// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/compaction/compaction_picker_universal.h" #include #include #include #include #include #include "db/column_family.h" #include "file/filename.h" #include "logging/log_buffer.h" #include "logging/logging.h" #include "monitoring/statistics_impl.h" #include "test_util/sync_point.h" #include "util/random.h" #include "util/string_util.h" namespace ROCKSDB_NAMESPACE { namespace { // A helper class that form universal compactions. The class is used by // UniversalCompactionPicker::PickCompaction(). // The usage is to create the class, and get the compaction object by calling // PickCompaction(). class UniversalCompactionBuilder { public: UniversalCompactionBuilder( const ImmutableOptions& ioptions, const InternalKeyComparator* icmp, const std::string& cf_name, const MutableCFOptions& mutable_cf_options, const MutableDBOptions& mutable_db_options, VersionStorageInfo* vstorage, UniversalCompactionPicker* picker, LogBuffer* log_buffer) : ioptions_(ioptions), icmp_(icmp), cf_name_(cf_name), mutable_cf_options_(mutable_cf_options), mutable_db_options_(mutable_db_options), vstorage_(vstorage), picker_(picker), log_buffer_(log_buffer) {} // Form and return the compaction object. The caller owns return object. Compaction* PickCompaction(); private: struct SortedRun { SortedRun(int _level, FileMetaData* _file, uint64_t _size, uint64_t _compensated_file_size, bool _being_compacted) : level(_level), file(_file), size(_size), compensated_file_size(_compensated_file_size), being_compacted(_being_compacted) { assert(compensated_file_size > 0); assert(level != 0 || file != nullptr); } void Dump(char* out_buf, size_t out_buf_size, bool print_path = false) const; // sorted_run_count is added into the string to print void DumpSizeInfo(char* out_buf, size_t out_buf_size, size_t sorted_run_count) const; int level; // `file` Will be null for level > 0. For level = 0, the sorted run is // for this file. FileMetaData* file; // For level > 0, `size` and `compensated_file_size` are sum of sizes all // files in the level. `being_compacted` should be the same for all files // in a non-zero level. Use the value here. uint64_t size; uint64_t compensated_file_size; bool being_compacted; }; // Pick Universal compaction to limit read amplification Compaction* PickCompactionToReduceSortedRuns( unsigned int ratio, unsigned int max_number_of_files_to_compact); // Pick Universal compaction to limit space amplification. Compaction* PickCompactionToReduceSizeAmp(); // Try to pick incremental compaction to reduce space amplification. // It will return null if it cannot find a fanout within the threshold. // Fanout is defined as // total size of files to compact at output level // -------------------------------------------------- // total size of files to compact at other levels Compaction* PickIncrementalForReduceSizeAmp(double fanout_threshold); Compaction* PickDeleteTriggeredCompaction(); // Form a compaction from the sorted run indicated by start_index to the // oldest sorted run. // The caller is responsible for making sure that those files are not in // compaction. Compaction* PickCompactionToOldest(size_t start_index, CompactionReason compaction_reason); Compaction* PickCompactionWithSortedRunRange( size_t start_index, size_t end_index, CompactionReason compaction_reason); // Try to pick periodic compaction. The caller should only call it // if there is at least one file marked for periodic compaction. // null will be returned if no such a compaction can be formed // because some files are being compacted. Compaction* PickPeriodicCompaction(); bool ShouldSkipLastSortedRunForSizeAmpCompaction() const { assert(!sorted_runs_.empty()); return ioptions_.preclude_last_level_data_seconds > 0 && ioptions_.num_levels > 2 && sorted_runs_.back().level == ioptions_.num_levels - 1 && sorted_runs_.size() > 1; } // Used in universal compaction when the allow_trivial_move // option is set. Checks whether there are any overlapping files // in the input. Returns true if the input files are non // overlapping. bool IsInputFilesNonOverlapping(Compaction* c); uint64_t GetMaxOverlappingBytes() const; // To conditionally exclude some of the newest L0 files // from a size amp compaction. This is to prevent a large number of L0 // files from being locked by a size amp compaction, potentially leading to // write stop with a few more flushes. // // Such exclusion is based on `num_l0_input_pre_exclusion`, // `level0_stop_writes_trigger`, `max/min_merge_width` and the pre-exclusion // compaction score. Noted that it will not make the size amp compaction of // interest invalid from running as a size amp compaction as long as its // pre-exclusion compaction score satisfies the condition to run. // // @param `num_l0_input_pre_exclusion` Number of L0 input files prior to // exclusion // @param `end_index` Index of the last sorted run selected as compaction // input. Will not be affected by this exclusion. // @param `start_index` Index of the first input sorted run prior to // exclusion. Will be modified as output based on the exclusion. // @param `candidate_size` Total size of all except for the last input sorted // runs prior to exclusion. Will be modified as output based on the exclusion. // // @return Number of L0 files to exclude. `start_index` and // `candidate_size` will be modified accordingly std::size_t MightExcludeNewL0sToReduceWriteStop( std::size_t num_l0_input_pre_exclusion, std::size_t end_index, std::size_t& start_index, uint64_t& candidate_size) const { if (num_l0_input_pre_exclusion == 0) { return 0; } assert(start_index <= end_index && sorted_runs_.size() > end_index); assert(mutable_cf_options_.level0_stop_writes_trigger > 0); const std::size_t level0_stop_writes_trigger = static_cast( mutable_cf_options_.level0_stop_writes_trigger); const std::size_t max_merge_width = static_cast( mutable_cf_options_.compaction_options_universal.max_merge_width); const std::size_t min_merge_width = static_cast( mutable_cf_options_.compaction_options_universal.min_merge_width); const uint64_t max_size_amplification_percent = mutable_cf_options_.compaction_options_universal .max_size_amplification_percent; const uint64_t base_sr_size = sorted_runs_[end_index].size; // Leave at least 1 L0 file and 2 input sorted runs after exclusion const std::size_t max_num_l0_to_exclude = std::min(num_l0_input_pre_exclusion - 1, end_index - start_index - 1); // In universal compaction, sorted runs from non L0 levels are counted // toward `level0_stop_writes_trigger`. Therefore we need to subtract the // total number of sorted runs picked originally for this compaction from // `level0_stop_writes_trigger` to calculate // `num_extra_l0_before_write_stop` const std::size_t num_extra_l0_before_write_stop = level0_stop_writes_trigger - std::min(level0_stop_writes_trigger, end_index - start_index + 1); const std::size_t num_l0_to_exclude_for_max_merge_width = std::min(max_merge_width - std::min(max_merge_width, num_extra_l0_before_write_stop), max_num_l0_to_exclude); const std::size_t num_l0_to_exclude_for_min_merge_width = std::min(min_merge_width - std::min(min_merge_width, num_extra_l0_before_write_stop), max_num_l0_to_exclude); std::size_t num_l0_to_exclude = 0; uint64_t candidate_size_post_exclusion = candidate_size; for (std::size_t possible_num_l0_to_exclude = num_l0_to_exclude_for_min_merge_width; possible_num_l0_to_exclude <= num_l0_to_exclude_for_max_merge_width; ++possible_num_l0_to_exclude) { uint64_t current_candidate_size = candidate_size_post_exclusion; for (std::size_t j = num_l0_to_exclude; j < possible_num_l0_to_exclude; ++j) { current_candidate_size -= sorted_runs_.at(start_index + j).compensated_file_size; } // To ensure the compaction score before and after exclusion is similar // so this exclusion will not make the size amp compaction of // interest invalid from running as a size amp compaction as long as its // pre-exclusion compaction score satisfies the condition to run. if (current_candidate_size * 100 < max_size_amplification_percent * base_sr_size || current_candidate_size < candidate_size * 9 / 10) { break; } num_l0_to_exclude = possible_num_l0_to_exclude; candidate_size_post_exclusion = current_candidate_size; } start_index += num_l0_to_exclude; candidate_size = candidate_size_post_exclusion; return num_l0_to_exclude; } const ImmutableOptions& ioptions_; const InternalKeyComparator* icmp_; double score_; std::vector sorted_runs_; const std::string& cf_name_; const MutableCFOptions& mutable_cf_options_; const MutableDBOptions& mutable_db_options_; VersionStorageInfo* vstorage_; UniversalCompactionPicker* picker_; LogBuffer* log_buffer_; static std::vector CalculateSortedRuns( const VersionStorageInfo& vstorage, int last_level); // Pick a path ID to place a newly generated file, with its estimated file // size. static uint32_t GetPathId(const ImmutableCFOptions& ioptions, const MutableCFOptions& mutable_cf_options, uint64_t file_size); }; // Used in universal compaction when trivial move is enabled. // This structure is used for the construction of min heap // that contains the file meta data, the level of the file // and the index of the file in that level struct InputFileInfo { InputFileInfo() : f(nullptr), level(0), index(0) {} FileMetaData* f; size_t level; size_t index; }; // Used in universal compaction when trivial move is enabled. // This comparator is used for the construction of min heap // based on the smallest key of the file. struct SmallestKeyHeapComparator { explicit SmallestKeyHeapComparator(const Comparator* ucmp) { ucmp_ = ucmp; } bool operator()(InputFileInfo i1, InputFileInfo i2) const { return (ucmp_->CompareWithoutTimestamp(i1.f->smallest.user_key(), i2.f->smallest.user_key()) > 0); } private: const Comparator* ucmp_; }; using SmallestKeyHeap = std::priority_queue, SmallestKeyHeapComparator>; // This function creates the heap that is used to find if the files are // overlapping during universal compaction when the allow_trivial_move // is set. SmallestKeyHeap create_level_heap(Compaction* c, const Comparator* ucmp) { SmallestKeyHeap smallest_key_priority_q = SmallestKeyHeap(SmallestKeyHeapComparator(ucmp)); InputFileInfo input_file; for (size_t l = 0; l < c->num_input_levels(); l++) { if (c->num_input_files(l) != 0) { if (l == 0 && c->start_level() == 0) { for (size_t i = 0; i < c->num_input_files(0); i++) { input_file.f = c->input(0, i); input_file.level = 0; input_file.index = i; smallest_key_priority_q.push(std::move(input_file)); } } else { input_file.f = c->input(l, 0); input_file.level = l; input_file.index = 0; smallest_key_priority_q.push(std::move(input_file)); } } } return smallest_key_priority_q; } #ifndef NDEBUG // smallest_seqno and largest_seqno are set iff. `files` is not empty. void GetSmallestLargestSeqno(const std::vector& files, SequenceNumber* smallest_seqno, SequenceNumber* largest_seqno) { bool is_first = true; for (FileMetaData* f : files) { assert(f->fd.smallest_seqno <= f->fd.largest_seqno); if (is_first) { is_first = false; *smallest_seqno = f->fd.smallest_seqno; *largest_seqno = f->fd.largest_seqno; } else { if (f->fd.smallest_seqno < *smallest_seqno) { *smallest_seqno = f->fd.smallest_seqno; } if (f->fd.largest_seqno > *largest_seqno) { *largest_seqno = f->fd.largest_seqno; } } } } #endif } // namespace // Algorithm that checks to see if there are any overlapping // files in the input bool UniversalCompactionBuilder::IsInputFilesNonOverlapping(Compaction* c) { auto comparator = icmp_->user_comparator(); int first_iter = 1; InputFileInfo prev, curr, next; SmallestKeyHeap smallest_key_priority_q = create_level_heap(c, icmp_->user_comparator()); while (!smallest_key_priority_q.empty()) { curr = smallest_key_priority_q.top(); smallest_key_priority_q.pop(); if (first_iter) { prev = curr; first_iter = 0; } else { if (comparator->CompareWithoutTimestamp( prev.f->largest.user_key(), curr.f->smallest.user_key()) >= 0) { // found overlapping files, return false return false; } assert(comparator->CompareWithoutTimestamp( curr.f->largest.user_key(), prev.f->largest.user_key()) > 0); prev = curr; } next.f = nullptr; if (c->level(curr.level) != 0 && curr.index < c->num_input_files(curr.level) - 1) { next.f = c->input(curr.level, curr.index + 1); next.level = curr.level; next.index = curr.index + 1; } if (next.f) { smallest_key_priority_q.push(std::move(next)); } } return true; } bool UniversalCompactionPicker::NeedsCompaction( const VersionStorageInfo* vstorage) const { const int kLevel0 = 0; if (vstorage->CompactionScore(kLevel0) >= 1) { return true; } if (!vstorage->FilesMarkedForPeriodicCompaction().empty()) { return true; } if (!vstorage->FilesMarkedForCompaction().empty()) { return true; } return false; } Compaction* UniversalCompactionPicker::PickCompaction( const