// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // #include #include #include "rocksdb/options.h" #include "util/compression.h" #ifdef GFLAGS #include "db_stress_tool/db_stress_common.h" #include "db_stress_tool/db_stress_compaction_filter.h" #include "db_stress_tool/db_stress_driver.h" #include "db_stress_tool/db_stress_table_properties_collector.h" #include "db_stress_tool/db_stress_wide_merge_operator.h" #include "options/options_parser.h" #include "rocksdb/convenience.h" #include "rocksdb/filter_policy.h" #include "rocksdb/secondary_cache.h" #include "rocksdb/sst_file_manager.h" #include "rocksdb/types.h" #include "rocksdb/utilities/object_registry.h" #include "rocksdb/utilities/write_batch_with_index.h" #include "test_util/testutil.h" #include "util/cast_util.h" #include "utilities/backup/backup_engine_impl.h" #include "utilities/fault_injection_fs.h" #include "utilities/fault_injection_secondary_cache.h" namespace ROCKSDB_NAMESPACE { namespace { std::shared_ptr CreateFilterPolicy() { if (FLAGS_bloom_bits < 0) { return BlockBasedTableOptions().filter_policy; } const FilterPolicy* new_policy; if (FLAGS_bloom_before_level == INT_MAX) { // Use Bloom API new_policy = NewBloomFilterPolicy(FLAGS_bloom_bits, false); } else { new_policy = NewRibbonFilterPolicy(FLAGS_bloom_bits, FLAGS_bloom_before_level); } return std::shared_ptr(new_policy); } } // namespace StressTest::StressTest() : cache_(NewCache(FLAGS_cache_size, FLAGS_cache_numshardbits)), filter_policy_(CreateFilterPolicy()), db_(nullptr), txn_db_(nullptr), optimistic_txn_db_(nullptr), db_aptr_(nullptr), clock_(db_stress_env->GetSystemClock().get()), new_column_family_name_(1), num_times_reopened_(0), db_preload_finished_(false), cmp_db_(nullptr), is_db_stopped_(false) { if (FLAGS_destroy_db_initially) { std::vector files; db_stress_env->GetChildren(FLAGS_db, &files); for (unsigned int i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("heap-")) { db_stress_env->DeleteFile(FLAGS_db + "/" + files[i]); } } Options options; options.env = db_stress_env; // Remove files without preserving manfiest files const Status s = !FLAGS_use_blob_db ? DestroyDB(FLAGS_db, options) : blob_db::DestroyBlobDB(FLAGS_db, options, blob_db::BlobDBOptions()); if (!s.ok()) { fprintf(stderr, "Cannot destroy original db: %s\n", s.ToString().c_str()); exit(1); } } } StressTest::~StressTest() { for (auto cf : column_families_) { delete cf; } column_families_.clear(); delete db_; for (auto* cf : cmp_cfhs_) { delete cf; } cmp_cfhs_.clear(); delete cmp_db_; } std::shared_ptr StressTest::NewCache(size_t capacity, int32_t num_shard_bits) { ConfigOptions config_options; if (capacity <= 0) { return nullptr; } std::shared_ptr secondary_cache; if (!FLAGS_secondary_cache_uri.empty()) { assert(!strstr(FLAGS_secondary_cache_uri.c_str(), "compressed_secondary_cache") || (FLAGS_compressed_secondary_cache_size == 0 && FLAGS_compressed_secondary_cache_ratio == 0.0 && !StartsWith(FLAGS_cache_type, "tiered_"))); Status s = SecondaryCache::CreateFromString( config_options, FLAGS_secondary_cache_uri, &secondary_cache); if (secondary_cache == nullptr) { fprintf(stderr, "No secondary cache registered matching string: %s status=%s\n", FLAGS_secondary_cache_uri.c_str(), s.ToString().c_str()); exit(1); } if (FLAGS_secondary_cache_fault_one_in > 0) { secondary_cache = std::make_shared( secondary_cache, static_cast(FLAGS_seed), FLAGS_secondary_cache_fault_one_in); } } else if (FLAGS_compressed_secondary_cache_size > 0) { if (StartsWith(FLAGS_cache_type, "tiered_")) { fprintf(stderr, "Cannot specify both compressed_secondary_cache_size and %s\n", FLAGS_cache_type.c_str()); exit(1); } CompressedSecondaryCacheOptions opts; opts.capacity = FLAGS_compressed_secondary_cache_size; secondary_cache = NewCompressedSecondaryCache(opts); if (secondary_cache == nullptr) { fprintf(stderr, "Failed to allocate compressed secondary cache\n"); exit(1); } compressed_secondary_cache = secondary_cache; } std::string cache_type = FLAGS_cache_type; size_t cache_size = FLAGS_cache_size; bool tiered = false; if (StartsWith(cache_type, "tiered_")) { tiered = true; cache_type.erase(0, strlen("tiered_")); } if (FLAGS_use_write_buffer_manager) { cache_size += FLAGS_db_write_buffer_size; } if (cache_type == "clock_cache") { fprintf(stderr, "Old clock cache implementation has been removed.\n"); exit(1); } else if (EndsWith(cache_type, "hyper_clock_cache")) { size_t estimated_entry_charge; if (cache_type == "fixed_hyper_clock_cache" || cache_type == "hyper_clock_cache") { estimated_entry_charge = FLAGS_block_size; } else if (cache_type == "auto_hyper_clock_cache") { estimated_entry_charge = 0; } else { fprintf(stderr, "Cache type not supported."); exit(1); } HyperClockCacheOptions opts(cache_size, estimated_entry_charge, num_shard_bits); opts.hash_seed = BitwiseAnd(FLAGS_seed, INT32_MAX); if (tiered) { TieredCacheOptions tiered_opts; tiered_opts.cache_opts = &opts; tiered_opts.cache_type = PrimaryCacheType::kCacheTypeHCC; tiered_opts.total_capacity = cache_size; tiered_opts.compressed_secondary_ratio = 0.5; block_cache = NewTieredCache(tiered_opts); } else { opts.secondary_cache = std::move(secondary_cache); block_cache = opts.MakeSharedCache(); } } else if (EndsWith(cache_type, "lru_cache")) { LRUCacheOptions opts; opts.capacity = capacity; opts.num_shard_bits = num_shard_bits; if (tiered) { TieredCacheOptions tiered_opts; tiered_opts.cache_opts = &opts; tiered_opts.cache_type = PrimaryCacheType::kCacheTypeLRU; tiered_opts.total_capacity = cache_size; tiered_opts.compressed_secondary_ratio = 0.5; block_cache = NewTieredCache(tiered_opts); } else { opts.secondary_cache = std::move(secondary_cache); block_cache = NewLRUCache(opts); } } else { fprintf(stderr, "Cache type not supported."); exit(1); } return block_cache; } std::vector StressTest::GetBlobCompressionTags() { std::vector compression_tags{"kNoCompression"}; if (Snappy_Supported()) { compression_tags.emplace_back("kSnappyCompression"); } if (LZ4_Supported()) { compression_tags.emplace_back("kLZ4Compression"); } if (ZSTD_Supported()) { compression_tags.emplace_back("kZSTD"); } return compression_tags; } bool StressTest::BuildOptionsTable() { if (FLAGS_set_options_one_in <= 0) { return true; } std::unordered_map> options_tbl = { {"write_buffer_size", {std::to_string(options_.write_buffer_size), std::to_string(options_.write_buffer_size * 2), std::to_string(options_.write_buffer_size * 4)}}, {"max_write_buffer_number", {std::to_string(options_.max_write_buffer_number), std::to_string(options_.max_write_buffer_number * 2), std::to_string(options_.max_write_buffer_number * 4)}}, {"arena_block_size", { std::to_string(options_.arena_block_size), std::to_string(options_.write_buffer_size / 4), std::to_string(options_.write_buffer_size / 8), }}, {"memtable_huge_page_size", {"0", std::to_string(2 * 1024 * 1024)}}, {"max_successive_merges", {"0", "2", "4"}}, {"inplace_update_num_locks", {"100", "200", "300"}}, // TODO: re-enable once internal task T124324915 is fixed. // {"experimental_mempurge_threshold", {"0.0", "1.0"}}, // TODO(ljin): enable test for this option // {"disable_auto_compactions", {"100", "200", "300"}}, {"level0_file_num_compaction_trigger", { std::to_string(options_.level0_file_num_compaction_trigger), std::to_string(options_.level0_file_num_compaction_trigger + 2), std::to_string(options_.level0_file_num_compaction_trigger + 4), }}, {"level0_slowdown_writes_trigger", { std::to_string(options_.level0_slowdown_writes_trigger), std::to_string(options_.level0_slowdown_writes_trigger + 2), std::to_string(options_.level0_slowdown_writes_trigger + 4), }}, {"level0_stop_writes_trigger", { std::to_string(options_.level0_stop_writes_trigger), std::to_string(options_.level0_stop_writes_trigger + 2), std::to_string(options_.level0_stop_writes_trigger + 4), }}, {"max_compaction_bytes", { std::to_string(options_.target_file_size_base * 5), std::to_string(options_.target_file_size_base * 15), std::to_string(options_.target_file_size_base * 100), }}, {"target_file_size_base", { std::to_string(options_.target_file_size_base), std::to_string(options_.target_file_size_base * 2), std::to_string(options_.target_file_size_base * 4), }}, {"target_file_size_multiplier", { std::to_string(options_.target_file_size_multiplier), "1", "2", }}, {"max_bytes_for_level_base", { std::to_string(options_.max_bytes_for_level_base / 2), std::to_string(options_.max_bytes_for_level_base), std::to_string(options_.max_bytes_for_level_base * 2), }}, {"max_bytes_for_level_multiplier", { std::to_string(options_.max_bytes_for_level_multiplier), "1", "2", }}, {"max_sequential_skip_in_iterations", {"4", "8", "12"}}, }; if (FLAGS_allow_setting_blob_options_dynamically) { options_tbl.emplace("enable_blob_files", std::vector{"false", "true"}); options_tbl.emplace("min_blob_size", std::vector{"0", "8", "16"}); options_tbl.emplace("blob_file_size", std::vector{"1M", "16M", "256M", "1G"}); options_tbl.emplace("blob_compression_type", GetBlobCompressionTags()); options_tbl.emplace("enable_blob_garbage_collection", std::vector{"false", "true"}); options_tbl.emplace( "blob_garbage_collection_age_cutoff", std::vector{"0.0", "0.25", "0.5", "0.75", "1.0"}); options_tbl.emplace("blob_garbage_collection_force_threshold", std::vector{"0.5", "0.75", "1.0"}); options_tbl.emplace("blob_compaction_readahead_size", std::vector{"0", "1M", "4M"}); options_tbl.emplace("blob_file_starting_level", std::vector{"0", "1", "2"}); options_tbl.emplace("prepopulate_blob_cache", std::vector{"kDisable", "kFlushOnly"}); } if (FLAGS_bloom_before_level != INT_MAX) { // Can modify RibbonFilterPolicy field options_tbl.emplace("table_factory.filter_policy.bloom_before_level", std::vector{"-1", "0", "1", "2", "2147483646", "2147483647"}); } options_table_ = std::move(options_tbl); for (const auto& iter : options_table_) { options_index_.push_back(iter.first); } return true; } void StressTest::InitDb(SharedState* shared) { uint64_t now = clock_->NowMicros(); fprintf(stdout, "%s Initializing db_stress\n", clock_->TimeToString(now / 1000000).c_str()); PrintEnv(); Open(shared); BuildOptionsTable(); } void StressTest::FinishInitDb(SharedState* shared) { if (FLAGS_read_only) { uint64_t now = clock_->NowMicros(); fprintf(stdout, "%s Preloading db with %" PRIu64 " KVs\n", clock_->TimeToString(now / 1000000).c_str(), FLAGS_max_key); PreloadDbAndReopenAsReadOnly(FLAGS_max_key, shared); } if (shared->HasHistory()) { // The way it works right now is, if there's any history, that means the // previous run mutating the DB had all its operations traced, in which case // we should always be able to `Restore()` the expected values to match the // `db_`'s current seqno. Status s = shared->Restore(db_); if (!s.ok()) { fprintf(stderr, "Error restoring historical expected values: %s\n", s.ToString().c_str()); exit(1); } } if (FLAGS_use_txn && !FLAGS_use_optimistic_txn) { // It's OK here without sync because unsynced data cannot be lost at this // point // - even with sync_fault_injection=1 as the // file is still directly writable until after FinishInitDb() ProcessRecoveredPreparedTxns(shared); } if (FLAGS_enable_compaction_filter) { auto* compaction_filter_factory = static_cast( options_.compaction_filter_factory.get()); assert(compaction_filter_factory); // This must be called only after any potential `SharedState::Restore()` has // completed in order for the `compaction_filter_factory` to operate on the // correct latest values file. compaction_filter_factory->SetSharedState(shared); fprintf(stdout, "Compaction filter factory: %s\n", compaction_filter_factory->Name()); } } void StressTest::TrackExpectedState(SharedState* shared) { // For `FLAGS_manual_wal_flush_one_inWAL` // data can be lost when `manual_wal_flush_one_in > 0` and `FlushWAL()` is not // explictly called by users of RocksDB (in our case, db stress). // Therefore recovery from such potential WAL data loss is a prefix recovery // that requires tracing if ((FLAGS_sync_fault_injection || FLAGS_disable_wal || FLAGS_manual_wal_flush_one_in > 0) && IsStateTracked()) { Status s = shared->SaveAtAndAfter(db_); if (!s.ok()) { fprintf(stderr, "Error enabling history tracing: %s\n", s.ToString().c_str()); exit(1); } } } Status StressTest::AssertSame(DB* db, ColumnFamilyHandle* cf, ThreadState::SnapshotState& snap_state) { Status s; if (cf->GetName() != snap_state.cf_at_name) { return s; } // This `ReadOptions` is for validation purposes. Ignore // `FLAGS_rate_limit_user_ops` to avoid slowing any validation. ReadOptions ropt; ropt.snapshot = snap_state.snapshot; Slice ts; if (!snap_state.timestamp.empty()) { ts = snap_state.timestamp; ropt.timestamp = &ts; } PinnableSlice exp_v(&snap_state.value); exp_v.PinSelf(); PinnableSlice v; s = db->Get(ropt, cf, snap_state.key, &v); if (!s.ok() && !s.IsNotFound()) { // When `persist_user_defined_timestamps` is false, a repeated read with // both a read timestamp and an explicitly taken snapshot cannot guarantee // consistent result all the time. When it cannot return consistent result, // it will return an `InvalidArgument` status. if (s.IsInvalidArgument() && !FLAGS_persist_user_defined_timestamps) { return Status::OK(); } return s; } if (snap_state.status != s) { return Status::Corruption( "The snapshot gave inconsistent results for key " + std::to_string(Hash(snap_state.key.c_str(), snap_state.key.size(), 0)) + " in cf " + cf->GetName() + ": (" + snap_state.status.ToString() + ") vs. (" + s.ToString() + ")"); } if (s.ok()) { if (exp_v != v) { return Status::Corruption("The snapshot gave inconsistent values: (" + exp_v.ToString() + ") vs. (" + v.ToString() + ")"); } } if (snap_state.key_vec != nullptr) { // When `prefix_extractor` is set, seeking to beginning and scanning // across prefixes are only supported with `total_order_seek` set. ropt.total_order_seek = true; std::unique_ptr iterator(db->NewIterator(ropt)); std::unique_ptr> tmp_bitvec( new std::vector(FLAGS_max_key)); for (iterator->SeekToFirst(); iterator->Valid(); iterator->Next()) { uint64_t key_val; if (GetIntVal(iterator->key().ToString(), &key_val)) { (*tmp_bitvec.get())[key_val] = true; } } if (!std::equal(snap_state.key_vec->begin(), snap_state.key_vec->end(), tmp_bitvec.get()->begin())) { return Status::Corruption("Found inconsistent keys at this snapshot"); } } return Status::OK(); } void StressTest::ProcessStatus(SharedState* shared, std::string opname, Status s) const { if (s.ok()) { return; } if (!s.IsIOError() || !std::strstr(s.getState(), "injected")) { std::ostringstream oss; oss << opname << " failed: " << s.ToString(); VerificationAbort(shared, oss.str()); assert(false); } fprintf(stdout, "%s failed: %s\n", opname.c_str(), s.ToString().c_str()); } void StressTest::VerificationAbort(SharedState* shared, std::string msg) const { fprintf(stderr, "Verification failed: %s\n", msg.c_str()); shared->SetVerificationFailure(); } void StressTest::VerificationAbort(SharedState* shared, std::string msg, int cf, int64_t key) const { auto key_str = Key(key); Slice key_slice = key_str; fprintf(stderr, "Verification failed for column family %d key %s (%" PRIi64 "): %s\n", cf, key_slice.ToString(true).c_str(), key, msg.c_str()); shared->SetVerificationFailure(); } void StressTest::VerificationAbort(SharedState* shared, std::string msg, int cf, int64_t key, Slice value_from_db, Slice value_from_expected) const { auto key_str = Key(key); fprintf(stderr, "Verification failed for column family %d key %s (%" PRIi64 "): value_from_db: %s, value_from_expected: %s, msg: %s\n", cf, Slice(key_str).ToString(true).c_str(), key, value_from_db.ToString(true).c_str(), value_from_expected.ToString(true).c_str(), msg.c_str()); shared->SetVerificationFailure(); } void StressTest::VerificationAbort(SharedState* shared, int cf, int64_t key, const Slice& value, const WideColumns& columns) const { assert(shared); auto key_str = Key(key); fprintf(stderr, "Verification failed for column family %d key %s (%" PRIi64 "): Value and columns inconsistent: value: %s, columns: %s\n", cf, Slice(key_str).ToString(/* hex */ true).c_str(), key, value.ToString(/* hex */ true).c_str(), WideColumnsToHex(columns).c_str()); shared->SetVerificationFailure(); } std::string StressTest::DebugString(const Slice& value, const WideColumns& columns) { std::ostringstream oss; oss << "value: " << value.ToString(/* hex */ true) << ", columns: " << WideColumnsToHex(columns); return oss.str(); } void StressTest::PrintStatistics() { if (dbstats) { fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str()); } if (dbstats_secondaries) { fprintf(stdout, "Secondary instances STATISTICS:\n%s\n", dbstats_secondaries->ToString().c_str()); } } // Currently PreloadDb has to be single-threaded. void StressTest::PreloadDbAndReopenAsReadOnly(int64_t number_of_keys, SharedState* shared) { WriteOptions write_opts; write_opts.disableWAL = FLAGS_disable_wal; if (FLAGS_sync) { write_opts.sync = true; } if (FLAGS_rate_limit_auto_wal_flush) { write_opts.rate_limiter_priority = Env::IO_USER; } char value[100]; int cf_idx = 0; Status s; for (auto cfh : column_families_) { for (int64_t k = 0; k != number_of_keys; ++k) { const std::string key = Key(k); PendingExpectedValue pending_expected_value = shared->PreparePut(cf_idx, k); const uint32_t value_base = pending_expected_value.GetFinalValueBase(); const size_t sz = GenerateValue(value_base, value, sizeof(value)); const Slice v(value, sz); std::string ts; if (FLAGS_user_timestamp_size > 0) { ts = GetNowNanos(); } if (FLAGS_use_put_entity_one_in > 0 && (value_base % FLAGS_use_put_entity_one_in) == 0) { s = db_->PutEntity(write_opts, cfh, key, GenerateWideColumns(value_base, v)); } else if (FLAGS_use_merge) { if (!FLAGS_use_txn) { if (FLAGS_user_timestamp_size > 0) { s = db_->Merge(write_opts, cfh, key, ts, v); } else { s = db_->Merge(write_opts, cfh, key, v); } } else { s = ExecuteTransaction( write_opts, /*thread=*/nullptr, [&](Transaction& txn) { return txn.Merge(cfh, key, v); }); } } else { if (!FLAGS_use_txn) { if (FLAGS_user_timestamp_size > 0) { s = db_->Put(write_opts, cfh, key, ts, v); } else { s = db_->Put(write_opts, cfh, key, v); } } else { s = ExecuteTransaction( write_opts, /*thread=*/nullptr, [&](Transaction& txn) { return txn.Put(cfh, key, v); }); } } if (!s.ok()) { pending_expected_value.Rollback(); break; } pending_expected_value.Commit(); } if (!s.ok()) { break; } ++cf_idx; } if (s.ok()) { s = db_->Flush(FlushOptions(), column_families_); } if (s.ok()) { for (auto cf : column_families_) { delete cf; } column_families_.clear(); delete db_; db_ = nullptr; txn_db_ = nullptr; optimistic_txn_db_ = nullptr; db_preload_finished_.store(true); auto now = clock_->NowMicros(); fprintf(stdout, "%s Reopening database in read-only\n", clock_->TimeToString(now / 1000000).c_str()); // Reopen as read-only, can ignore all options related to updates Open(shared); } else { fprintf(stderr, "Failed to preload db"); exit(1); } } Status StressTest::SetOptions(ThreadState* thread) { assert(FLAGS_set_options_one_in > 0); std::unordered_map opts; std::string name = options_index_[thread->rand.Next() % options_index_.size()]; int value_idx = thread->rand.Next() % options_table_[name].size(); if (name == "level0_file_num_compaction_trigger" || name == "level0_slowdown_writes_trigger" || name == "level0_stop_writes_trigger") { opts["level0_file_num_compaction_trigger"] = options_table_["level0_file_num_compaction_trigger"][value_idx]; opts["level0_slowdown_writes_trigger"] = options_table_["level0_slowdown_writes_trigger"][value_idx]; opts["level0_stop_writes_trigger"] = options_table_["level0_stop_writes_trigger"][value_idx]; } else { opts[name] = options_table_[name][value_idx]; } int rand_cf_idx = thread->rand.Next() % FLAGS_column_families; auto cfh = column_families_[rand_cf_idx]; return db_->SetOptions(cfh, opts); } void StressTest::ProcessRecoveredPreparedTxns(SharedState* shared) { assert(txn_db_); std::vector recovered_prepared_trans; txn_db_->GetAllPreparedTransactions(&recovered_prepared_trans); for (Transaction* txn : recovered_prepared_trans) { ProcessRecoveredPreparedTxnsHelper(txn, shared); delete txn; } recovered_prepared_trans.clear(); txn_db_->GetAllPreparedTransactions(&recovered_prepared_trans); assert(recovered_prepared_trans.size() == 0); } void StressTest::ProcessRecoveredPreparedTxnsHelper(Transaction* txn, SharedState* shared) { thread_local Random rand(static_cast(FLAGS_seed)); for (size_t i = 0; i < column_families_.size(); ++i) { std::unique_ptr wbwi_iter( txn->GetWriteBatch()->NewIterator(column_families_[i])); for (wbwi_iter->SeekToFirst(); wbwi_iter->Valid(); wbwi_iter->Next()) { uint64_t key_val; if (GetIntVal(wbwi_iter->Entry().key.ToString(), &key_val)) { shared->SyncPendingPut(static_cast(i) /* cf_idx */, key_val); } } } if (rand.OneIn(2)) { Status s = txn->Commit(); assert(s.ok()); } else { Status s = txn->Rollback(); assert(s.ok()); } } Status StressTest::NewTxn(WriteOptions& write_opts, std::unique_ptr* out_txn) { if (!FLAGS_use_txn) { return Status::InvalidArgument("NewTxn when FLAGS_use_txn is not set"); } write_opts.disableWAL = FLAGS_disable_wal; static std::atomic txn_id = {0}; if (FLAGS_use_optimistic_txn) { out_txn->reset(optimistic_txn_db_->BeginTransaction(write_opts)); return Status::OK(); } else { TransactionOptions txn_options; txn_options.use_only_the_last_commit_time_batch_for_recovery = FLAGS_use_only_the_last_commit_time_batch_for_recovery; txn_options.lock_timeout = 600000; // 10 min txn_options.deadlock_detect = true; out_txn->reset(txn_db_->BeginTransaction(write_opts, txn_options)); auto istr = std::to_string(txn_id.fetch_add(1)); Status s = (*out_txn)->SetName("xid" + istr); return s; } } Status StressTest::CommitTxn(Transaction& txn, ThreadState* thread) { if (!FLAGS_use_txn) { return Status::InvalidArgument("CommitTxn when FLAGS_use_txn is not set"); } Status s = Status::OK(); if (FLAGS_use_optimistic_txn) { assert(optimistic_txn_db_); s = txn.Commit(); } else { assert(txn_db_); s = txn.Prepare(); std::shared_ptr timestamped_snapshot; if (s.ok()) { if (thread && FLAGS_create_timestamped_snapshot_one_in && thread->rand.OneIn(FLAGS_create_timestamped_snapshot_one_in)) { uint64_t ts = db_stress_env->NowNanos(); s = txn.CommitAndTryCreateSnapshot(/*notifier=*/nullptr, ts, ×tamped_snapshot); std::pair> res; if (thread->tid == 0) { uint64_t now = db_stress_env->NowNanos(); res = txn_db_->CreateTimestampedSnapshot(now); if (res.first.ok()) { assert(res.second); assert(res.second->GetTimestamp() == now); if (timestamped_snapshot) { assert(res.second->GetTimestamp() > timestamped_snapshot->GetTimestamp()); } } else { assert(!res.second); } } } else { s = txn.Commit(); } } if (thread && FLAGS_create_timestamped_snapshot_one_in > 0 && thread->rand.OneInOpt(50000)) { uint64_t now = db_stress_env->NowNanos(); constexpr uint64_t time_diff = static_cast(1000) * 1000 * 1000; txn_db_->ReleaseTimestampedSnapshotsOlderThan(now - time_diff); } } return s; } Status StressTest::ExecuteTransaction( WriteOptions& write_opts, ThreadState* thread, std::function&& ops) { std::unique_ptr txn; Status s = NewTxn(write_opts, &txn); std::string try_again_messages; if (s.ok()) { for (int tries = 1;; ++tries) { s = ops(*txn); if (s.ok()) { s = CommitTxn(*txn, thread); if (s.ok()) { break; } } // Optimistic txn might return TryAgain, in which case rollback // and try again. if (!s.IsTryAgain() || !FLAGS_use_optimistic_txn) { break; } // Record and report historical TryAgain messages for debugging try_again_messages += std::to_string(SystemClock::Default()->NowMicros() / 1000); try_again_messages += "ms "; try_again_messages += s.getState(); try_again_messages += "\n"; // In theory, each Rollback after TryAgain should have an independent // chance of success, so too many retries could indicate something is // not working properly. if (tries >= 10) { s = Status::TryAgain(try_again_messages); break; } s = txn->Rollback(); if (!s.ok()) { break; } } } return s; } void StressTest::OperateDb(ThreadState* thread) { ReadOptions read_opts(FLAGS_verify_checksum, true); read_opts.rate_limiter_priority = FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL; read_opts.async_io = FLAGS_async_io; read_opts.adaptive_readahead = FLAGS_adaptive_readahead; read_opts.readahead_size = FLAGS_readahead_size; read_opts.auto_readahead_size = FLAGS_auto_readahead_size; WriteOptions write_opts; if (FLAGS_rate_limit_auto_wal_flush) { write_opts.rate_limiter_priority = Env::IO_USER; } auto shared = thread->shared; char value[100]; std::string from_db; if (FLAGS_sync) { write_opts.sync = true; } write_opts.disableWAL = FLAGS_disable_wal; write_opts.protection_bytes_per_key = FLAGS_batch_protection_bytes_per_key; const int prefix_bound = static_cast(FLAGS_readpercent) + static_cast(FLAGS_prefixpercent); const int write_bound = prefix_bound + static_cast(FLAGS_writepercent); const int del_bound = write_bound + static_cast(FLAGS_delpercent); const int delrange_bound = del_bound + static_cast(FLAGS_delrangepercent); const int iterate_bound = delrange_bound + static_cast(FLAGS_iterpercent); const uint64_t ops_per_open = FLAGS_ops_per_thread / (FLAGS_reopen + 1); #ifndef NDEBUG if (FLAGS_read_fault_one_in) { fault_fs_guard->SetThreadLocalReadErrorContext( thread->shared->GetSeed(), FLAGS_read_fault_one_in, FLAGS_inject_error_severity == 1 /* retryable */); } #endif // NDEBUG thread->stats.Start(); for (int open_cnt = 0; open_cnt <= FLAGS_reopen; ++open_cnt) { if (thread->shared->HasVerificationFailedYet() || thread->shared->ShouldStopTest()) { break; } if (open_cnt != 0) { thread->stats.FinishedSingleOp(); MutexLock l(thread->shared->GetMutex()); while (!thread->snapshot_queue.empty()) { db_->ReleaseSnapshot(thread->snapshot_queue.front().second.snapshot); delete thread->snapshot_queue.front().second.key_vec; thread->snapshot_queue.pop(); } thread->shared->IncVotedReopen(); if (thread->shared->AllVotedReopen()) { thread->shared->GetStressTest()->Reopen(thread); thread->shared->GetCondVar()->SignalAll(); } else { thread->shared->GetCondVar()->Wait(); } // Commenting this out as we don't want to reset stats on each open. // thread->stats.Start(); } for (uint64_t i = 0; i < ops_per_open; i++) { if (thread->shared->HasVerificationFailedYet()) { break; } // Change Options if (thread->rand.OneInOpt(FLAGS_set_options_one_in)) { SetOptions(thread); } if (thread->rand.OneInOpt(FLAGS_set_in_place_one_in)) { options_.inplace_update_support ^= options_.inplace_update_support; } if (thread->tid == 0 && FLAGS_verify_db_one_in > 0 && thread->rand.OneIn(FLAGS_verify_db_one_in)) { ContinuouslyVerifyDb(thread); if (thread->shared->ShouldStopTest()) { break; } } MaybeClearOneColumnFamily(thread); if (thread->rand.OneInOpt(FLAGS_manual_wal_flush_one_in)) { bool sync = thread->rand.OneIn(2) ? true : false; Status s = db_->FlushWAL(sync); if (!s.ok() && !