"$\mathrm{u}\bar{\mathrm{u}} + \mathrm{c}\bar{\mathrm{c}}$", np.array([1.7616291e-3, 1.6911649e-3, 1.6342583e-3, 1.5774106e-3, 1.5296227e-3, 1.4870592e-3, 1.4501547e-3, 1.4231677e-3, 1.3961418e-3, 1.3812502e-3, 1.3643810e-3, 1.3567734e-3, 1.3608923e-3, 1.3632562e-3, 1.3766557e-3, 1.3895131e-3, 1.4112073e-3, 1.4417942e-3, 1.4765595e-3, 1.5173010e-3, 1.5614209e-3, 1.6126977e-3, 1.6721940e-3, 1.7400618e-3, 1.8065100e-3, 1.8812026e-3, 1.9661448e-3, 2.0527345e-3, 2.1433356e-3, 2.2450972e-3, 2.3489923e-3, 2.4583112e-3, 2.5749841e-3, 2.6984465e-3, 2.8287488e-3, 2.9650118e-3, 3.1027853e-3, 3.2480645e-3, 3.4074955e-3, 3.5603053e-3, 3.7263245e-3, 3.8911284e-3, 4.0776944e-3, 4.2584114e-3, 4.4403143e-3, 4.6397117e-3, 4.8333550e-3, 5.0415868e-3, 5.2559809e-3, 5.4675131e-3, 5.4675131e-3])), (r"$\mathrm{d}\bar{\mathrm{d}} + \mathrm{s}\bar{\mathrm{s}} + \mathrm{b}\bar{\mathrm{b}}$", np.array([8.0007914e-4, 7.6873302e-4, 7.3970097e-4, 7.1298983e-4, 6.8736553e-4, 6.6752119e-4, 6.4526588e-4, 6.2669976e-4, 6.1093192e-4, 5.9423014e-4, 5.8196564e-4, 5.7106698e-4, 5.6275141e-4, 5.5657872e-4, 5.5400311e-4, 5.4919766e-4, 5.4712581e-4, 5.4894089e-4, 5.5212109e-4, 5.5605969e-4, 5.6559775e-4, 5.7369482e-4, 5.8555990e-4, 5.9893885e-4, 6.1472260e-4, 6.3008659e-4, 6.5004668e-4, 6.7115370e-4, 6.9518073e-4, 7.1960411e-4, 7.4695103e-4, 7.7479758e-4, 8.0676452e-4, 8.4012417e-4, 8.7442688e-4, 9.1307666e-4, 9.5228530e-4, 9.9078535e-4, 1.0358792e-3, 1.0809959e-3, 1.1276426e-3, 1.1768984e-3, 1.2267239e-3, 1.2803903e-3, 1.3352297e-3, 1.3929449e-3, 1.4514902e-3, 1.5142873e-3, 1.5768539e-3, 1.6397017e-3, 1.6397017e-3])) ], }, { "slice_label" : r"$\SI{3000}{GeV} < M_{\ell\bar{\ell}} < \SI{5000}{GeV}$", "x" : np.array([-1, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, -0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04, 0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1]), "mid" : np.array([-0.98, -0.94, -0.9, -0.86, -0.8200000000000001, -0.78, -0.74, -0.7, -0.66, -0.62, -0.5800000000000001, -0.54, -0.5, -0.45999999999999996, -0.42000000000000004, -0.38, -0.33999999999999997, -0.30000000000000004, -0.26, -0.22, -0.18, -0.14, -0.1, -0.06, -0.02, 0.02, 0.06, 0.1, 0.14, 0.18, 0.22, 0.26, 0.30000000000000004, 0.33999999999999997, 0.38, 0.42000000000000004, 0.45999999999999996, 0.5, 0.54, 0.5800000000000001, 0.62, 0.66, 0.7, 0.74, 0.78, 0.8200000000000001, 0.86, 0.9, 0.94, 0.98]), "pdf_results" : [ ( "NNPDF40\_nnlo\_as\_01180", np.array([6.2465996e-6, 6.0034213e-6, 5.7797522e-6, 5.5687657e-6, 5.3773216e-6, 5.2238184e-6, 5.0756828e-6, 4.9383156e-6, 4.8214512e-6, 4.7223650e-6, 4.6294871e-6, 4.5718841e-6, 4.5342638e-6, 4.5007520e-6, 4.4839047e-6, 4.4869367e-6, 4.4982789e-6, 4.5450330e-6, 4.5977541e-6, 4.6718137e-6, 4.7661079e-6, 4.8701525e-6, 4.9939852e-6, 5.1354655e-6, 5.2846376e-6, 5.4684465e-6, 5.6623492e-6, 5.8730989e-6, 6.0903744e-6, 6.3420036e-6, 6.5968891e-6, 6.8710820e-6, 7.1723222e-6, 7.4866891e-6, 7.8198286e-6, 8.1658921e-6, 8.5241509e-6, 8.9034082e-6, 9.3249988e-6, 9.7246164e-6, 1.0161853e-5, 1.0601092e-5, 1.1090916e-5, 1.1568922e-5, 1.2067291e-5, 1.2591296e-5, 1.3116574e-5, 1.3680615e-5, 1.4255445e-5, 1.4833252e-5, 1.4833252e-5]), np.array([6.2465996e-6, 6.0034213e-6, 5.7797522e-6, 5.5687657e-6, 5.3773216e-6, 5.2238184e-6, 5.0756828e-6, 4.9383156e-6, 4.8214512e-6, 4.7223650e-6, 4.6294871e-6, 4.5718841e-6, 4.5342638e-6, 4.5007520e-6, 4.4839047e-6, 4.4869367e-6, 4.4982789e-6, 4.5450330e-6, 4.5977541e-6, 4.6718137e-6, 4.7661079e-6, 4.8701525e-6, 4.9939852e-6, 5.1354655e-6, 5.2846376e-6, 5.4684465e-6, 5.6623492e-6, 5.8730989e-6, 6.0903744e-6, 6.3420036e-6, 6.5968891e-6, 6.8710820e-6, 7.1723222e-6, 7.4866891e-6, 7.8198286e-6, 8.1658921e-6, 8.5241509e-6, 8.9034082e-6, 9.3249988e-6, 9.7246164e-6, 1.0161853e-5, 1.0601092e-5, 1.1090916e-5, 1.1568922e-5, 1.2067291e-5, 1.2591296e-5, 1.3116574e-5, 1.3680615e-5, 1.4255445e-5, 1.4833252e-5, 1.4833252e-5]), np.array([6.2465996e-6, 6.0034213e-6, 5.7797522e-6, 5.5687657e-6, 5.3773216e-6, 5.2238184e-6, 5.0756828e-6, 4.9383156e-6, 4.8214512e-6, 4.7223650e-6, 4.6294871e-6, 4.5718841e-6, 4.5342638e-6, 4.5007520e-6, 4.4839047e-6, 4.4869367e-6, 4.4982789e-6, 4.5450330e-6, 4.5977541e-6, 4.6718137e-6, 4.7661079e-6, 4.8701525e-6, 4.9939852e-6, 5.1354655e-6, 5.2846376e-6, 5.4684465e-6, 5.6623492e-6, 5.8730989e-6, 6.0903744e-6, 6.3420036e-6, 6.5968891e-6, 6.8710820e-6, 7.1723222e-6, 7.4866891e-6, 7.8198286e-6, 8.1658921e-6, 8.5241509e-6, 8.9034082e-6, 9.3249988e-6, 9.7246164e-6, 1.0161853e-5, 1.0601092e-5, 1.1090916e-5, 1.1568922e-5, 1.2067291e-5, 1.2591296e-5, 1.3116574e-5, 1.3680615e-5, 1.4255445e-5, 1.4833252e-5, 1.4833252e-5]), ), ], "qcd_y" : np.array([6.2465996e-6, 6.0034213e-6, 5.7797522e-6, 5.5687657e-6, 5.3773216e-6, 5.2238184e-6, 5.0756828e-6, 4.9383156e-6, 4.8214512e-6, 4.7223650e-6, 4.6294871e-6, 4.5718841e-6, 4.5342638e-6, 4.5007520e-6, 4.4839047e-6, 4.4869367e-6, 4.4982789e-6, 4.5450330e-6, 4.5977541e-6, 4.6718137e-6, 4.7661079e-6, 4.8701525e-6, 4.9939852e-6, 5.1354655e-6, 5.2846376e-6, 5.4684465e-6, 5.6623492e-6, 5.8730989e-6, 6.0903744e-6, 6.3420036e-6, 6.5968891e-6, 6.8710820e-6, 7.1723222e-6, 7.4866891e-6, 7.8198286e-6, 