// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // The representation of a DBImpl consists of a set of Versions. The // newest version is called "current". Older versions may be kept // around to provide a consistent view to live iterators. // // Each Version keeps track of a set of table files per level, as well as a // set of blob files. The entire set of versions is maintained in a // VersionSet. // // Version,VersionSet are thread-compatible, but require external // synchronization on all accesses. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include "cache/cache_helpers.h" #include "db/blob/blob_file_meta.h" #include "db/blob/blob_index.h" #include "db/column_family.h" #include "db/compaction/compaction.h" #include "db/compaction/compaction_picker.h" #include "db/dbformat.h" #include "db/error_handler.h" #include "db/file_indexer.h" #include "db/log_reader.h" #include "db/range_del_aggregator.h" #include "db/read_callback.h" #include "db/table_cache.h" #include "db/version_builder.h" #include "db/version_edit.h" #include "db/write_controller.h" #include "env/file_system_tracer.h" #if USE_COROUTINES #include "folly/experimental/coro/BlockingWait.h" #include "folly/experimental/coro/Collect.h" #endif #include "monitoring/instrumented_mutex.h" #include "options/db_options.h" #include "options/offpeak_time_info.h" #include "port/port.h" #include "rocksdb/env.h" #include "rocksdb/file_checksum.h" #include "table/get_context.h" #include "table/multiget_context.h" #include "trace_replay/block_cache_tracer.h" #include "util/autovector.h" #include "util/coro_utils.h" #include "util/hash_containers.h" namespace ROCKSDB_NAMESPACE { namespace log { class Writer; } class BlobIndex; class Compaction; class LogBuffer; class LookupKey; class MemTable; class Version; class VersionSet; class WriteBufferManager; class MergeContext; class ColumnFamilySet; class MergeIteratorBuilder; class SystemClock; class ManifestTailer; class FilePickerMultiGet; // VersionEdit is always supposed to be valid and it is used to point at // entries in Manifest. Ideally it should not be used as a container to // carry around few of its fields as function params because it can cause // readers to think it's a valid entry from Manifest. To avoid that confusion // introducing VersionEditParams to simply carry around multiple VersionEdit // params. It need not point to a valid record in Manifest. using VersionEditParams = VersionEdit; // Return the smallest index i such that file_level.files[i]->largest >= key. // Return file_level.num_files if there is no such file. // REQUIRES: "file_level.files" contains a sorted list of // non-overlapping files. int FindFile(const InternalKeyComparator& icmp, const LevelFilesBrief& file_level, const Slice& key); // Returns true iff some file in "files" overlaps the user key range // [*smallest,*largest]. // smallest==nullptr represents a key smaller than all keys in the DB. // largest==nullptr represents a key largest than all keys in the DB. // REQUIRES: If disjoint_sorted_files, file_level.files[] // contains disjoint ranges in sorted order. bool SomeFileOverlapsRange(const InternalKeyComparator& icmp, bool disjoint_sorted_files, const LevelFilesBrief& file_level, const Slice* smallest_user_key, const Slice* largest_user_key); // Generate LevelFilesBrief from vector // Would copy smallest_key and largest_key data to sequential memory // arena: Arena used to allocate the memory void DoGenerateLevelFilesBrief(LevelFilesBrief* file_level, const std::vector& files, Arena* arena); enum EpochNumberRequirement { kMightMissing, kMustPresent, }; // Information of the storage associated with each Version, including number of // levels of LSM tree, files information at each level, files marked for // compaction, blob files, etc. class VersionStorageInfo { public: VersionStorageInfo(const InternalKeyComparator* internal_comparator, const Comparator* user_comparator, int num_levels, CompactionStyle compaction_style, VersionStorageInfo* src_vstorage, bool _force_consistency_checks, EpochNumberRequirement epoch_number_requirement, SystemClock* clock, uint32_t bottommost_file_compaction_delay, OffpeakTimeOption offpeak_time_option); // No copying allowed VersionStorageInfo(const VersionStorageInfo&) = delete; void operator=(const VersionStorageInfo&) = delete; ~VersionStorageInfo(); void Reserve(int level, size_t size) { files_[level].reserve(size); } void AddFile(int level, FileMetaData* f); // Resize/Initialize the space for compact_cursor_ void ResizeCompactCursors(int level) { compact_cursor_.resize(level, InternalKey()); } const std::vector& GetCompactCursors() const { return compact_cursor_; } // REQUIRES: ResizeCompactCursors has been called void AddCursorForOneLevel(int level, const InternalKey& smallest_uncompacted_key) { compact_cursor_[level] = smallest_uncompacted_key; } // REQUIRES: lock is held // Update the compact cursor and advance the file index using increment // so that it can point to the next cursor (increment means the number of // input files in this level of the last compaction) const InternalKey& GetNextCompactCursor(int level, size_t increment) { int cmp_idx = next_file_to_compact_by_size_[level] + (int)increment; assert(cmp_idx <= (int)files_by_compaction_pri_[level].size()); // TODO(zichen): may need to update next_file_to_compact_by_size_ // for parallel compaction. InternalKey new_cursor; if (cmp_idx >= (int)files_by_compaction_pri_[level].size()) { cmp_idx = 0; } // TODO(zichen): rethink if this strategy gives us some good guarantee return files_[level][files_by_compaction_pri_[level][cmp_idx]]->smallest; } void ReserveBlob(size_t size) { blob_files_.reserve(size); } void AddBlobFile(std::shared_ptr blob_file_meta); void PrepareForVersionAppend(const ImmutableOptions& immutable_options, const MutableCFOptions& mutable_cf_options); // REQUIRES: PrepareForVersionAppend has been called void SetFinalized(); // Update the accumulated stats from a file-meta. void UpdateAccumulatedStats(FileMetaData* file_meta); // Decrease the current stat from a to-be-deleted file-meta void RemoveCurrentStats(FileMetaData* file_meta); // Updates internal structures that keep track of compaction scores // We use compaction scores to figure out which compaction to do next // REQUIRES: db_mutex held!! // TODO find a better way to pass compaction_options_fifo. void ComputeCompactionScore(const ImmutableOptions& immutable_options, const MutableCFOptions& mutable_cf_options); // Estimate est_comp_needed_bytes_ void EstimateCompactionBytesNeeded( const MutableCFOptions& mutable_cf_options); // This computes files_marked_for_compaction_ and is called by // ComputeCompactionScore() void ComputeFilesMarkedForCompaction(int last_level); // This computes ttl_expired_files_ and is called by // ComputeCompactionScore() void ComputeExpiredTtlFiles(const ImmutableOptions& ioptions, const uint64_t ttl); // This computes files_marked_for_periodic_compaction_ and is called by // ComputeCompactionScore() void ComputeFilesMarkedForPeriodicCompaction( const ImmutableOptions& ioptions, const uint64_t periodic_compaction_seconds, int last_level); // This computes bottommost_files_marked_for_compaction_ and is called by // ComputeCompactionScore() or UpdateOldestSnapshot(). // // Among bottommost files (assumes they've already been computed), marks the // ones that have keys that would be eliminated if recompacted, according to // the seqnum of the oldest existing snapshot. Must be called every time // oldest snapshot changes as that is when bottom-level files can become // eligible for compaction. // // REQUIRES: DB mutex held void