(sync && s.IsNotSupported())) { fprintf(stderr, "FlushWAL(sync=%s) failed: %s\n", (sync ? "true" : "false"), s.ToString().c_str()); } } if (thread->rand.OneInOpt(FLAGS_lock_wal_one_in)) { Status s = db_->LockWAL(); if (!s.ok()) { fprintf(stderr, "LockWAL() failed: %s\n", s.ToString().c_str()); } else { auto old_seqno = db_->GetLatestSequenceNumber(); // Yield for a while do { std::this_thread::yield(); } while (thread->rand.OneIn(2)); // Latest seqno should not have changed auto new_seqno = db_->GetLatestSequenceNumber(); if (old_seqno != new_seqno) { fprintf( stderr, "Failure: latest seqno changed from %u to %u with WAL locked\n", (unsigned)old_seqno, (unsigned)new_seqno); } s = db_->UnlockWAL(); if (!s.ok()) { fprintf(stderr, "UnlockWAL() failed: %s\n", s.ToString().c_str()); } } } if (thread->rand.OneInOpt(FLAGS_sync_wal_one_in)) { Status s = db_->SyncWAL(); if (!s.ok() && !s.IsNotSupported()) { fprintf(stderr, "SyncWAL() failed: %s\n", s.ToString().c_str()); } } int rand_column_family = thread->rand.Next() % FLAGS_column_families; ColumnFamilyHandle* column_family = column_families_[rand_column_family]; if (thread->rand.OneInOpt(FLAGS_compact_files_one_in)) { TestCompactFiles(thread, column_family); } int64_t rand_key = GenerateOneKey(thread, i); std::string keystr = Key(rand_key); Slice key = keystr; if (thread->rand.OneInOpt(FLAGS_compact_range_one_in)) { TestCompactRange(thread, rand_key, key, column_family); if (thread->shared->HasVerificationFailedYet()) { break; } } std::vector rand_column_families = GenerateColumnFamilies(FLAGS_column_families, rand_column_family); if (thread->rand.OneInOpt(FLAGS_flush_one_in)) { Status status = TestFlush(rand_column_families); if (!status.ok()) { fprintf(stdout, "Unable to perform Flush(): %s\n", status.ToString().c_str()); } } // Verify GetLiveFiles with a 1 in N chance. if (thread->rand.OneInOpt(FLAGS_get_live_files_one_in) && !FLAGS_write_fault_one_in) { Status status = VerifyGetLiveFiles(); ProcessStatus(shared, "VerifyGetLiveFiles", status); } // Verify GetSortedWalFiles with a 1 in N chance. if (thread->rand.OneInOpt(FLAGS_get_sorted_wal_files_one_in)) { Status status = VerifyGetSortedWalFiles(); ProcessStatus(shared, "VerifyGetSortedWalFiles", status); } // Verify GetCurrentWalFile with a 1 in N chance. if (thread->rand.OneInOpt(FLAGS_get_current_wal_file_one_in)) { Status status = VerifyGetCurrentWalFile(); ProcessStatus(shared, "VerifyGetCurrentWalFile", status); } if (thread->rand.OneInOpt(FLAGS_pause_background_one_in)) { Status status = TestPauseBackground(thread); ProcessStatus(shared, "Pause/ContinueBackgroundWork", status); } if (thread->rand.OneInOpt(FLAGS_verify_checksum_one_in)) { ThreadStatusUtil::SetEnableTracking(FLAGS_enable_thread_tracking); ThreadStatusUtil::SetThreadOperation( ThreadStatus::OperationType::OP_VERIFY_DB_CHECKSUM); Status status = db_->VerifyChecksum(); ThreadStatusUtil::ResetThreadStatus(); ProcessStatus(shared, "VerifyChecksum", status); } if (thread->rand.OneInOpt(FLAGS_verify_file_checksums_one_in)) { ThreadStatusUtil::SetEnableTracking(FLAGS_enable_thread_tracking); ThreadStatusUtil::SetThreadOperation( ThreadStatus::OperationType::OP_VERIFY_FILE_CHECKSUMS); Status status = db_->VerifyFileChecksums(read_opts); ThreadStatusUtil::ResetThreadStatus(); ProcessStatus(shared, "VerifyFileChecksums", status); } if (thread->rand.OneInOpt(FLAGS_get_property_one_in)) { TestGetProperty(thread); } std::vector rand_keys = GenerateKeys(rand_key); if (thread->rand.OneInOpt(FLAGS_ingest_external_file_one_in)) { TestIngestExternalFile(thread, rand_column_families, rand_keys); } if (thread->rand.OneInOpt(FLAGS_backup_one_in)) { // Beyond a certain DB size threshold, this test becomes heavier than // it's worth. uint64_t total_size = 0; if (FLAGS_backup_max_size > 0) { std::vector files; db_stress_env->GetChildrenFileAttributes(FLAGS_db, &files); for (auto& file : files) { total_size += file.size_bytes; } } if (total_size <= FLAGS_backup_max_size) { Status s = TestBackupRestore(thread, rand_column_families, rand_keys); ProcessStatus(shared, "Backup/restore", s); } } if (thread->rand.OneInOpt(FLAGS_checkpoint_one_in)) { Status s = TestCheckpoint(thread, rand_column_families, rand_keys); ProcessStatus(shared, "Checkpoint", s); } if (thread->rand.OneInOpt(FLAGS_approximate_size_one_in)) { Status s = TestApproximateSize(thread, i, rand_column_families, rand_keys); ProcessStatus(shared, "ApproximateSize", s); } if (thread->rand.OneInOpt(FLAGS_acquire_snapshot_one_in)) { TestAcquireSnapshot(thread, rand_column_family, keystr, i); } /*always*/ { Status s = MaybeReleaseSnapshots(thread, i); ProcessStatus(shared, "Snapshot", s); } // Assign timestamps if necessary. std::string read_ts_str; Slice read_ts; if (FLAGS_user_timestamp_size > 0) { read_ts_str = GetNowNanos(); read_ts = read_ts_str; read_opts.timestamp = &read_ts; } int prob_op = thread->rand.Uniform(100); // Reset this in case we pick something other than a read op. We don't // want to use a stale value when deciding at the beginning of the loop // whether to vote to reopen if (prob_op >= 0 && prob_op < static_cast(FLAGS_readpercent)) { assert(0 <= prob_op); // OPERATION read ThreadStatusUtil::SetEnableTracking(FLAGS_enable_thread_tracking); if (FLAGS_use_multi_get_entity) { constexpr uint64_t max_batch_size = 64; const uint64_t batch_size = std::min( static_cast(thread->rand.Uniform(max_batch_size)) + 1, ops_per_open - i); assert(batch_size >= 1); assert(batch_size <= max_batch_size); assert(i + batch_size <= ops_per_open); rand_keys = GenerateNKeys(thread, static_cast(batch_size), i); ThreadStatusUtil::SetThreadOperation( ThreadStatus::OperationType::OP_MULTIGETENTITY); TestMultiGetEntity(thread, read_opts, rand_column_families, rand_keys); i += batch_size - 1; } else if (FLAGS_use_get_entity) { ThreadStatusUtil::SetThreadOperation( ThreadStatus::OperationType::OP_GETENTITY); TestGetEntity(thread, read_opts, rand_column_families, rand_keys); } else if (FLAGS_use_multiget) { // Leave room for one more iteration of the loop with a single key // batch. This is to ensure that each thread does exactly the same // number of ops int multiget_batch_size = static_cast( std::min(static_cast(thread->rand.Uniform(64)), FLAGS_ops_per_thread - i - 1)); // If its the last iteration, ensure that multiget_batch_size is 1 multiget_batch_size = std::max(multiget_batch_size, 1); rand_keys = GenerateNKeys(thread, multiget_batch_size, i); ThreadStatusUtil::SetThreadOperation( ThreadStatus::OperationType::OP_MULTIGET); TestMultiGet(thread, read_opts, rand_column_families, rand_keys); i += multiget_batch_size - 1; } else { ThreadStatusUtil::SetThreadOperation( ThreadStatus::OperationType::OP_GET); TestGet(thread, read_opts, rand_column_families, rand_keys); } ThreadStatusUtil::ResetThreadStatus(); } else if (prob_op < prefix_bound) { assert(static_cast(FLAGS_readpercent) <= prob_op); // OPERATION prefix scan // keys are 8 bytes long, prefix size is FLAGS_prefix_size. There are // (8 - FLAGS_prefix_size) bytes besides the prefix. So there will // be 2 ^ ((8 - FLAGS_prefix_size) * 8) possible keys with the same // prefix TestPrefixScan(thread, read_opts, rand_column_families, rand_keys); } else if (prob_op < write_bound) { assert(prefix_bound <= prob_op); // OPERATION write TestPut(thread, write_opts, read_opts, rand_column_families, rand_keys, value); } else if (prob_op < del_bound) { assert(write_bound <= prob_op); // OPERATION delete TestDelete(thread, write_opts, rand_column_families, rand_keys); } else if (prob_op < delrange_bound) { assert(del_bound <= prob_op); // OPERATION delete range TestDeleteRange(thread, write_opts, rand_column_families, rand_keys); } else if (prob_op < iterate_bound) { assert(delrange_bound <= prob_op); // OPERATION iterate if (!FLAGS_skip_verifydb && thread->rand.OneInOpt( FLAGS_verify_iterator_with_expected_state_one_in)) { ThreadStatusUtil::SetEnableTracking(FLAGS_enable_thread_tracking); ThreadStatusUtil::SetThreadOperation( ThreadStatus::OperationType::OP_DBITERATOR); TestIterateAgainstExpected(thread, read_opts, rand_column_families, rand_keys); ThreadStatusUtil::ResetThreadStatus(); } else { int num_seeks = static_cast(std::min( std::max(static_cast(thread->rand.Uniform(4)), static_cast(1)), std::max(static_cast(FLAGS_ops_per_thread - i - 1), static_cast(1)))); rand_keys = GenerateNKeys(thread, num_seeks, i); i += num_seeks - 1; ThreadStatusUtil::SetEnableTracking(FLAGS_enable_thread_tracking); ThreadStatusUtil::SetThreadOperation( ThreadStatus::OperationType::OP_DBITERATOR); TestIterate(thread, read_opts, rand_column_families, rand_keys); ThreadStatusUtil::ResetThreadStatus(); } } else { assert(iterate_bound <= prob_op); TestCustomOperations(thread, rand_column_families); } thread->stats.FinishedSingleOp(); } } while (!thread->snapshot_queue.empty()) { db_->ReleaseSnapshot(thread->snapshot_queue.front().second.snapshot); delete thread->snapshot_queue.front().second.key_vec; thread->snapshot_queue.pop(); } thread->stats.Stop(); } // Generated a list of keys that close to boundaries of SST keys. // If there isn't any SST file in the DB, return empty list. std::vector StressTest::GetWhiteBoxKeys(ThreadState* thread, DB* db, ColumnFamilyHandle* cfh, size_t num_keys) { ColumnFamilyMetaData cfmd; db->GetColumnFamilyMetaData(cfh, &cfmd); std::vector boundaries; for (const LevelMetaData& lmd : cfmd.levels) { for (const SstFileMetaData& sfmd : lmd.files) { // If FLAGS_user_timestamp_size > 0, then both smallestkey and largestkey // have timestamps. const auto& skey = sfmd.smallestkey; const auto& lkey = sfmd.largestkey; assert(skey.size() >= FLAGS_user_timestamp_size); assert(lkey.size() >= FLAGS_user_timestamp_size); boundaries.push_back( skey.substr(0, skey.size() - FLAGS_user_timestamp_size)); boundaries.push_back( lkey.substr(0, lkey.size() - FLAGS_user_timestamp_size)); } } if (boundaries.empty()) { return {}; } std::vector ret; for (size_t j = 0; j < num_keys; j++) { std::string k = boundaries[thread->rand.Uniform(static_cast(boundaries.size()))]; if (thread->rand.OneIn(3)) { // Reduce one byte from the string for (int i = static_cast(k.length()) - 1; i >= 0; i--) { uint8_t cur = k[i]; if (cur > 0) { k[i] = static_cast(cur - 1); break; } else if (i > 0) { k[i] = 0xFFu; } } } else if (thread->rand.OneIn(2)) { // Add one byte to the string for (int i = static_cast(k.length()) - 1; i >= 0; i--) { uint8_t cur = k[i]; if (cur < 255) { k[i] = static_cast(cur + 1); break; } else if (i > 0) { k[i] = 0x00; } } } ret.push_back(k); } return ret; } // Given a key K, this creates an iterator which scans to K and then // does a random sequence of Next/Prev operations. Status StressTest::TestIterate(ThreadState* thread, const ReadOptions& read_opts, const std::vector& rand_column_families, const std::vector& rand_keys) { assert(!rand_column_families.empty()); assert(!rand_keys.empty()); ManagedSnapshot snapshot_guard(db_); ReadOptions ro = read_opts; ro.snapshot = snapshot_guard.snapshot(); std::string read_ts_str; Slice read_ts_slice; MaybeUseOlderTimestampForRangeScan(thread, read_ts_str, read_ts_slice, ro); bool expect_total_order = false; if (thread->rand.OneIn(16)) { // When prefix extractor is used, it's useful to cover total order seek. ro.total_order_seek = true; expect_total_order = true; } else if (thread->rand.OneIn(4)) { ro.total_order_seek = false; ro.auto_prefix_mode = true; expect_total_order = true; } else if (options_.prefix_extractor.get() == nullptr) { expect_total_order = true; } std::string upper_bound_str; Slice upper_bound; if (thread->rand.OneIn(16)) { // With a 1/16 chance, set an iterator upper bound. // Note: upper_bound can be smaller than the seek key. const int64_t rand_upper_key = GenerateOneKey(thread, FLAGS_ops_per_thread); upper_bound_str = Key(rand_upper_key); upper_bound = Slice(upper_bound_str); ro.iterate_upper_bound = &upper_bound; } std::string lower_bound_str; Slice lower_bound; if (thread->rand.OneIn(16)) { // With a 1/16 chance, enable iterator lower bound. // Note: lower_bound can be greater than the seek key. const int64_t rand_lower_key = GenerateOneKey(thread, FLAGS_ops_per_thread); lower_bound_str = Key(rand_lower_key); lower_bound = Slice(lower_bound_str); ro.iterate_lower_bound = &lower_bound; } ColumnFamilyHandle* const cfh = column_families_[rand_column_families[0]]; assert(cfh); std::unique_ptr iter(db_->NewIterator(ro, cfh)); std::vector key_strs; if (thread->rand.OneIn(16)) { // Generate keys close to lower or upper bound of SST files. key_strs = GetWhiteBoxKeys(thread, db_, cfh, rand_keys.size()); } if (key_strs.empty()) { // Use the random keys passed in. for (int64_t rkey : rand_keys) { key_strs.push_back(Key(rkey)); } } std::string op_logs; constexpr size_t kOpLogsLimit = 10000; for (const std::string& key_str : key_strs) { if (op_logs.size() > kOpLogsLimit) { // Shouldn't take too much memory for the history log. Clear it. op_logs = "(cleared...)\n"; } if (ro.iterate_upper_bound != nullptr && thread->rand.OneIn(2)) { // With a 1/2 chance, change the upper bound. // It is possible that it is changed before first use, but there is no // problem with that. const int64_t rand_upper_key = GenerateOneKey(thread, FLAGS_ops_per_thread); upper_bound_str = Key(rand_upper_key); upper_bound = Slice(upper_bound_str); } if (ro.iterate_lower_bound != nullptr && thread->rand.OneIn(4)) { // With a 1/4 chance, change the lower bound. // It is possible that it is changed before first use, but there is no // problem with that. const int64_t rand_lower_key = GenerateOneKey(thread, FLAGS_ops_per_thread); lower_bound_str = Key(rand_lower_key); lower_bound = Slice(lower_bound_str); } // Record some options to op_logs op_logs += "total_order_seek: "; op_logs += (ro.total_order_seek ? "1 " : "0 "); op_logs += "auto_prefix_mode: "; op_logs += (ro.auto_prefix_mode ? "1 " : "0 "); if (ro.iterate_upper_bound != nullptr) { op_logs += "ub: " + upper_bound.ToString(true) + " "; } if (ro.iterate_lower_bound != nullptr) { op_logs += "lb: " + lower_bound.ToString(true) + " "; } // Set up an iterator, perform the same operations without bounds and with // total order seek, and compare the results. This is to identify bugs // related to bounds, prefix extractor, or reseeking. Sometimes we are // comparing iterators with the same set-up, and it doesn't hurt to check // them to be equal. // // This `ReadOptions` is for validation purposes. Ignore // `FLAGS_rate_limit_user_ops` to avoid slowing any validation. ReadOptions cmp_ro; cmp_ro.timestamp = ro.timestamp; cmp_ro.iter_start_ts = ro.iter_start_ts; cmp_ro.snapshot = snapshot_guard.snapshot(); cmp_ro.total_order_seek = true; ColumnFamilyHandle* const cmp_cfh = GetControlCfh(thread, rand_column_families[0]); assert(cmp_cfh); std::unique_ptr cmp_iter(db_->NewIterator(cmp_ro, cmp_cfh)); bool diverged = false; Slice key(key_str); const bool support_seek_first_or_last = expect_total_order; // Write-prepared and Write-unprepared do not support Refresh() yet. if (!