8.1658921e-6, 8.5241509e-6, 8.9034082e-6, 9.3249988e-6, 9.7246164e-6, 1.0161853e-5, 1.0601092e-5, 1.1090916e-5, 1.1568922e-5, 1.2067291e-5, 1.2591296e-5, 1.3116574e-5, 1.3680615e-5, 1.4255445e-5, 1.4833252e-5, 1.4833252e-5]), "qcd_min" : np.array([5.6866684e-6, 5.4651977e-6, 5.2613729e-6, 5.0689158e-6, 4.8941565e-6, 4.7537750e-6, 4.6182119e-6, 4.4922956e-6, 4.3849538e-6, 4.2937032e-6, 4.2079310e-6, 4.1541756e-6, 4.1184851e-6, 4.0863547e-6, 4.0694365e-6, 4.0703272e-6, 4.0787102e-6, 4.1192025e-6, 4.1650808e-6, 4.2302802e-6, 4.3136971e-6, 4.4057934e-6, 4.5160067e-6, 4.6419912e-6, 4.7748821e-6, 4.9391744e-6, 5.1125904e-6, 5.3012260e-6, 5.4957407e-6, 5.7213184e-6, 5.9497430e-6, 6.1957859e-6, 6.4659428e-6, 6.7482393e-6, 7.0474515e-6, 7.3582580e-6, 7.6802270e-6, 8.0209638e-6, 8.3999467e-6, 8.7593697e-6, 9.1525508e-6, 9.5474088e-6, 9.9882677e-6, 1.0418338e-5, 1.0866860e-5, 1.1338291e-5, 1.1811156e-5, 1.2318936e-5, 1.2836289e-5, 1.3356626e-5, 1.3356626e-5]), "qcd_max" : np.array([6.9047938e-6, 6.6361078e-6, 6.3891395e-6, 6.1564219e-6, 5.9454311e-6, 5.7765647e-6, 5.6137220e-6, 5.4629977e-6, 5.3350625e-6, 5.2268797e-6, 5.1258012e-6, 5.0638247e-6, 5.0241005e-6, 4.9891562e-6, 4.9725786e-6, 4.9783504e-6, 4.9933967e-6, 5.0477573e-6, 5.1087655e-6, 5.1935058e-6, 5.3008631e-6, 5.4192638e-6, 5.5593981e-6, 5.7194262e-6, 5.8880825e-6, 6.0951841e-6, 6.3135340e-6, 6.5506543e-6, 6.7950709e-6, 7.0777272e-6, 7.3641504e-6, 7.6718472e-6, 8.0101063e-6, 8.3626263e-6, 8.7361286e-6, 9.1241232e-6, 9.5255295e-6, 9.9506079e-6, 1.0422845e-5, 1.0870221e-5, 1.1359812e-5, 1.1851819e-5, 1.2399784e-5, 1.2934737e-5, 1.3492307e-5, 1.4078770e-5, 1.4666284e-5, 1.5297122e-5, 1.5940219e-5, 1.6586246e-5, 1.6586246e-5]), "y" : np.array([6.2465996e-6, 6.0034213e-6, 5.7797522e-6, 5.5687657e-6, 5.3773216e-6, 5.2238184e-6, 5.0756828e-6, 4.9383156e-6, 4.8214512e-6, 4.7223650e-6, 4.6294871e-6, 4.5718841e-6, 4.5342638e-6, 4.5007520e-6, 4.4839047e-6, 4.4869367e-6, 4.4982789e-6, 4.5450330e-6, 4.5977541e-6, 4.6718137e-6, 4.7661079e-6, 4.8701525e-6, 4.9939852e-6, 5.1354655e-6, 5.2846376e-6, 5.4684465e-6, 5.6623492e-6, 5.8730989e-6, 6.0903744e-6, 6.3420036e-6, 6.5968891e-6, 6.8710820e-6, 7.1723222e-6, 7.4866891e-6, 7.8198286e-6, 8.1658921e-6, 8.5241509e-6, 8.9034082e-6, 9.3249988e-6, 9.7246164e-6, 1.0161853e-5, 1.0601092e-5, 1.1090916e-5, 1.1568922e-5, 1.2067291e-5, 1.2591296e-5, 1.3116574e-5, 1.3680615e-5, 1.4255445e-5, 1.4833252e-5, 1.4833252e-5]), "ymin" : np.array([5.6866684e-6, 5.4651977e-6, 5.2613729e-6, 5.0689158e-6, 4.8941565e-6, 4.7537750e-6, 4.6182119e-6, 4.4922956e-6, 4.3849538e-6, 4.2937032e-6, 4.2079310e-6, 4.1541756e-6, 4.1184851e-6, 4.0863547e-6, 4.0694365e-6, 4.0703272e-6, 4.0787102e-6, 4.1192025e-6, 4.1650808e-6, 4.2302802e-6, 4.3136971e-6, 4.4057934e-6, 4.5160067e-6, 4.6419912e-6, 4.7748821e-6, 4.9391744e-6, 5.1125904e-6, 5.3012260e-6, 5.4957407e-6, 5.7213184e-6, 5.9497430e-6, 6.1957859e-6, 6.4659428e-6, 6.7482393e-6, 7.0474515e-6, 7.3582580e-6, 7.6802270e-6, 8.0209638e-6, 8.3999467e-6, 8.7593697e-6, 9.1525508e-6, 9.5474088e-6, 9.9882677e-6, 1.0418338e-5, 1.0866860e-5, 1.1338291e-5, 1.1811156e-5, 1.2318936e-5, 1.2836289e-5, 1.3356626e-5, 1.3356626e-5]), "ymax" : np.array([6.9047938e-6, 6.6361078e-6, 6.3891395e-6, 6.1564219e-6, 5.9454311e-6, 5.7765647e-6, 5.6137220e-6, 5.4629977e-6, 5.3350625e-6, 5.2268797e-6, 5.1258012e-6, 5.0638247e-6, 5.0241005e-6, 4.9891562e-6, 4.9725786e-6, 4.9783504e-6, 4.9933967e-6, 5.0477573e-6, 5.1087655e-6, 5.1935058e-6, 5.3008631e-6, 5.4192638e-6, 5.5593981e-6, 5.7194262e-6, 5.8880825e-6, 6.0951841e-6, 6.3135340e-6, 6.5506543e-6, 6.7950709e-6, 7.0777272e-6, 7.3641504e-6, 7.6718472e-6, 8.0101063e-6, 8.3626263e-6, 8.7361286e-6, 9.1241232e-6, 9.5255295e-6, 9.9506079e-6, 1.0422845e-5, 1.0870221e-5, 1.1359812e-5, 1.1851819e-5, 1.2399784e-5, 1.2934737e-5, 1.3492307e-5, 1.4078770e-5, 1.4666284e-5, 1.5297122e-5, 1.5940219e-5, 1.6586246e-5, 1.6586246e-5]), "channels" : [ (r"$\mathrm{u}\bar{\mathrm{u}} + \mathrm{c}\bar{\mathrm{c}}$", np.array([4.6777566e-6, 4.4963962e-6, 4.3306007e-6, 4.1754689e-6, 4.0363593e-6, 3.9179347e-6, 3.8165473e-6, 3.7197417e-6, 3.6346919e-6, 3.5751766e-6, 3.5122544e-6, 3.4767729e-6, 3.4554987e-6, 3.4422327e-6, 3.4417328e-6, 3.4528854e-6, 3.4709891e-6, 3.5177672e-6, 3.5749797e-6, 3.6467432e-6, 3.7308688e-6, 3.8237671e-6, 3.9340001e-6, 4.0621100e-6, 4.1911104e-6, 4.3449958e-6, 4.5162833e-6, 4.6918556e-6, 4.8735482e-6, 5.0854161e-6, 5.2989079e-6, 5.5277044e-6, 5.7758933e-6, 6.0409618e-6, 6.3160095e-6, 6.5984170e-6, 6.8992288e-6, 7.2113545e-6, 7.5534076e-6, 7.8855627e-6, 8.2445573e-6, 8.6012535e-6, 9.0054786e-6, 9.3922951e-6, 9.8034487e-6, 1.0231410e-5, 1.0657907e-5, 1.1117212e-5, 1.1580680e-5, 1.2054302e-5, 1.2054302e-5])), (r"$\mathrm{d}\bar{\mathrm{d}} + \mathrm{s}\bar{\mathrm{s}} + \mathrm{b}\bar{\mathrm{b}}$", np.array([1.5688431e-6, 1.5070251e-6, 1.4491516e-6, 1.3932968e-6, 1.3409623e-6, 1.3058837e-6, 1.2591355e-6, 1.2185739e-6, 1.1867593e-6, 1.1471884e-6, 1.1172327e-6, 1.0951112e-6, 1.0787651e-6, 1.0585193e-6, 1.0421720e-6, 1.0340513e-6, 1.0272899e-6, 1.0272658e-6, 1.0227744e-6, 1.0250705e-6, 1.0352391e-6, 1.0463853e-6, 1.0599851e-6, 