ComputeBottommostFilesMarkedForCompaction(bool allow_ingest_behind); // This computes files_marked_for_forced_blob_gc_ and is called by // ComputeCompactionScore() // // REQUIRES: DB mutex held void ComputeFilesMarkedForForcedBlobGC( double blob_garbage_collection_age_cutoff, double blob_garbage_collection_force_threshold, bool enable_blob_garbage_collection); bool level0_non_overlapping() const { return level0_non_overlapping_; } // Updates the oldest snapshot and related internal state, like the bottommost // files marked for compaction. // REQUIRES: DB mutex held void UpdateOldestSnapshot(SequenceNumber oldest_snapshot_seqnum, bool allow_ingest_behind); int MaxInputLevel() const; int MaxOutputLevel(bool allow_ingest_behind) const; // Return level number that has idx'th highest score int CompactionScoreLevel(int idx) const { return compaction_level_[idx]; } // Return idx'th highest score double CompactionScore(int idx) const { return compaction_score_[idx]; } void GetOverlappingInputs( int level, const InternalKey* begin, // nullptr means before all keys const InternalKey* end, // nullptr means after all keys std::vector* inputs, int hint_index = -1, // index of overlap file int* file_index = nullptr, // return index of overlap file bool expand_range = true, // if set, returns files which overlap the // range and overlap each other. If false, // then just files intersecting the range InternalKey** next_smallest = nullptr) // if non-null, returns the const; // smallest key of next file not included void GetCleanInputsWithinInterval( int level, const InternalKey* begin, // nullptr means before all keys const InternalKey* end, // nullptr means after all keys std::vector* inputs, int hint_index = -1, // index of overlap file int* file_index = nullptr) // return index of overlap file const; void GetOverlappingInputsRangeBinarySearch( int level, // level > 0 const InternalKey* begin, // nullptr means before all keys const InternalKey* end, // nullptr means after all keys std::vector* inputs, int hint_index, // index of overlap file int* file_index, // return index of overlap file bool within_interval = false, // if set, force the inputs within interval InternalKey** next_smallest = nullptr) // if non-null, returns the const; // smallest key of next file not included // Returns true iff some file in the specified level overlaps // some part of [*smallest_user_key,*largest_user_key]. // smallest_user_key==NULL represents a key smaller than all keys in the DB. // largest_user_key==NULL represents a key largest than all keys in the DB. bool OverlapInLevel(int level, const Slice* smallest_user_key, const Slice* largest_user_key); // Returns true iff the first or last file in inputs contains // an overlapping user key to the file "just outside" of it (i.e. // just after the last file, or just before the first file) // REQUIRES: "*inputs" is a sorted list of non-overlapping files bool HasOverlappingUserKey(const std::vector* inputs, int level); int num_levels() const { return num_levels_; } // REQUIRES: PrepareForVersionAppend has been called int num_non_empty_levels() const { assert(finalized_); return num_non_empty_levels_; } // REQUIRES: PrepareForVersionAppend has been called // This may or may not return number of level files. It is to keep backward // compatible behavior in universal compaction. int l0_delay_trigger_count() const { return l0_delay_trigger_count_; } void set_l0_delay_trigger_count(int v) { l0_delay_trigger_count_ = v; } // REQUIRES: This version has been saved (see VersionBuilder::SaveTo) int NumLevelFiles(int level) const { assert(finalized_); return static_cast(files_[level].size()); } // Return the combined file size of all files at the specified level. uint64_t NumLevelBytes(int level) const; // REQUIRES: This version has been saved (see VersionBuilder::SaveTo) const std::vector& LevelFiles(int level) const { return files_[level]; } bool HasMissingEpochNumber() const; uint64_t GetMaxEpochNumberOfFiles() const; EpochNumberRequirement GetEpochNumberRequirement() const { return epoch_number_requirement_; } void SetEpochNumberRequirement( EpochNumberRequirement epoch_number_requirement) { epoch_number_requirement_ = epoch_number_requirement; } void RecoverEpochNumbers(ColumnFamilyData* cfd); class FileLocation { public: FileLocation() = default; FileLocation(int level, size_t position) : level_(level), position_(position) {} int GetLevel() const { return level_; } size_t GetPosition() const { return position_; } bool IsValid() const { return level_ >= 0; } bool operator==(const FileLocation& rhs) const { return level_ == rhs.level_ && position_ == rhs.position_; } bool operator!=(const FileLocation& rhs) const { return !(*this == rhs); } static FileLocation Invalid() { return FileLocation(); } private: int level_ = -1; size_t position_ = 0; }; // REQUIRES: PrepareForVersionAppend has been called FileLocation GetFileLocation(uint64_t file_number) const { const auto it = file_locations_.find(file_number); if (it == file_locations_.end()) { return FileLocation::Invalid(); } assert(it->second.GetLevel() < num_levels_); assert(it->second.GetPosition() < files_[it->second.GetLevel()].size()); assert(files_[it->second.GetLevel()][it->second.GetPosition()]); assert(files_[it->second.GetLevel()][it->second.GetPosition()] ->fd.GetNumber() == file_number); return it->second; } // REQUIRES: PrepareForVersionAppend has been called FileMetaData* GetFileMetaDataByNumber(uint64_t file_number) const { auto location = GetFileLocation(file_number); if (!location.IsValid()) { return nullptr; } return files_[location.GetLevel()][location.GetPosition()]; } // REQUIRES: This version has been saved (see VersionBuilder::SaveTo) using BlobFiles = std::vector>; const BlobFiles& GetBlobFiles() const { return blob_files_; } // REQUIRES: This version has been saved (see VersionBuilder::SaveTo) BlobFiles::const_iterator GetBlobFileMetaDataLB( uint64_t blob_file_number) const; // REQUIRES: This version has been saved (see VersionBuilder::SaveTo) std::shared_ptr GetBlobFileMetaData( uint64_t blob_file_number) const { const auto it = GetBlobFileMetaDataLB(blob_file_number); assert(it == blob_files_.end() || *it); if (it != blob_files_.end() && (*it)->GetBlobFileNumber() == blob_file_number) { return *it; } return std::shared_ptr(); } // REQUIRES: This version has been saved (see VersionBuilder::SaveTo) struct BlobStats { uint64_t total_file_size = 0; uint64_t total_garbage_size = 0; double space_amp = 0.0; }; BlobStats GetBlobStats() const { uint64_t total_file_size = 0; uint64_t total_garbage_size = 0; for (const auto& meta : blob_files_) { assert(meta); total_file_size += meta->GetBlobFileSize(); total_garbage_size += meta->GetGarbageBlobBytes(); } double space_amp = 0.0; if (total_file_size > total_garbage_size) { space_amp = static_cast(total_file_size) / (total_file_size - total_garbage_size); } return BlobStats{total_file_size, total_garbage_size, space_amp}; } const ROCKSDB_NAMESPACE::LevelFilesBrief& LevelFilesBrief(int level) const { assert(level < static_cast(level_files_brief_.size())); return level_files_brief_[level]; } // REQUIRES: PrepareForVersionAppend has been called const std::vector& FilesByCompactionPri(int level) const { assert(finalized_); return files_by_compaction_pri_[level]; } // REQUIRES: ComputeCompactionScore has been called // REQUIRES: DB mutex held during access const autovector>& FilesMarkedForCompaction() const { assert(finalized_); return files_marked_for_compaction_; } void TEST_AddFileMarkedForCompaction(int level, FileMetaData* f) { f->marked_for_compaction = true; files_marked_for_compaction_.emplace_back(level, f); } // REQUIRES: ComputeCompactionScore has been called // REQUIRES: DB mutex held during access // Used by Leveled Compaction only. const autovector>& ExpiredTtlFiles() const { assert(finalized_); return expired_ttl_files_; } // REQUIRES: ComputeCompactionScore has been called // REQUIRES: DB mutex held during access // Used by Leveled and Universal Compaction. const autovector>& FilesMarkedForPeriodicCompaction() const { assert(finalized_); return files_marked_for_periodic_compaction_; } void TEST_AddFileMarkedForPeriodicCompaction(int level, FileMetaData* f) { files_marked_for_periodic_compaction_.emplace_back(level, f); } // REQUIRES: PrepareForVersionAppend has been called const autovector>& BottommostFiles() const { assert(finalized_); return bottommost_files_; } // REQUIRES: ComputeCompactionScore has been called // REQUIRES: DB mutex held during access const autovector>& BottommostFilesMarkedForCompaction() const { assert(finalized_); return bottommost_files_marked_for_compaction_; } // REQUIRES: ComputeCompactionScore has been called // REQUIRES: DB mutex held during access const autovector>& FilesMarkedForForcedBlobGC() const { assert(finalized_); return files_marked_for_forced_blob_gc_; } int base_level() const { return base_level_; } double level_multiplier() const { return level_multiplier_; } // REQUIRES: lock is held // Set the index that is used to offset into files_by_compaction_pri_ to find // the next compaction candidate file. void SetNextCompactionIndex(int level, int index) { next_file_to_compact_by_size_[level] = index; } // REQUIRES: lock is held int NextCompactionIndex(int level) const { return next_file_to_compact_by_size_[level]; } // REQUIRES: PrepareForVersionAppend has been called const FileIndexer& file_indexer() const { assert(finalized_); return file_indexer_; } // Only the first few entries of files_by_compaction_pri_ are sorted. // There is no need to sort all the files because it is likely // that on a running system, we need to look at only the first // few largest files because a new version is created every few // seconds/minutes (because of concurrent compactions). static const size_t kNumberFilesToSort = 50; // Return a human-readable short (single-line) summary of the number // of files per level. Uses *scratch as backing store. struct LevelSummaryStorage { char buffer[1000]; }; struct FileSummaryStorage { char buffer[3000]; }; const char* LevelSummary(LevelSummaryStorage* scratch) const; // Return a human-readable short (single-line) summary of files // in a specified level. Uses *scratch as backing store. const char* LevelFileSummary(FileSummaryStorage* scratch, int level) const; // Return the maximum overlapping data (in bytes) at next level for any // file at a level >= 1. uint64_t MaxNextLevelOverlappingBytes(); // Return a human readable string that describes this version's contents. std::string DebugString(bool hex = false) const; uint64_t GetAverageValueSize() const { if (accumulated_num_non_deletions_ == 0) { return 0; } assert(accumulated_raw_key_size_ + accumulated_raw_value_size_ > 0); assert(accumulated_file_size_ > 0); return accumulated_raw_value_size_ / accumulated_num_non_deletions_ * accumulated_file_size_ / (accumulated_raw_key_size_ + accumulated_raw_value_size_); } uint64_t GetEstimatedActiveKeys() const; double GetEstimatedCompressionRatioAtLevel(int level) const; // re-initializes the index that is used to offset into // files_by_compaction_pri_ // to find the next compaction candidate file. void ResetNextCompactionIndex(int level) { next_file_to_compact_by_size_[level] = 0; } const InternalKeyComparator* InternalComparator() const { return internal_comparator_; } // Returns maximum total bytes of data on a given level. uint64_t MaxBytesForLevel(int level) const; // Returns an estimate of the amount of live data in bytes. uint64_t EstimateLiveDataSize() const; uint64_t estimated_compaction_needed_bytes() const { return estimated_compaction_needed_bytes_; } void TEST_set_estimated_compaction_needed_bytes(uint64_t v, InstrumentedMutex* mu) { InstrumentedMutexLock l(mu); estimated_compaction_needed_bytes_ = v; } bool force_consistency_checks() const { return force_consistency_checks_; } SequenceNumber bottommost_files_mark_threshold() const { return bottommost_files_mark_threshold_; } // Returns whether any key in [`smallest_key`, `largest_key`] could appear in // an older L0 file than `last_l0_idx` or in a greater level than `last_level` // // @param last_level Level after which we check for overlap // @param last_l0_idx If `last_level == 0`, index of L0 file after which we // check for overlap; otherwise, must be -1 bool RangeMightExistAfterSortedRun(const Slice& smallest_user_key, const Slice& largest_user_key, int last_level, int last_l0_idx); private: void ComputeCompensatedSizes(); void UpdateNumNonEmptyLevels(); void CalculateBaseBytes(const ImmutableOptions& ioptions, const MutableCFOptions& options); void UpdateFilesByCompactionPri(const ImmutableOptions& immutable_options, const MutableCFOptions& mutable_cf_options); void GenerateFileIndexer() { file_indexer_.UpdateIndex(&arena_, num_non_empty_levels_, files_); } void GenerateLevelFilesBrief(); void GenerateLevel0NonOverlapping(); void GenerateBottommostFiles(); void GenerateFileLocationIndex(); const InternalKeyComparator* internal_comparator_; const Comparator* user_comparator_; int num_levels_; // Number of levels int num_non_empty_levels_; // Number of levels. Any level larger than it // is guaranteed to be empty. // Per-level max bytes std::vector level_max_bytes_; // A short brief metadata of files per level autovector level_files_brief_; FileIndexer file_indexer_; Arena arena_; // Used to allocate space for file_levels_ CompactionStyle compaction_style_; // List of files per level, files in each level are arranged // in increasing order of keys std::vector* files_; // Map of all table files in version. Maps file number to (level, position on // level). using FileLocations = UnorderedMap; FileLocations file_locations_; // Vector of blob files in version sorted by blob file number. BlobFiles blob_files_; // Level that L0 data should be compacted to. All levels < base_level_ should // be empty. -1 if it is not level-compaction so it's not applicable. int base_level_; // Applies to level compaction when // `level_compaction_dynamic_level_bytes=true`. All non-empty levels <= // lowest_unnecessary_level_ are not needed and will be drained automatically. // -1 if there is no unnecessary level, int lowest_unnecessary_level_; double level_multiplier_; // A list for the same set of files that are stored in files_, // but files in each level are now sorted based on file // size. The file with the largest size is at the front. // This vector stores the index of the file from files_. std::vector> files_by_compaction_pri_; // If true, means that files in L0 have keys with non overlapping ranges bool level0_non_overlapping_; // An index into files_by_compaction_pri_ that specifies the first // file that is not yet compacted std::vector next_file_to_compact_by_size_; // Only the first few entries of files_by_compaction_pri_ are sorted. // There is no need to sort all the files because it is likely // that on a running system, we need to look at only the first // few largest files because a new version is created every few // seconds/minutes (because of concurrent compactions). static const size_t number_of_files_to_sort_ = 50; // This vector contains list of files marked for compaction and also not // currently being compacted. It is protected by DB mutex. It is calculated in // ComputeCompactionScore(). Used