(FLAGS_use_txn && FLAGS_txn_write_policy != 0 /* write committed */) && thread->rand.OneIn(4)) { Status s = iter->Refresh(snapshot_guard.snapshot()); assert(s.ok()); op_logs += "Refresh "; } LastIterateOp last_op; if (support_seek_first_or_last && thread->rand.OneIn(100)) { iter->SeekToFirst(); cmp_iter->SeekToFirst(); last_op = kLastOpSeekToFirst; op_logs += "STF "; } else if (support_seek_first_or_last && thread->rand.OneIn(100)) { iter->SeekToLast(); cmp_iter->SeekToLast(); last_op = kLastOpSeekToLast; op_logs += "STL "; } else if (thread->rand.OneIn(8)) { iter->SeekForPrev(key); cmp_iter->SeekForPrev(key); last_op = kLastOpSeekForPrev; op_logs += "SFP " + key.ToString(true) + " "; } else { iter->Seek(key); cmp_iter->Seek(key); last_op = kLastOpSeek; op_logs += "S " + key.ToString(true) + " "; } VerifyIterator(thread, cmp_cfh, ro, iter.get(), cmp_iter.get(), last_op, key, op_logs, &diverged); const bool no_reverse = (FLAGS_memtablerep == "prefix_hash" && !expect_total_order); for (uint64_t i = 0; i < FLAGS_num_iterations && iter->Valid(); ++i) { if (no_reverse || thread->rand.OneIn(2)) { iter->Next(); if (!diverged) { assert(cmp_iter->Valid()); cmp_iter->Next(); } op_logs += "N"; } else { iter->Prev(); if (!diverged) { assert(cmp_iter->Valid()); cmp_iter->Prev(); } op_logs += "P"; } last_op = kLastOpNextOrPrev; VerifyIterator(thread, cmp_cfh, ro, iter.get(), cmp_iter.get(), last_op, key, op_logs, &diverged); } thread->stats.AddIterations(1); op_logs += "; "; } return Status::OK(); } // Test the return status of GetLiveFiles. Status StressTest::VerifyGetLiveFiles() const { std::vector live_file; uint64_t manifest_size = 0; return db_->GetLiveFiles(live_file, &manifest_size); } // Test the return status of GetSortedWalFiles. Status StressTest::VerifyGetSortedWalFiles() const { VectorLogPtr log_ptr; return db_->GetSortedWalFiles(log_ptr); } // Test the return status of GetCurrentWalFile. Status StressTest::VerifyGetCurrentWalFile() const { std::unique_ptr cur_wal_file; return db_->GetCurrentWalFile(&cur_wal_file); } // Compare the two iterator, iter and cmp_iter are in the same position, // unless iter might be made invalidate or undefined because of // upper or lower bounds, or prefix extractor. // Will flag failure if the verification fails. // diverged = true if the two iterator is already diverged. // True if verification passed, false if not. void StressTest::VerifyIterator(ThreadState* thread, ColumnFamilyHandle* cmp_cfh, const ReadOptions& ro, Iterator* iter, Iterator* cmp_iter, LastIterateOp op, const Slice& seek_key, const std::string& op_logs, bool* diverged) { assert(diverged); if (*diverged) { return; } if (ro.iter_start_ts != nullptr) { assert(FLAGS_user_timestamp_size > 0); // We currently do not verify iterator when dumping history of internal // keys. *diverged = true; return; } if (op == kLastOpSeekToFirst && ro.iterate_lower_bound != nullptr) { // SeekToFirst() with lower bound is not well-defined. *diverged = true; return; } else if (op == kLastOpSeekToLast && ro.iterate_upper_bound != nullptr) { // SeekToLast() with higher bound is not well-defined. *diverged = true; return; } else if (op == kLastOpSeek && ro.iterate_lower_bound != nullptr && (options_.comparator->CompareWithoutTimestamp( *ro.iterate_lower_bound, /*a_has_ts=*/false, seek_key, /*b_has_ts=*/false) >= 0 || (ro.iterate_upper_bound != nullptr && options_.comparator->CompareWithoutTimestamp( *ro.iterate_lower_bound, /*a_has_ts=*/false, *ro.iterate_upper_bound, /*b_has_ts*/ false) >= 0))) { // Lower bound behavior is not well-defined if it is larger than // seek key or upper bound. Disable the check for now. *diverged = true; return; } else if (op == kLastOpSeekForPrev && ro.iterate_upper_bound != nullptr && (options_.comparator->CompareWithoutTimestamp( *ro.iterate_upper_bound, /*a_has_ts=*/false, seek_key, /*b_has_ts=*/false) <= 0 || (ro.iterate_lower_bound != nullptr && options_.comparator->CompareWithoutTimestamp( *ro.iterate_lower_bound, /*a_has_ts=*/false, *ro.iterate_upper_bound, /*b_has_ts=*/false) >= 0))) { // Upper bound behavior is not well-defined if it is smaller than // seek key or lower bound. Disable the check for now. *diverged = true; return; } const SliceTransform* pe = (ro.total_order_seek || ro.auto_prefix_mode) ? nullptr : options_.prefix_extractor.get(); const Comparator* cmp = options_.comparator; if (iter->Valid() && !cmp_iter->Valid()) { if (pe != nullptr) { if (!pe->InDomain(seek_key)) { // Prefix seek a non-in-domain key is undefined. Skip checking for // this scenario. *diverged = true; return; } else if (!pe->InDomain(iter->key())) { // out of range is iterator key is not in domain anymore. *diverged = true; return; } else if (pe->Transform(iter->key()) != pe->Transform(seek_key)) { *diverged = true; return; } } fprintf(stderr, "Control iterator is invalid but iterator has key %s " "%s\n", iter->key().ToString(true).c_str(), op_logs.c_str()); *diverged = true; } else if (cmp_iter->Valid()) { // Iterator is not valid. It can be legitimate if it has already been // out of upper or lower bound, or filtered out by prefix iterator. const Slice& total_order_key = cmp_iter->key(); if (pe != nullptr) { if (!pe->InDomain(seek_key)) { // Prefix seek a non-in-domain key is undefined. Skip checking for // this scenario. *diverged = true; return; } if (!pe->InDomain(total_order_key) || pe->Transform(total_order_key) != pe->Transform(seek_key)) { // If the prefix is exhausted, the only thing needs to check // is the iterator isn't return a position in prefix. // Either way, checking can stop from here. *diverged = true; if (!iter->Valid() || !pe->InDomain(iter->key()) || pe->Transform(iter->key()) != pe->Transform(seek_key)) { return; } fprintf(stderr, "Iterator stays in prefix but control doesn't" " iterator key %s control iterator key %s %s\n", iter->key().ToString(true).c_str(), cmp_iter->key().ToString(true).c_str(), op_logs.c_str()); } } // Check upper or lower bounds. if (!*diverged) { if ((iter->Valid() && iter->key() != cmp_iter->key()) || (!iter->Valid() && (ro.iterate_upper_bound == nullptr || cmp->CompareWithoutTimestamp(total_order_key, /*a_has_ts=*/false, *ro.iterate_upper_bound, /*b_has_ts=*/false) < 0) && (ro.iterate_lower_bound == nullptr || cmp->CompareWithoutTimestamp(total_order_key, /*a_has_ts=*/false, *ro.iterate_lower_bound, /*b_has_ts=*/false) > 0))) { fprintf(stderr, "Iterator diverged from control iterator which" " has value %s %s\n", total_order_key.ToString(true).c_str(), op_logs.c_str()); if (iter->Valid()) { fprintf(stderr, "iterator has value %s\n", iter->key().ToString(true).c_str()); } else { fprintf(stderr, "iterator is not valid with status: %s\n", iter->status().ToString().c_str()); } *diverged = true; } } } if (!*diverged && iter->Valid()) { if (!VerifyWideColumns(iter->value(), iter->columns())) { fprintf(stderr, "Value and columns inconsistent for iterator: value: %s, " "columns: %s\n", iter->value().ToString(/* hex */ true).c_str(), WideColumnsToHex(iter->columns()).c_str()); *diverged = true; } } if (*diverged) { fprintf(stderr, "VerifyIterator failed. Control CF %s\n", cmp_cfh->GetName().c_str()); thread->stats.AddErrors(1); // Fail fast to preserve the DB state. thread->shared->SetVerificationFailure(); } } Status StressTest::TestBackupRestore( ThreadState* thread, const std::vector& rand_column_families, const std::vector& rand_keys) { std::vector> locks; if (ShouldAcquireMutexOnKey()) { for (int rand_column_family : rand_column_families) { // `rand_keys[0]` on each chosen CF will be verified. locks.emplace_back(new MutexLock( thread->shared->GetMutexForKey(rand_column_family, rand_keys[0]))); } } const std::string backup_dir = FLAGS_db + "/.backup" + std::to_string(thread->tid); const std::string restore_dir = FLAGS_db + "/.restore" + std::to_string(thread->tid); BackupEngineOptions backup_opts(backup_dir); // For debugging, get info_log from live options backup_opts.info_log = db_->GetDBOptions().info_log.get(); if (thread->rand.OneIn(10)) { backup_opts.share_table_files = false; } else { backup_opts.share_table_files = true; if (thread->rand.OneIn(5)) { backup_opts.share_files_with_checksum = false; } else { backup_opts.share_files_with_checksum = true; if (thread->rand.OneIn(2)) { // old backup_opts.share_files_with_checksum_naming = BackupEngineOptions::kLegacyCrc32cAndFileSize; } else { // new backup_opts.share_files_with_checksum_naming = BackupEngineOptions::kUseDbSessionId; } if (thread->rand.OneIn(2)) { backup_opts.share_files_with_checksum_naming = backup_opts.share_files_with_checksum_naming | BackupEngineOptions::kFlagIncludeFileSize; } } } if (thread->rand.OneIn(2)) { backup_opts.schema_version = 1; } else { backup_opts.schema_version = 2; } BackupEngine* backup_engine = nullptr; std::string from = "a backup/restore operation"; Status s = BackupEngine::Open(db_stress_env, backup_opts, &backup_engine); if (!s.ok()) { from = "BackupEngine::Open"; } if (s.ok()) { if (backup_opts.schema_version >= 2 && thread->rand.OneIn(2)) { TEST_BackupMetaSchemaOptions test_opts; test_opts.crc32c_checksums = thread->rand.OneIn(2) == 0; test_opts.file_sizes = thread->rand.OneIn(2) == 0; TEST_SetBackupMetaSchemaOptions(backup_engine, test_opts); } CreateBackupOptions create_opts; if (FLAGS_disable_wal) { // The verification can only work when latest value of `key` is backed up, // which requires flushing in case of WAL disabled. // // Note this triggers a flush with a key lock held. Meanwhile, operations // like flush/compaction may attempt to grab key locks like in // `DbStressCompactionFilter`. The philosophy around preventing deadlock // is the background operation key lock acquisition only tries but does // not wait for the lock. So here in the foreground it is OK to hold the // lock and wait on a background operation (flush). create_opts.flush_before_backup = true; } s = backup_engine->CreateNewBackup(create_opts, db_); if (!s.ok()) { from = "BackupEngine::CreateNewBackup"; } } if (s.ok()) { delete backup_engine; backup_engine = nullptr; s = BackupEngine::Open(db_stress_env, backup_opts, &backup_engine); if (!s.ok()) { from = "BackupEngine::Open (again)"; } } std::vector backup_info; // If inplace_not_restore, we verify the backup by opening it as a // read-only DB. If !inplace_not_restore, we restore it to a temporary // directory for verification. bool inplace_not_restore = thread->rand.OneIn(3); if (s.ok()) { backup_engine->GetBackupInfo(&backup_info, /*include_file_details*/ inplace_not_restore); if (backup_info.empty()) { s = Status::NotFound("no backups found"); from = "BackupEngine::GetBackupInfo"; } } if (s.ok() && thread->rand.OneIn(2)) { s = backup_engine->VerifyBackup( backup_info.front().backup_id, thread->rand.OneIn(2) /* verify_with_checksum */); if (!s.ok()) { from = "BackupEngine::VerifyBackup"; } } const bool allow_persistent = thread->tid == 0; // not too many bool from_latest = false; int count = static_cast(backup_info.size()); if (s.ok() && !inplace_not_restore) { if (count > 1) { s = backup_engine->RestoreDBFromBackup( RestoreOptions(), backup_info[thread->rand.Uniform(count)].backup_id, restore_dir /* db_dir */, restore_dir /* wal_dir */); if (!s.ok()) { from = "BackupEngine::RestoreDBFromBackup"; } } else { from_latest = true; s = backup_engine->RestoreDBFromLatestBackup(RestoreOptions(), restore_dir /* db_dir */, restore_dir /* wal_dir */); if (!s.ok()) { from = "BackupEngine::RestoreDBFromLatestBackup"; } } } if (s.ok() && !inplace_not_restore) { // Purge early if restoring, to ensure the restored directory doesn't // have some secret dependency on the backup directory. uint32_t to_keep = 0; if (allow_persistent) { // allow one thread to keep up to 2 backups to_keep = thread->rand.Uniform(3); } s = backup_engine->PurgeOldBackups(to_keep); if (!s.ok()) { from = "BackupEngine::PurgeOldBackups"; } } DB* restored_db = nullptr; std::vector restored_cf_handles; // Not yet implemented: opening restored BlobDB or TransactionDB Options restore_options; if (s.ok() && !FLAGS_use_txn && !FLAGS_use_blob_db) { s = PrepareOptionsForRestoredDB(&restore_options); if (!s.ok()) { from = "PrepareRestoredDBOptions in backup/restore"; } } if (s.ok() && !FLAGS_use_txn && !FLAGS_use_blob_db) { std::vector cf_descriptors; // TODO(ajkr): `column_family_names_` is not safe to access here when // `clear_column_family_one_in != 0`. But we can't easily switch to // `ListColumnFamilies` to get names because it won't necessarily give // the same order as `column_family_names_`. assert(FLAGS_clear_column_family_one_in == 0); for (const auto& name : column_family_names_) { cf_descriptors.emplace_back(name, ColumnFamilyOptions(restore_options)); } if (inplace_not_restore) { BackupInfo& info = backup_info[thread->rand.Uniform(count)]; restore_options.env = info.env_for_open.get(); s = DB::OpenForReadOnly(DBOptions(restore_options), info.name_for_open, cf_descriptors, &restored_cf_handles, &restored_db); if (!s.ok()) { from = "DB::OpenForReadOnly in backup/restore"; } } else { s = DB::Open(DBOptions(restore_options), restore_dir, cf_descriptors, &restored_cf_handles, &restored_db); if (!s.ok()) { from = "DB::Open in backup/restore"; } } } // Note the column families chosen by `rand_column_families` cannot be // dropped while the locks for `rand_keys` are held. So we should not have // to worry about accessing those column families throughout this function. // // For simplicity, currently only verifies existence/non-existence of a // single key for (size_t i = 0; restored_db && s.ok() && i < rand_column_families.size(); ++i) { std::string key_str = Key(rand_keys[0]); Slice key = key_str; std::string restored_value; // This `ReadOptions` is for validation purposes. Ignore // `FLAGS_rate_limit_user_ops` to avoid slowing any validation. ReadOptions read_opts; std::string ts_str; Slice ts; if (FLAGS_user_timestamp_size > 0) { ts_str = GetNowNanos(); ts = ts_str; read_opts.timestamp = &ts; } Status get_status = restored_db->Get( read_opts, restored_cf_handles[rand_column_families[i]], key, &restored_value); bool exists = thread->shared->Exists(rand_column_families[i], rand_keys[0]); if (get_status.ok()) { if (!exists && from_latest && ShouldAcquireMutexOnKey()) { std::ostringstream oss; oss << "0x" << key.ToString(true) << " exists in restore but not in original db"; s = Status::Corruption(oss.str()); } } else if (get_status.IsNotFound()) { if (exists && from_latest && ShouldAcquireMutexOnKey()) { std::ostringstream oss; oss << "0x" << key.ToString(true) << " exists