1.0733554e-6, 1.0935272e-6, 1.1234508e-6, 1.1460659e-6, 1.1812434e-6, 1.2168262e-6, 1.2565876e-6, 1.2979811e-6, 1.3433775e-6, 1.3964289e-6, 1.4457273e-6, 1.5038190e-6, 1.5674750e-6, 1.6249222e-6, 1.6920536e-6, 1.7715912e-6, 1.8390536e-6, 1.9172958e-6, 1.9998384e-6, 2.0854378e-6, 2.1766274e-6, 2.2638427e-6, 2.3598858e-6, 2.4586667e-6, 2.5634024e-6, 2.6747642e-6, 2.7789500e-6, 2.7789500e-6])) ], }, { "slice_label" : r"$\SI{5000}{GeV} < M_{\ell\bar{\ell}} < \SI{8000}{GeV}$", "x" : np.array([-1, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, -0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04, 0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1]), "mid" : np.array([-0.98, -0.94, -0.9, -0.86, -0.8200000000000001, -0.78, -0.74, -0.7, -0.66, -0.62, -0.5800000000000001, -0.54, -0.5, -0.45999999999999996, -0.42000000000000004, -0.38, -0.33999999999999997, -0.30000000000000004, -0.26, -0.22, -0.18, -0.14, -0.1, -0.06, -0.02, 0.02, 0.06, 0.1, 0.14, 0.18, 0.22, 0.26, 0.30000000000000004, 0.33999999999999997, 0.38, 0.42000000000000004, 0.45999999999999996, 0.5, 0.54, 0.5800000000000001, 0.62, 0.66, 0.7, 0.74, 0.78, 0.8200000000000001, 0.86, 0.9, 0.94, 0.98]), "pdf_results" : [ ( "NNPDF40\_nnlo\_as\_01180", np.array([1.3268262e-7, 1.2786453e-7, 1.2307005e-7, 1.1780526e-7, 1.1356356e-7, 1.0892100e-7, 1.0505353e-7, 1.0109804e-7, 9.7278368e-8, 9.3859898e-8, 9.0732778e-8, 8.7265819e-8, 8.4585006e-8, 8.2016912e-8, 7.9708423e-8, 7.7419509e-8, 7.5101943e-8, 7.3713994e-8, 7.2071670e-8, 7.0690848e-8, 6.9458697e-8, 6.8574148e-8, 6.7759607e-8, 6.7352353e-8, 6.7120091e-8, 6.7021996e-8, 6.7173994e-8, 6.7534167e-8, 6.7992384e-8, 6.8908159e-8, 6.9745535e-8, 7.1108396e-8, 7.2621295e-8, 7.4232542e-8, 7.6019061e-8, 7.8080590e-8, 8.0376525e-8, 8.2963179e-8, 8.5596531e-8, 8.8529203e-8, 9.1685084e-8, 9.5096261e-8, 9.8559654e-8, 1.0240826e-7, 1.0639069e-7, 1.1076525e-7, 1.1520479e-7, 1.1965034e-7, 1.2456911e-7, 1.2975301e-7, 1.2975301e-7]), np.array([1.3268262e-7, 1.2786453e-7, 1.2307005e-7, 1.1780526e-7, 1.1356356e-7, 1.0892100e-7, 1.0505353e-7, 1.0109804e-7, 9.7278368e-8, 9.3859898e-8, 9.0732778e-8, 8.7265819e-8, 8.4585006e-8, 8.2016912e-8, 7.9708423e-8, 7.7419509e-8, 7.5101943e-8, 7.3713994e-8, 7.2071670e-8, 7.0690848e-8, 6.9458697e-8, 6.8574148e-8, 6.7759607e-8, 6.7352353e-8, 6.7120091e-8, 6.7021996e-8, 6.7173994e-8, 6.7534167e-8, 6.7992384e-8, 6.8908159e-8, 6.9745535e-8, 7.1108396e-8, 7.2621295e-8, 7.4232542e-8, 7.6019061e-8, 7.8080590e-8, 8.0376525e-8, 8.2963179e-8, 8.5596531e-8, 8.8529203e-8, 9.1685084e-8, 9.5096261e-8, 9.8559654e-8, 1.0240826e-7, 1.0639069e-7, 1.1076525e-7, 1.1520479e-7, 1.1965034e-7, 1.2456911e-7, 1.2975301e-7, 1.2975301e-7]), np.array([1.3268262e-7, 1.2786453e-7, 1.2307005e-7, 1.1780526e-7, 1.1356356e-7, 1.0892100e-7, 1.0505353e-7, 1.0109804e-7, 9.7278368e-8, 9.3859898e-8, 9.0732778e-8, 8.7265819e-8, 8.4585006e-8, 8.2016912e-8, 7.9708423e-8, 7.7419509e-8, 7.5101943e-8, 7.3713994e-8, 7.2071670e-8, 7.0690848e-8, 6.9458697e-8, 6.8574148e-8, 6.7759607e-8, 6.7352353e-8, 6.7120091e-8, 6.7021996e-8, 6.7173994e-8, 6.7534167e-8, 6.7992384e-8, 6.8908159e-8, 6.9745535e-8, 7.1108396e-8, 7.2621295e-8, 7.4232542e-8, 7.6019061e-8, 7.8080590e-8, 8.0376525e-8, 8.2963179e-8, 8.5596531e-8, 8.8529203e-8, 9.1685084e-8, 9.5096261e-8, 9.8559654e-8, 1.0240826e-7, 1.0639069e-7, 1.1076525e-7, 1.1520479e-7, 1.1965034e-7, 1.2456911e-7, 1.2975301e-7, 1.2975301e-7]), ), ], "qcd_y" : np.array([1.3268262e-7, 1.2786453e-7, 1.2307005e-7, 1.1780526e-7, 1.1356356e-7, 1.0892100e-7, 1.0505353e-7, 1.0109804e-7, 9.7278368e-8, 9.3859898e-8, 9.0732778e-8, 8.7265819e-8, 8.4585006e-8, 8.2016912e-8, 7.9708423e-8, 7.7419509e-8, 7.5101943e-8, 7.3713994e-8, 7.2071670e-8, 7.0690848e-8, 6.9458697e-8, 6.8574148e-8, 6.7759607e-8, 6.7352353e-8, 6.7120091e-8, 6.7021996e-8, 6.7173994e-8, 6.7534167e-8, 6.7992384e-8, 6.8908159e-8, 6.9745535e-8, 7.1108396e-8, 7.2621295e-8, 7.4232542e-8, 7.6019061e-8, 7.8080590e-8, 8.0376525e-8, 8.2963179e-8, 8.5596531e-8, 8.8529203e-8, 9.1685084e-8, 9.5096261e-8, 9.8559654e-8, 1.0240826e-7, 1.0639069e-7, 1.1076525e-7, 1.1520479e-7, 1.1965034e-7, 1.2456911e-7, 1.2975301e-7, 1.2975301e-7]), "qcd_min" : np.array([1.1796105e-7, 1.1367206e-7, 1.0940640e-7, 1.0473022e-7, 1.0094995e-7, 9.6817367e-8, 9.3368040e-8, 8.9841440e-8, 8.6438729e-8, 8.3389429e-8, 8.0592033e-8, 7.7501048e-8, 7.5100969e-8, 7.2799905e-8, 7.0734091e-8, 6.8678517e-8, 6.6600127e-8, 6.5343484e-8, 6.3861008e-8, 6.2611336e-8, 6.1492668e-8, 6.0680109e-8, 5.9926419e-8, 5.9534539e-8, 5.9300399e-8, 5.9178721e-8, 5.9281434e-8, 5.9570740e-8, 5.9942127e-8, 6.0724158e-8, 6.1428979e-8, 6.2599969e-8, 6.3904432e-8, 6.5297162e-8, 6.6843778e-8, 6.8632843e-8, 7.0630564e-8, 7.2883947e-8, 7.5177425e-8, 7.7737465e-8, 8.0492081e-8, 8.3474223e-8, 8.6500375e-8, 8.9868353e-8, 9.3354036e-8, 9.7186902e-8, 1.0107609e-7, 1.0497339e-7, 1.0928445e-7, 1.1383240e-7, 1.1383240e-7]), "qcd_max" : np.array([1.5031713e-7, 1.4486644e-7, 1.3943889e-7, 1.3346815e-7, 1.2867540e-7, 1.2342279e-7, 1.1905669e-7, 1.1458942e-7, 1.1027138e-7, 1.0641247e-7, 1.0289371e-7, 9.8977949e-8, 9.5964016e-8, 9.3079140e-8, 9.0482540e-8, 8.7917761e-8, 