by Leveled and Universal Compaction. autovector> files_marked_for_compaction_; autovector> expired_ttl_files_; autovector> files_marked_for_periodic_compaction_; // These files are considered bottommost because none of their keys can exist // at lower levels. They are not necessarily all in the same level. The marked // ones are eligible for compaction because they contain duplicate key // versions that are no longer protected by snapshot. These variables are // protected by DB mutex and are calculated in `GenerateBottommostFiles()` and // `ComputeBottommostFilesMarkedForCompaction()`. autovector> bottommost_files_; autovector> bottommost_files_marked_for_compaction_; autovector> files_marked_for_forced_blob_gc_; // Threshold for needing to mark another bottommost file. Maintain it so we // can quickly check when releasing a snapshot whether more bottommost files // became eligible for compaction. It's defined as the min of the max nonzero // seqnums of unmarked bottommost files. SequenceNumber bottommost_files_mark_threshold_ = kMaxSequenceNumber; // Monotonically increases as we release old snapshots. Zero indicates no // snapshots have been released yet. When no snapshots remain we set it to the // current seqnum, which needs to be protected as a snapshot can still be // created that references it. SequenceNumber oldest_snapshot_seqnum_ = 0; // Level that should be compacted next and its compaction score. // Score < 1 means compaction is not strictly needed. These fields // are initialized by ComputeCompactionScore. // The most critical level to be compacted is listed first // These are used to pick the best compaction level std::vector compaction_score_; std::vector compaction_level_; int l0_delay_trigger_count_ = 0; // Count used to trigger slow down and stop // for number of L0 files. // Compact cursors for round-robin compactions in each level std::vector compact_cursor_; // the following are the sampled temporary stats. // the current accumulated size of sampled files. uint64_t accumulated_file_size_; // the current accumulated size of all raw keys based on the sampled files. uint64_t accumulated_raw_key_size_; // the current accumulated size of all raw keys based on the sampled files. uint64_t accumulated_raw_value_size_; // total number of non-deletion entries uint64_t accumulated_num_non_deletions_; // total number of deletion entries uint64_t accumulated_num_deletions_; // current number of non_deletion entries uint64_t current_num_non_deletions_; // current number of deletion entries uint64_t current_num_deletions_; // current number of file samples uint64_t current_num_samples_; // Estimated bytes needed to be compacted until all levels' size is down to // target sizes. uint64_t estimated_compaction_needed_bytes_; // Used for computing bottommost files marked for compaction and checking for // offpeak time. SystemClock* clock_; uint32_t bottommost_file_compaction_delay_; bool finalized_; // If set to true, we will run consistency checks even if RocksDB // is compiled in release mode bool force_consistency_checks_; EpochNumberRequirement epoch_number_requirement_; OffpeakTimeOption offpeak_time_option_; friend class Version; friend class VersionSet; }; struct ObsoleteFileInfo { FileMetaData* metadata; std::string path; // If true, the FileMataData should be destroyed but the file should // not be deleted. This is because another FileMetaData still references // the file, usually because the file is trivial moved so two FileMetadata // is managing the file. bool only_delete_metadata = false; ObsoleteFileInfo() noexcept : metadata(nullptr), only_delete_metadata(false) {} ObsoleteFileInfo(FileMetaData* f, const std::string& file_path, std::shared_ptr file_metadata_cache_res_mgr_arg = nullptr) : metadata(f), path(file_path), only_delete_metadata(false), file_metadata_cache_res_mgr(file_metadata_cache_res_mgr_arg) {} ObsoleteFileInfo(const ObsoleteFileInfo&) = delete; ObsoleteFileInfo& operator=(const ObsoleteFileInfo&) = delete; ObsoleteFileInfo(ObsoleteFileInfo&& rhs) noexcept : ObsoleteFileInfo() { *this = std::move(rhs); } ObsoleteFileInfo& operator=(ObsoleteFileInfo&& rhs) noexcept { path = std::move(rhs.path); metadata = rhs.metadata; rhs.metadata = nullptr; file_metadata_cache_res_mgr = rhs.file_metadata_cache_res_mgr; rhs.file_metadata_cache_res_mgr = nullptr; return *this; } void DeleteMetadata() { if (file_metadata_cache_res_mgr) { Status s = file_metadata_cache_res_mgr->UpdateCacheReservation( metadata->ApproximateMemoryUsage(), false /* increase */); s.PermitUncheckedError(); } delete metadata; metadata = nullptr; } private: std::shared_ptr file_metadata_cache_res_mgr; }; class ObsoleteBlobFileInfo { public: ObsoleteBlobFileInfo(uint64_t blob_file_number, std::string path) : blob_file_number_(blob_file_number), path_(std::move(path)) {} uint64_t GetBlobFileNumber() const { return blob_file_number_; } const std::string& GetPath() const { return path_; } private: uint64_t blob_file_number_; std::string path_; }; using MultiGetRange = MultiGetContext::Range; // A column family's version consists of the table and blob files owned by // the column family at a certain point in time. class Version { public: // Append to *iters a sequence of iterators that will // yield the contents of this Version when merged together. // @param read_options Must outlive any iterator built by // `merger_iter_builder`. void AddIterators(const ReadOptions& read_options, const FileOptions& soptions, MergeIteratorBuilder* merger_iter_builder, bool allow_unprepared_value); // @param read_options Must outlive any iterator built by // `merger_iter_builder`. void AddIteratorsForLevel(const ReadOptions& read_options, const FileOptions& soptions, MergeIteratorBuilder* merger_iter_builder, int level, bool allow_unprepared_value); Status OverlapWithLevelIterator(const ReadOptions&, const FileOptions&, const Slice& smallest_user_key, const Slice& largest_user_key, int level, bool* overlap); // Lookup the value for key or get all merge operands for key. // If do_merge = true (default) then lookup value for key. // Behavior if do_merge = true: // If found, store it in *value and // return OK. Else return a non-OK status. // Uses *operands to store merge_operator operations to apply later. // // If the ReadOptions.read_tier is set to do a read-only fetch, then // *value_found will be set to false if it cannot be determined whether // this value exists without doing IO. // // If the key is Deleted, *status will be set to NotFound and // *key_exists will be set to true. // If no key was found, *status will be set to NotFound and // *key_exists will be set to false. // If seq is non-null, *seq will be set to the sequence number found // for the key if a key was found. // Behavior if do_merge = false // If the key has any merge operands then store them in // merge_context.operands_list and don't merge the operands // REQUIRES: lock is not held // REQUIRES: pinned_iters_mgr != nullptr void Get(const ReadOptions&, const LookupKey& key, PinnableSlice* value, PinnableWideColumns* columns, std::string* timestamp, Status* status, MergeContext* merge_context, SequenceNumber* max_covering_tombstone_seq, PinnedIteratorsManager* pinned_iters_mgr, bool* value_found = nullptr, bool* key_exists = nullptr, SequenceNumber* seq = nullptr, ReadCallback* callback = nullptr, bool* is_blob = nullptr, bool do_merge = true); void MultiGet(const ReadOptions&, MultiGetRange* range, ReadCallback* callback = nullptr); // Interprets blob_index_slice as a blob reference, and (assuming the // corresponding blob file is part of this Version) retrieves the blob and // saves