std::string& cf_name, const MutableCFOptions& mutable_cf_options, const MutableDBOptions& mutable_db_options, VersionStorageInfo* vstorage, LogBuffer* log_buffer) { UniversalCompactionBuilder builder(ioptions_, icmp_, cf_name, mutable_cf_options, mutable_db_options, vstorage, this, log_buffer); return builder.PickCompaction(); } void UniversalCompactionBuilder::SortedRun::Dump(char* out_buf, size_t out_buf_size, bool print_path) const { if (level == 0) { assert(file != nullptr); if (file->fd.GetPathId() == 0 || !print_path) { snprintf(out_buf, out_buf_size, "file %" PRIu64, file->fd.GetNumber()); } else { snprintf(out_buf, out_buf_size, "file %" PRIu64 "(path " "%" PRIu32 ")", file->fd.GetNumber(), file->fd.GetPathId()); } } else { snprintf(out_buf, out_buf_size, "level %d", level); } } void UniversalCompactionBuilder::SortedRun::DumpSizeInfo( char* out_buf, size_t out_buf_size, size_t sorted_run_count) const { if (level == 0) { assert(file != nullptr); snprintf(out_buf, out_buf_size, "file %" PRIu64 "[%" ROCKSDB_PRIszt "] " "with size %" PRIu64 " (compensated size %" PRIu64 ")", file->fd.GetNumber(), sorted_run_count, file->fd.GetFileSize(), file->compensated_file_size); } else { snprintf(out_buf, out_buf_size, "level %d[%" ROCKSDB_PRIszt "] " "with size %" PRIu64 " (compensated size %" PRIu64 ")", level, sorted_run_count, size, compensated_file_size); } } std::vector UniversalCompactionBuilder::CalculateSortedRuns( const VersionStorageInfo& vstorage, int last_level) { std::vector ret; for (FileMetaData* f : vstorage.LevelFiles(0)) { ret.emplace_back(0, f, f->fd.GetFileSize(), f->compensated_file_size, f->being_compacted); } for (int level = 1; level <= last_level; level++) { uint64_t total_compensated_size = 0U; uint64_t total_size = 0U; bool being_compacted = false; for (FileMetaData* f : vstorage.LevelFiles(level)) { total_compensated_size += f->compensated_file_size; total_size += f->fd.GetFileSize(); // Size amp, read amp and periodic compactions always include all files // for a non-zero level. However, a delete triggered compaction and // a trivial move might pick a subset of files in a sorted run. So // always check all files in a sorted run and mark the entire run as // being compacted if one or more files are being compacted if (f->being_compacted) { being_compacted = f->being_compacted; } } if (total_compensated_size > 0) { ret.emplace_back(level, nullptr, total_size, total_compensated_size, being_compacted); } } return ret; } // Universal style of compaction. Pick files that are contiguous in // time-range to compact. Compaction* UniversalCompactionBuilder::PickCompaction() { const int kLevel0 = 0; score_ = vstorage_->CompactionScore(kLevel0); int max_output_level = vstorage_->MaxOutputLevel(ioptions_.allow_ingest_behind); sorted_runs_ = CalculateSortedRuns(*vstorage_, max_output_level); if (sorted_runs_.size() == 0 || (vstorage_->FilesMarkedForPeriodicCompaction().empty() && vstorage_->FilesMarkedForCompaction().empty() && sorted_runs_.size() < (unsigned int)mutable_cf_options_ .level0_file_num_compaction_trigger)) { ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: nothing to do\n", cf_name_.c_str()); TEST_SYNC_POINT_CALLBACK( "UniversalCompactionBuilder::PickCompaction:Return", nullptr); return nullptr; } VersionStorageInfo::LevelSummaryStorage tmp; ROCKS_LOG_BUFFER_MAX_SZ( log_buffer_, 3072, "[%s] Universal: sorted runs: %" ROCKSDB_PRIszt " files: %s\n", cf_name_.c_str(), sorted_runs_.size(), vstorage_->LevelSummary(&tmp)); Compaction* c = nullptr; // Periodic compaction has higher priority than other type of compaction // because it's a hard requirement. if (!vstorage_->FilesMarkedForPeriodicCompaction().empty()) { // Always need to do a full compaction for periodic compaction. c = PickPeriodicCompaction(); TEST_SYNC_POINT_CALLBACK("PostPickPeriodicCompaction", c); } // Check for size amplification. if (c == nullptr && sorted_runs_.size() >= static_cast( mutable_cf_options_.level0_file_num_compaction_trigger)) { if ((c = PickCompactionToReduceSizeAmp()) != nullptr) { TEST_SYNC_POINT("PickCompactionToReduceSizeAmpReturnNonnullptr"); ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: compacting for size amp\n", cf_name_.c_str()); } else { // Size amplification is within limits. Try reducing read // amplification while maintaining file size ratios. unsigned int ratio = mutable_cf_options_.compaction_options_universal.size_ratio; if ((c = PickCompactionToReduceSortedRuns(ratio, UINT_MAX)) != nullptr) { TEST_SYNC_POINT("PickCompactionToReduceSortedRunsReturnNonnullptr"); ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: compacting for size ratio\n", cf_name_.c_str()); } else { // Size amplification and file size ratios are within configured limits. // If max read amplification is exceeding configured limits, then force // compaction without looking at filesize ratios and try to reduce // the number of files to fewer than level0_file_num_compaction_trigger. // This is guaranteed by NeedsCompaction() assert(sorted_runs_.size() >= static_cast( mutable_cf_options_.level0_file_num_compaction_trigger)); // Get the total number of sorted runs that are not being compacted int num_sr_not_compacted = 0; for (size_t i = 0; i < sorted_runs_.size(); i++) { if (sorted_runs_[i].being_compacted == false) { num_sr_not_compacted++; } } // The number of sorted runs that are not being compacted is greater // than the maximum allowed number of sorted runs if (num_sr_not_compacted > mutable_cf_options_.level0_file_num_compaction_trigger) { unsigned int num_files = num_sr_not_compacted - mutable_cf_options_.level0_file_num_compaction_trigger + 1; if ((c = PickCompactionToReduceSortedRuns(UINT_MAX, num_files)) != nullptr) { ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: compacting for file num -- %u\n", cf_name_.c_str(), num_files); } } } } } if (c == nullptr) { if ((c = PickDeleteTriggeredCompaction()) != nullptr) { TEST_SYNC_POINT("PickDeleteTriggeredCompactionReturnNonnullptr"); ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: delete triggered compaction\n", cf_name_.c_str()); } } if (c == nullptr) { TEST_SYNC_POINT_CALLBACK( "UniversalCompactionBuilder::PickCompaction:Return", nullptr); return nullptr; } assert(c->output_level() <= vstorage_->MaxOutputLevel(ioptions_.allow_ingest_behind)); if (mutable_cf_options_.compaction_options_universal.allow_trivial_move == true && c->compaction_reason() != CompactionReason::kPeriodicCompaction) { c->set_is_trivial_move(IsInputFilesNonOverlapping(c)); } // validate that all the chosen files of L0 are non overlapping in time #ifndef NDEBUG bool is_first = true; size_t level_index = 0U; if (c->start_level() == 0) { for (auto f : *c->inputs(0)) { assert(f->fd.smallest_seqno <= f->fd.largest_seqno); if (is_first) { is_first = false; } } level_index = 1U; } for (; level_index < c->num_input_levels(); level_index++) { if (c->num_input_files(level_index) != 0) { SequenceNumber smallest_seqno = 0U; SequenceNumber largest_seqno = 0U; GetSmallestLargestSeqno(*(c->inputs(level_index)), &smallest_seqno, &largest_seqno); if (is_first) { is_first = false; } } } #endif // update statistics size_t num_files = 0; for (auto& each_level : *c->inputs()) { num_files += each_level.files.size(); } RecordInHistogram(ioptions_.stats, NUM_FILES_IN_SINGLE_COMPACTION, num_files); picker_->RegisterCompaction(c); vstorage_->ComputeCompactionScore(ioptions_, mutable_cf_options_); TEST_SYNC_POINT_CALLBACK("UniversalCompactionBuilder::PickCompaction:Return", c); return c; } uint32_t UniversalCompactionBuilder::GetPathId( const ImmutableCFOptions& ioptions, const MutableCFOptions& mutable_cf_options, uint64_t file_size) { // Two conditions need to be satisfied: // (1) the target path needs to be able to hold the file's size // (2) Total size left in this and previous paths need to be not // smaller than expected future file size before this new file is // compacted, which is estimated based on size_ratio. // For example, if now we are compacting files of size (1, 1, 2, 4, 8), // we will make sure the target file, probably with size of 16, will be // placed in a path so that eventually when new files are generated and // compacted to (1, 1, 2, 4, 8, 16), all those files can be stored in or // before the path we chose. // // TODO(sdong): now the case of multiple column families is not // considered in this algorithm. So the target size can be violated in // that case. We need to improve it. uint64_t accumulated_size = 0; uint64_t future_size = file_size * (100 - mutable_cf_options.compaction_options_universal.size_ratio) / 100; uint32_t p = 0; assert(!ioptions.cf_paths.empty()); for (; p < ioptions.cf_paths.size() - 1; p++) { uint64_t target_size = ioptions.cf_paths[p].target_size; if (target_size > file_size && accumulated_size + (target_size - file_size) > future_size) { return p; } accumulated_size += target_size; } return p; } // // Consider compaction files based on their size differences with // the next file in time order. // Compaction* UniversalCompactionBuilder::PickCompactionToReduceSortedRuns( unsigned int ratio, unsigned int max_number_of_files_to_compact) { unsigned int min_merge_width = mutable_cf_options_.compaction_options_universal.min_merge_width; unsigned int max_merge_width = mutable_cf_options_.compaction_options_universal.max_merge_width; const SortedRun* sr = nullptr; bool done = false; size_t start_index = 0; unsigned int candidate_count = 0; unsigned int max_files_to_compact = std::min(max_merge_width, max_number_of_files_to_compact); min_merge_width = std::max(min_merge_width, 2U); // Caller checks the size before executing this function. This invariant is // important because otherwise we may have a possible integer underflow when // dealing with unsigned types. assert(sorted_runs_.size() > 0); // Considers a candidate file only if it is smaller than the // total size accumulated so far. for (size_t loop = 0; loop < sorted_runs_.size(); loop++) { candidate_count = 0; // Skip files that are already being compacted for (sr = nullptr; loop < sorted_runs_.size(); loop++) { sr = &sorted_runs_[loop]; if (!sr->being_compacted) { candidate_count = 1; break; } char file_num_buf[kFormatFileNumberBufSize]; sr->Dump(file_num_buf, sizeof(file_num_buf)); ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: %s" "[%d] being compacted, skipping", cf_name_.c_str(), file_num_buf, loop); sr = nullptr; } // This file is not being compacted. Consider it as the // first candidate to be compacted. uint64_t candidate_size = sr != nullptr ? sr->compensated_file_size : 0; if (sr != nullptr) { char file_num_buf[kFormatFileNumberBufSize]; sr->Dump(file_num_buf, sizeof(file_num_buf), true); ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: Possible candidate %s[%d].", cf_name_.c_str(), file_num_buf, loop); } // Check if the succeeding files need compaction. for (size_t i = loop + 1; candidate_count < max_files_to_compact && i < sorted_runs_.size(); i++) { const SortedRun* succeeding_sr = &sorted_runs_[i]; if (succeeding_sr->being_compacted) { break; } // Pick files if the total/last candidate file size (increased by the // specified ratio) is still larger than the next candidate file. // candidate_size is the total size of files picked so far with the // default kCompactionStopStyleTotalSize; with // kCompactionStopStyleSimilarSize, it's simply the size of the last // picked file. double sz = candidate_size * (100.0 + ratio) / 100.0; if (sz < static_cast(succeeding_sr->size)) { break; } if (mutable_cf_options_.compaction_options_universal.stop_style == kCompactionStopStyleSimilarSize) { // Similar-size stopping rule: also check the last picked file isn't // far larger than the next candidate file. sz = (succeeding_sr->size * (100.0 + ratio)) / 100.0; if (sz < static_cast(candidate_size)) { // If the small file we've encountered begins a run of similar-size // files, we'll pick them up on a future iteration of the outer // loop. If it's some lonely straggler, it'll eventually get picked // by the last-resort read amp strategy which disregards size ratios. break; } candidate_size = succeeding_sr->compensated_file_size; } else { // default kCompactionStopStyleTotalSize candidate_size += succeeding_sr->compensated_file_size; } candidate_count++; } // Found a series of consecutive files that need compaction. if (candidate_count >= (unsigned int)min_merge_width) { start_index = loop; done = true; break; } else { for (size_t i = loop; i < loop + candidate_count && i < sorted_runs_.size(); i++) { const SortedRun* skipping_sr = &sorted_runs_[i]; char file_num_buf[256]; skipping_sr->DumpSizeInfo(file_num_buf, sizeof(file_num_buf), loop); ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: Skipping %s", cf_name_.c_str(), file_num_buf); } } } if (!done || candidate_count <= 1) { return