8.5317122e-8, 8.3776037e-8, 8.1946300e-8, 8.0412453e-8, 7.9048531e-8, 7.8082511e-8, 7.7200627e-8, 7.6780539e-8, 7.6555496e-8, 7.6492081e-8, 7.6709085e-8, 7.7159748e-8, 7.7728575e-8, 7.8810410e-8, 7.9813916e-8, 8.1414088e-8, 8.3184083e-8, 8.5064404e-8, 8.7145967e-8, 8.9541837e-8, 9.2203014e-8, 9.5197361e-8, 9.8246621e-8, 1.0163432e-7, 1.0528027e-7, 1.0921464e-7, 1.1321161e-7, 1.1764575e-7, 1.2223338e-7, 1.2726711e-7, 1.3237650e-7, 1.3748886e-7, 1.4314700e-7, 1.4910383e-7, 1.4910383e-7]), "y" : np.array([1.3268262e-7, 1.2786453e-7, 1.2307005e-7, 1.1780526e-7, 1.1356356e-7, 1.0892100e-7, 1.0505353e-7, 1.0109804e-7, 9.7278368e-8, 9.3859898e-8, 9.0732778e-8, 8.7265819e-8, 8.4585006e-8, 8.2016912e-8, 7.9708423e-8, 7.7419509e-8, 7.5101943e-8, 7.3713994e-8, 7.2071670e-8, 7.0690848e-8, 6.9458697e-8, 6.8574148e-8, 6.7759607e-8, 6.7352353e-8, 6.7120091e-8, 6.7021996e-8, 6.7173994e-8, 6.7534167e-8, 6.7992384e-8, 6.8908159e-8, 6.9745535e-8, 7.1108396e-8, 7.2621295e-8, 7.4232542e-8, 7.6019061e-8, 7.8080590e-8, 8.0376525e-8, 8.2963179e-8, 8.5596531e-8, 8.8529203e-8, 9.1685084e-8, 9.5096261e-8, 9.8559654e-8, 1.0240826e-7, 1.0639069e-7, 1.1076525e-7, 1.1520479e-7, 1.1965034e-7, 1.2456911e-7, 1.2975301e-7, 1.2975301e-7]), "ymin" : np.array([1.1796105e-7, 1.1367206e-7, 1.0940640e-7, 1.0473022e-7, 1.0094995e-7, 9.6817367e-8, 9.3368040e-8, 8.9841440e-8, 8.6438729e-8, 8.3389429e-8, 8.0592033e-8, 7.7501048e-8, 7.5100969e-8, 7.2799905e-8, 7.0734091e-8, 6.8678517e-8, 6.6600127e-8, 6.5343484e-8, 6.3861008e-8, 6.2611336e-8, 6.1492668e-8, 6.0680109e-8, 5.9926419e-8, 5.9534539e-8, 5.9300399e-8, 5.9178721e-8, 5.9281434e-8, 5.9570740e-8, 5.9942127e-8, 6.0724158e-8, 6.1428979e-8, 6.2599969e-8, 6.3904432e-8, 6.5297162e-8, 6.6843778e-8, 6.8632843e-8, 7.0630564e-8, 7.2883947e-8, 7.5177425e-8, 7.7737465e-8, 8.0492081e-8, 8.3474223e-8, 8.6500375e-8, 8.9868353e-8, 9.3354036e-8, 9.7186902e-8, 1.0107609e-7, 1.0497339e-7, 1.0928445e-7, 1.1383240e-7, 1.1383240e-7]), "ymax" : np.array([1.5031713e-7, 1.4486644e-7, 1.3943889e-7, 1.3346815e-7, 1.2867540e-7, 1.2342279e-7, 1.1905669e-7, 1.1458942e-7, 1.1027138e-7, 1.0641247e-7, 1.0289371e-7, 9.8977949e-8, 9.5964016e-8, 9.3079140e-8, 9.0482540e-8, 8.7917761e-8, 8.5317122e-8, 8.3776037e-8, 8.1946300e-8, 8.0412453e-8, 7.9048531e-8, 7.8082511e-8, 7.7200627e-8, 7.6780539e-8, 7.6555496e-8, 7.6492081e-8, 7.6709085e-8, 7.7159748e-8, 7.7728575e-8, 7.8810410e-8, 7.9813916e-8, 8.1414088e-8, 8.3184083e-8, 8.5064404e-8, 8.7145967e-8, 8.9541837e-8, 9.2203014e-8, 9.5197361e-8, 9.8246621e-8, 1.0163432e-7, 1.0528027e-7, 1.0921464e-7, 1.1321161e-7, 1.1764575e-7, 1.2223338e-7, 1.2726711e-7, 1.3237650e-7, 1.3748886e-7, 1.4314700e-7, 1.4910383e-7, 1.4910383e-7]), "channels" : [ (r"$\mathrm{u}\bar{\mathrm{u}} + \mathrm{c}\bar{\mathrm{c}}$", np.array([1.0634997e-7, 1.0232840e-7, 9.8488999e-8, 9.4336233e-8, 9.0829972e-8, 8.7163111e-8, 8.4152495e-8, 8.1031902e-8, 7.8203491e-8, 7.5443983e-8, 7.3006568e-8, 7.0236490e-8, 6.8148391e-8, 6.6168729e-8, 6.4386166e-8, 6.2647603e-8, 6.0968245e-8, 5.9862611e-8, 5.8622760e-8, 5.7758449e-8, 5.6855750e-8, 5.6212654e-8, 5.5703319e-8, 5.5430259e-8, 5.5446303e-8, 5.5542422e-8, 5.5708682e-8, 5.6224214e-8, 5.6730599e-8, 5.7643506e-8, 5.8465496e-8, 5.9752070e-8, 6.1119329e-8, 6.2593741e-8, 6.4180037e-8, 6.6108169e-8, 6.8114131e-8, 7.0406260e-8, 7.2716285e-8, 7.5307416e-8, 7.8063327e-8, 8.0943969e-8, 8.4008157e-8, 8.7317120e-8, 9.0784410e-8, 9.4583904e-8, 9.8309896e-8, 1.0224158e-7, 1.0641016e-7, 1.1078435e-7, 1.1078435e-7])), (r"$\mathrm{d}\bar{\mathrm{d}} + \mathrm{s}\bar{\mathrm{s}} + \mathrm{b}\bar{\mathrm{b}}$", np.array([2.6332651e-8, 2.5536122e-8, 2.4581048e-8, 2.3469032e-8, 2.2733585e-8, 2.1757885e-8, 2.0901034e-8, 2.0066140e-8, 1.9074876e-8, 1.8415915e-8, 1.7726211e-8, 1.7029329e-8, 1.6436615e-8, 1.5848183e-8, 1.5322258e-8, 1.4771906e-8, 1.4133698e-8, 1.3851383e-8, 1.3448911e-8, 1.2932399e-8, 1.2602947e-8, 1.2361494e-8, 1.2056288e-8, 1.1922094e-8, 1.1673787e-8, 1.1479574e-8, 1.1465312e-8, 1.1309954e-8, 1.1261785e-8, 1.1264654e-8, 1.1280039e-8, 1.1356326e-8, 1.1501966e-8, 1.1638801e-8, 1.1839024e-8, 1.1972421e-8, 1.2262394e-8, 1.2556919e-8, 1.2880247e-8, 1.3221787e-8, 1.3621758e-8, 1.4152292e-8, 1.4551497e-8, 1.5091138e-8, 1.5606276e-8, 1.6181342e-8, 1.6894894e-8, 1.7408752e-8, 1.8158948e-8, 1.8968662e-8, 1.8968662e-8])) ], }, { "slice_label" : r"$\SI{8000}{GeV} < M_{\ell\bar{\ell}} < \SI{10000}{GeV}$", "x" : np.array([-1, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, -0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04, 0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1]), "mid" : np.array([-0.98, -0.94, -0.9, -0.86, -0.8200000000000001, -0.78, -0.74, -0.7, -0.66, -0.62, -0.5800000000000001, -0.54, -0.5, -0.45999999999999996, -0.42000000000000004, -0.38, -0.33999999999999997, -0.30000000000000004, -0.26, -0.22, -0.18, -0.14, -0.1, -0.06, -0.02, 0.02, 0.06, 0.1, 0.14, 0.18, 0.22, 0.26, 0.30000000000000004, 0.33999999999999997, 0.38, 0.42000000000000004, 0.45999999999999996, 0.5, 0.54, 0.5800000000000001, 0.62, 0.66, 0.7, 0.74, 0.78, 0.8200000000000001, 0.86, 0.9, 0.94, 0.98]), "pdf_results" : [ ( "NNPDF40\_nnlo\_as\_01180", np.array([7.1861026e-10, 6.9052982e-10, 6.6277085e-10, 6.3573468e-10, 6.1024606e-10, 5.8475908e-10, 5.6096402e-10, 5.3833955e-10, 5.1558216e-10, 4.9404513e-10, 4.7398312e-10, 4.5273929e-10, 4.3405736e-10, 4.1643201e-10, 3.9946960e-10, 3.8248920e-10, 3.6635833e-10, 3.5323838e-10, 3.3921398e-10, 3.2684546e-10, 3.1412226e-10, 3.0313435e-10, 2.9192112e-10, 2.8290167e-10, 2.7525858e-10, 2.6743219e-10, 2.5992966e-10, 2.5408868e-10, 2.4832543e-10, 2.4538556e-10, 2.4100708e-10, 2.3910018e-10, 2.3747322e-10, 2.3728921e-10, 2.3669027e-10, 2.3798116e-10, 2.3947283e-10, 2.4222947e-10, 2.4587694e-10, 2.5017261e-10, 2.5579842e-10, 2.6167570e-10, 2.6866230e-10, 2.7632565e-10, 2.8548191e-10, 2.9544050e-10, 3.0598398e-10, 3.1671560e-10, 3.2904259e-10, 3.4234846e-10, 3.4234846e-10]), np.array([7.1861026e-10, 6.9052982e-10, 6.6277085e-10, 6.3573468e-10, 6.1024606e-10, 5.8475908e-10, 5.6096402e-10, 5.3833955e-10, 5.1558216e-10, 4.9404513e-10, 4.7398312e-10, 4.5273929e-10, 4.3405736e-10, 4.1643201e-10, 3.9946960e-10, 3.8248920e-10, 3.6635833e-10, 3.5323838e-10, 3.3921398e-10, 3.2684546e-10, 3.1412226e-10, 3.0313435e-10, 2.9192112e-10, 2.8290167e-10, 2.7525858e-10, 2.6743219e-10, 2.5992966e-10, 2.5408868e-10, 2.4832543e-10, 2.4538556e-10, 2.4100708e-10, 2.3910018e-10, 2.3747322e-10, 2.3728921e-10, 2.3669027e-10, 2.3798116e-10, 2.3947283e-10, 2.4222947e-10, 2.4587694e-10, 2.5017261e-10, 2.5579842e-10, 2.6167570e-10, 2.6866230e-10, 2.7632565e-10, 2.8548191e-10, 2.9544050e-10, 3.0598398e-10, 3.1671560e-10, 3.2904259e-10, 3.4234846e-10, 3.4234846e-10]), np.array([7.1861026e-10, 6.9052982e-10, 6.6277085e-10, 6.3573468e-10, 6.1024606e-10, 5.8475908e-10, 5.6096402e-10, 5.3833955e-10, 5.1558216e-10, 4.9404513e-10, 4.7398312e-10, 4.5273929e-10, 4.3405736e-10, 4.1643201e-10, 3.9946960e-10, 3.8248920e-10, 3.6635833e-10, 3.5323838e-10, 3.3921398e-10, 3.2684546e-10, 3.1412226e-10, 3.0313435e-10, 2.9192112e-10, 2.8290167e-10, 2.7525858e-10, 2.6743219e-10, 2.5992966e-10, 2.5408868e-10, 2.4832543e-10, 2.4538556e-10, 2.4100708e-10, 2.3910018e-10, 2.3747322e-10, 2.3728921e-10, 2.3669027e-10, 2.3798116e-10, 2.3947283e-10, 2.4222947e-10, 2.4587694e-10, 2.5017261e-10, 2.5579842e-10, 2.6167570e-10, 2.6866230e-10, 2.7632565e-10, 2.8548191e-10, 2.9544050e-10, 3.0598398e-10, 3.1671560e-10, 3.2904259e-10, 3.4234846e-10, 3.4234846e-10]), ), ], "qcd_y" : np.array([7.1861026e-10, 6.9052982e-10, 6.6277085e-10, 6.3573468e-10, 6.1024606e-10, 5.8475908e-10, 5.6096402e-10, 5.3833955e-10, 5.1558216e-10, 4.9404513e-10, 4.7398312e-10, 4.5273929e-10, 4.3405736e-10, 4.1643201e-10, 3.9946960e-10, 3.8248920e-10, 3.6635833e-10, 3.5323838e-10, 3.3921398e-10, 3.2684546e-10, 3.1412226e-10, 3.0313435e-10, 2.9192112e-10, 2.8290167e-10, 2.7525858e-10, 2.6743219e-10, 2.5992966e-10, 2.5408868e-10, 2.4832543e-10, 2.4538556e-10, 2.4100708e-10, 2.3910018e-10, 2.3747322e-10, 2.3728921e-10, 2.3669027e-10, 2.3798116e-10, 2.3947283e-10, 2.4222947e-10, 2.4587694e-10, 2.5017261e-10, 2.5579842e-10, 2.6167570e-10, 2.6866230e-10, 2.7632565e-10, 2.8548191e-10, 2.9544050e-10, 3.0598398e-10, 3.1671560e-10, 3.2904259e-10, 3.4234846e-10, 3.4234846e-10]), "qcd_min" : np.array([6.0733393e-10, 5.8359975e-10, 5.6013663e-10, 5.3731953e-10, 5.1577550e-10, 4.9425471e-10, 4.7413668e-10, 4.5502613e-10, 4.3579683e-10, 4.1761844e-10, 4.0067486e-10, 3.8275700e-10, 3.6698642e-10, 3.5210349e-10, 3.3780462e-10, 3.2347174e-10, 3.0987916e-10, 2.9880336e-10, 2.8698310e-10, 2.7656554e-10, 2.6585543e-10, 2.5660126e-10, 2.4717194e-10, 2.3959131e-10, 2.3316588e-10, 2.2659350e-10, 2.2029631e-10, 2.1541466e-10, 2.1059049e-10, 2.0816229e-10, 2.0451475e-10, 2.0294117e-10, 2.0162673e-10, 2.0153357e-10, 2.0108215e-10, 2.0224072e-10, 2.0356183e-10, 2.0595804e-10, 2.0910726e-10, 2.1281117e-10, 2.1763190e-10, 2.2268082e-10, 2.2865687e-10, 2.3520471e-10, 2.4302664e-10, 2.5151226e-10, 2.6051000e-10, 2.6966237e-10, 2.8016281e-10, 2.9149775e-10, 2.9149775e-10]), "qcd_max" : np.array([8.5956589e-10, 8.2598102e-10, 7.9278040e-10, 7.6039124e-10, 7.2990629e-10, 6.9938974e-10, 6.7093887e-10, 6.4386082e-10, 6.1663235e-10, 5.9083445e-10, 5.6681916e-10, 5.4135215e-10, 5.1897698e-10, 4.9787381e-10, 4.7752729e-10, 4.5718800e-10, 4.3783083e-10, 4.2211740e-10, 4.0529176e-10, 3.9044215e-10, 3.7515652e-10, 3.6196347e-10, 3.4847733e-10, 3.3762360e-10, 3.2842814e-10, 3.1900151e-10, 3.0995996e-10, 3.0288807e-10, 2.9592219e-10, 2.9231820e-10, 2.8699894e-10, 2.8465892e-10, 2.8261876e-10, 2.8230239e-10, 2.8150098e-10, 2.8294006e-10, 2.8463095e-10, 2.8782554e-10, 2.9208532e-10, 2.9710983e-10, 3.0373680e-10, 3.1064043e-10, 3.1888707e-10, 3.2794310e-10, 3.3876620e-10, 3.5057090e-10, 3.6304796e-10, 3.7575647e-10, 3.9037413e-10, 4.0615136e-10, 4.0615136e-10]), "y" : np.array([7.1861026e-10, 6.9052982e-10, 6.6277085e-10, 6.3573468e-10, 6.1024606e-10, 5.8475908e-10, 5.6096402e-10, 5.3833955e-10, 5.1558216e-10, 4.9404513e-10, 4.7398312e-10, 4.5273929e-10, 4.3405736e-10, 4.1643201e-10, 3.9946960e-10, 3.8248920e-10, 3.6635833e-10, 3.5323838e-10, 3.3921398e-10, 3.2684546e-10, 3.1412226e-10, 3.0313435e-10, 2.9192112e-10, 2.8290167e-10, 2.7525858e-10, 2.6743219e-10, 2.5992966e-10, 