it in *value. // REQUIRES: blob_index_slice stores an encoded blob reference Status GetBlob(const ReadOptions& read_options, const Slice& user_key, const Slice& blob_index_slice, FilePrefetchBuffer* prefetch_buffer, PinnableSlice* value, uint64_t* bytes_read) const; // Retrieves a blob using a blob reference and saves it in *value, // assuming the corresponding blob file is part of this Version. Status GetBlob(const ReadOptions& read_options, const Slice& user_key, const BlobIndex& blob_index, FilePrefetchBuffer* prefetch_buffer, PinnableSlice* value, uint64_t* bytes_read) const; struct BlobReadContext { BlobReadContext(const BlobIndex& blob_idx, const KeyContext* key_ctx) : blob_index(blob_idx), key_context(key_ctx) {} BlobIndex blob_index; const KeyContext* key_context; PinnableSlice result; }; using BlobReadContexts = std::vector; void MultiGetBlob(const ReadOptions& read_options, MultiGetRange& range, std::unordered_map& blob_ctxs); // Loads some stats information from files (if update_stats is set) and // populates derived data structures. Call without mutex held. It needs to be // called before appending the version to the version set. void PrepareAppend(const MutableCFOptions& mutable_cf_options, const ReadOptions& read_options, bool update_stats); // Reference count management (so Versions do not disappear out from // under live iterators) void Ref(); // Decrease reference count. Delete the object if no reference left // and return true. Otherwise, return false. bool Unref(); // Add all files listed in the current version to *live_table_files and // *live_blob_files. void AddLiveFiles(std::vector* live_table_files, std::vector* live_blob_files) const; // Remove live files that are in the delete candidate lists. void RemoveLiveFiles( std::vector& sst_delete_candidates, std::vector& blob_delete_candidates) const; // Return a human readable string that describes this version's contents. std::string DebugString(bool hex = false, bool print_stats = false) const; // Returns the version number of this version uint64_t GetVersionNumber() const { return version_number_; } // REQUIRES: lock is held // On success, "tp" will contains the table properties of the file // specified in "file_meta". If the file name of "file_meta" is // known ahead, passing it by a non-null "fname" can save a // file-name conversion. Status GetTableProperties(const ReadOptions& read_options, std::shared_ptr* tp, const FileMetaData* file_meta, const std::string* fname = nullptr) const; // REQUIRES: lock is held // On success, *props will be populated with all SSTables' table properties. // The keys of `props` are the sst file name, the values of `props` are the // tables' properties, represented as std::shared_ptr. Status GetPropertiesOfAllTables(const ReadOptions& read_options, TablePropertiesCollection* props); Status GetPropertiesOfAllTables(const ReadOptions& read_options, TablePropertiesCollection* props, int level); Status GetPropertiesOfTablesInRange(const ReadOptions& read_options, const autovector& ranges, TablePropertiesCollection* props) const; // Print summary of range delete tombstones in SST files into out_str, // with maximum max_entries_to_print entries printed out. Status TablesRangeTombstoneSummary(int max_entries_to_print, std::string* out_str); // REQUIRES: lock is held // On success, "tp" will contains the aggregated table property among // the table properties of all sst files in this version. Status GetAggregatedTableProperties( const ReadOptions& read_options, std::shared_ptr* tp, int level = -1); uint64_t GetEstimatedActiveKeys() { return storage_info_.GetEstimatedActiveKeys(); } size_t GetMemoryUsageByTableReaders(const ReadOptions& read_options); ColumnFamilyData* cfd() const { return cfd_; } // Return the next Version in the linked list. Version* Next() const { return next_; } int TEST_refs() const { return refs_; } VersionStorageInfo* storage_info() { return &storage_info_; } const VersionStorageInfo* storage_info() const { return &storage_info_; } VersionSet* version_set() { return vset_; } void GetColumnFamilyMetaData(ColumnFamilyMetaData* cf_meta); void GetSstFilesBoundaryKeys(Slice* smallest_user_key, Slice* largest_user_key); uint64_t GetSstFilesSize(); // Retrieves the file_creation_time of the oldest file in the DB. // Prerequisite for this API is max_open_files = -1 void GetCreationTimeOfOldestFile(uint64_t* creation_time); const MutableCFOptions& GetMutableCFOptions() { return mutable_cf_options_; } InternalIterator* TEST_GetLevelIterator( const ReadOptions& read_options, MergeIteratorBuilder* merge_iter_builder, int level, bool allow_unprepared_value); private: Env* env_; SystemClock* clock_; friend class ReactiveVersionSet; friend class VersionSet; friend class VersionEditHandler; friend class VersionEditHandlerPointInTime; const InternalKeyComparator* internal_comparator() const { return storage_info_.internal_comparator_; } const Comparator* user_comparator() const { return storage_info_.user_comparator_; } // Returns true if the filter blocks in the specified level will not be // checked during read operations. In certain cases (trivial move or preload), // the filter block may already be cached, but we still do not access it such // that it eventually expires from the cache. bool IsFilterSkipped(int level, bool is_file_last_in_level = false); // The helper function of UpdateAccumulatedStats, which may fill the missing // fields of file_meta from its associated TableProperties. // Returns true if it does initialize FileMetaData. bool MaybeInitializeFileMetaData(const ReadOptions& read_options, FileMetaData* file_meta); // Update the accumulated stats associated with the current version. // This accumulated stats will be used in compaction. void UpdateAccumulatedStats(const ReadOptions& read_options); DECLARE_SYNC_AND_ASYNC( /* ret_type */ Status, /* func_name */ MultiGetFromSST, const ReadOptions& read_options, MultiGetRange file_range, int hit_file_level, bool skip_filters, bool skip_range_deletions, FdWithKeyRange* f, std::unordered_map& blob_ctxs, TableCache::TypedHandle* table_handle, uint64_t& num_filter_read, uint64_t& num_index_read, uint64_t& num_sst_read); #ifdef USE_COROUTINES // MultiGet using async IO to read data blocks from SST files in parallel // within and across levels Status MultiGetAsync( const ReadOptions& options, MultiGetRange* range, std::unordered_map* blob_ctxs); // A helper function to lookup a batch of keys in a single level. It will // queue coroutine tasks to mget_tasks. It may also split the input batch // by creating a new batch with keys definitely not in this level and // enqueuing it to to_process. Status ProcessBatch( const ReadOptions& read_options, FilePickerMultiGet* batch, std::vector>& mget_tasks, std::unordered_map* blob_ctxs, autovector& batches, std::deque& waiting, std::deque& to_process, unsigned int& num_tasks_queued, std::unordered_map>& mget_stats); #endif ColumnFamilyData* cfd_; // ColumnFamilyData to which this Version belongs Logger* info_log_; Statistics* db_statistics_; TableCache* table_cache_; BlobSource* blob_source_; const MergeOperator* merge_operator_; VersionStorageInfo storage_info_; VersionSet* vset_; // VersionSet to which this Version belongs Version* next_; // Next version in linked list Version* prev_; // Previous version in linked list int refs_; // Number of live refs to this version const FileOptions file_options_; const MutableCFOptions mutable_cf_options_; // Cached value to avoid recomputing it on every read. const size_t max_file_size_for_l0_meta_pin_; // A version number that uniquely represents this version. This is // used for