Bayes' Theorem is a simple mathematical formula used for calculating conditional probabilities. Bayes' Theorem is a theorem of probability theory originally stated by the Reverend Thomas Bayes. It figures prominently in subjectivist or Bayesian approaches to epistemology, statistics, and inductive logic. It can be seen as a way of understanding how the probability that a theory is true is affected by a new piece of evidence. It has been used in a wide variety of contexts, ranging from marine biology to the development of "Bayesian" spam blockers for email systems. In the philosophy of science, it has been used to try to clarify the relationship between theory and evidence. Many insights in the philosophy of science involving confirmation, falsification, the relation between science and pseudosience, and other topics can be made more precise, and sometimes extended or corrected, by using Bayes' Theorem. Subjectivists, who maintain that rational belief is governed by the laws of probability, lean heavily on conditional probabilities in their theories of evidence and their models of empirical learning. Bayes' Theorem is central to these enterprises both because it simplifies the calculation of conditional probabilities and because it clarifies significant features of subjectivist position. Indeed, the Theorem's central insight — that a hypothesis is confirmed by any body of data that its truth renders probable — is the cornerstone of all subjectivist methodology.