in original db but not in restore"; s = Status::Corruption(oss.str()); } } else { s = get_status; if (!s.ok()) { from = "DB::Get in backup/restore"; } } } if (restored_db != nullptr) { for (auto* cf_handle : restored_cf_handles) { restored_db->DestroyColumnFamilyHandle(cf_handle); } delete restored_db; restored_db = nullptr; } if (s.ok() && inplace_not_restore) { // Purge late if inplace open read-only uint32_t to_keep = 0; if (allow_persistent) { // allow one thread to keep up to 2 backups to_keep = thread->rand.Uniform(3); } s = backup_engine->PurgeOldBackups(to_keep); if (!s.ok()) { from = "BackupEngine::PurgeOldBackups"; } } if (backup_engine != nullptr) { delete backup_engine; backup_engine = nullptr; } if (s.ok()) { // Preserve directories on failure, or allowed persistent backup if (!allow_persistent) { s = DestroyDir(db_stress_env, backup_dir); if (!s.ok()) { from = "Destroy backup dir"; } } } if (s.ok()) { s = DestroyDir(db_stress_env, restore_dir); if (!s.ok()) { from = "Destroy restore dir"; } } if (!s.ok() && (!s.IsIOError() || !std::strstr(s.getState(), "injected"))) { fprintf(stderr, "Failure in %s with: %s\n", from.c_str(), s.ToString().c_str()); } return s; } void InitializeMergeOperator(Options& options) { if (FLAGS_use_full_merge_v1) { options.merge_operator = MergeOperators::CreateDeprecatedPutOperator(); } else { if (FLAGS_use_put_entity_one_in > 0) { options.merge_operator = std::make_shared(); } else { options.merge_operator = MergeOperators::CreatePutOperator(); } } } Status StressTest::PrepareOptionsForRestoredDB(Options* options) { assert(options); // To avoid race with other threads' operations (e.g, SetOptions()) // on the same pointer sub-option (e.g, `std::shared_ptr // filter_policy`) while having the same settings as `options_`, we create a // new Options object from `options_`'s string to deep copy these pointer // sub-options Status s; ConfigOptions config_opts; std::string db_options_str; s = GetStringFromDBOptions(config_opts, options_, &db_options_str); if (!s.ok()) { return s; } DBOptions db_options; s = GetDBOptionsFromString(config_opts, Options(), db_options_str, &db_options); if (!s.ok()) { return s; } std::string cf_options_str; s = GetStringFromColumnFamilyOptions(config_opts, options_, &cf_options_str); if (!s.ok()) { return s; } ColumnFamilyOptions cf_options; s = GetColumnFamilyOptionsFromString(config_opts, Options(), cf_options_str, &cf_options); if (!s.ok()) { return s; } *options = Options(db_options, cf_options); options->best_efforts_recovery = false; options->listeners.clear(); // Avoid dangling/shared file descriptors, for reliable destroy options->sst_file_manager = nullptr; // GetColumnFamilyOptionsFromString does not create customized merge operator. InitializeMergeOperator(*options); if (FLAGS_user_timestamp_size > 0) { // Check OPTIONS string loading can bootstrap the correct user comparator // from object registry. assert(options->comparator); assert(options->comparator == test::BytewiseComparatorWithU64TsWrapper()); } return Status::OK(); } Status StressTest::TestApproximateSize( ThreadState* thread, uint64_t iteration, const std::vector& rand_column_families, const std::vector& rand_keys) { // rand_keys likely only has one key. Just use the first one. assert(!rand_keys.empty()); assert(!rand_column_families.empty()); int64_t key1 = rand_keys[0]; int64_t key2; if (thread->rand.OneIn(2)) { // Two totally random keys. This tends to cover large ranges. key2 = GenerateOneKey(thread, iteration); if (key2 < key1) { std::swap(key1, key2); } } else { // Unless users pass a very large FLAGS_max_key, it we should not worry // about overflow. It is for testing, so we skip the overflow checking // for simplicity. key2 = key1 + static_cast(thread->rand.Uniform(1000)); } std::string key1_str = Key(key1); std::string key2_str = Key(key2); Range range{Slice(key1_str), Slice(key2_str)}; SizeApproximationOptions sao; sao.include_memtables = thread->rand.OneIn(2); if (sao.include_memtables) { sao.include_files = thread->rand.OneIn(2); } if (thread->rand.OneIn(2)) { if (thread->rand.OneIn(2)) { sao.files_size_error_margin = 0.0; } else { sao.files_size_error_margin = static_cast(thread->rand.Uniform(3)); } } uint64_t result; return db_->GetApproximateSizes( sao, column_families_[rand_column_families[0]], &range, 1, &result); } Status StressTest::TestCheckpoint(ThreadState* thread, const std::vector& rand_column_families, const std::vector& rand_keys) { std::vector> locks; if (ShouldAcquireMutexOnKey()) { for (int rand_column_family : rand_column_families) { // `rand_keys[0]` on each chosen CF will be verified. locks.emplace_back(new MutexLock( thread->shared->GetMutexForKey(rand_column_family, rand_keys[0]))); } } std::string checkpoint_dir = FLAGS_db + "/.checkpoint" + std::to_string(thread->tid); Options tmp_opts(options_); tmp_opts.listeners.clear(); tmp_opts.env = db_stress_env; // Avoid delayed deletion so whole directory can be deleted tmp_opts.sst_file_manager.reset(); DestroyDB(checkpoint_dir, tmp_opts); Checkpoint* checkpoint = nullptr; Status s = Checkpoint::Create(db_, &checkpoint); if (s.ok()) { s = checkpoint->CreateCheckpoint(checkpoint_dir); if (!s.ok()) { if (!s.IsIOError() || !std::strstr(s.getState(), "injected")) { fprintf(stderr, "Fail to create checkpoint to %s\n", checkpoint_dir.c_str()); std::vector files; Status my_s = db_stress_env->GetChildren(checkpoint_dir, &files); if (my_s.ok()) { for (const auto& f : files) { fprintf(stderr, " %s\n", f.c_str()); } } else { fprintf(stderr, "Fail to get files under the directory to %s\n", my_s.ToString().c_str()); } } } } delete checkpoint; checkpoint = nullptr; std::vector cf_handles; DB* checkpoint_db = nullptr; if (s.ok()) { Options options(options_); options.best_efforts_recovery = false; options.listeners.clear(); // Avoid race condition in trash handling after delete checkpoint_db options.sst_file_manager.reset(); std::vector cf_descs; // TODO(ajkr): `column_family_names_` is not safe to access here when // `clear_column_family_one_in != 0`. But we can't easily switch to // `ListColumnFamilies` to get names because it won't necessarily give // the same order as `column_family_names_`. assert(FLAGS_clear_column_family_one_in == 0); if (FLAGS_clear_column_family_one_in == 0) { for (const auto& name : column_family_names_) { cf_descs.emplace_back(name, ColumnFamilyOptions(options)); } s = DB::OpenForReadOnly(DBOptions(options), checkpoint_dir, cf_descs, &cf_handles, &checkpoint_db); } } if (checkpoint_db != nullptr) { // Note the column families chosen by `rand_column_families` cannot be // dropped while the locks for `rand_keys` are held. So we should not have // to worry about accessing those column families throughout this function. for (size_t i = 0; s.ok() && i < rand_column_families.size(); ++i) { std::string key_str = Key(rand_keys[0]); Slice key = key_str; std::string ts_str; Slice ts; ReadOptions read_opts; if (FLAGS_user_timestamp_size > 0) { ts_str = GetNowNanos(); ts = ts_str; read_opts.timestamp = &ts; } std::string value; Status get_status = checkpoint_db->Get( read_opts, cf_handles[rand_column_families[i]], key, &value); bool exists = thread->shared->Exists(rand_column_families[i], rand_keys[0]); if (get_status.ok()) { if (!exists && ShouldAcquireMutexOnKey()) { std::ostringstream oss; oss << "0x" << key.ToString(true) << " exists in checkpoint " << checkpoint_dir << " but not in original db"; s = Status::Corruption(oss.str()); } } else if (get_status.IsNotFound()) { if (exists && ShouldAcquireMutexOnKey()) { std::ostringstream oss; oss << "0x" << key.ToString(true) << " exists in original db but not in checkpoint " << checkpoint_dir; s = Status::Corruption(oss.str()); } } else { s = get_status; } } for (auto cfh : cf_handles) { delete cfh; } cf_handles.clear(); delete checkpoint_db; checkpoint_db = nullptr; } if (!s.ok()) { if (!s.IsIOError() || !std::strstr(s.getState(), "injected")) { fprintf(stderr, "A checkpoint operation failed with: %s\n", s.ToString().c_str()); } } else { DestroyDB(checkpoint_dir, tmp_opts); } return s; } void StressTest::TestGetProperty(ThreadState* thread) const { std::unordered_set levelPropertyNames = { DB::Properties::kAggregatedTablePropertiesAtLevel, DB::Properties::kCompressionRatioAtLevelPrefix, DB::Properties::kNumFilesAtLevelPrefix, }; std::unordered_set unknownPropertyNames = { DB::Properties::kEstimateOldestKeyTime, DB::Properties::kOptionsStatistics, DB::Properties:: kLiveSstFilesSizeAtTemperature, // similar to levelPropertyNames, it // requires a number suffix }; unknownPropertyNames.insert(levelPropertyNames.begin(), levelPropertyNames.end()); std::unordered_set blobCachePropertyNames = { DB::Properties::kBlobCacheCapacity, DB::Properties::kBlobCacheUsage, DB::Properties::kBlobCachePinnedUsage, }; if (db_->GetOptions().blob_cache == nullptr) { unknownPropertyNames.insert(blobCachePropertyNames.begin(), blobCachePropertyNames.end()); } std::string prop; for (const auto& ppt_name_and_info : InternalStats::ppt_name_to_info) { bool res = db_->GetProperty(ppt_name_and_info.first, &prop); if (unknownPropertyNames.find(ppt_name_and_info.first) == unknownPropertyNames.end()) { if (!res) { fprintf(stderr, "Failed to get DB property: %s\n", ppt_name_and_info.first.c_str()); thread->shared->SetVerificationFailure(); } if (ppt_name_and_info.second.handle_int != nullptr) { uint64_t prop_int; if (!db_->GetIntProperty(ppt_name_and_info.first, &prop_int)) { fprintf(stderr, "Failed to get Int property: %s\n", ppt_name_and_info.first.c_str()); thread->shared->SetVerificationFailure(); } } if (ppt_name_and_info.second.handle_map != nullptr) { std::map prop_map; if (!db_->GetMapProperty(ppt_name_and_info.first, &prop_map)) { fprintf(stderr, "Failed to get Map property: %s\n", ppt_name_and_info.first.c_str()); thread->shared->SetVerificationFailure(); } } } } ROCKSDB_NAMESPACE::ColumnFamilyMetaData cf_meta_data; db_->GetColumnFamilyMetaData(&cf_meta_data); int level_size = static_cast(cf_meta_data.levels.size()); for (int level = 0; level < level_size; level++) { for (const auto& ppt_name : levelPropertyNames) { bool res = db_->GetProperty(ppt_name + std::to_string(level), &prop); if (!res) { fprintf(stderr, "Failed to get DB property: %s\n", (ppt_name + std::to_string(level)).c_str()); thread->shared->SetVerificationFailure(); } } } // Test for an invalid property name if (thread->rand.OneIn(100)) { if (db_->GetProperty("rocksdb.invalid_property_name", &prop)) { fprintf(stderr, "Failed to return false for invalid property name\n"); thread->shared->SetVerificationFailure(); } } } void StressTest::TestCompactFiles(ThreadState* thread, ColumnFamilyHandle* column_family) { ROCKSDB_NAMESPACE::ColumnFamilyMetaData cf_meta_data; db_->GetColumnFamilyMetaData(column_family, &cf_meta_data); if (cf_meta_data.levels.empty()) { return; } // Randomly compact up to three consecutive files from a level const int kMaxRetry = 3; for (int attempt = 0; attempt < kMaxRetry; ++attempt) { size_t random_level = thread->rand.Uniform(static_cast(cf_meta_data.levels.size())); const auto& files = cf_meta_data.levels[random_level].files; if (files.size() > 0) { size_t random_file_index = thread->rand.Uniform(static_cast(files.size())); if (files[random_file_index].being_compacted) { // Retry as the selected file is currently being compacted continue; } std::vector input_files; input_files.push_back(files[random_file_index].name); if (random_file_index > 0 && !files[random_file_index - 1].being_compacted) { input_files.push_back(files[random_file_index - 1].name); } if (random_file_index + 1 < files.size() && !files[random_file_index + 1].being_compacted) { input_files.push_back(files[random_file_index + 1].name); } size_t output_level = std::min(random_level + 1, cf_meta_data.levels.size() - 1); auto s = db_->CompactFiles(CompactionOptions(), column_family, input_files, static_cast(output_level)); if (!s.ok()) { fprintf(stdout, "Unable to perform CompactFiles(): %s\n", s.ToString().c_str()); thread->stats.AddNumCompactFilesFailed(1); } else { thread->stats.AddNumCompactFilesSucceed(1); } break; } } } Status StressTest::TestFlush(const std::vector& rand_column_families) { FlushOptions flush_opts; if (FLAGS_atomic_flush) { return db_->Flush(flush_opts, column_families_); } std::vector cfhs; std::for_each(rand_column_families.begin(), rand_column_families.end(), [this, &cfhs](int k) { cfhs.push_back(column_families_[k]); }); return db_->Flush(flush_opts, cfhs); } Status StressTest::TestPauseBackground(ThreadState* thread) { Status status = db_->PauseBackgroundWork(); if (!status.ok()) { return status; } // To avoid stalling/deadlocking ourself in this thread, just // sleep here during pause and let other threads do db operations. // Sleep up to ~16 seconds (2**24 microseconds), but very skewed // toward short pause. (1 chance in 25 of pausing >= 1s; // 1 chance in 625 of pausing full 16s.) int pwr2_micros = std::min(thread->rand.Uniform(25), thread->rand.Uniform(25)); clock_->SleepForMicroseconds(1 << pwr2_micros); return db_->ContinueBackgroundWork(); } void StressTest::TestAcquireSnapshot(ThreadState* thread, int rand_column_family, const std::string& keystr, uint64_t i) { Slice key = keystr; ColumnFamilyHandle* column_family = column_families_[rand_column_family]; // This `ReadOptions` is for validation purposes. Ignore // `FLAGS_rate_limit_user_ops` to avoid slowing any validation. ReadOptions ropt; auto db_impl = static_cast_with_check(db_->GetRootDB()); const bool ww_snapshot = thread->rand.OneIn(10); const Snapshot* snapshot = ww_snapshot ? db_impl->GetSnapshotForWriteConflictBoundary() : db_->GetSnapshot(); ropt.snapshot = snapshot; // Ideally, we want snapshot taking and timestamp generation to be atomic // here, so that the snapshot corresponds to the timestamp. However, it is // not possible with current GetSnapshot() API. std::string ts_str; Slice ts; if (FLAGS_user_timestamp_size > 0) { ts_str = GetNowNanos(); ts = ts_str; ropt.timestamp = &ts; } std::string value_at; // When taking a snapshot, we also read a key from that