/* * Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors * https://github.com/jhasse/poly2tri * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of Poly2Tri nor the names of its contributors may be * used to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "shapes.h" #include #include namespace p2t { std::ostream& operator<<(std::ostream& out, const Point& point) { return out << point.x << "," << point.y; } Triangle::Triangle(Point& a, Point& b, Point& c) { points_[0] = &a; points_[1] = &b; points_[2] = &c; neighbors_[0] = nullptr; neighbors_[1] = nullptr; neighbors_[2] = nullptr; constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false; delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false; interior_ = false; } // Update neighbor pointers void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t) { if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2])) neighbors_[0] = t; else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0])) neighbors_[1] = t; else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0])) neighbors_[2] = t; else assert(0); } // Exhaustive search to update neighbor pointers void Triangle::MarkNeighbor(Triangle& t) { if (t.Contains(points_[1], points_[2])) { neighbors_[0] = &t; t.MarkNeighbor(points_[1], points_[2], this); } else if (t.Contains(points_[0], points_[2])) { neighbors_[1] = &t; t.MarkNeighbor(points_[0], points_[2], this); } else if (t.Contains(points_[0], points_[1])) { neighbors_[2] = &t; t.MarkNeighbor(points_[0], points_[1], this); } } /** * Clears all references to all other triangles and points */ void Triangle::Clear() { Triangle *t; for( int i=0; i<3; i++ ) { t = neighbors_[i]; if( t != nullptr ) { t->ClearNeighbor( this ); } } ClearNeighbors(); points_[0]=points_[1]=points_[2] = nullptr; } void Triangle::ClearNeighbor(const Triangle *triangle ) { if( neighbors_[0] == triangle ) { neighbors_[0] = nullptr; } else if( neighbors_[1] == triangle ) { neighbors_[1] = nullptr; } else { neighbors_[2] = nullptr; } } void Triangle::ClearNeighbors() { neighbors_[0] = nullptr; neighbors_[1] = nullptr; neighbors_[2] = nullptr; } void Triangle::ClearDelunayEdges() { delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false; } Point* Triangle::OppositePoint(Triangle& t, const Point& p) { Point *cw = t.PointCW(p); return PointCW(*cw); } // Legalized triangle by rotating clockwise around point(0) void Triangle::Legalize(Point& point) { points_[1] = points_[0]; points_[0] = points_[2]; points_[2] = &point; } // Legalize triagnle by rotating clockwise around oPoint void Triangle::Legalize(Point& opoint, Point& npoint) { if (&opoint == points_[0]) { points_[1] = points_[0]; points_[0] = points_[2]; points_[2] = &npoint; } else if (&opoint == points_[1]) { points_[2] = points_[1]; points_[1] = points_[0]; points_[0] = &npoint; } else if (&opoint == points_[2]) { points_[0] = points_[2]; points_[2] = points_[1]; points_[1] = &npoint; } else { assert(0); } } int Triangle::Index(const Point* p) { if (p == points_[0]) { return 0; } else if (p == points_[1]) { return 1; } else if (p == points_[2]) { return 2; } assert(0); return -1; } int Triangle::EdgeIndex(const Point* p1, const Point* p2) { if (points_[0] == p1) { if (points_[1] == p2) { return 2; } else if (points_[2] == p2) { return 1; } } else if (points_[1] == p1) { if (points_[2] == p2) { return 0; } else if (points_[0] == p2) { return 2; } } else if (points_[2] == p1) { if (points_[0] == p2) { return 1; } else if (points_[1] == p2) { return 0; } } return -1; } void Triangle::MarkConstrainedEdge(int index) { constrained_edge[index] = true; } void Triangle::MarkConstrainedEdge(Edge& edge) { MarkConstrainedEdge(edge.p, edge.q); } // Mark edge as constrained void Triangle::MarkConstrainedEdge(Point* p, Point* q) { if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) { constrained_edge[2] = true; } else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) { constrained_edge[1] = true; } else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) { constrained_edge[0] = true; } } // The