2.5408868e-10, 2.4832543e-10, 2.4538556e-10, 2.4100708e-10, 2.3910018e-10, 2.3747322e-10, 2.3728921e-10, 2.3669027e-10, 2.3798116e-10, 2.3947283e-10, 2.4222947e-10, 2.4587694e-10, 2.5017261e-10, 2.5579842e-10, 2.6167570e-10, 2.6866230e-10, 2.7632565e-10, 2.8548191e-10, 2.9544050e-10, 3.0598398e-10, 3.1671560e-10, 3.2904259e-10, 3.4234846e-10, 3.4234846e-10]), "ymin" : np.array([6.0733393e-10, 5.8359975e-10, 5.6013663e-10, 5.3731953e-10, 5.1577550e-10, 4.9425471e-10, 4.7413668e-10, 4.5502613e-10, 4.3579683e-10, 4.1761844e-10, 4.0067486e-10, 3.8275700e-10, 3.6698642e-10, 3.5210349e-10, 3.3780462e-10, 3.2347174e-10, 3.0987916e-10, 2.9880336e-10, 2.8698310e-10, 2.7656554e-10, 2.6585543e-10, 2.5660126e-10, 2.4717194e-10, 2.3959131e-10, 2.3316588e-10, 2.2659350e-10, 2.2029631e-10, 2.1541466e-10, 2.1059049e-10, 2.0816229e-10, 2.0451475e-10, 2.0294117e-10, 2.0162673e-10, 2.0153357e-10, 2.0108215e-10, 2.0224072e-10, 2.0356183e-10, 2.0595804e-10, 2.0910726e-10, 2.1281117e-10, 2.1763190e-10, 2.2268082e-10, 2.2865687e-10, 2.3520471e-10, 2.4302664e-10, 2.5151226e-10, 2.6051000e-10, 2.6966237e-10, 2.8016281e-10, 2.9149775e-10, 2.9149775e-10]), "ymax" : np.array([8.5956589e-10, 8.2598102e-10, 7.9278040e-10, 7.6039124e-10, 7.2990629e-10, 6.9938974e-10, 6.7093887e-10, 6.4386082e-10, 6.1663235e-10, 5.9083445e-10, 5.6681916e-10, 5.4135215e-10, 5.1897698e-10, 4.9787381e-10, 4.7752729e-10, 4.5718800e-10, 4.3783083e-10, 4.2211740e-10, 4.0529176e-10, 3.9044215e-10, 3.7515652e-10, 3.6196347e-10, 3.4847733e-10, 3.3762360e-10, 3.2842814e-10, 3.1900151e-10, 3.0995996e-10, 3.0288807e-10, 2.9592219e-10, 2.9231820e-10, 2.8699894e-10, 2.8465892e-10, 2.8261876e-10, 2.8230239e-10, 2.8150098e-10, 2.8294006e-10, 2.8463095e-10, 2.8782554e-10, 2.9208532e-10, 2.9710983e-10, 3.0373680e-10, 3.1064043e-10, 3.1888707e-10, 3.2794310e-10, 3.3876620e-10, 3.5057090e-10, 3.6304796e-10, 3.7575647e-10, 3.9037413e-10, 4.0615136e-10, 4.0615136e-10]), "channels" : [ (r"$\mathrm{u}\bar{\mathrm{u}} + \mathrm{c}\bar{\mathrm{c}}$", np.array([6.7156667e-10, 6.4480795e-10, 6.1906876e-10, 5.9405103e-10, 5.7003835e-10, 5.4634372e-10, 5.2393879e-10, 5.0270170e-10, 4.8196562e-10, 4.6168043e-10, 4.4301047e-10, 4.2289518e-10, 4.0551136e-10, 3.8900214e-10, 3.7319487e-10, 3.5702887e-10, 3.4216975e-10, 3.2985593e-10, 3.1665205e-10, 3.0540505e-10, 2.9336077e-10, 2.8289755e-10, 2.7262160e-10, 2.6375604e-10, 2.5684735e-10, 2.4957103e-10, 2.4239158e-10, 2.3696269e-10, 2.3139541e-10, 2.2872965e-10, 2.2472346e-10, 2.2285342e-10, 2.2131509e-10, 2.2098926e-10, 2.2028936e-10, 2.2170613e-10, 2.2288690e-10, 2.2546879e-10, 2.2889598e-10, 2.3280137e-10, 2.3804426e-10, 2.4346151e-10, 2.4972534e-10, 2.5696862e-10, 2.6540118e-10, 2.7484717e-10, 2.8450746e-10, 2.9460883e-10, 3.0601707e-10, 3.1827665e-10, 3.1827665e-10])), (r"$\mathrm{d}\bar{\mathrm{d}} + \mathrm{s}\bar{\mathrm{s}} + \mathrm{b}\bar{\mathrm{b}}$", np.array([4.7043587e-11, 4.5721878e-11, 4.3702086e-11, 4.1683641e-11, 4.0207715e-11, 3.8415354e-11, 3.7025234e-11, 3.5637851e-11, 3.3616539e-11, 3.2364703e-11, 3.0972646e-11, 2.9844116e-11, 2.8546008e-11, 2.7429871e-11, 2.6274730e-11, 2.5460333e-11, 2.4188586e-11, 2.3382450e-11, 2.2561926e-11, 2.1440412e-11, 2.0761496e-11, 2.0236798e-11, 1.9299518e-11, 1.9145639e-11, 1.8411239e-11, 1.7861161e-11, 1.7538087e-11, 1.7125990e-11, 1.6930016e-11, 1.6655912e-11, 1.6283622e-11, 1.6246755e-11, 1.6158123e-11, 1.6299957e-11, 1.6400918e-11, 1.6275026e-11, 1.6585928e-11, 1.6760680e-11, 1.6980956e-11, 1.7371237e-11, 1.7754155e-11, 1.8214193e-11, 1.8936959e-11, 1.9357026e-11, 2.0080730e-11, 2.0593338e-11, 2.1476522e-11, 2.2106766e-11, 2.3025520e-11, 2.4071814e-11, 2.4071814e-11])) ], }, { "slice_label" : r"$\SI{10000}{GeV} < M_{\ell\bar{\ell}} < \SI{14000}{GeV}$", "x" : np.array([-1, -0.96, -0.92, -0.88, -0.84, -0.8, -0.76, -0.72, -0.68, -0.64, -0.6, -0.56, -0.52, -0.48, -0.44, -0.4, -0.36, -0.32, -0.28, -0.24, -0.2, -0.16, -0.12, -0.08, -0.04, 0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1]), "mid" : np.array([-0.98, -0.94, -0.9, -0.86, -0.8200000000000001, -0.78, -0.74, -0.7, -0.66, -0.62, -0.5800000000000001, -0.54, -0.5, -0.45999999999999996, -0.42000000000000004, -0.38, -0.33999999999999997, -0.30000000000000004, -0.26, -0.22, -0.18, -0.14, -0.1, -0.06, -0.02, 0.02, 0.06, 0.1, 0.14, 0.18, 0.22, 0.26, 0.30000000000000004, 0.33999999999999997, 0.38, 0.42000000000000004, 0.45999999999999996, 0.5, 0.54, 0.5800000000000001, 0.62, 0.66, 0.7, 0.74, 0.78, 0.8200000000000001, 0.86, 0.9, 0.94, 0.98]), "pdf_results" : [ ( "NNPDF40\_nnlo\_as\_01180", np.array([5.9784203e-12, 5.7334000e-12, 5.5158405e-12, 5.2821781e-12, 5.0757322e-12, 4.8721048e-12, 4.6751045e-12, 4.4854392e-12, 4.3023311e-12, 4.1272521e-12, 3.9585369e-12, 3.8041358e-12, 3.6380746e-12, 3.5024271e-12, 3.3710447e-12, 3.2510444e-12, 3.1260172e-12, 3.0105698e-12, 2.9080579e-12, 2.8034115e-12, 2.7170918e-12, 2.6321534e-12, 2.5586050e-12, 2.4978602e-12, 2.4378311e-12, 2.3877748e-12, 2.3427105e-12, 2.3080580e-12, 2.2782058e-12, 2.2586106e-12, 2.2397268e-12, 2.2391422e-12, 2.2396377e-12, 2.2520626e-12, 2.2723190e-12, 2.2981583e-12, 2.3297045e-12, 2.3715628e-12, 2.4196963e-12, 