nullptr; } size_t first_index_after = start_index + candidate_count; // Compression is enabled if files compacted earlier already reached // size ratio of compression. bool enable_compression = true; int ratio_to_compress = mutable_cf_options_.compaction_options_universal.compression_size_percent; if (ratio_to_compress >= 0) { uint64_t total_size = 0; for (auto& sorted_run : sorted_runs_) { total_size += sorted_run.compensated_file_size; } uint64_t older_file_size = 0; for (size_t i = sorted_runs_.size() - 1; i >= first_index_after; i--) { older_file_size += sorted_runs_[i].size; if (older_file_size * 100L >= total_size * (long)ratio_to_compress) { enable_compression = false; break; } } } uint64_t estimated_total_size = 0; for (unsigned int i = 0; i < first_index_after; i++) { estimated_total_size += sorted_runs_[i].size; } uint32_t path_id = GetPathId(ioptions_, mutable_cf_options_, estimated_total_size); int start_level = sorted_runs_[start_index].level; int output_level; // last level is reserved for the files ingested behind int max_output_level = vstorage_->MaxOutputLevel(ioptions_.allow_ingest_behind); if (first_index_after == sorted_runs_.size()) { output_level = max_output_level; } else if (sorted_runs_[first_index_after].level == 0) { output_level = 0; } else { output_level = sorted_runs_[first_index_after].level - 1; } std::vector inputs(max_output_level + 1); for (size_t i = 0; i < inputs.size(); ++i) { inputs[i].level = start_level + static_cast(i); } for (size_t i = start_index; i < first_index_after; i++) { auto& picking_sr = sorted_runs_[i]; if (picking_sr.level == 0) { FileMetaData* picking_file = picking_sr.file; inputs[0].files.push_back(picking_file); } else { auto& files = inputs[picking_sr.level - start_level].files; for (auto* f : vstorage_->LevelFiles(picking_sr.level)) { files.push_back(f); } } char file_num_buf[256]; picking_sr.DumpSizeInfo(file_num_buf, sizeof(file_num_buf), i); ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: Picking %s", cf_name_.c_str(), file_num_buf); } std::vector grandparents; // Include grandparents for potential file cutting in incremental // mode. It is for aligning file cutting boundaries across levels, // so that subsequent compactions can pick files with aligned // buffer. // Single files are only picked up in incremental mode, so that // there is no need for full range. if (mutable_cf_options_.compaction_options_universal.incremental && first_index_after < sorted_runs_.size() && sorted_runs_[first_index_after].level > 1) { grandparents = vstorage_->LevelFiles(sorted_runs_[first_index_after].level); } if (output_level != 0 && picker_->FilesRangeOverlapWithCompaction( inputs, output_level, Compaction::EvaluatePenultimateLevel(vstorage_, ioptions_, start_level, output_level))) { return nullptr; } CompactionReason compaction_reason; if (max_number_of_files_to_compact == UINT_MAX) { compaction_reason = CompactionReason::kUniversalSizeRatio; } else { compaction_reason = CompactionReason::kUniversalSortedRunNum; } return new Compaction(vstorage_, ioptions_, mutable_cf_options_, mutable_db_options_, std::move(inputs), output_level, MaxFileSizeForLevel(mutable_cf_options_, output_level, kCompactionStyleUniversal), GetMaxOverlappingBytes(), path_id, GetCompressionType(vstorage_, mutable_cf_options_, output_level, 1, enable_compression), GetCompressionOptions(mutable_cf_options_, vstorage_, output_level, enable_compression), Temperature::kUnknown, /* max_subcompactions */ 0, grandparents, /* is manual */ false, /* trim_ts */ "", score_, false /* deletion_compaction */, /* l0_files_might_overlap */ true, compaction_reason); } // Look at overall size amplification. If size amplification // exceeds the configured value, then do a compaction // on longest span of candidate files without conflict with other compactions // ending at the earliest base file (overriding configured values of file-size // ratios, min_merge_width and max_merge_width). Compaction* UniversalCompactionBuilder::PickCompactionToReduceSizeAmp() { assert(!sorted_runs_.empty()); const size_t end_index = ShouldSkipLastSortedRunForSizeAmpCompaction() ? sorted_runs_.size() - 2 : sorted_runs_.size() - 1; if (sorted_runs_[end_index].being_compacted) { return nullptr; } const uint64_t base_sr_size = sorted_runs_[end_index].size; size_t start_index = end_index; uint64_t candidate_size = 0; size_t num_l0_files = 0; // Get longest span (i.e, [start_index, end_index]) of available sorted runs while (start_index > 0) { const SortedRun* sr = &sorted_runs_[start_index - 1]; if (sr->being_compacted) { char file_num_buf[kFormatFileNumberBufSize]; sr->Dump(file_num_buf, sizeof(file_num_buf), true); ROCKS_LOG_BUFFER( log_buffer_, "[%s] Universal: stopping at sorted run undergoing compaction: " "%s[%" ROCKSDB_PRIszt "]", cf_name_.c_str(), file_num_buf, start_index - 1); break; } candidate_size += sr->compensated_file_size; num_l0_files += sr->level == 0 ? 1 : 0; --start_index; } if (start_index == end_index) { return nullptr; } { const size_t num_l0_to_exclude = MightExcludeNewL0sToReduceWriteStop( num_l0_files, end_index, start_index, candidate_size); ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: Excluding %" ROCKSDB_PRIszt " latest L0 files to reduce potential write stop " "triggered by `level0_stop_writes_trigger`", cf_name_.c_str(), num_l0_to_exclude); } { char file_num_buf[kFormatFileNumberBufSize]; sorted_runs_[start_index].Dump(file_num_buf, sizeof(file_num_buf), true); ROCKS_LOG_BUFFER( log_buffer_, "[%s] Universal: First candidate %s[%" ROCKSDB_PRIszt "] %s", cf_name_.c_str(), file_num_buf, start_index, " to reduce size amp.