debugging and logging purposes only. uint64_t version_number_; std::shared_ptr io_tracer_; bool use_async_io_; Version(ColumnFamilyData* cfd, VersionSet* vset, const FileOptions& file_opt, MutableCFOptions mutable_cf_options, const std::shared_ptr& io_tracer, uint64_t version_number = 0, EpochNumberRequirement epoch_number_requirement = EpochNumberRequirement::kMustPresent); ~Version(); // No copying allowed Version(const Version&) = delete; void operator=(const Version&) = delete; }; class BaseReferencedVersionBuilder; class AtomicGroupReadBuffer { public: AtomicGroupReadBuffer() = default; Status AddEdit(VersionEdit* edit); void Clear(); bool IsFull() const; bool IsEmpty() const; uint64_t TEST_read_edits_in_atomic_group() const { return read_edits_in_atomic_group_; } std::vector& replay_buffer() { return replay_buffer_; } private: uint64_t read_edits_in_atomic_group_ = 0; std::vector replay_buffer_; }; // VersionSet is the collection of versions of all the column families of the // database. Each database owns one VersionSet. A VersionSet has access to all // column families via ColumnFamilySet, i.e. set of the column families. class VersionSet { public: VersionSet(const std::string& dbname, const ImmutableDBOptions* db_options, const FileOptions& file_options, Cache* table_cache, WriteBufferManager* write_buffer_manager, WriteController* write_controller, BlockCacheTracer* const block_cache_tracer, const std::shared_ptr& io_tracer, const std::string& db_id, const std::string& db_session_id, const std::string& daily_offpeak_time_utc, ErrorHandler* const error_handler, const bool read_only); // No copying allowed VersionSet(const VersionSet&) = delete; void operator=(const VersionSet&) = delete; virtual ~VersionSet(); virtual Status Close(FSDirectory* db_dir, InstrumentedMutex* mu); Status LogAndApplyToDefaultColumnFamily( const ReadOptions& read_options, const WriteOptions& write_options, VersionEdit* edit, InstrumentedMutex* mu, FSDirectory* dir_contains_current_file, bool new_descriptor_log = false, const ColumnFamilyOptions* column_family_options = nullptr) { ColumnFamilyData* default_cf = GetColumnFamilySet()->GetDefault(); const MutableCFOptions* cf_options = default_cf->GetLatestMutableCFOptions(); return LogAndApply(default_cf, *cf_options, read_options, write_options, edit, mu, dir_contains_current_file, new_descriptor_log, column_family_options); } // Apply *edit to the current version to form a new descriptor that // is both saved to persistent state and installed as the new // current version. Will release *mu while actually writing to the file. // column_family_options has to be set if edit is column family add // REQUIRES: *mu is held on entry. // REQUIRES: no other thread concurrently calls LogAndApply() Status LogAndApply( ColumnFamilyData* column_family_data, const MutableCFOptions& mutable_cf_options, const ReadOptions& read_options, const WriteOptions& write_options, VersionEdit* edit, InstrumentedMutex* mu, FSDirectory* dir_contains_current_file, bool new_descriptor_log = false, const ColumnFamilyOptions* column_family_options = nullptr, const std::function& manifest_wcb = {}) { autovector cfds; cfds.emplace_back(column_family_data); autovector mutable_cf_options_list; mutable_cf_options_list.emplace_back(&mutable_cf_options); autovector> edit_lists; autovector edit_list; edit_list.emplace_back(edit); edit_lists.emplace_back(edit_list); return LogAndApply(cfds, mutable_cf_options_list, read_options, write_options, edit_lists, mu, dir_contains_current_file, new_descriptor_log, column_family_options, {manifest_wcb}); } // The batch version. If edit_list.size() > 1, caller must ensure that // no edit in the list column family add or drop Status LogAndApply( ColumnFamilyData* column_family_data, const MutableCFOptions& mutable_cf_options, const ReadOptions& read_options, const WriteOptions& write_options, const autovector& edit_list, InstrumentedMutex* mu, FSDirectory* dir_contains_current_file, bool new_descriptor_log = false, const ColumnFamilyOptions* column_family_options = nullptr, const std::function& manifest_wcb = {}) { autovector cfds; cfds.emplace_back(column_family_data); autovector mutable_cf_options_list; mutable_cf_options_list.emplace_back(&mutable_cf_options); autovector> edit_lists; edit_lists.emplace_back(edit_list); return LogAndApply(cfds, mutable_cf_options_list, read_options, write_options, edit_lists, mu, dir_contains_current_file, new_descriptor_log, column_family_options, {manifest_wcb}); } // The across-multi-cf batch version. If edit_lists contain more than // 1 version edits, caller must ensure that no edit in the []list is column // family manipulation. virtual Status LogAndApply( const autovector& cfds, const autovector& mutable_cf_options_list, const ReadOptions& read_options, const WriteOptions& write_options, const autovector>& edit_lists, InstrumentedMutex* mu, FSDirectory* dir_contains_current_file, bool new_descriptor_log = false, const ColumnFamilyOptions* new_cf_options = nullptr, const std::vector>& manifest_wcbs = {}); static Status GetCurrentManifestPath(const std::string& dbname, FileSystem* fs, std::string* manifest_filename, uint64_t* manifest_file_number); void WakeUpWaitingManifestWriters(); // Recover the last saved descriptor (MANIFEST) from persistent storage. // If read_only == true, Recover() will not complain if some column families // are not opened Status Recover(const std::vector& column_families, bool read_only = false, std::string* db_id = nullptr, bool no_error_if_files_missing = false); Status TryRecover(const std::vector& column_families, bool read_only, const std::vector& files_in_dbname, std::string* db_id, bool* has_missing_table_file); // Try to recover the version set to the most recent consistent state // recorded in the specified manifest. Status TryRecoverFromOneManifest( const std::string& manifest_path, const std::vector& column_families, bool read_only, std::string* db_id, bool* has_missing_table_file); // Recover the next epoch number of each CFs and epoch number // of their files (if missing) void RecoverEpochNumbers(); // Reads a manifest file and returns a list of column families in // column_families. static Status ListColumnFamilies(std::vector* column_families, const std::string& dbname, FileSystem* fs); static Status ListColumnFamiliesFromManifest( const std::string& manifest_path, FileSystem* fs, std::vector* column_families); // Try to reduce the number of levels. This call is valid when // only one level from the new max level to the old // max level containing files. // The call is static, since number of levels is immutable during // the lifetime of a RocksDB instance. It reduces number of levels // in a DB by applying changes to manifest. // For example, a db currently has 7 levels [0-6], and a call to // to reduce to 5 [0-4] can only be executed when only one level // among [4-6] contains files. static Status ReduceNumberOfLevels(const std::string& dbname, const Options* options, const FileOptions& file_options, int new_levels); // Get the checksum information of all live files Status GetLiveFilesChecksumInfo(FileChecksumList* checksum_list); // printf contents (for debugging) Status DumpManifest(Options& options, std::string& manifestFileName, bool verbose, bool hex = false, bool json = false, const std::vector& cf_descs = {}); const std::string& DbSessionId() const { return db_session_id_; } // Return the current manifest file number uint64_t manifest_file_number() const { return manifest_file_number_; } uint64_t options_file_number() const { return options_file_number_; } uint64_t pending_manifest_file_number() const { return pending_manifest_file_number_; } uint64_t current_next_file_number() const { return next_file_number_.load(); } uint64_t min_log_number_to_keep() const { return min_log_number_to_keep_.load(); } // Allocate and return a new file number uint64_t NewFileNumber() { return next_file_number_.fetch_add(1); } // Fetch And Add n new file number uint64_t FetchAddFileNumber(uint64_t n) { return next_file_number_.fetch_add(n); } // Return the last sequence number. uint64_t LastSequence() const { return last_sequence_.load(std::memory_order_acquire); } // Note: memory_order_acquire must be sufficient. uint64_t LastAllocatedSequence() const { return last_allocated_sequence_.load(std::memory_order_seq_cst); } // Note: memory_order_acquire must be sufficient. uint64_t LastPublishedSequence() const { return last_published_sequence_.load(std::memory_order_seq_cst); } // Set the last sequence number to s. void SetLastSequence(uint64_t s) { assert(s >= last_sequence_); // Last visible sequence must always be less than last written seq assert(!db_options_->two_write_queues || s <= last_allocated_sequence_); last_sequence_.store(s, std::memory_order_release); } // Note: memory_order_release must be sufficient void SetLastPublishedSequence(uint64_t s) { assert(s >= last_published_sequence_); last_published_sequence_.store(s, std::memory_order_seq_cst); } // Note: memory_order_release must be sufficient void SetLastAllocatedSequence(uint64_t s) { assert(s >= last_allocated_sequence_); last_allocated_sequence_.store(s, std::memory_order_seq_cst); } // Note: memory_order_release must be sufficient uint64_t FetchAddLastAllocatedSequence(uint64_t s) { return last_allocated_sequence_.fetch_add(s, std::memory_order_seq_cst); } // Mark the specified file number as used. // REQUIRED: this is only called during single-threaded recovery or repair. void MarkFileNumberUsed(uint64_t number); // Mark the specified log number as deleted // REQUIRED: this is only called during single-threaded recovery or repair, or // from ::LogAndApply where the global mutex is held. void MarkMinLogNumberToKeep(uint64_t number); // Return the log file number for the log file that is currently // being compacted, or zero if there is no such log file. uint64_t prev_log_number() const { return prev_log_number_; } // Returns the minimum log number which still has data not flushed to any SST // file. // In non-2PC mode, all the log numbers smaller than this number can be safely // deleted, although we still use `min_log_number_to_keep_` to determine when // to delete a WAL file. uint64_t MinLogNumberWithUnflushedData() const { return PreComputeMinLogNumberWithUnflushedData(nullptr); } // Returns the minimum log number which still has data not flushed to any SST // file. // Empty column families' log number is considered to be // new_log_number_for_empty_cf. uint64_t PreComputeMinLogNumberWithUnflushedData( uint64_t new_log_number_for_empty_cf) const { uint64_t min_log_num = std::numeric_limits::max(); for (auto cfd : *column_family_set_) { // It's safe to ignore dropped column families here: // cfd->IsDropped() becomes true after the drop is persisted in MANIFEST. uint64_t num = cfd->IsEmpty() ? new_log_number_for_empty_cf : cfd->GetLogNumber(); if (min_log_num > num && !cfd->IsDropped()) { min_log_num = num; } } return min_log_num; } // Returns the minimum log number which still has data not flushed to any SST // file, except data from `cfd_to_skip`. uint64_t PreComputeMinLogNumberWithUnflushedData( const ColumnFamilyData* cfd_to_skip) const { uint64_t min_log_num = std::numeric_limits::max(); for (auto cfd : *column_family_set_) { if (cfd == cfd_to_skip) { continue; } // It's safe to ignore dropped column families here: // cfd->IsDropped() becomes true after the drop is persisted in MANIFEST. if (min_log_num > cfd->GetLogNumber() && !cfd->IsDropped()) { min_log_num = cfd->GetLogNumber(); } } return min_log_num; } // Returns the minimum log number which still has data not flushed to any SST // file, except data from `cfds_to_skip`. uint64_t PreComputeMinLogNumberWithUnflushedData( const std::unordered_set& cfds_to_skip) const { uint64_t min_log_num = std::numeric_limits::max(); for (auto cfd : *column_family_set_) { if (cfds_to_skip.count(cfd)) { continue; } // It's safe to ignore dropped column families here: // cfd->IsDropped() becomes true after the drop is persisted in MANIFEST. if (min_log_num > cfd->GetLogNumber() && !cfd->IsDropped()) { min_log_num = cfd->GetLogNumber(); } } return min_log_num; } // Create an iterator that reads over the compaction inputs for "*c". // The caller should delete the iterator when no longer needed. // @param read_options Must outlive the returned iterator. // @param start, end indicates compaction range InternalIterator* MakeInputIterator( const ReadOptions& read_options, const Compaction* c, RangeDelAggregator* range_del_agg, const FileOptions& file_options_compactions, const std::optional& start, const std::optional& end); // Add all files listed in any live version to *live_table_files and // *live_blob_files. Note that these lists may contain duplicates. void AddLiveFiles(std::vector* live_table_files, std::vector* live_blob_files) const; // Remove live files that are in the delete candidate lists. void RemoveLiveFiles( std::vector& sst_delete_candidates, std::vector& blob_delete_candidates) const; // Return the approximate size of data to be scanned for range [start, end) // in levels [start_level, end_level). If end_level == -1 it will search // through all non-empty levels uint64_t ApproximateSize(const SizeApproximationOptions& options, const ReadOptions& read_options, Version* v, const Slice& start, const Slice& end, int start_level, int end_level, TableReaderCaller caller); // Return the size of the current manifest file uint64_t manifest_file_size() const { return manifest_file_size_; } Status GetMetadataForFile(uint64_t number, int* filelevel, FileMetaData** metadata, ColumnFamilyData** cfd); // This function doesn't support leveldb SST filenames void GetLiveFilesMetaData(std::vector* metadata); void AddObsoleteBlobFile(uint64_t blob_file_number, std::string path) { assert(table_cache_); table_cache_->Erase(GetSliceForKey(&blob_file_number)); obsolete_blob_files_.emplace_back(blob_file_number, std::move(path)); } void GetObsoleteFiles(std::vector* files, std::vector* blob_files, std::vector* manifest_filenames, uint64_t min_pending_output); // REQUIRES: DB mutex held uint64_t GetObsoleteSstFilesSize() const; ColumnFamilySet* GetColumnFamilySet() { return column_family_set_.get(); } const UnorderedMap& GetRunningColumnFamiliesTimestampSize() const { return column_family_set_->GetRunningColumnFamiliesTimestampSize(); } const UnorderedMap& GetColumnFamiliesTimestampSizeForRecord() const { return column_family_set_->GetColumnFamiliesTimestampSizeForRecord(); } RefedColumnFamilySet GetRefedColumnFamilySet() { return RefedColumnFamilySet(GetColumnFamilySet()); } const FileOptions& file_options() { return file_options_; } void ChangeFileOptions(const MutableDBOptions& new_options) { file_options_.writable_file_max_buffer_size = new_options.writable_file_max_buffer_size; } // TODO - Consider updating together when file options change in SetDBOptions const OffpeakTimeOption& offpeak_time_option() { return offpeak_time_option_; } void ChangeOffpeakTimeOption(const std::string& daily_offpeak_time_utc) { offpeak_time_option_.SetFromOffpeakTimeString(daily_offpeak_time_utc); } const ImmutableDBOptions* db_options() const { return db_options_; } static uint64_t GetNumLiveVersions(Version* dummy_versions); static uint64_t