2.4771198e-12, 2.5408710e-12, 2.6118028e-12, 2.6948071e-12, 2.7819795e-12, 2.8750032e-12, 2.9793716e-12, 3.0914562e-12, 3.2108107e-12, 3.3326464e-12, 3.4695631e-12, 3.4695631e-12]), np.array([5.9784203e-12, 5.7334000e-12, 5.5158405e-12, 5.2821781e-12, 5.0757322e-12, 4.8721048e-12, 4.6751045e-12, 4.4854392e-12, 4.3023311e-12, 4.1272521e-12, 3.9585369e-12, 3.8041358e-12, 3.6380746e-12, 3.5024271e-12, 3.3710447e-12, 3.2510444e-12, 3.1260172e-12, 3.0105698e-12, 2.9080579e-12, 2.8034115e-12, 2.7170918e-12, 2.6321534e-12, 2.5586050e-12, 2.4978602e-12, 2.4378311e-12, 2.3877748e-12, 2.3427105e-12, 2.3080580e-12, 2.2782058e-12, 2.2586106e-12, 2.2397268e-12, 2.2391422e-12, 2.2396377e-12, 2.2520626e-12, 2.2723190e-12, 2.2981583e-12, 2.3297045e-12, 2.3715628e-12, 2.4196963e-12, 2.4771198e-12, 2.5408710e-12, 2.6118028e-12, 2.6948071e-12, 2.7819795e-12, 2.8750032e-12, 2.9793716e-12, 3.0914562e-12, 3.2108107e-12, 3.3326464e-12, 3.4695631e-12, 3.4695631e-12]), np.array([5.9784203e-12, 5.7334000e-12, 5.5158405e-12, 5.2821781e-12, 5.0757322e-12, 4.8721048e-12, 4.6751045e-12, 4.4854392e-12, 4.3023311e-12, 4.1272521e-12, 3.9585369e-12, 3.8041358e-12, 3.6380746e-12, 3.5024271e-12, 3.3710447e-12, 3.2510444e-12, 3.1260172e-12, 3.0105698e-12, 2.9080579e-12, 2.8034115e-12, 2.7170918e-12, 2.6321534e-12, 2.5586050e-12, 2.4978602e-12, 2.4378311e-12, 2.3877748e-12, 2.3427105e-12, 2.3080580e-12, 2.2782058e-12, 2.2586106e-12, 2.2397268e-12, 2.2391422e-12, 2.2396377e-12, 2.2520626e-12, 2.2723190e-12, 2.2981583e-12, 2.3297045e-12, 2.3715628e-12, 2.4196963e-12, 2.4771198e-12, 2.5408710e-12, 2.6118028e-12, 2.6948071e-12, 2.7819795e-12, 2.8750032e-12, 2.9793716e-12, 3.0914562e-12, 3.2108107e-12, 3.3326464e-12, 3.4695631e-12, 3.4695631e-12]), ), ], "qcd_y" : np.array([5.9784203e-12, 5.7334000e-12, 5.5158405e-12, 5.2821781e-12, 5.0757322e-12, 4.8721048e-12, 4.6751045e-12, 4.4854392e-12, 4.3023311e-12, 4.1272521e-12, 3.9585369e-12, 3.8041358e-12, 3.6380746e-12, 3.5024271e-12, 3.3710447e-12, 3.2510444e-12, 3.1260172e-12, 3.0105698e-12, 2.9080579e-12, 2.8034115e-12, 2.7170918e-12, 2.6321534e-12, 2.5586050e-12, 2.4978602e-12, 2.4378311e-12, 2.3877748e-12, 2.3427105e-12, 2.3080580e-12, 2.2782058e-12, 2.2586106e-12, 2.2397268e-12, 2.2391422e-12, 2.2396377e-12, 2.2520626e-12, 2.2723190e-12, 2.2981583e-12, 2.3297045e-12, 2.3715628e-12, 2.4196963e-12, 2.4771198e-12, 2.5408710e-12, 2.6118028e-12, 2.6948071e-12, 2.7819795e-12, 2.8750032e-12, 2.9793716e-12, 3.0914562e-12, 3.2108107e-12, 3.3326464e-12, 3.4695631e-12, 3.4695631e-12]), "qcd_min" : np.array([4.8320667e-12, 4.6340168e-12, 4.4581332e-12, 4.2694034e-12, 4.1024778e-12, 3.9380551e-12, 3.7788147e-12, 3.6256865e-12, 3.4778027e-12, 3.3363436e-12, 3.2001398e-12, 3.0753736e-12, 2.9412981e-12, 2.8318282e-12, 2.7257422e-12, 2.6288731e-12, 2.5280116e-12, 2.4349649e-12, 2.3522879e-12, 2.2679037e-12, 2.1983550e-12, 2.1299028e-12, 2.0707980e-12, 2.0218582e-12, 1.9736388e-12, 1.9333927e-12, 1.8971892e-12, 1.8695481e-12, 1.8457255e-12, 1.8302086e-12, 1.8152970e-12, 1.8151223e-12, 1.8158688e-12, 1.8262736e-12, 1.8429841e-12, 1.8642947e-12, 1.8901548e-12, 1.9243658e-12, 1.9637075e-12, 2.0105556e-12, 2.0624878e-12, 2.1202545e-12, 2.1877949e-12, 2.2587192e-12, 2.3343787e-12, 2.4192297e-12, 2.5103115e-12, 2.6072867e-12, 2.7062549e-12, 2.8174517e-12, 2.8174517e-12]), "qcd_max" : np.array([7.4982907e-12, 7.1910016e-12, 6.9182003e-12, 6.6249200e-12, 6.3661005e-12, 6.1104359e-12, 5.8633804e-12, 5.6252128e-12, 5.3953612e-12, 5.1756951e-12, 4.9638200e-12, 4.7701171e-12, 4.5616013e-12, 4.3911866e-12, 4.2262299e-12, 4.0755193e-12, 3.9183857e-12, 3.7731478e-12, 3.6442761e-12, 3.5126965e-12, 3.4040659e-12, 3.2972015e-12, 3.2043850e-12, 3.1279352e-12, 3.0521448e-12, 2.9890066e-12, 2.9321201e-12, 2.8880447e-12, 2.8500918e-12, 2.8249788e-12, 2.8007072e-12, 2.7994768e-12, 2.7995189e-12, 2.8144977e-12, 2.8393388e-12, 2.8710337e-12, 2.9099934e-12, 2.9618605e-12, 3.0214992e-12, 3.0927929e-12, 3.1720739e-12, 3.2603093e-12, 3.3636599e-12, 3.4722126e-12, 3.5880952e-12, 3.7181683e-12, 3.8579312e-12, 4.0067802e-12, 4.1587643e-12, 4.3295963e-12, 4.3295963e-12]), "y" : np.array([5.9784203e-12, 5.7334000e-12, 5.5158405e-12, 5.2821781e-12, 5.0757322e-12, 4.8721048e-12, 4.6751045e-12, 4.4854392e-12, 4.3023311e-12, 4.1272521e-12, 3.9585369e-12, 3.8041358e-12, 3.6380746e-12, 3.5024271e-12, 3.3710447e-12, 3.2510444e-12, 3.1260172e-12, 3.0105698e-12, 2.9080579e-12, 2.8034115e-12, 2.7170918e-12, 2.6321534e-12, 2.5586050e-12, 2.4978602e-12, 2.4378311e-12, 2.3877748e-12, 2.3427105e-12, 2.3080580e-12, 2.2782058e-12, 2.2586106e-12, 2.2397268e-12, 2.2391422e-12, 2.2396377e-12, 2.2520626e-12, 2.2723190e-12, 2.2981583e-12, 2.3297045e-12, 2.3715628e-12, 2.4196963e-12, 2.4771198e-12, 2.5408710e-12, 2.6118028e-12, 2.6948071e-12, 2.7819795e-12, 2.8750032e-12, 2.9793716e-12, 3.0914562e-12, 3.2108107e-12, 3.3326464e-12, 3.4695631e-12, 3.4695631e-12]), "ymin" : np.array([4.8320667e-12, 4.6340168e-12, 4.4581332e-12, 4.2694034e-12, 4.1024778e-12, 3.9380551e-12, 3.7788147e-12, 3.6256865e-12, 3.4778027e-12, 3.3363436e-12, 3.2001398e-12, 3.0753736e-12, 2.9412981e-12, 2.8318282e-12, 2.7257422e-12, 