--- icon: package label: math --- ### `math.pi` 3.141592653589793 ### `math.e` 2.718281828459045 ### `math.inf` The `inf`. ### `math.nan` The `nan`. ### `math.ceil(x)` Return the ceiling of `x` as a float, the smallest integer value greater than or equal to `x`. ### `math.fabs(x)` Return the absolute value of `x`. ### `math.floor(x)` Return the floor of `x` as a float, the largest integer value less than or equal to `x`. ### `math.fsum(iterable)` Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple intermediate partial sums: ``` >>> sum([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) 0.9999999999999999 >>> fsum([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) 1.0 ``` ### `math.gcd(a, b)` Return the greatest common divisor of the integers `a` and `b`. ### `math.isfinite(x)` Return `True` if `x` is neither an infinity nor a NaN, and `False` otherwise. ### `math.isinf(x)` Return `True` if `x` is a positive or negative infinity, and `False` otherwise. ### `math.isnan(x)` Return `True` if `x` is a NaN (not a number), and `False` otherwise. ### `math.isclose(a, b)` Return `True` if the values `a` and `b` are close to each other and `False` otherwise. ### `math.exp(x)` Return `e` raised to the power of `x`. ### `math.log(x)` Return the natural logarithm of `x` (to base `e`). ### `math.log2(x)` Return the base-2 logarithm of `x`. This is usually more accurate than `log(x, 2)`. ### `math.log10(x)` Return the base-10 logarithm of `x`. This is usually more accurate than `log(x, 10)`. ### `math.pow(x, y)` Return `x` raised to the power `y`. ### `math.sqrt(x)` Return the square root of `x`. ### `math.acos(x)` Return the arc cosine of `x`, in radians. ### `math.asin(x)` Return the arc sine of `x`, in radians. ### `math.atan(x)` Return the arc tangent of `x`, in radians. ### `math.atan2(y, x)` Return `atan(y / x)`, in radians. The result is between `-pi` and `pi`. The vector in the plane from the origin to point `(x, y)` makes this angle with the positive X axis. The point of `atan2()` is that the signs of both inputs are known to it, so it can compute the correct quadrant for the angle. For example, `atan(1)` and `atan2(1, 1)` are both `pi/4`, but `atan2(-1, -1)` is `-3*pi/4`. ### `math.cos(x)` Return the cosine of `x` radians. ### `math.sin(x)` Return the sine of `x` radians. ### `math.tan(x)` Return the tangent of `x` radians. ### `math.degrees(x)` Convert angle `x` from radians to degrees. ### `math.radians(x)` Convert angle `x` from degrees to radians. ### `math.modf(x)` Return the fractional and integer parts of `x`. Both results carry the sign of `x` and are floats. ### `math.factorial(x)` Return `x` factorial as an integer.