\n"); } // percentage flexibility while reducing size amplification const uint64_t ratio = mutable_cf_options_.compaction_options_universal .max_size_amplification_percent; // size amplification = percentage of additional size if (candidate_size * 100 < ratio * base_sr_size) { ROCKS_LOG_BUFFER( log_buffer_, "[%s] Universal: size amp not needed. newer-files-total-size %" PRIu64 " earliest-file-size %" PRIu64, cf_name_.c_str(), candidate_size, base_sr_size); return nullptr; } else { ROCKS_LOG_BUFFER( log_buffer_, "[%s] Universal: size amp needed. newer-files-total-size %" PRIu64 " earliest-file-size %" PRIu64, cf_name_.c_str(), candidate_size, base_sr_size); } // Since incremental compaction can't include more than second last // level, it can introduce penalty, compared to full compaction. We // hard code the pentalty to be 80%. If we end up with a compaction // fanout higher than 80% of full level compactions, we fall back // to full level compaction. // The 80% threshold is arbitrary and can be adjusted or made // configurable in the future. // This also prevent the case when compaction falls behind and we // need to compact more levels for compactions to catch up. if (mutable_cf_options_.compaction_options_universal.incremental) { double fanout_threshold = static_cast(base_sr_size) / static_cast(candidate_size) * 1.8; Compaction* picked = PickIncrementalForReduceSizeAmp(fanout_threshold); if (picked != nullptr) { // As the feature is still incremental, picking incremental compaction // might fail and we will fall bck to compacting full level. return picked; } } return PickCompactionWithSortedRunRange( start_index, end_index, CompactionReason::kUniversalSizeAmplification); } Compaction* UniversalCompactionBuilder::PickIncrementalForReduceSizeAmp( double fanout_threshold) { // Try find all potential compactions with total size just over // options.max_compaction_size / 2, and take the one with the lowest // fanout (defined in declaration of the function). // This is done by having a sliding window of the files at the second // lowest level, and keep expanding while finding overlapping in the // last level. Once total size exceeds the size threshold, calculate // the fanout value. And then shrinking from the small side of the // window. Keep doing it until the end. // Finally, we try to include upper level files if they fall into // the range. // // Note that it is a similar problem as leveled compaction's // kMinOverlappingRatio priority, but instead of picking single files // we expand to a target compaction size. The reason is that in // leveled compaction, actual fanout value tends to high, e.g. 10, so // even with single file in down merging level, the extra size // compacted in boundary files is at a lower ratio. But here users // often have size of second last level size to be 1/4, 1/3 or even // 1/2 of the bottommost level, so picking single file in second most // level will cause significant waste, which is not desirable. // // This algorithm has lots of room to improve to pick more efficient // compactions. assert(sorted_runs_.size() >= 2); int second_last_level = sorted_runs_[sorted_runs_.size() - 2].level; if (second_last_level == 0) { // Can't split Level 0. return nullptr; } int output_level = sorted_runs_.back().level; const std::vector& bottom_files = vstorage_->LevelFiles(output_level); const std::vector& files = vstorage_->LevelFiles(second_last_level); assert(!bottom_files.empty()); assert(!files.empty()); // std::unordered_map file_to_order; int picked_start_idx = 0; int picked_end_idx = 0; double picked_fanout = fanout_threshold; // Use half target compaction bytes as anchor to stop growing second most // level files, and reserve growing space for more overlapping bottom level, // clean cut, files from other levels, etc. uint64_t comp_thres_size = mutable_cf_options_.max_compaction_bytes / 2; int start_idx = 0; int bottom_end_idx = 0; int bottom_start_idx = 0; uint64_t non_bottom_size = 0; uint64_t bottom_size = 0; bool end_bottom_size_counted = false; for (int end_idx = 0; end_idx < static_cast(files.size()); end_idx++) { FileMetaData* end_file = files[end_idx]; // Include bottom most level files smaller than the current second // last level file. int num_skipped = 0; while (bottom_end_idx < static_cast(bottom_files.size()) && icmp_->Compare(bottom_files[bottom_end_idx]->largest, end_file->smallest) < 0) { if (!end_bottom_size_counted) { bottom_size += bottom_files[bottom_end_idx]->fd.file_size; } bottom_end_idx++; end_bottom_size_counted = false; num_skipped++; } if (num_skipped > 1) { // At least a file in the bottom most level falls into the file gap. No // reason to include the file. We cut the range and start a new sliding // window. start_idx = end_idx; } if (start_idx == end_idx) { // new sliding window. non_bottom_size = 0; bottom_size = 0; bottom_start_idx = bottom_end_idx; end_bottom_size_counted = false; } non_bottom_size += end_file->fd.file_size; // Include all overlapping files in bottom level. while (bottom_end_idx < static_cast(bottom_files.size()) && icmp_->Compare(bottom_files[bottom_end_idx]->smallest, end_file->largest) < 0) { if (!end_bottom_size_counted) { bottom_size += bottom_files[bottom_end_idx]->fd.file_size; end_bottom_size_counted = true; } if (icmp_->Compare(bottom_files[bottom_end_idx]->largest, end_file->largest) > 0) { // next level file cross large boundary of current file. break; } bottom_end_idx++; end_bottom_size_counted = false; } if ((non_bottom_size + bottom_size > comp_thres_size || end_idx == static_cast(files.size()) - 1) && non_bottom_size > 0) { // Do we alow 0 size file at all? // If it is a better compaction, remember it in picked* variables. double fanout = static_cast(bottom_size) / static_cast(non_bottom_size); if (fanout < picked_fanout) { picked_start_idx = start_idx; picked_end_idx = end_idx; picked_fanout = fanout; } // Shrink from the start end to under comp_thres_size while (non_bottom_size + bottom_size > comp_thres_size && start_idx <= end_idx) { non_bottom_size -= files[start_idx]->fd.file_size; start_idx++; if (start_idx < static_cast(files.size())) { while (bottom_start_idx <= bottom_end_idx && icmp_->Compare(bottom_files[bottom_start_idx]->largest, files[start_idx]->smallest) < 0) { bottom_size -= bottom_files[bottom_start_idx]->fd.file_size; bottom_start_idx++; } } } } } if (picked_fanout >= fanout_threshold) { assert(picked_fanout == fanout_threshold); return nullptr; } std::vector inputs; CompactionInputFiles bottom_level_inputs; CompactionInputFiles second_last_level_inputs; second_last_level_inputs.level = second_last_level; bottom_level_inputs.level = output_level; for (int i = picked_start_idx; i <= picked_end_idx; i++) { if (files[i]->being_compacted) { return nullptr; } second_last_level_inputs.files.push_back(files[i]); } assert(!second_last_level_inputs.empty()); if (!picker_->ExpandInputsToCleanCut(cf_name_, vstorage_, &second_last_level_inputs, /*next_smallest=*/nullptr)) { return nullptr; } // We might be able to avoid this binary search if we save and expand // from bottom_start_idx and bottom_end_idx, but for now, we use // SetupOtherInputs() for simplicity. int