2.6288731e-12, 2.5280116e-12, 2.4349649e-12, 2.3522879e-12, 2.2679037e-12, 2.1983550e-12, 2.1299028e-12, 2.0707980e-12, 2.0218582e-12, 1.9736388e-12, 1.9333927e-12, 1.8971892e-12, 1.8695481e-12, 1.8457255e-12, 1.8302086e-12, 1.8152970e-12, 1.8151223e-12, 1.8158688e-12, 1.8262736e-12, 1.8429841e-12, 1.8642947e-12, 1.8901548e-12, 1.9243658e-12, 1.9637075e-12, 2.0105556e-12, 2.0624878e-12, 2.1202545e-12, 2.1877949e-12, 2.2587192e-12, 2.3343787e-12, 2.4192297e-12, 2.5103115e-12, 2.6072867e-12, 2.7062549e-12, 2.8174517e-12, 2.8174517e-12]), "ymax" : np.array([7.4982907e-12, 7.1910016e-12, 6.9182003e-12, 6.6249200e-12, 6.3661005e-12, 6.1104359e-12, 5.8633804e-12, 5.6252128e-12, 5.3953612e-12, 5.1756951e-12, 4.9638200e-12, 4.7701171e-12, 4.5616013e-12, 4.3911866e-12, 4.2262299e-12, 4.0755193e-12, 3.9183857e-12, 3.7731478e-12, 3.6442761e-12, 3.5126965e-12, 3.4040659e-12, 3.2972015e-12, 3.2043850e-12, 3.1279352e-12, 3.0521448e-12, 2.9890066e-12, 2.9321201e-12, 2.8880447e-12, 2.8500918e-12, 2.8249788e-12, 2.8007072e-12, 2.7994768e-12, 2.7995189e-12, 2.8144977e-12, 2.8393388e-12, 2.8710337e-12, 2.9099934e-12, 2.9618605e-12, 3.0214992e-12, 3.0927929e-12, 3.1720739e-12, 3.2603093e-12, 3.3636599e-12, 3.4722126e-12, 3.5880952e-12, 3.7181683e-12, 3.8579312e-12, 4.0067802e-12, 4.1587643e-12, 4.3295963e-12, 4.3295963e-12]), "channels" : [ (r"$\mathrm{u}\bar{\mathrm{u}} + \mathrm{c}\bar{\mathrm{c}}$", np.array([5.7928985e-12, 5.5545492e-12, 5.3436676e-12, 5.1170724e-12, 4.9162902e-12, 4.7204604e-12, 4.5290894e-12, 4.3461366e-12, 4.1703059e-12, 3.9987049e-12, 3.8352353e-12, 3.6854207e-12, 3.5246703e-12, 3.3934168e-12, 3.2662258e-12, 3.1498699e-12, 3.0290848e-12, 2.9170428e-12, 2.8178193e-12, 2.7171531e-12, 2.6338379e-12, 2.5506545e-12, 2.4799421e-12, 2.4205546e-12, 2.3628084e-12, 2.3149553e-12, 2.2710462e-12, 2.2372451e-12, 2.2081619e-12, 2.1896656e-12, 2.1712047e-12, 2.1709859e-12, 2.1712641e-12, 2.1831538e-12, 2.2025217e-12, 2.2284757e-12, 2.2590442e-12, 2.2993731e-12, 2.3460771e-12, 2.4020975e-12, 2.4638450e-12, 2.5323895e-12, 2.6127955e-12, 2.6978311e-12, 2.7877094e-12, 2.8894223e-12, 2.9977314e-12, 3.1142142e-12, 3.2318652e-12, 3.3649215e-12, 3.3649215e-12])), (r"$\mathrm{d}\bar{\mathrm{d}} + \mathrm{s}\bar{\mathrm{s}} + \mathrm{b}\bar{\mathrm{b}}$", np.array([1.8552176e-13, 1.7885086e-13, 1.7217283e-13, 1.6510577e-13, 1.5944207e-13, 1.5164441e-13, 1.4601514e-13, 1.3930258e-13, 1.3202519e-13, 1.2854728e-13, 1.2330167e-13, 1.1871509e-13, 1.1340433e-13, 1.0901027e-13, 1.0481896e-13, 1.0117454e-13, 9.6932317e-14, 9.3526940e-14, 9.0238533e-14, 8.6258414e-14, 8.3253847e-14, 8.1498874e-14, 7.8662857e-14, 7.7305575e-14, 7.5022648e-14, 7.2819518e-14, 7.1664335e-14, 7.0812969e-14, 7.0043876e-14, 6.8944971e-14, 6.8522087e-14, 6.8156305e-14, 6.8373568e-14, 6.8908752e-14, 6.9797327e-14, 6.9682621e-14, 7.0660333e-14, 7.2189766e-14, 7.3619284e-14, 7.5022326e-14, 7.7026006e-14, 7.9413264e-14, 8.2011611e-14, 8.4148408e-14, 8.7293834e-14, 8.9949315e-14, 9.3724817e-14, 9.6596463e-14, 1.0078114e-13, 1.0464156e-13, 1.0464156e-13])) ], }, ] def metadata(): return { "arxiv": r"", "description": r"", "hepdata": r"", "initial_state_1": r"2212", "initial_state_2": r"2212", "lumi_id_types": r"pdg_mc_ids", "mg5amc_repo": r"http://bazaar.launchpad.net/~maddevelopers/mg5amcnlo/3.3.1/", "mg5amc_revno": r"981", "patches": r"", "pineappl_gitversion": r"v0.5.2-64-g402587e-dirty", "results_pdf": r"MSHT20nnlo_as118", "runcard_gitversion": r"9b81106-dirty", "tau_min": r"", "user_cuts": r"mmllmax=500.0", "x1_label": r"Mll", "x1_label_tex": r"$M_{\ell\bar{\ell}}$", "x1_unit": r"\giga\electronvolt", "x2_label": r"costh", "x2_label_tex": r"$\cos \theta^*$", "x2_unit": r"", "y_label": r"dsig/dcosth", "y_label_tex": r"$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos \theta^*}$", "y_unit": r"\pico\barn", } if __name__ == "__main__": main() "#; #[test] fn help() { Command::cargo_bin("pineappl") .unwrap() .args(["plot", "--help"]) .assert() .success() .stdout( HELP_STR.replace( "{}", &thread::available_parallelism() .map_or(1, NonZeroUsize::get) .to_string(), ), ); } #[test] fn default() { Command::cargo_bin("pineappl") .unwrap() .args([ "plot", "--threads=1", "../test-data/LHCB_WP_7TEV.pineappl.lz4", "NNPDF31_nlo_as_0118_luxqed", "NNPDF40_nnlo_as_01180=NNPDF4.0", ]) .assert() .success() .stdout(DEFAULT_STR); } #[test] fn subgrid_pull() { Command::cargo_bin("pineappl") .unwrap() .args([ "plot", "--subgrid-pull=0,0,0", "--threads=1", "../test-data/LHCB_WP_7TEV.pineappl.lz4", "NNPDF31_nlo_as_0118_luxqed", "NNPDF40_nnlo_as_01180", ]) .assert() .success() .stdout(SUBGRID_PULL_STR); } #[test] fn drell_yan_afb() { Command::cargo_bin("pineappl") .unwrap() .args([ "plot", "--asymmetry", "--threads=1", "../test-data/CMS_DY_14TEV_MLL_6000_COSTH.pineappl.lz4", "NNPDF40_nnlo_as_01180", ]) .assert() .success() .stdout(DRELL_YAN_AFB_STR); } #[test] fn drell_yan_mass_slices() { Command::cargo_bin("pineappl") .unwrap() .args([ "plot", "--no-conv-fun-unc", "--threads=1", "../test-data/NNPDF_DY_14TEV_BSM_AFB.pineappl.lz4", "NNPDF40_nnlo_as_01180", ]) .assert() .success() .stdout(DRELL_YAN_MASS_SLICES_STR); }