snapshot. We // will later read the same key before releasing the snapshot and // verify that the results are the same. auto status_at = db_->Get(ropt, column_family, key, &value_at); std::vector* key_vec = nullptr; if (FLAGS_compare_full_db_state_snapshot && (thread->tid == 0)) { key_vec = new std::vector(FLAGS_max_key); // When `prefix_extractor` is set, seeking to beginning and scanning // across prefixes are only supported with `total_order_seek` set. ropt.total_order_seek = true; std::unique_ptr iterator(db_->NewIterator(ropt)); for (iterator->SeekToFirst(); iterator->Valid(); iterator->Next()) { uint64_t key_val; if (GetIntVal(iterator->key().ToString(), &key_val)) { (*key_vec)[key_val] = true; } } } ThreadState::SnapshotState snap_state = {snapshot, rand_column_family, column_family->GetName(), keystr, status_at, value_at, key_vec, ts_str}; uint64_t hold_for = FLAGS_snapshot_hold_ops; if (FLAGS_long_running_snapshots) { // Hold 10% of snapshots for 10x more if (thread->rand.OneIn(10)) { assert(hold_for < std::numeric_limits::max() / 10); hold_for *= 10; // Hold 1% of snapshots for 100x more if (thread->rand.OneIn(10)) { assert(hold_for < std::numeric_limits::max() / 10); hold_for *= 10; } } } uint64_t release_at = std::min(FLAGS_ops_per_thread - 1, i + hold_for); thread->snapshot_queue.emplace(release_at, snap_state); } Status StressTest::MaybeReleaseSnapshots(ThreadState* thread, uint64_t i) { while (!thread->snapshot_queue.empty() && i >= thread->snapshot_queue.front().first) { auto snap_state = thread->snapshot_queue.front().second; assert(snap_state.snapshot); // Note: this is unsafe as the cf might be dropped concurrently. But // it is ok since unclean cf drop is cunnrently not supported by write // prepared transactions. Status s = AssertSame(db_, column_families_[snap_state.cf_at], snap_state); db_->ReleaseSnapshot(snap_state.snapshot); delete snap_state.key_vec; thread->snapshot_queue.pop(); if (!s.ok()) { return s; } } return Status::OK(); } void StressTest::TestCompactRange(ThreadState* thread, int64_t rand_key, const Slice& start_key, ColumnFamilyHandle* column_family) { int64_t end_key_num; if (std::numeric_limits::max() - rand_key < FLAGS_compact_range_width) { end_key_num = std::numeric_limits::max(); } else { end_key_num = FLAGS_compact_range_width + rand_key; } std::string end_key_buf = Key(end_key_num); Slice end_key(end_key_buf); CompactRangeOptions cro; cro.exclusive_manual_compaction = static_cast(thread->rand.Next() % 2); cro.change_level = static_cast(thread->rand.Next() % 2); std::vector bottom_level_styles = { BottommostLevelCompaction::kSkip, BottommostLevelCompaction::kIfHaveCompactionFilter, BottommostLevelCompaction::kForce, BottommostLevelCompaction::kForceOptimized}; cro.bottommost_level_compaction = bottom_level_styles[thread->rand.Next() % static_cast(bottom_level_styles.size())]; cro.allow_write_stall = static_cast(thread->rand.Next() % 2); cro.max_subcompactions = static_cast(thread->rand.Next() % 4); std::vector blob_gc_policies = { BlobGarbageCollectionPolicy::kForce, BlobGarbageCollectionPolicy::kDisable, BlobGarbageCollectionPolicy::kUseDefault}; cro.blob_garbage_collection_policy = blob_gc_policies[thread->rand.Next() % static_cast(blob_gc_policies.size())]; cro.blob_garbage_collection_age_cutoff = static_cast(thread->rand.Next() % 100) / 100.0; const Snapshot* pre_snapshot = nullptr; uint32_t pre_hash = 0; if (thread->rand.OneIn(2)) { // Do some validation by declaring a snapshot and compare the data before // and after the compaction pre_snapshot = db_->GetSnapshot(); pre_hash = GetRangeHash(thread, pre_snapshot, column_family, start_key, end_key); } Status status = db_->CompactRange(cro, column_family, &start_key, &end_key); if (!status.ok()) { fprintf(stdout, "Unable to perform CompactRange(): %s\n", status.ToString().c_str()); } if (pre_snapshot != nullptr) { uint32_t post_hash = GetRangeHash(thread, pre_snapshot, column_family, start_key, end_key); if (pre_hash != post_hash) { fprintf(stderr, "Data hash different before and after compact range " "start_key %s end_key %s\n", start_key.ToString(true).c_str(), end_key.ToString(true).c_str()); thread->stats.AddErrors(1); // Fail fast to preserve the DB state. thread->shared->SetVerificationFailure(); } db_->ReleaseSnapshot(pre_snapshot); } } uint32_t StressTest::GetRangeHash(ThreadState* thread, const Snapshot* snapshot, ColumnFamilyHandle* column_family, const Slice& start_key, const Slice& end_key) { // This `ReadOptions` is for validation purposes. Ignore // `FLAGS_rate_limit_user_ops` to avoid slowing any validation. ReadOptions ro; ro.snapshot = snapshot; ro.total_order_seek = true; std::string ts_str; Slice ts; if (FLAGS_user_timestamp_size > 0) { ts_str = GetNowNanos(); ts = ts_str; ro.timestamp = &ts; } std::unique_ptr it(db_->NewIterator(ro, column_family)); constexpr char kCrcCalculatorSepearator = ';'; uint32_t crc = 0; for (it->Seek(start_key); it->Valid() && options_.comparator->Compare(it->key(), end_key) <= 0; it->Next()) { crc = crc32c::Extend(crc, it->key().data(), it->key().size()); crc = crc32c::Extend(crc, &kCrcCalculatorSepearator, sizeof(char)); crc = crc32c::Extend(crc, it->value().data(), it->value().size()); crc = crc32c::Extend(crc, &kCrcCalculatorSepearator, sizeof(char)); for (const auto& column : it->columns()) { crc = crc32c::Extend(crc, column.name().data(), column.name().size()); crc = crc32c::Extend(crc, &kCrcCalculatorSepearator, sizeof(char)); crc = crc32c::Extend(crc, column.value().data(), column.value().size()); crc = crc32c::Extend(crc, &kCrcCalculatorSepearator, sizeof(char)); } } if (!it->status().ok()) { fprintf(stderr, "Iterator non-OK when calculating range CRC: %s\n", it->status().ToString().c_str()); thread->stats.AddErrors(1); // Fail fast to preserve the DB state. thread->shared->SetVerificationFailure(); } return crc; } void StressTest::PrintEnv() const { fprintf(stdout, "RocksDB version : %d.%d\n", kMajorVersion, kMinorVersion); fprintf(stdout, "Format version : %d\n", FLAGS_format_version); fprintf(stdout, "TransactionDB : %s\n", FLAGS_use_txn ? "true" : "false"); if (FLAGS_use_txn) { fprintf(stdout, "TransactionDB Type : %s\n", FLAGS_use_optimistic_txn ? "Optimistic" : "Pessimistic"); if (FLAGS_use_optimistic_txn) { fprintf(stdout, "OCC Validation Type : %d\n", static_cast(FLAGS_occ_validation_policy)); if (static_cast(OccValidationPolicy::kValidateParallel) == FLAGS_occ_validation_policy) { fprintf(stdout, "Share Lock Buckets : %s\n", FLAGS_share_occ_lock_buckets ? "true" : "false"); if (FLAGS_share_occ_lock_buckets) { fprintf(stdout, "Lock Bucket Count : %d\n", static_cast(FLAGS_occ_lock_bucket_count)); } } } else { fprintf(stdout, "Two write queues: : %s\n", FLAGS_two_write_queues ? "true" : "false"); fprintf(stdout, "Write policy : %d\n", static_cast(FLAGS_txn_write_policy)); if (static_cast(TxnDBWritePolicy::WRITE_PREPARED) == FLAGS_txn_write_policy || static_cast(TxnDBWritePolicy::WRITE_UNPREPARED) == FLAGS_txn_write_policy) { fprintf(stdout, "Snapshot cache bits : %d\n", static_cast(FLAGS_wp_snapshot_cache_bits)); fprintf(stdout, "Commit cache bits : %d\n", static_cast(FLAGS_wp_commit_cache_bits)); } fprintf(stdout, "last cwb for recovery : %s\n", FLAGS_use_only_the_last_commit_time_batch_for_recovery ? "true" : "false"); } } fprintf(stdout, "Stacked BlobDB : %s\n", FLAGS_use_blob_db ? "true" : "false"); fprintf(stdout, "Read only mode : %s\n", FLAGS_read_only ? "true" : "false"); fprintf(stdout, "Atomic flush : %s\n", FLAGS_atomic_flush ? "true" : "false"); fprintf(stdout, "Manual WAL flush : %s\n", FLAGS_manual_wal_flush_one_in > 0 ? "true" : "false"); fprintf(stdout, "Column families : %d\n", FLAGS_column_families); if (!FLAGS_test_batches_snapshots) { fprintf(stdout, "Clear CFs one in : %d\n", FLAGS_clear_column_family_one_in); } fprintf(stdout, "Number of threads : %d\n", FLAGS_threads); fprintf(stdout, "Ops per thread : %lu\n", (unsigned long)FLAGS_ops_per_thread); std::string ttl_state("unused"); if (FLAGS_ttl > 0) { ttl_state = std::to_string(FLAGS_ttl); } fprintf(stdout, "Time to live(sec) : %s\n", ttl_state.c_str()); fprintf(stdout, "Read percentage : %d%%\n", FLAGS_readpercent); fprintf(stdout, "Prefix percentage : %d%%\n", FLAGS_prefixpercent); fprintf(stdout, "Write percentage : %d%%\n", FLAGS_writepercent); fprintf(stdout, "Delete percentage : %d%%\n", FLAGS_delpercent); fprintf(stdout, "Delete range percentage : %d%%\n", FLAGS_delrangepercent); fprintf(stdout, "No overwrite percentage : %d%%\n", FLAGS_nooverwritepercent); fprintf(stdout, "Iterate percentage : %d%%\n", FLAGS_iterpercent); fprintf(stdout, "Custom ops percentage : %d%%\n", FLAGS_customopspercent); fprintf(stdout, "DB-write-buffer-size : %" PRIu64 "\n", FLAGS_db_write_buffer_size); fprintf(stdout, "Write-buffer-size : %d\n", FLAGS_write_buffer_size); fprintf(stdout, "Iterations : %lu\n", (unsigned long)FLAGS_num_iterations); fprintf(stdout, "Max key : %lu\n", (unsigned long)FLAGS_max_key); fprintf(stdout, "Ratio #ops/#keys : %f\n", (1.0 * FLAGS_ops_per_thread * FLAGS_threads) / FLAGS_max_key); fprintf(stdout, "Num times DB reopens : %d\n", FLAGS_reopen); fprintf(stdout, "Batches/snapshots : %d\n", FLAGS_test_batches_snapshots); fprintf(stdout, "Do update in place : %d\n", FLAGS_in_place_update); fprintf(stdout, "Num keys per lock : %d\n", 1 << FLAGS_log2_keys_per_lock); std::string compression = CompressionTypeToString(compression_type_e); fprintf(stdout, "Compression : %s\n", compression.c_str()); std::string bottommost_compression = CompressionTypeToString(bottommost_compression_type_e); fprintf(stdout, "Bottommost Compression : %s\n", bottommost_compression.c_str()); std::string checksum = ChecksumTypeToString(checksum_type_e); fprintf(stdout, "Checksum type : %s\n", checksum.c_str()); fprintf(stdout, "File checksum impl : %s\n", FLAGS_file_checksum_impl.c_str()); fprintf(stdout, "Bloom bits / key : %s\n", FormatDoubleParam(FLAGS_bloom_bits).c_str()); fprintf(stdout, "Max subcompactions : %" PRIu64 "\n", FLAGS_subcompactions); fprintf(stdout, "Use MultiGet : %s\n", FLAGS_use_multiget ? "true" : "false"); fprintf(stdout, "Use GetEntity : %s\n", FLAGS_use_get_entity ? "true" : "false"); fprintf(stdout, "Use MultiGetEntity : %s\n", FLAGS_use_multi_get_entity ? "true" : "false"); fprintf(stdout, "Verification only : %s\n", FLAGS_verification_only ? "true" : "false"); const char* memtablerep = ""; switch (FLAGS_rep_factory) { case kSkipList: memtablerep = "skip_list"; break; case kHashSkipList: memtablerep = "prefix_hash"; break; case kVectorRep: memtablerep = "vector"; break; } fprintf(stdout, "Memtablerep : %s\n", memtablerep); #ifndef NDEBUG KillPoint* kp = KillPoint::GetInstance(); fprintf(stdout, "Test kill odd : %d\n", kp->rocksdb_kill_odds); if (!kp->rocksdb_kill_exclude_prefixes.empty()) { fprintf(stdout, "Skipping kill points prefixes:\n"); for (auto& p : kp->rocksdb_kill_exclude_prefixes) { fprintf(stdout, " %s\n", p.c_str()); } } #endif fprintf(stdout, "Periodic Compaction Secs : %" PRIu64 "\n", FLAGS_periodic_compaction_seconds); fprintf(stdout, "Compaction TTL : %" PRIu64 "\n", FLAGS_compaction_ttl); const char* compaction_pri = ""; switch (FLAGS_compaction_pri) { case kByCompensatedSize: compaction_pri = "kByCompensatedSize"; break; case kOldestLargestSeqFirst: compaction_pri = "kOldestLargestSeqFirst"; break; case kOldestSmallestSeqFirst: compaction_pri = "kOldestSmallestSeqFirst"; break; case kMinOverlappingRatio: compaction_pri = "kMinOverlappingRatio"; break; case kRoundRobin: compaction_pri = "kRoundRobin"; break; } fprintf(stdout, "Compaction Pri : %s\n", compaction_pri); fprintf(stdout, "Background Purge : %d\n", static_cast(FLAGS_avoid_unnecessary_blocking_io)); fprintf(stdout, "Write DB ID to manifest : %d\n", static_cast(FLAGS_write_dbid_to_manifest)); fprintf(stdout, "Max Write Batch Group Size: %" PRIu64 "\n", FLAGS_max_write_batch_group_size_bytes); fprintf(stdout, "Use dynamic level : %d\n", static_cast(FLAGS_level_compaction_dynamic_level_bytes)); fprintf(stdout, "Read fault one in : %d\n", FLAGS_read_fault_one_in); fprintf(stdout, "Write fault one in : %d\n", FLAGS_write_fault_one_in); fprintf(stdout, "Open metadata write fault one in:\n"); fprintf(stdout, " %d\n", FLAGS_open_metadata_write_fault_one_in); fprintf(stdout, "Sync fault injection : %d\n", FLAGS_sync_fault_injection); fprintf(stdout, "Best efforts recovery : %d\n", static_cast(FLAGS_best_efforts_recovery)); fprintf(stdout, "Fail if OPTIONS file error: %d\n", static_cast(FLAGS_fail_if_options_file_error)); fprintf(stdout, "User timestamp size bytes : %d\n", static_cast(FLAGS_user_timestamp_size)); fprintf(stdout, "Persist user defined timestamps : %d\n", FLAGS_persist_user_defined_timestamps); fprintf(stdout, "WAL compression : %s\n", FLAGS_wal_compression.c_str()); fprintf(stdout, "Try verify sst unique id : %d\n", static_cast(FLAGS_verify_sst_unique_id_in_manifest)); fprintf(stdout, "------------------------------------------------\n"); } void StressTest::Open(SharedState* shared, bool reopen) { assert(db_ == nullptr); assert(txn_db_ == nullptr); assert(optimistic_txn_db_ == nullptr); if (!InitializeOptionsFromFile(options_)) { InitializeOptionsFromFlags(cache_, filter_policy_, options_); } InitializeOptionsGeneral(cache_, filter_policy_, options_); if (FLAGS_prefix_size == 0 && FLAGS_rep_factory == kHashSkipList) { fprintf(stderr, "prefeix_size cannot be zero if memtablerep == prefix_hash\n"); exit(1); } if (FLAGS_prefix_size != 0 && FLAGS_rep_factory != kHashSkipList) { fprintf(stdout, "WARNING: prefix_size is non-zero but " "memtablerep != prefix_hash\n"); } if ((options_.enable_blob_files || options_.enable_blob_garbage_collection || FLAGS_allow_setting_blob_options_dynamically) && FLAGS_best_efforts_recovery) { fprintf(stderr, "Integrated BlobDB is currently incompatible with best-effort " "recovery\n"); exit(1); } fprintf(stdout, "Integrated BlobDB: blob files enabled %d, min blob size %" PRIu64 ", blob file size %" PRIu64 ", blob compression type %s, blob GC enabled %d, cutoff %f, force " "threshold %f, blob compaction readahead