parent_index = -1; // Create and use bottom_start_idx? if (!picker_->SetupOtherInputs(cf_name_, vstorage_, &second_last_level_inputs, &bottom_level_inputs, &parent_index, /*base_index=*/-1)) { return nullptr; } // Try to include files in upper levels if they fall into the range. // Since we need to go from lower level up and this is in the reverse // order, compared to level order, we first write to an reversed // data structure and finally copy them to compaction inputs. InternalKey smallest, largest; picker_->GetRange(second_last_level_inputs, &smallest, &largest); std::vector inputs_reverse; for (auto it = ++(++sorted_runs_.rbegin()); it != sorted_runs_.rend(); it++) { SortedRun& sr = *it; if (sr.level == 0) { break; } std::vector level_inputs; vstorage_->GetCleanInputsWithinInterval(sr.level, &smallest, &largest, &level_inputs); if (!level_inputs.empty()) { inputs_reverse.push_back({}); inputs_reverse.back().level = sr.level; inputs_reverse.back().files = level_inputs; picker_->GetRange(inputs_reverse.back(), &smallest, &largest); } } for (auto it = inputs_reverse.rbegin(); it != inputs_reverse.rend(); it++) { inputs.push_back(*it); } inputs.push_back(second_last_level_inputs); inputs.push_back(bottom_level_inputs); int start_level = Compaction::kInvalidLevel; for (const auto& in : inputs) { if (!in.empty()) { // inputs should already be sorted by level start_level = in.level; break; } } // intra L0 compactions outputs could have overlap if (output_level != 0 && picker_->FilesRangeOverlapWithCompaction( inputs, output_level, Compaction::EvaluatePenultimateLevel(vstorage_, ioptions_, start_level, output_level))) { return nullptr; } // TODO support multi paths? uint32_t path_id = 0; return new Compaction( vstorage_, ioptions_, mutable_cf_options_, mutable_db_options_, std::move(inputs), output_level, MaxFileSizeForLevel(mutable_cf_options_, output_level, kCompactionStyleUniversal), GetMaxOverlappingBytes(), path_id, GetCompressionType(vstorage_, mutable_cf_options_, output_level, 1, true /* enable_compression */), GetCompressionOptions(mutable_cf_options_, vstorage_, output_level, true /* enable_compression */), Temperature::kUnknown, /* max_subcompactions */ 0, /* grandparents */ {}, /* is manual */ false, /* trim_ts */ "", score_, false /* deletion_compaction */, /* l0_files_might_overlap */ true, CompactionReason::kUniversalSizeAmplification); } // Pick files marked for compaction. Typically, files are marked by // CompactOnDeleteCollector due to the presence of tombstones. Compaction* UniversalCompactionBuilder::PickDeleteTriggeredCompaction() { CompactionInputFiles start_level_inputs; int output_level; std::vector inputs; std::vector grandparents; if (vstorage_->num_levels() == 1) { // This is single level universal. Since we're basically trying to reclaim // space by processing files marked for compaction due to high tombstone // density, let's do the same thing as compaction to reduce size amp which // has the same goals. int start_index = -1; start_level_inputs.level = 0; start_level_inputs.files.clear(); output_level = 0; // Find the first file marked for compaction. Ignore the last file for (size_t loop = 0; loop + 1 < sorted_runs_.size(); loop++) { SortedRun* sr = &sorted_runs_[loop]; if (sr->being_compacted) { continue; } FileMetaData* f = vstorage_->LevelFiles(0)[loop]; if (f->marked_for_compaction) { start_level_inputs.files.push_back(f); start_index = static_cast(loop); // Consider this as the first candidate. break; } } if (start_index < 0) { // Either no file marked, or they're already being compacted return nullptr; } for (size_t loop = start_index + 1; loop < sorted_runs_.size(); loop++) { SortedRun* sr = &sorted_runs_[loop]; if (sr->being_compacted) { break; } FileMetaData* f = vstorage_->LevelFiles(0)[loop]; start_level_inputs.files.push_back(f); } if (start_level_inputs.size() <= 1) { // If only the last file in L0 is marked for compaction, ignore it return nullptr; } inputs.push_back(start_level_inputs); } else { int start_level; // For multi-level universal, the strategy is to make this look more like // leveled. We pick one of the files marked for compaction and compact with // overlapping files in the adjacent level. picker_->PickFilesMarkedForCompaction(cf_name_, vstorage_, &start_level, &output_level, &start_level_inputs); if (start_level_inputs.empty()) { return nullptr; } int max_output_level = vstorage_->MaxOutputLevel(ioptions_.allow_ingest_behind); // Pick the first non-empty level after the start_level for (output_level = start_level + 1; output_level <= max_output_level; output_level++) { if (vstorage_->NumLevelFiles(output_level) != 0) { break; } } // If all higher levels are empty, pick the highest level as output level if (output_level > max_output_level) { if (start_level == 0) { output_level = max_output_level; } else { // If start level is non-zero and all higher levels are empty, this // compaction will translate into a trivial move. Since the idea is // to reclaim space and trivial move doesn't help with that, we // skip compaction in this case and return nullptr return nullptr; } } assert(output_level <= max_output_level); if (output_level != 0) { if (start_level == 0) { if (!picker_->GetOverlappingL0Files(vstorage_, &start_level_inputs, output_level, nullptr)) { return nullptr; } } CompactionInputFiles output_level_inputs; int parent_index = -1; output_level_inputs.level = output_level; if (!picker_->SetupOtherInputs(cf_name_, vstorage_, &start_level_inputs, &output_level_inputs, &parent_index, -1)) { return nullptr; } inputs.push_back(start_level_inputs); if (!output_level_inputs.empty()) { inputs.push_back(output_level_inputs); } if (picker_->FilesRangeOverlapWithCompaction( inputs, output_level, Compaction::EvaluatePenultimateLevel( vstorage_, ioptions_, start_level, output_level))) { return nullptr; } picker_->GetGrandparents(vstorage_, start_level_inputs, output_level_inputs, &grandparents); } else { inputs.push_back(start_level_inputs); } } uint64_t estimated_total_size = 0; // Use size of the output level as estimated file size for (FileMetaData* f : vstorage_->LevelFiles(output_level)) { estimated_total_size += f->fd.GetFileSize(); } uint32_t path_id = GetPathId(ioptions_, mutable_cf_options_, estimated_total_size); return new Compaction( vstorage_, ioptions_, mutable_cf_options_, mutable_db_options_, std::move(inputs), output_level, MaxFileSizeForLevel(mutable_cf_options_, output_level, kCompactionStyleUniversal), /* max_grandparent_overlap_bytes */ GetMaxOverlappingBytes(), path_id, GetCompressionType(vstorage_, mutable_cf_options_, output_level, 1), GetCompressionOptions(mutable_cf_options_, vstorage_, output_level), Temperature::kUnknown, /* max_subcompactions */ 0, grandparents, /* is manual */ false, /* trim_ts */ "", score_, false /* deletion_compaction */, /* l0_files_might_overlap */ true, CompactionReason::kFilesMarkedForCompaction); } Compaction* UniversalCompactionBuilder::PickCompactionToOldest( size_t start_index, CompactionReason compaction_reason) { return PickCompactionWithSortedRunRange(start_index, sorted_runs_.size() - 1, compaction_reason); } Compaction* UniversalCompactionBuilder::PickCompactionWithSortedRunRange( size_t start_index, size_t end_index, CompactionReason compaction_reason) { assert(start_index < sorted_runs_.size()); // Estimate total file size uint64_t estimated_total_size = 0; for (size_t loop = start_index; loop <= end_index; loop++) { estimated_total_size += sorted_runs_[loop].size; } uint32_t path_id = GetPathId(ioptions_, mutable_cf_options_, estimated_total_size); int start_level = sorted_runs_[start_index].level; int max_output_level = vstorage_->MaxOutputLevel(ioptions_.allow_ingest_behind); std::vector inputs(max_output_level + 1); for (size_t i = 0; i < inputs.size(); ++i) { inputs[i].level = start_level + static_cast(i); } for (size_t loop = start_index; loop <= end_index; loop++) { auto& picking_sr = sorted_runs_[loop]; if (picking_sr.level == 0) { FileMetaData* f = picking_sr.file; inputs[0].files.push_back(f); } else { auto& files = inputs[picking_sr.level - start_level].files; for (auto* f : vstorage_->LevelFiles(picking_sr.level)) { files.push_back(f); } } std::string comp_reason_print_string; if (compaction_reason == CompactionReason::kPeriodicCompaction) { comp_reason_print_string = "periodic compaction"; } else if (compaction_reason == CompactionReason::kUniversalSizeAmplification) { comp_reason_print_string = "size amp"; } else { assert(false); comp_reason_print_string = "unknown: "; comp_reason_print_string.append( std::to_string(static_cast(compaction_reason))); } char file_num_buf[256]; picking_sr.DumpSizeInfo(file_num_buf, sizeof(file_num_buf), loop); ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: %s picking %s", cf_name_.c_str(), comp_reason_print_string.c_str(), file_num_buf); } int output_level; if (end_index == sorted_runs_.size() - 1) { output_level = max_output_level; } else { // if it's not including all sorted_runs, it can only output to the level // above the `end_index + 1` sorted_run. output_level = sorted_runs_[end_index + 1].level - 1; } // intra L0 compactions outputs could have overlap if (output_level != 0 && picker_->FilesRangeOverlapWithCompaction( inputs, output_level, Compaction::EvaluatePenultimateLevel(vstorage_, ioptions_, start_level, output_level))) { return nullptr; } // We never check size for // compaction_options_universal.compression_size_percent, // because we always compact all the files, so always compress. return new Compaction( vstorage_, ioptions_, mutable_cf_options_, mutable_db_options_, std::move(inputs), output_level, MaxFileSizeForLevel(mutable_cf_options_, output_level, kCompactionStyleUniversal), GetMaxOverlappingBytes(), path_id, GetCompressionType(vstorage_, mutable_cf_options_, output_level, 1, true /* enable_compression */), GetCompressionOptions(mutable_cf_options_, vstorage_, output_level, true /* enable_compression */), Temperature::kUnknown, /* max_subcompactions */ 0, /* grandparents */ {}, /* is manual */ false, /* trim_ts */ "", score_, false /* deletion_compaction */, /* l0_files_might_overlap */ true, compaction_reason); } Compaction* UniversalCompactionBuilder::PickPeriodicCompaction() { ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: Periodic Compaction", cf_name_.c_str()); // In universal compaction, sorted runs contain older data are almost always // generated earlier too. To simplify the problem, we just try to trigger // a full compaction. We start from the oldest sorted run and include // all sorted runs, until we hit a sorted already being compacted. // Since usually the largest (which is usually the oldest) sorted run is // included anyway, doing a full compaction won't increase write // amplification much. // Get some information from marked files to check whether a file is // included in the compaction. size_t start_index = sorted_runs_.size(); while (start_index > 0 && !sorted_runs_[start_index - 1].being_compacted) { start_index--; } if (start_index == sorted_runs_.size()) { return nullptr; } // There is a rare corner case where we can't pick up all the files // because some files are being compacted and we end up with picking files // but none of them need periodic compaction. Unless we simply recompact // the last sorted run (either the last level or last L0 file), we would just // execute the compaction, in order to simplify the logic. if (start_index == sorted_runs_.size() - 1) { bool included_file_marked = false; int start_level = sorted_runs_[start_index].level; FileMetaData* start_file = sorted_runs_[start_index].file; for (const std::pair& level_file_pair : vstorage_->FilesMarkedForPeriodicCompaction()) { if (start_level != 0) { // Last sorted run is a level if (start_level == level_file_pair.first) { included_file_marked = true; break; } } else { // Last sorted run is a L0 file. if (start_file == level_file_pair.second) { included_file_marked = true; break; } } } if (!included_file_marked) { ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: Cannot form a compaction covering file " "marked for periodic compaction", cf_name_.c_str()); return nullptr; } } Compaction* c = PickCompactionToOldest(start_index, CompactionReason::kPeriodicCompaction); TEST_SYNC_POINT_CALLBACK( "UniversalCompactionPicker::PickPeriodicCompaction:Return", c); return c; } uint64_t UniversalCompactionBuilder::GetMaxOverlappingBytes() const { if (!mutable_cf_options_.compaction_options_universal.incremental) { return std::numeric_limits::max(); } else { // Try to align cutting boundary with files at the next level if the // file isn't end up with 1/2 of target size, or it would overlap // with two full size files at the next level. return mutable_cf_options_.target_file_size_base / 2 * 3; } } } // namespace ROCKSDB_NAMESPACE