GetTotalSstFilesSize(Version* dummy_versions); static uint64_t GetTotalBlobFileSize(Version* dummy_versions); // Get the IO Status returned by written Manifest. const IOStatus& io_status() const { return io_status_; } // The returned WalSet needs to be accessed with DB mutex held. const WalSet& GetWalSet() const { return wals_; } void TEST_CreateAndAppendVersion(ColumnFamilyData* cfd) { assert(cfd); const auto& mutable_cf_options = *cfd->GetLatestMutableCFOptions(); Version* const version = new Version(cfd, this, file_options_, mutable_cf_options, io_tracer_); constexpr bool update_stats = false; // TODO: plumb Env::IOActivity, Env::IOPriority const ReadOptions read_options; version->PrepareAppend(mutable_cf_options, read_options, update_stats); AppendVersion(cfd, version); } protected: struct ManifestWriter; friend class Version; friend class VersionEditHandler; friend class VersionEditHandlerPointInTime; friend class DumpManifestHandler; friend class DBImpl; friend class DBImplReadOnly; struct LogReporter : public log::Reader::Reporter { Status* status; void Corruption(size_t /*bytes*/, const Status& s) override { if (status->ok()) { *status = s; } } }; void Reset(); // Returns approximated offset of a key in a file for a given version. uint64_t ApproximateOffsetOf(const ReadOptions& read_options, Version* v, const FdWithKeyRange& f, const Slice& key, TableReaderCaller caller); // Returns approximated data size between start and end keys in a file // for a given version. uint64_t ApproximateSize(const ReadOptions& read_options, Version* v, const FdWithKeyRange& f, const Slice& start, const Slice& end, TableReaderCaller caller); struct MutableCFState { uint64_t log_number; std::string full_history_ts_low; explicit MutableCFState() = default; explicit MutableCFState(uint64_t _log_number, std::string ts_low) : log_number(_log_number), full_history_ts_low(std::move(ts_low)) {} }; // Save current contents to *log Status WriteCurrentStateToManifest( const WriteOptions& write_options, const std::unordered_map& curr_state, const VersionEdit& wal_additions, log::Writer* log, IOStatus& io_s); void AppendVersion(ColumnFamilyData* column_family_data, Version* v); ColumnFamilyData* CreateColumnFamily(const ColumnFamilyOptions& cf_options, const ReadOptions& read_options, const VersionEdit* edit); Status VerifyFileMetadata(const ReadOptions& read_options, ColumnFamilyData* cfd, const std::string& fpath, int level, const FileMetaData& meta); // Protected by DB mutex. WalSet wals_; std::unique_ptr column_family_set_; Cache* table_cache_; Env* const env_; FileSystemPtr const fs_; SystemClock* const clock_; const std::string dbname_; std::string db_id_; const ImmutableDBOptions* const db_options_; std::atomic next_file_number_; // Any WAL number smaller than this should be ignored during recovery, // and is qualified for being deleted. std::atomic min_log_number_to_keep_ = {0}; uint64_t manifest_file_number_; uint64_t options_file_number_; uint64_t options_file_size_; uint64_t pending_manifest_file_number_; // The last seq visible to reads. It normally indicates the last sequence in // the memtable but when using two write queues it could also indicate the // last sequence in the WAL visible to reads. std::atomic last_sequence_; // The last sequence number of data committed to the descriptor (manifest // file). SequenceNumber descriptor_last_sequence_ = 0; // The last seq that is already allocated. It is applicable only when we have // two write queues. In that case seq might or might not have appreated in // memtable but it is expected to appear in the WAL. // We have last_sequence <= last_allocated_sequence_ std::atomic last_allocated_sequence_; // The last allocated sequence that is also published to the readers. This is // applicable only when last_seq_same_as_publish_seq_ is not set. Otherwise // last_sequence_ also indicates the last published seq. // We have last_sequence <= last_published_sequence_ <= // last_allocated_sequence_ std::atomic last_published_sequence_; uint64_t prev_log_number_; // 0 or backing store for memtable being compacted // Opened lazily std::unique_ptr descriptor_log_; // generates a increasing version number for every new version uint64_t current_version_number_; // Queue of writers to the manifest file std::deque manifest_writers_; // Current size of manifest file uint64_t manifest_file_size_; std::vector obsolete_files_; std::vector obsolete_blob_files_; std::vector obsolete_manifests_; // env options for all reads and writes except compactions FileOptions file_options_; BlockCacheTracer* const block_cache_tracer_; // Store the IO status when Manifest is written IOStatus io_status_; std::shared_ptr io_tracer_; std::string db_session_id_; // Off-peak time option used for compaction scoring OffpeakTimeOption offpeak_time_option_; // Pointer to the DB's ErrorHandler. ErrorHandler* const error_handler_; private: // REQUIRES db mutex at beginning. may release and re-acquire db mutex Status ProcessManifestWrites(std::deque& writers, InstrumentedMutex* mu, FSDirectory* dir_contains_current_file, bool new_descriptor_log, const ColumnFamilyOptions* new_cf_options, const ReadOptions& read_options, const WriteOptions& write_options); void LogAndApplyCFHelper(VersionEdit* edit, SequenceNumber* max_last_sequence); Status LogAndApplyHelper(ColumnFamilyData* cfd, VersionBuilder* b, VersionEdit* edit, SequenceNumber* max_last_sequence, InstrumentedMutex* mu); const bool read_only_; bool closed_; }; // ReactiveVersionSet represents a collection of versions of the column // families of the database. Users of ReactiveVersionSet, e.g. DBImplSecondary, // need to replay the MANIFEST (description log in older terms) in order to // reconstruct and install versions. class ReactiveVersionSet : public VersionSet { public: ReactiveVersionSet(const std::string& dbname, const ImmutableDBOptions* _db_options, const FileOptions& _file_options, Cache* table_cache, WriteBufferManager* write_buffer_manager, WriteController* write_controller, const std::shared_ptr& io_tracer); ~ReactiveVersionSet() override; Status Close(FSDirectory* /*db_dir*/, InstrumentedMutex* /*mu*/) override { return Status::OK(); } Status ReadAndApply( InstrumentedMutex* mu, std::unique_ptr* manifest_reader, Status* manifest_read_status, std::unordered_set* cfds_changed); Status Recover(const std::vector& column_families, std::unique_ptr* manifest_reader, std::unique_ptr* manifest_reporter, std::unique_ptr* manifest_reader_status); #ifndef NDEBUG uint64_t TEST_read_edits_in_atomic_group() const; #endif //! NDEBUG std::vector& replay_buffer(); protected: // REQUIRES db mutex Status ApplyOneVersionEditToBuilder( VersionEdit& edit, std::unordered_set* cfds_changed, VersionEdit* version_edit); Status MaybeSwitchManifest( log::Reader::Reporter* reporter, std::unique_ptr* manifest_reader); private: std::unique_ptr manifest_tailer_; // TODO: plumb Env::IOActivity, Env::IOPriority const ReadOptions read_options_; using VersionSet::LogAndApply; using VersionSet::Recover; Status LogAndApply( const autovector& /*cfds*/, const autovector& /*mutable_cf_options_list*/, const ReadOptions& /* read_options */, const WriteOptions& /* write_options */, const autovector>& /*edit_lists*/, InstrumentedMutex* /*mu*/, FSDirectory* /*dir_contains_current_file*/, bool /*new_descriptor_log*/, const ColumnFamilyOptions* /*new_cf_option*/, const std::vector>& /*manifest_wcbs*/) override { return Status::NotSupported("not supported in reactive mode"); } // No copy allowed ReactiveVersionSet(const ReactiveVersionSet&); ReactiveVersionSet& operator=(const ReactiveVersionSet&); }; } // namespace ROCKSDB_NAMESPACE