size %" PRIu64 ", blob file starting level %d\n", options_.enable_blob_files, options_.min_blob_size, options_.blob_file_size, CompressionTypeToString(options_.blob_compression_type).c_str(), options_.enable_blob_garbage_collection, options_.blob_garbage_collection_age_cutoff, options_.blob_garbage_collection_force_threshold, options_.blob_compaction_readahead_size, options_.blob_file_starting_level); if (FLAGS_use_blob_cache) { fprintf(stdout, "Integrated BlobDB: blob cache enabled" ", block and blob caches shared: %d", FLAGS_use_shared_block_and_blob_cache); if (!FLAGS_use_shared_block_and_blob_cache) { fprintf(stdout, ", blob cache size %" PRIu64 ", blob cache num shard bits: %d", FLAGS_blob_cache_size, FLAGS_blob_cache_numshardbits); } fprintf(stdout, ", blob cache prepopulated: %d\n", FLAGS_prepopulate_blob_cache); } else { fprintf(stdout, "Integrated BlobDB: blob cache disabled\n"); } fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str()); Status s; if (FLAGS_ttl == -1) { std::vector existing_column_families; s = DB::ListColumnFamilies(DBOptions(options_), FLAGS_db, &existing_column_families); // ignore errors if (!s.ok()) { // DB doesn't exist assert(existing_column_families.empty()); assert(column_family_names_.empty()); column_family_names_.push_back(kDefaultColumnFamilyName); } else if (column_family_names_.empty()) { // this is the first call to the function Open() column_family_names_ = existing_column_families; } else { // this is a reopen. just assert that existing column_family_names are // equivalent to what we remember auto sorted_cfn = column_family_names_; std::sort(sorted_cfn.begin(), sorted_cfn.end()); std::sort(existing_column_families.begin(), existing_column_families.end()); if (sorted_cfn != existing_column_families) { fprintf(stderr, "Expected column families differ from the existing:\n"); fprintf(stderr, "Expected: {"); for (const auto& cf : sorted_cfn) { fprintf(stderr, "%s ", cf.c_str()); } fprintf(stderr, "}\n"); fprintf(stderr, "Existing: {"); for (const auto& cf : existing_column_families) { fprintf(stderr, "%s ", cf.c_str()); } fprintf(stderr, "}\n"); } assert(sorted_cfn == existing_column_families); } std::vector cf_descriptors; for (const auto& name : column_family_names_) { if (name != kDefaultColumnFamilyName) { new_column_family_name_ = std::max(new_column_family_name_.load(), std::stoi(name) + 1); } cf_descriptors.emplace_back(name, ColumnFamilyOptions(options_)); } while (cf_descriptors.size() < (size_t)FLAGS_column_families) { std::string name = std::to_string(new_column_family_name_.load()); new_column_family_name_++; cf_descriptors.emplace_back(name, ColumnFamilyOptions(options_)); column_family_names_.push_back(name); } options_.listeners.clear(); options_.listeners.emplace_back(new DbStressListener( FLAGS_db, options_.db_paths, cf_descriptors, db_stress_listener_env)); RegisterAdditionalListeners(); // If this is for DB reopen, write error injection may have been enabled. // Disable it here in case there is no open fault injection. if (fault_fs_guard) { fault_fs_guard->DisableWriteErrorInjection(); } if (!FLAGS_use_txn) { // Determine whether we need to inject file metadata write failures // during DB reopen. If it does, enable it. // Only inject metadata error if it is reopening, as initial open // failure doesn't need to be handled. // TODO cover transaction DB is not covered in this fault test too. bool inject_meta_error = false; bool inject_write_error = false; bool inject_read_error = false; if ((FLAGS_open_metadata_write_fault_one_in || FLAGS_open_write_fault_one_in || FLAGS_open_read_fault_one_in) && fault_fs_guard ->FileExists(FLAGS_db + "/CURRENT", IOOptions(), nullptr) .ok()) { if (!FLAGS_sync) { // When DB Stress is not sync mode, we expect all WAL writes to // WAL is durable. Buffering unsynced writes will cause false // positive in crash tests. Before we figure out a way to // solve it, skip WAL from failure injection. fault_fs_guard->SetDirectWritableTypes({kWalFile}); } inject_meta_error = FLAGS_open_metadata_write_fault_one_in; inject_write_error = FLAGS_open_write_fault_one_in; inject_read_error = FLAGS_open_read_fault_one_in; if (inject_meta_error) { fault_fs_guard->EnableMetadataWriteErrorInjection(); fault_fs_guard->SetRandomMetadataWriteError( FLAGS_open_metadata_write_fault_one_in); } if (inject_write_error) { fault_fs_guard->SetFilesystemDirectWritable(false); fault_fs_guard->EnableWriteErrorInjection(); fault_fs_guard->SetRandomWriteError( static_cast(FLAGS_seed), FLAGS_open_write_fault_one_in, IOStatus::IOError("Injected Open Write Error"), /*inject_for_all_file_types=*/true, /*types=*/{}); } if (inject_read_error) { fault_fs_guard->SetRandomReadError(FLAGS_open_read_fault_one_in); } } while (true) { // StackableDB-based BlobDB if (FLAGS_use_blob_db) { blob_db::BlobDBOptions blob_db_options; blob_db_options.min_blob_size = FLAGS_blob_db_min_blob_size; blob_db_options.bytes_per_sync = FLAGS_blob_db_bytes_per_sync; blob_db_options.blob_file_size = FLAGS_blob_db_file_size; blob_db_options.enable_garbage_collection = FLAGS_blob_db_enable_gc; blob_db_options.garbage_collection_cutoff = FLAGS_blob_db_gc_cutoff; blob_db::BlobDB* blob_db = nullptr; s = blob_db::BlobDB::Open(options_, blob_db_options, FLAGS_db, cf_descriptors, &column_families_, &blob_db); if (s.ok()) { db_ = blob_db; } } else { if (db_preload_finished_.load() && FLAGS_read_only) { s = DB::OpenForReadOnly(DBOptions(options_), FLAGS_db, cf_descriptors, &column_families_, &db_); } else { s = DB::Open(DBOptions(options_), FLAGS_db, cf_descriptors, &column_families_, &db_); } } if (inject_meta_error || inject_write_error || inject_read_error) { // TODO: re-enable write error injection after reopen. Same for // sync fault injection. fault_fs_guard->SetFilesystemDirectWritable(true); fault_fs_guard->DisableMetadataWriteErrorInjection(); fault_fs_guard->DisableWriteErrorInjection(); fault_fs_guard->SetDirectWritableTypes({}); fault_fs_guard->SetRandomReadError(0); if (s.ok()) { // Injected errors might happen in background compactions. We // wait for all compactions to finish to make sure DB is in // clean state before executing queries. s = db_->GetRootDB()->WaitForCompact(WaitForCompactOptions()); if (!s.ok()) { for (auto cf : column_families_) { delete cf; } column_families_.clear(); delete db_; db_ = nullptr; } } if (!s.ok()) { // After failure to opening a DB due to IO error, retry should // successfully open the DB with correct data if no IO error shows // up. inject_meta_error = false; inject_write_error = false; inject_read_error = false; // TODO: Unsynced data loss during DB reopen is not supported yet in // stress test. Will need to recreate expected state if we decide // to support unsynced data loss during DB reopen. if (!reopen) { Random rand(static_cast(FLAGS_seed)); if (rand.OneIn(2)) { fault_fs_guard->DeleteFilesCreatedAfterLastDirSync(IOOptions(), nullptr); } if (rand.OneIn(3)) { fault_fs_guard->DropUnsyncedFileData(); } else if (rand.OneIn(2)) { fault_fs_guard->DropRandomUnsyncedFileData(&rand); } } continue; } } break; } } else { if (FLAGS_use_optimistic_txn) { OptimisticTransactionDBOptions optimistic_txn_db_options; optimistic_txn_db_options.validate_policy = static_cast(FLAGS_occ_validation_policy); if (FLAGS_share_occ_lock_buckets) { optimistic_txn_db_options.shared_lock_buckets = MakeSharedOccLockBuckets(FLAGS_occ_lock_bucket_count); } else { optimistic_txn_db_options.occ_lock_buckets = FLAGS_occ_lock_bucket_count; optimistic_txn_db_options.shared_lock_buckets = nullptr; } s = OptimisticTransactionDB::Open( options_, optimistic_txn_db_options, FLAGS_db, cf_descriptors, &column_families_, &optimistic_txn_db_); if (!s.ok()) { fprintf(stderr, "Error in opening the OptimisticTransactionDB [%s]\n", s.ToString().c_str()); fflush(stderr); } assert(s.ok()); { db_ = optimistic_txn_db_; db_aptr_.store(optimistic_txn_db_, std::memory_order_release); } } else { TransactionDBOptions txn_db_options; assert(FLAGS_txn_write_policy <= TxnDBWritePolicy::WRITE_UNPREPARED); txn_db_options.write_policy = static_cast(FLAGS_txn_write_policy); if (FLAGS_unordered_write) { assert(txn_db_options.write_policy == TxnDBWritePolicy::WRITE_PREPARED); options_.unordered_write = true; options_.two_write_queues = true; txn_db_options.skip_concurrency_control = true; } else { options_.two_write_queues = FLAGS_two_write_queues; } txn_db_options.wp_snapshot_cache_bits = static_cast(FLAGS_wp_snapshot_cache_bits); txn_db_options.wp_commit_cache_bits = static_cast(FLAGS_wp_commit_cache_bits); PrepareTxnDbOptions(shared, txn_db_options); s = TransactionDB::Open(options_, txn_db_options, FLAGS_db, cf_descriptors, &column_families_, &txn_db_); if (!s.ok()) { fprintf(stderr, "Error in opening the TransactionDB [%s]\n", s.ToString().c_str()); fflush(stderr); } assert(s.ok()); // Do not swap the order of the following. { db_ = txn_db_; db_aptr_.store(txn_db_, std::memory_order_release); } } } if (!s.ok()) { fprintf(stderr, "Error in opening the DB [%s]\n", s.ToString().c_str()); fflush(stderr); } assert(s.ok()); assert(column_families_.size() == static_cast(FLAGS_column_families)); // Secondary instance does not support write-prepared/write-unprepared // transactions, thus just disable secondary instance if we use // transaction. if (s.ok() && FLAGS_test_secondary && !FLAGS_use_txn) { Options tmp_opts; // TODO(yanqin) support max_open_files != -1 for secondary instance. tmp_opts.max_open_files = -1; tmp_opts.env = db_stress_env; const std::string& secondary_path = FLAGS_secondaries_base; s = DB::OpenAsSecondary(tmp_opts, FLAGS_db, secondary_path, cf_descriptors, &cmp_cfhs_, &cmp_db_); assert(s.ok()); assert(cmp_cfhs_.size() == static_cast(FLAGS_column_families)); } } else { DBWithTTL* db_with_ttl; s = DBWithTTL::Open(options_, FLAGS_db, &db_with_ttl, FLAGS_ttl); db_ = db_with_ttl; } if (FLAGS_preserve_unverified_changes) { // Up until now, no live file should have become obsolete due to these // options. After `DisableFileDeletions()` we can reenable auto compactions // since, even if live files become obsolete, they won't be deleted. assert(options_.avoid_flush_during_recovery); assert(options_.disable_auto_compactions); if (s.ok()) { s = db_->DisableFileDeletions(); } if (s.ok()) { s = db_->EnableAutoCompaction(column_families_); } } if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } } void StressTest::Reopen(ThreadState* thread) { // BG jobs in WritePrepared must be canceled first because i) they can access // the db via a callbac ii) they hold on to a snapshot and the upcoming // ::Close would complain about it. const bool write_prepared = FLAGS_use_txn && FLAGS_txn_write_policy != 0; bool bg_canceled __attribute__((unused)) = false; if (write_prepared || thread->rand.OneIn(2)) { const bool wait = write_prepared || static_cast(thread->rand.OneIn(2)); CancelAllBackgroundWork(db_, wait); bg_canceled = wait; } assert(!write_prepared || bg_canceled); for (auto cf : column_families_) { delete cf; } column_families_.clear(); if (thread->rand.OneIn(2)) { Status s = db_->Close(); if (!s.ok()) { fprintf(stderr, "Non-ok close status: %s\n", s.ToString().c_str()); fflush(stderr); } assert(s.ok()); } assert((txn_db_ == nullptr && optimistic_txn_db_ == nullptr) || (db_ == txn_db_ || db_ == optimistic_txn_db_)); delete db_; db_ = nullptr; txn_db_ = nullptr; optimistic_txn_db_ = nullptr; num_times_reopened_++; auto now = clock_->NowMicros(); fprintf(stdout, "%s Reopening database for the %dth time\n", clock_->TimeToString(now / 1000000).c_str(), num_times_reopened_); Open(thread->shared, /*reopen=*/true); if ((FLAGS_sync_fault_injection || FLAGS_disable_wal || FLAGS_manual_wal_flush_one_in > 0) && IsStateTracked()) { Status s = thread->shared->SaveAtAndAfter(db_); if (!s.ok()) { fprintf(stderr, "Error enabling history tracing: %s\n", s.ToString().c_str()); exit(1); } } } bool StressTest::MaybeUseOlderTimestampForPointLookup(ThreadState* thread, std::string& ts_str, Slice& ts_slice, ReadOptions& read_opts) { if (FLAGS_user_timestamp_size == 0) { return false; } if (!FLAGS_persist_user_defined_timestamps) { // Not read with older timestamps to avoid get InvalidArgument. return false; } assert(thread); if (!thread->rand.OneInOpt(3)) { return false; } const SharedState* const shared = thread->shared; assert(shared); const uint64_t start_ts = shared->GetStartTimestamp(); uint64_t now = db_stress_env->NowNanos(); assert(now > start_ts); uint64_t time_diff = now - start_ts; uint64_t ts = start_ts + (thread->rand.Next64() % time_diff); ts_str.clear(); PutFixed64(&ts_str, ts); ts_slice = ts_str; read_opts.timestamp = &ts_slice; return true; } void StressTest::MaybeUseOlderTimestampForRangeScan(ThreadState* thread, std::string& ts_str, Slice& ts_slice, ReadOptions& read_opts) { if (FLAGS_user_timestamp_size == 0) { return; } if (!FLAGS_persist_user_defined_timestamps) { // Not read with older timestamps to avoid get InvalidArgument. return; } assert(thread); if (!thread->rand.OneInOpt(3)) { return; } const Slice* const saved_ts = read_opts.timestamp; assert(saved_ts != nullptr); const SharedState* const shared = thread->shared; assert(shared); const uint64_t start_ts = shared->GetStartTimestamp(); uint64_t now = db_stress_env->NowNanos(); assert(now > start_ts); uint64_t time_diff = now - start_ts; uint64_t ts = start_ts + (thread->rand.Next64() % time_diff); ts_str.clear(); PutFixed64(&ts_str, ts); ts_slice = ts_str; read_opts.timestamp = &ts_slice; // TODO (yanqin): support Merge with iter_start_ts if (!thread->rand.OneInOpt(3) || FLAGS_use_merge || FLAGS_use_full_merge_v1) { return; } ts_str.clear(); PutFixed64(&ts_str, start_ts); ts_slice = ts_str; read_opts.iter_start_ts = &ts_slice; read_opts.timestamp = saved_ts; } void CheckAndSetOptionsForUserTimestamp(Options& options) { assert(FLAGS_user_timestamp_size > 0); const Comparator* const cmp = test::BytewiseComparatorWithU64TsWrapper(); assert(cmp); if (FLAGS_user_timestamp_size != cmp->timestamp_size()) { fprintf(stderr, "Only -user_timestamp_size=%d is supported in stress test.