import pandas as pd from sklearn.model_selection import train_test_split import lightgbm as lgb from sklearn.metrics import accuracy_score, confusion_matrix # load data df = pd.read_csv("Breast_cancer_data.csv") # Declare feature vector and target variable X = df[[ 'mean_radius','mean_texture','mean_perimeter', 'mean_area','mean_smoothness']] y = df['diagnosis'] # split the dataset into the training set and test set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42) # build the lightgbm model clf = lgb.LGBMClassifier(verbose=-1) clf.fit(X_train, y_train) # predict the results y_pred = clf.predict(X_test) # view accuracy accuracy = accuracy_score(y_pred, y_test) print(f"Model accuracy: {accuracy:0.3f}") # view confusion-matrix cm = confusion_matrix(y_test, y_pred) print("True Positives(TP) = ", cm[0,0]) print("True Negatives(TN) = ", cm[1,1]) print("False Positives(FP) = ", cm[0,1]) print("False Negatives(FN) = ", cm[1,0])