point counter-clockwise to given point Point* Triangle::PointCW(const Point& point) { if (&point == points_[0]) { return points_[2]; } else if (&point == points_[1]) { return points_[0]; } else if (&point == points_[2]) { return points_[1]; } assert(0); return nullptr; } // The point counter-clockwise to given point Point* Triangle::PointCCW(const Point& point) { if (&point == points_[0]) { return points_[1]; } else if (&point == points_[1]) { return points_[2]; } else if (&point == points_[2]) { return points_[0]; } assert(0); return nullptr; } // The neighbor across to given point Triangle* Triangle::NeighborAcross(const Point& point) { if (&point == points_[0]) { return neighbors_[0]; } else if (&point == points_[1]) { return neighbors_[1]; } return neighbors_[2]; } // The neighbor clockwise to given point Triangle* Triangle::NeighborCW(const Point& point) { if (&point == points_[0]) { return neighbors_[1]; } else if (&point == points_[1]) { return neighbors_[2]; } return neighbors_[0]; } // The neighbor counter-clockwise to given point Triangle* Triangle::NeighborCCW(const Point& point) { if (&point == points_[0]) { return neighbors_[2]; } else if (&point == points_[1]) { return neighbors_[0]; } return neighbors_[1]; } bool Triangle::GetConstrainedEdgeCCW(const Point& p) { if (&p == points_[0]) { return constrained_edge[2]; } else if (&p == points_[1]) { return constrained_edge[0]; } return constrained_edge[1]; } bool Triangle::GetConstrainedEdgeCW(const Point& p) { if (&p == points_[0]) { return constrained_edge[1]; } else if (&p == points_[1]) { return constrained_edge[2]; } return constrained_edge[0]; } void Triangle::SetConstrainedEdgeCCW(const Point& p, bool ce) { if (&p == points_[0]) { constrained_edge[2] = ce; } else if (&p == points_[1]) { constrained_edge[0] = ce; } else { constrained_edge[1] = ce; } } void Triangle::SetConstrainedEdgeCW(const Point& p, bool ce) { if (&p == points_[0]) { constrained_edge[1] = ce; } else if (&p == points_[1]) { constrained_edge[2] = ce; } else { constrained_edge[0] = ce; } } bool Triangle::GetDelunayEdgeCCW(const Point& p) { if (&p == points_[0]) { return delaunay_edge[2]; } else if (&p == points_[1]) { return delaunay_edge[0]; } return delaunay_edge[1]; } bool Triangle::GetDelunayEdgeCW(const Point& p) { if (&p == points_[0]) { return delaunay_edge[1]; } else if (&p == points_[1]) { return delaunay_edge[2]; } return delaunay_edge[0]; } void Triangle::SetDelunayEdgeCCW(const Point& p, bool e) { if (&p == points_[0]) { delaunay_edge[2] = e; } else if (&p == points_[1]) { delaunay_edge[0] = e; } else { delaunay_edge[1] = e; } } void Triangle::SetDelunayEdgeCW(const Point& p, bool e) { if (&p == points_[0]) { delaunay_edge[1] = e; } else if (&p == points_[1]) { delaunay_edge[2] = e; } else { delaunay_edge[0] = e; } } void Triangle::DebugPrint() { std::cout << *points_[0] << " " << *points_[1] << " " << *points_[2] << std::endl; } bool Triangle::CircumcicleContains(const Point& point) const { assert(IsCounterClockwise()); const double dx = points_[0]->x - point.x; const double dy = points_[0]->y - point.y; const double ex = points_[1]->x - point.x; const double ey = points_[1]->y - point.y; const double fx = points_[2]->x - point.x; const double fy = points_[2]->y - point.y; const double ap = dx * dx + dy * dy; const double bp = ex * ex + ey * ey; const double cp = fx * fx + fy * fy; return (dx * (fy * bp - cp * ey) - dy * (fx * bp - cp * ex) + ap * (fx * ey - fy * ex)) < 0; } bool Triangle::IsCounterClockwise() const { return (points_[1]->x - points_[0]->x) * (points_[2]->y - points_[0]->y) - (points_[2]->x - points_[0]->x) * (points_[1]->y - points_[0]->y) > 0; } bool IsDelaunay(const std::vector& triangles) { for (const auto triangle : triangles) { for (const auto other : triangles) { if (triangle == other) { continue; } for (int i = 0; i < 3; ++i) { if (triangle->CircumcicleContains(*other->GetPoint(i))) { return false; } } } } return true; } }