\n", static_cast(cmp->timestamp_size())); exit(1); } if (FLAGS_use_txn) { fprintf(stderr, "TransactionDB does not support timestamp yet.\n"); exit(1); } if (FLAGS_test_cf_consistency || FLAGS_test_batches_snapshots) { fprintf(stderr, "Due to per-key ts-seq ordering constraint, only the (default) " "non-batched test is supported with timestamp.\n"); exit(1); } if (FLAGS_ingest_external_file_one_in > 0) { fprintf(stderr, "Bulk loading may not support timestamp yet.\n"); exit(1); } options.comparator = cmp; options.persist_user_defined_timestamps = FLAGS_persist_user_defined_timestamps; } bool InitializeOptionsFromFile(Options& options) { DBOptions db_options; ConfigOptions config_options; config_options.ignore_unknown_options = false; config_options.input_strings_escaped = true; config_options.env = db_stress_env; std::vector cf_descriptors; if (!FLAGS_options_file.empty()) { Status s = LoadOptionsFromFile(config_options, FLAGS_options_file, &db_options, &cf_descriptors); if (!s.ok()) { fprintf(stderr, "Unable to load options file %s --- %s\n", FLAGS_options_file.c_str(), s.ToString().c_str()); exit(1); } db_options.env = new CompositeEnvWrapper(db_stress_env); options = Options(db_options, cf_descriptors[0].options); return true; } return false; } void InitializeOptionsFromFlags( const std::shared_ptr& cache, const std::shared_ptr& filter_policy, Options& options) { BlockBasedTableOptions block_based_options; block_based_options.block_cache = cache; block_based_options.cache_index_and_filter_blocks = FLAGS_cache_index_and_filter_blocks; block_based_options.metadata_cache_options.top_level_index_pinning = static_cast(FLAGS_top_level_index_pinning); block_based_options.metadata_cache_options.partition_pinning = static_cast(FLAGS_partition_pinning); block_based_options.metadata_cache_options.unpartitioned_pinning = static_cast(FLAGS_unpartitioned_pinning); block_based_options.checksum = checksum_type_e; block_based_options.block_size = FLAGS_block_size; block_based_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kCompressionDictionaryBuildingBuffer, {/*.charged = */ FLAGS_charge_compression_dictionary_building_buffer ? CacheEntryRoleOptions::Decision::kEnabled : CacheEntryRoleOptions::Decision::kDisabled}}); block_based_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kFilterConstruction, {/*.charged = */ FLAGS_charge_filter_construction ? CacheEntryRoleOptions::Decision::kEnabled : CacheEntryRoleOptions::Decision::kDisabled}}); block_based_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kBlockBasedTableReader, {/*.charged = */ FLAGS_charge_table_reader ? CacheEntryRoleOptions::Decision::kEnabled : CacheEntryRoleOptions::Decision::kDisabled}}); block_based_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kFileMetadata, {/*.charged = */ FLAGS_charge_file_metadata ? CacheEntryRoleOptions::Decision::kEnabled : CacheEntryRoleOptions::Decision::kDisabled}}); block_based_options.cache_usage_options.options_overrides.insert( {CacheEntryRole::kBlobCache, {/*.charged = */ FLAGS_charge_blob_cache ? CacheEntryRoleOptions::Decision::kEnabled : CacheEntryRoleOptions::Decision::kDisabled}}); block_based_options.format_version = static_cast(FLAGS_format_version); block_based_options.index_block_restart_interval = static_cast(FLAGS_index_block_restart_interval); block_based_options.filter_policy = filter_policy; block_based_options.partition_filters = FLAGS_partition_filters; block_based_options.optimize_filters_for_memory = FLAGS_optimize_filters_for_memory; block_based_options.detect_filter_construct_corruption = FLAGS_detect_filter_construct_corruption; block_based_options.index_type = static_cast(FLAGS_index_type); block_based_options.data_block_index_type = static_cast( FLAGS_data_block_index_type); block_based_options.prepopulate_block_cache = static_cast( FLAGS_prepopulate_block_cache); block_based_options.initial_auto_readahead_size = FLAGS_initial_auto_readahead_size; block_based_options.max_auto_readahead_size = FLAGS_max_auto_readahead_size; block_based_options.num_file_reads_for_auto_readahead = FLAGS_num_file_reads_for_auto_readahead; options.table_factory.reset(NewBlockBasedTableFactory(block_based_options)); options.db_write_buffer_size = FLAGS_db_write_buffer_size; options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; options.max_write_buffer_number_to_maintain = FLAGS_max_write_buffer_number_to_maintain; options.max_write_buffer_size_to_maintain = FLAGS_max_write_buffer_size_to_maintain; options.memtable_prefix_bloom_size_ratio = FLAGS_memtable_prefix_bloom_size_ratio; if (FLAGS_use_write_buffer_manager) { options.write_buffer_manager.reset( new WriteBufferManager(FLAGS_db_write_buffer_size, block_cache)); } options.memtable_whole_key_filtering = FLAGS_memtable_whole_key_filtering; options.disable_auto_compactions = FLAGS_disable_auto_compactions; options.max_background_compactions = FLAGS_max_background_compactions; options.max_background_flushes = FLAGS_max_background_flushes; options.compaction_style = static_cast(FLAGS_compaction_style); if (options.compaction_style == ROCKSDB_NAMESPACE::CompactionStyle::kCompactionStyleFIFO) { options.compaction_options_fifo.allow_compaction = FLAGS_fifo_allow_compaction; } options.compaction_pri = static_cast(FLAGS_compaction_pri); options.num_levels = FLAGS_num_levels; if (FLAGS_prefix_size >= 0) { options.prefix_extractor.reset(NewFixedPrefixTransform(FLAGS_prefix_size)); } options.max_open_files = FLAGS_open_files; options.statistics = dbstats; options.env = db_stress_env; options.use_fsync = FLAGS_use_fsync; options.compaction_readahead_size = FLAGS_compaction_readahead_size; options.allow_mmap_reads = FLAGS_mmap_read; options.allow_mmap_writes = FLAGS_mmap_write; options.use_direct_reads = FLAGS_use_direct_reads; options.use_direct_io_for_flush_and_compaction = FLAGS_use_direct_io_for_flush_and_compaction; options.recycle_log_file_num = static_cast(FLAGS_recycle_log_file_num); options.target_file_size_base = FLAGS_target_file_size_base; options.target_file_size_multiplier = FLAGS_target_file_size_multiplier; options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base; options.max_bytes_for_level_multiplier = FLAGS_max_bytes_for_level_multiplier; options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger; options.level0_slowdown_writes_trigger = FLAGS_level0_slowdown_writes_trigger; options.level0_file_num_compaction_trigger = FLAGS_level0_file_num_compaction_trigger; options.compression = compression_type_e; options.bottommost_compression = bottommost_compression_type_e; options.compression_opts.max_dict_bytes = FLAGS_compression_max_dict_bytes; options.compression_opts.zstd_max_train_bytes = FLAGS_compression_zstd_max_train_bytes; options.compression_opts.parallel_threads = FLAGS_compression_parallel_threads; options.compression_opts.max_dict_buffer_bytes = FLAGS_compression_max_dict_buffer_bytes; if (ZSTD_FinalizeDictionarySupported()) { options.compression_opts.use_zstd_dict_trainer = FLAGS_compression_use_zstd_dict_trainer; } else if (!FLAGS_compression_use_zstd_dict_trainer) { fprintf( stdout, "WARNING: use_zstd_dict_trainer is false but zstd finalizeDictionary " "cannot be used because ZSTD 1.4.5+ is not linked with the binary." " zstd dictionary trainer will be used.\n"); } if (FLAGS_compression_checksum) { options.compression_opts.checksum = true; } options.max_manifest_file_size = FLAGS_max_manifest_file_size; options.inplace_update_support = FLAGS_in_place_update; options.max_subcompactions = static_cast(FLAGS_subcompactions); options.allow_concurrent_memtable_write = FLAGS_allow_concurrent_memtable_write; options.experimental_mempurge_threshold = FLAGS_experimental_mempurge_threshold; options.periodic_compaction_seconds = FLAGS_periodic_compaction_seconds; options.stats_dump_period_sec = static_cast(FLAGS_stats_dump_period_sec); options.ttl = FLAGS_compaction_ttl; options.enable_pipelined_write = FLAGS_enable_pipelined_write; options.enable_write_thread_adaptive_yield = FLAGS_enable_write_thread_adaptive_yield; options.compaction_options_universal.size_ratio = FLAGS_universal_size_ratio; options.compaction_options_universal.min_merge_width = FLAGS_universal_min_merge_width; options.compaction_options_universal.max_merge_width = FLAGS_universal_max_merge_width; options.compaction_options_universal.max_size_amplification_percent = FLAGS_universal_max_size_amplification_percent; options.atomic_flush = FLAGS_atomic_flush; options.manual_wal_flush = FLAGS_manual_wal_flush_one_in > 0 ? true : false; options.avoid_unnecessary_blocking_io = FLAGS_avoid_unnecessary_blocking_io; options.write_dbid_to_manifest = FLAGS_write_dbid_to_manifest; options.avoid_flush_during_recovery = FLAGS_avoid_flush_during_recovery; options.max_write_batch_group_size_bytes = FLAGS_max_write_batch_group_size_bytes; options.level_compaction_dynamic_level_bytes = FLAGS_level_compaction_dynamic_level_bytes; options.track_and_verify_wals_in_manifest = true; options.verify_sst_unique_id_in_manifest = FLAGS_verify_sst_unique_id_in_manifest; options.memtable_protection_bytes_per_key = FLAGS_memtable_protection_bytes_per_key; options.block_protection_bytes_per_key = FLAGS_block_protection_bytes_per_key; // Integrated BlobDB options.enable_blob_files = FLAGS_enable_blob_files; options.min_blob_size = FLAGS_min_blob_size; options.blob_file_size = FLAGS_blob_file_size; options.blob_compression_type = StringToCompressionType(FLAGS_blob_compression_type.c_str()); options.enable_blob_garbage_collection = FLAGS_enable_blob_garbage_collection; options.blob_garbage_collection_age_cutoff = FLAGS_blob_garbage_collection_age_cutoff; options.blob_garbage_collection_force_threshold = FLAGS_blob_garbage_collection_force_threshold; options.blob_compaction_readahead_size = FLAGS_blob_compaction_readahead_size; options.blob_file_starting_level = FLAGS_blob_file_starting_level; if (FLAGS_use_blob_cache) { if (FLAGS_use_shared_block_and_blob_cache) { options.blob_cache = cache; } else { if (FLAGS_blob_cache_size > 0) { LRUCacheOptions co; co.capacity = FLAGS_blob_cache_size; co.num_shard_bits = FLAGS_blob_cache_numshardbits; options.blob_cache = NewLRUCache(co); } else { fprintf(stderr, "Unable to create a standalone blob cache if blob_cache_size " "<= 0.\n"); exit(1); } } switch (FLAGS_prepopulate_blob_cache) { case 0: options.prepopulate_blob_cache = PrepopulateBlobCache::kDisable; break; case 1: options.prepopulate_blob_cache = PrepopulateBlobCache::kFlushOnly; break; default: fprintf(stderr, "Unknown prepopulate blob cache mode\n"); exit(1); } } options.wal_compression = StringToCompressionType(FLAGS_wal_compression.c_str()); if (FLAGS_enable_tiered_storage) { options.bottommost_temperature = Temperature::kCold; } options.preclude_last_level_data_seconds = FLAGS_preclude_last_level_data_seconds; options.preserve_internal_time_seconds = FLAGS_preserve_internal_time_seconds; switch (FLAGS_rep_factory) { case kSkipList: // no need to do anything break; case kHashSkipList: options.memtable_factory.reset(NewHashSkipListRepFactory(10000)); break; case kVectorRep: options.memtable_factory.reset(new VectorRepFactory()); break; } InitializeMergeOperator(options); if (FLAGS_enable_compaction_filter) { options.compaction_filter_factory = std::make_shared(); } options.best_efforts_recovery = FLAGS_best_efforts_recovery; options.paranoid_file_checks = FLAGS_paranoid_file_checks; options.fail_if_options_file_error = FLAGS_fail_if_options_file_error; if (FLAGS_user_timestamp_size > 0) { CheckAndSetOptionsForUserTimestamp(options); } options.allow_data_in_errors = FLAGS_allow_data_in_errors; options.enable_thread_tracking = FLAGS_enable_thread_tracking; options.memtable_max_range_deletions = FLAGS_memtable_max_range_deletions; options.bottommost_file_compaction_delay = FLAGS_bottommost_file_compaction_delay; } void InitializeOptionsGeneral( const std::shared_ptr& cache, const std::shared_ptr& filter_policy, Options& options) { options.create_missing_column_families = true; options.create_if_missing = true; if (!options.statistics) { options.statistics = dbstats; } if (options.env == Options().env) { options.env = db_stress_env; } assert(options.table_factory); auto table_options = options.table_factory->GetOptions(); if (table_options) { if (FLAGS_cache_size > 0) { table_options->block_cache = cache; } if (!table_options->filter_policy) { table_options->filter_policy = filter_policy; } } // TODO: row_cache, thread-pool IO priority, CPU priority. if (!options.rate_limiter) { if (FLAGS_rate_limiter_bytes_per_sec > 0) { options.rate_limiter.reset(NewGenericRateLimiter( FLAGS_rate_limiter_bytes_per_sec, 1000 /* refill_period_us */, 10 /* fairness */, FLAGS_rate_limit_bg_reads ? RateLimiter::Mode::kReadsOnly : RateLimiter::Mode::kWritesOnly)); } } if (!options.file_checksum_gen_factory) { options.file_checksum_gen_factory = GetFileChecksumImpl(FLAGS_file_checksum_impl); } if (FLAGS_sst_file_manager_bytes_per_sec > 0 || FLAGS_sst_file_manager_bytes_per_truncate > 0) { Status status; options.sst_file_manager.reset(NewSstFileManager( db_stress_env, options.info_log, "" /* trash_dir */, static_cast(FLAGS_sst_file_manager_bytes_per_sec), true /* delete_existing_trash */, &status, 0.25 /* max_trash_db_ratio */, FLAGS_sst_file_manager_bytes_per_truncate)); if (!status.ok()) { fprintf(stderr, "SstFileManager creation failed: %s\n", status.ToString().c_str()); exit(1); } } if (FLAGS_preserve_unverified_changes) { if (!options.avoid_flush_during_recovery) { fprintf(stderr, "WARNING: flipping `avoid_flush_during_recovery` to true for " "`preserve_unverified_changes` to keep all files\n"); options.avoid_flush_during_recovery = true; } // Together with `avoid_flush_during_recovery == true`, this will prevent // live files from becoming obsolete and deleted between `DB::Open()` and // `DisableFileDeletions()` due to flush or compaction. We do not need to // warn the user since we will reenable compaction soon. options.disable_auto_compactions = true; } options.table_properties_collector_factories.emplace_back( std::make_shared()); } } // namespace ROCKSDB_NAMESPACE #endif // GFLAGS